
Simulation Research on Time-Optimal Path
Planning of UAV Utilizing the Flightmare Platform

1st Yuling Xin
School of Automation Engineering
University of Electronic Science

and Technology of China
Chendu, China

xinyuling01@163.com

2nd Xin Lu
Yangtze Delta Region Institute (Huzhou)

University of Electronic Science
and Technology of China

Huzhou, China
luxin uestc@163.com

3rd Fusheng Li∗
School of Automation Engineering
University of Electronic Science

and Technology of China
Chendu, China

lifusheng@uestc.edu.cn

Abstract—This paper presents a study on time-optimal path
planning and control for Unmanned Aerial Vehicles (UAVs) using
fourth-order minimum snap trajectory generation and Nonlinear
Model Predictive Control (NMPC) on the Flightmare simulation
platform. Targeting the demands of fast flight in complex
environments, a fourth-order polynomial trajectory planner is
designed to minimize flight time while adhering to dynamical
constraints. Integration with an NMPC and a PID controller
enables precise tracking and dynamic adjustment of planned
trajectories. Experimental results demonstrate that this method
generates efficient and smooth flight trajectories, significantly
reducing flight time while ensuring UAV stability and safety.

Index Terms—Flightmare Platform, Fourth-Order Minimum
Snap Trajectory Generation, High-Fidelity Simulation, UAV,
NMPC

I. INTRODUCTION

As Unmanned Aerial Vehicle (UAV) technology continues
to evolve at a rapid pace, its applications have broadened sig-
nificantly across diverse fields. UAVs, also known as drones,
have become indispensable tools for tasks requiring high-
speed, agile, and autonomous responses [1]. These include
but are not limited to package delivery, search-and-rescue
operations, aerial photography, environmental monitoring, and
even military applications [2]. Within these applications, the
ability to plan time-optimal flight paths that align seamlessly
with UAV dynamics is paramount for improving overall per-
formance and safety.

Time-optimal path planning for UAVs is a complex problem
that involves optimizing flight trajectories to minimize the
total flight time while adhering to various constraints such
as dynamical limitations, obstacle avoidance, and energy effi-
ciency [3]. This optimization process not only ensures faster
completion of missions but also enhances the stability and
safety of the UAVs during operation.

Traditional approaches to path planning for UAVs often
focus on generating collision-free paths, but they often fail
to account for the intricate dynamics of the aircraft, leading
to suboptimal flight performance [4]. To overcome this limita-
tion, recent research has explored the integration of advanced
trajectory planning and control techniques [9].

The fourth-order minimum snap trajectory generation
method optimizes the snap term (fourth derivative of the

Fig. 1. Experimental results on the Flightmare simulation platform.

position) of the trajectory [15]. This approach ensures that the
generated trajectories are both smooth and aggressive, which
is crucial for achieving high-speed flight in complex environ-
ments. The integration of an NMPC and a PID controller
further enhances the system’s capabilities by dynamically
adjusting control inputs based on real-time state feedback.
This allows for precise tracking of the planned trajectory and
resilience against uncertainties during flight.

The proposed framework is evaluated using the Flightmare
simulation platform, a high-fidelity drone simulation based
on the Unity engine. This platform offers precise physics
modeling and flexible interfaces for algorithm development,
making it an ideal testbed for validating the effectiveness of
the proposed method. The experimental results demonstrate
that the integration of fourth-order minimum snap trajectory
generation with NMPC generates efficient and smooth flight
trajectories, significantly reducing flight time while ensuring
UAV stability and safety. The flightmre experimental results
are shown in Figure 1.

II. PROBLEM FORMULATION

A. Agile High-speed Flight

High-speed Unmanned Aerial Vehicles (UAVs) operating in
complex environments face numerous challenges in trajectory
generation and control. These challenges stem from the in-
tricate dynamics of quadrotors, the stringent requirements on



agility, and the need to adapt quickly to unexpected obstacles
and environmental changes [1].

In terms of trajectory generation, high-speed flight demands
trajectories that are not only collision-free but also highly
dynamic and aggressive to minimize flight time. Traditional
methods of trajectory planning, such as spline interpolation or
simple waypoint navigation, often fail to generate trajectories
that fully exploit the full capabilities of the UAVs, particularly
at high speeds [4]. Minimizing the flight time while adhering
to strict dynamical constraints and avoiding obstacles becomes
an NP-hard optimization problem that requires sophisticated
algorithms to solve efficiently.

Control of high-speed UAVs further complicates the prob-
lem due to the inherent nonlinearities and uncertainties in the
system dynamics. Real-time adjustments are crucial to handle
external disturbances, actuator saturation, and sensor noise.
Moreover, the fast-changing environment necessitates a control
scheme that can rapidly replan and adjust the trajectory on the
fly to ensure safety and mission success.

In summary, agile high-speed UAVs require:
1) Trajectory generation algorithms that can produce

smooth yet aggressive trajectories to minimize flight
time under strict dynamical and environmental con-
straints.

2) A robust control framework that can dynamically adjust
control inputs based on real-time feedback to handle
uncertainties and disturbances, ensuring precise tracking
of the planned trajectory.

B. Optimal Problem

Traditionally, optimal control problems in the context of
UAVs aim to minimize a cost function subject to a set of con-
straints on the system dynamics and inputs. This formulation
allows balancing multiple objectives, such as minimizing flight
time, energy consumption, or control effort, while ensuring
that the UAV operates within its physical and operational
limits.

Mathematically, an optimal control problem can be formu-
lated as follows:

min
u

∫ tf

t0

La (x,u) dt

subject to r(x,u, z) = 0

h(x,u, z) ≤ 0

(1)

III. DRONE MODELING

A. Nomenclature

In this work, we establish a comprehensive mathematical
framework for robot vision systems. We define a world frame
W with an orthonormal basis {xW , yW , zW } to represent the
global environment. Additionally, a body frame B with an
orthonormal basis {xB , yB , zB} is introduced to describe the
robot’s orientation and position. The body frame is attached to
the quadrotor, with its origin aligned with the center of mass
as illustrated in Fig. 2.

Throughout the document, vectors are denoted in boldface
with a prefix indicating the frame of reference and a suffix
specifying the vector’s origin and terminus. For example,
wWB represents the position vector of the body frame B
relative to the world frame W , expressed in the coordinates
of the world frame.

To represent the orientation of rigid bodies, including
the robot, we employ quaternions. The time derivative of
a quaternion qWB = (qw, qx, qy, qz) is governed by the
skew-symmetric matrix Λ(ω), where ωB = (ωx, ωy, ωz)

T

represents the angular velocity.

Fig. 2. Schematic diagrams of the quadrotor model being considered, along
with the coordinate systems utilized.

B. Quadrotor Dynamics

The drone is modeled as a rigid body with six degrees
of freedom (DoF). The state vector x ∈ R13 describing the
evolution of the drone’s configuration over time is given by:

x =


pWB

vWB

qWB

ωB

 and u =

[
T
τ

]
(2)

where: pWB ∈ R3 is the position of the drone’s center
of mass in the world frame W , vWB ∈ R3 is the linear
velocity of the drone in the world frame, qWB ∈ SO(3) is
the quaternion representing the rotation from the body frame
B to the world frame W , ωB ∈ R3 is the angular velocity
of the drone in the body frame. T is the total thrust produced
by the drone’s rotors, and τ is the total torque acting on the
drone.

J =

Jx 0 0
0 Jy 0
0 0 Jz

 (3)

where Jx, Jy , and Jz are the moments of inertia of the drone
about its principal axes.

T =

4∑
i=1

fi (4)



where fi is the thrust produced by the i-th rotor.
The time derivative of the state vector ẋ is governed by the

following equations:

ẋ = f(x,u) =


vWB

1
m (mgW + qWB ⊙TB)

1
2Λ (ΩB) · qWB

J−1 (τ − ωB × JωB)

 (5)

where: ⊙ denotes the quaternion multiplication, TB and τ
are the total force and torque acting on the drone, respectively,
m is the mass of the drone, J ∈ R3×3 is the inertia matrix,
gW = [0, 0,−9.81]T m/s² is the gravitational acceleration in
the world frame.

The Λ means the skew-symmetric matrix of the angular
velocity, which is given by:

Λ (ω) =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 (6)

The torque τ and total thrust T are related to the individual
i-th rotor thrust fi as:

TB =

00
T

 and τ =


l√
2
(f1 − f2 − f3 + f4)

l√
2
(−f1 − f2 + f3 + f4)

cτ (f1 − f2 + f3 − f4)

 (7)

IV. PATH GENERATION

In this section, we discuss the methods used for generating
time-optimal paths for autonomous drone racing. Specifically,
we focus on polynomial trajectory planning, particularly the
use of fourth-order polynomials to minimize the snap of the
trajectory, as this objective leads to aggressive and smooth
trajectories suitable for drone racing.

A. Polynomial Trajectory Planning

Polynomial trajectory planning leverages the differential
flatness property of quadrotors to simplify full-state trajectory
planning to a problem of planning only a few flat outputs (typ-
ically position and yaw) [14]. By representing the trajectory
as a polynomial, we can efficiently compute the control inputs
that achieve the desired trajectory [15].

1) Minimizing Snap: To generate aggressive and smooth
trajectories, the objective is to minimize the snap (fourth-order
derivative of position) of the trajectory [15] [16]. The snap s(t)
of a polynomial trajectory p(t) = a0+a1t+a2t

2+a3t
3+a4t

4

can be written as:

s(t) = p(4)(t) = 24a4t (8)

where p(4)(t) denotes the fourth-order derivative of p(t)
with respect to time t.

The optimization problem can then be formulated as finding
the polynomial coefficients a0, a1, a2, a3, a4 that minimize the
integral of the square of the snap over the trajectory duration
T :

min
a0,a1,a2,a3,a4

∫ T

0

s(t)2 dt =

∫ T

0

(24a4t)
2 dt (9)

However, in practice, we often minimize the maximum snap
or add additional constraints and costs related to trajectory
duration, smoothness, and feasibility. The full optimization
problem includes constraints on the initial and final states of
the drone (position, velocity, acceleration, and jerk) as well as
any intermediate waypoints or obstacle avoidance constraints.

2) Time Allocation: Finding the optimal time allocation
along the trajectory (i.e., determining how fast the drone
should travel through each segment) is crucial for achieving
minimum lap times. This is typically done by optimizing the
polynomial coefficients jointly with the trajectory duration T :

min
a0,a1,a2,a3,a4,T

(∫ T

0

s(t)2 dt+ λ · T

)
(10)

where λ is a weight factor balancing the snap minimization
and the total trajectory time.

B. Implementation

Implementing a fourth-order polynomial trajectory planner
involves solving the optimization problem described above.
This can be done using numerical optimization techniques
such as quadratic programming or nonlinear optimization
solvers. The resulting trajectory is then used as a reference
for the low-level controller to track.

In this paper, we adopt the polynomial trajectory planning
approach to generate optimal paths. This method generates
time-optimal trajectories by minimizing the snap of the tra-
jectory.

In summary, polynomial trajectory planning with a focus
on minimizing the snap of the trajectory is a powerful method
for generating time-optimal and feasible paths for autonomous
drone racing. This approach leverages the differential flatness
property of quadrotors and enables the use of efficient opti-
mization techniques to find optimal trajectories in real time.

V. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) is a powerful technique
for controlling complex systems with dynamical constraints
[17]. For agile quadrotor flight, Nonlinear Model Predictive
Control (NMPC) is particularly suited due to its ability to
handle nonlinear dynamics and constraints effectively [9]. In
this section, we detail the formulation and implementation of
NMPC for quadrotor control.

A. NMPC Formulation

The NMPC generates control inputs by solving a finite-
time optimal control problem (OCP) over a receding horizon.
The objective is to minimize the tracking error between
the predicted states and reference states, while adhering to
the system dynamics and constraints [5]. The optimization
problem can be formulated as follows:



La =x̄T
NQN x̄N +

N−1∑
i=1

(
x̄T
i Qix̄i + ūT

i Riūi

)
s.t.

x0 = xinit,

xk+1 = f(xk,uk),

xk ∈ [xmin,xmax],

uk ∈ [umin,umax]

(11)

where x̄T
NQN x̄N is the terminal cost, x̄T

i Qix̄i and ūT
i Riūi

are the stage costs, f(xk,uk) represents the discrete-time
quadrotor dynamics, and Qi, Ri, and QN are positive definite
weight matrices. The constraints ensure that the control inputs
and angular velocities remain within specified bounds. And
the x̄ and ū are defined as x̄ = x − xref and ū = u − uref
respectively.

B. Discretization of Dynamics

The continuous-time quadrotor dynamics need to be dis-
cretized for use in the NMPC framework. This can be achieved
using numerical integration schemes such as Euler integration
or Runge-Kutta methods. In our implementation, we use
multiple-shooting as the transcription method and Runge-Kutta
integration [18] to discretize the dynamics.

xk+1 = fRK4(xk, uk,∆t) (12)

where fRK4 is the Runge-Kutta 4th order integration function
and ∆t is the discretization time step.

C. Constraint Handling

Efficient constraint handling within the optimization frame-
work is crucial for real-time performance. The NMPC for-
mulation includes constraints on the angular velocities ΩB,
thrust T , velocities vWB , and control inputs u, ensuring that
the control actions remain within the physical limits of the
quadrotor.

Fig. 3. Block diagram of the Nonlinear Model Predictive Controller with PID
inner loop controller.

D. Optimization Solver

The resulting nonlinear optimization problem is solved
using a suitable solver, such as Sequential Quadratic Program-
ming (SQP). In our implementation, we utilize the ACADO
Toolkit [6] with qpOASES [7] as the underlying quadratic
program solver.

E. Integration with PID Controller

While NMPC provides a powerful framework for trajectory
optimization and control, a PID controller can be used to
complement the NMPC controller for enhanced stability and
responsiveness. The PID controller can be used to regulate
low-level system dynamics, such as the quadrotor’s attitude,
while the NMPC controller focuses on the high-level trajectory
tracking. The integration of the two controllers is illustrated
in Figure 3, where the NMPC controller generates the desired
setpoints for the PID controller based on the time-optimal
trajectory. The controller gains and parameters for the NMPC
and PID controllers are summarized in Table I.

By integrating the PID and NMPC controllers, we can
achieve a robust and responsive control system that can
dynamically adjust to changes in the environment and mission
requirements.

TABLE I
CONTROLLER GAINS AND PARAMETERS COMPARISON

NMPC PID

Parameter Value Parameter Value
Q diag(200, 200, 500) Kp 50
R diag(10, 50) Ki 1
dt 50 ms Kd 0.01
N 20

VI. FLIGHTMARE

In this section, we introduce the Flightmare [8] simulation
platform and discuss its advantages for validating the proposed
time-optimal path planning and control framework. Flightmare
is a high-fidelity quadrotor simulator designed for research
and development, offering a range of features that make it
an ideal testbed for evaluating UAV algorithms. We highlight
the platform’s unique capabilities and discuss the experimental
setup used to validate the proposed method.

A. Comparison of Quadrotor Simulators

In contrast to Hector [10], FlightGoggles [11], and AirSim
[12] form Table II, Flightmare offers a unique combina-
tion of features that make it well-suited for UAV research.
Flightmare’s rendering engine is based on Unity, providing
a flexible and high-speed rendering environment that can be
tailored to the user’s needs. The platform’s physics simulation
engine is highly configurable, supporting a range of dynamics
from simple to real-world quadrotor behaviors. Flightmare is
the only simulator among the compared ones that provides
a point cloud extraction feature and an RL API, making
it particularly suited for tasks requiring environmental 3D
information and reinforcement learning-based control policies.
Additionally, Flightmare can simulate multiple vehicles con-
currently, facilitating research on multi-drone applications. All
in all, Flightmare is chosen as the simulation platform for



TABLE II
A COMPARISON OF FLIGHTMARE TO OTHER OPEN-SOURCE QUADROTOR SIMULATORS

Simulator Rendering Dynamics Sensor Suite Point Cloud RL API Vehicles

Hector [10] OpenGL Gazebo-based IMU,RGB × × Single

FlightGoggles [11] Unity Flexible IMU,RGB × × Single

AirSim [12] Unreal Engine PhysX IMU, RGB, Depth, Seg × × Multiple

Flightmare [8] Unity Flexible IMU, RGB, Depth, Seg ✓ ✓ Multiple

validating the proposed method due to its unique features and
capabilities.

B. Advantages of the Flightmare Platform

1) Decoupled Rendering and Physics Engine: One of the
key strengths of Flightmare lies in its decoupled architecture,
where the rendering engine based on Unity [19] is separated
from the physics simulation engine. This design choice enables
Flightmare to achieve remarkable performance: rendering
speeds of up to 230Hz and physics simulation frequencies
of up to 200,000Hz on a standard laptop [8]. This separation
also allows users to flexibly adjust the balance between visual
fidelity and simulation speed, tailored to the specific research
needs.

2) Flexible Sensor Suite: Flightmare comes equipped with
a rich and configurable sensor suite, including IMU, RGB
cameras with ground-truth depth and semantic segmentation,
range finders, and collision detection capabilities. This enables
researchers to simulate a wide range of sensing modalities,
critical for developing and testing perception-driven algo-
rithms. Furthermore, Flightmare provides APIs to extract the
full 3D point cloud of the simulated environment, facilitating
path planning and obstacle avoidance tasks.

3) Scalability and Parallel Simulation: The platform’s flex-
ibility extends to supporting large-scale simulations, enabling
the parallel simulation of hundreds of quadrotors. This feature
is invaluable for reinforcement learning applications, where
data efficiency is crucial. By simulating multiple agents in par-
allel, Flightmare allows for rapid data collection, significantly
accelerating the training process for control policies.

4) Open-Source and Modular Design: Flightmare’s open-
source nature and modular design encourage collaboration
and extendibility. The platform provides a clear and well-
documented API, facilitating integration with existing research
tools and libraries. The modular structure also makes it easy to
swap out components, such as the physics engine or rendering
backend, based on the specific research requirements. In this
work, we use the RotorS [13] as the underlying quadrotor
dynamics model in Flightmare, demonstrating the platform’s
flexibility and modularity.

Fig. 4. Block diagram of the integration of control algorithms with Flightmare.

VII. EXPERIMENTS

In this section, we present the experimental setup and
results of the proposed time-optimal path planning and control
framework for autonomous drone racing. The integration of
polynomial trajectory planning and NMPC is . validated in
a simulated environment using the Flightmare platform. The
results demonstrate the effectiveness of the proposed method
in generating efficient and smooth flight trajectories, enabling
UAVs to navigate precisely and stably along planned paths.

A. Experimental Setup

To evaluate the proposed time-optimal path planning and
control framework in the flightmare simulation platform, we
firstly design the control flow as shown in Fig. 4. The
Flightmare decouples the rendering and physics engines, and
the interface between the rendering engine and the quadrotor
dynamics is implemented using the high-performance asyn-
chronous messaging library ZeroMQ [20].

The quadrotor configurations used in the simulation are
shown in Table III.

B. Trajectory Tracking Performance on Giving Path

To evaluate the trajectory tracking performance of the
proposed framework, we first consider a simple scenario where
the drone is required to track a given path. The path is defined
as a spiral ascent trajectory given by:

p(t) =

r(t) cos(ωt)r(t) sin(ωt)
vzt

 (13)

where r(t) = r0 + vrt is the radius of the spiral, ω is the
angular velocity, and vz is the vertical velocity. The drone



TABLE III
QUADROTOR CONFIGURATIONS

Parameter(s) Value(s)

m [kg] 0.6
l [m] 0.125

Jx [kg ·m2] 2.1e-3
Jy [kg ·m2] 2.3e-3
Jz [kg ·m2] 4.0e-3

(Tmin, Tmax) [N] (0, 8.5)
cτ [N ·m/(rad/s)2] 2.1e-6
cT [N/(rad/s)2] 1.2e-6

is required to track this path while maintaining a constant
altitude.

The trajectory tracking performance of the proposed NMPC
controller is shown in Fig. 5. In the figure, the pink dashed line
represents the desired path, while the orange line represents the
actual trajectory of the drone. The drone successfully tracks
the spiral ascent trajectory, demonstrating the effectiveness of
the proposed framework in generating smooth and accurate
flight trajectories.

The error between the desired path and the actual trajectory
is shown in Fig. 6. The error remains within an acceptable
range, indicating that the drone is able to track the desired
path accurately.

Fig. 5. Drone tracking the trajectory of a given spiral ascent path. The pink
dashed line represents the desired path, while the orange line represents the
actual trajectory of the drone.

C. Time-Optimal Path Planning for NMPC Controller

In this experiment, the drone has to navigate through four
gates in a time-optimal manner, which are placed at dif-
ferent locations in (−10, 0, 2), (0, 10, 4), (10, 0, 2), (0,−10, 2)
respectively.

Fig. 6. Error between the desired path and the actual trajectory of the drone.
The top, middle, and bottom plots represent the error in the x, y, and z
directions, respectively.

The time-optimal path planning results are shown in Fig.
7 and Fig. 8. In these figures, the orange dashed line rep-
resents the time-optimal path generated by the polynomial
trajectory planner, which is shown in section IV. And the
pink line represents the actual trajectory of the drone, which
is controlled by the NMPC controller. The drone successfully
navigates through the four gates in a time-optimal manner,
demonstrating the effectiveness of the proposed framework in
generating aggressive and smooth flight trajectories.

Fig. 7. Time-optimal path generation and NMPC tracking of the drone through
four gates. The orange dashed line represents the time-optimal path, the pink
line represents the actual tracking trajectory, and the four squares represent
the positions of the gates.

The tracking performance from x, y, z axis of the drone is
shown in Fig. 9, which indicates that the drone can track the
time-optimal path accurately from the x, y, z axis.

VIII. CONCLUSION

This paper presents a comprehensive framework for time-
optimal path generation and control of Unmanned Aerial



Fig. 8. Top view of the time-optimal path generation and NMPC tracking of
the drone through four gates.

Fig. 9. Tracking performance of the drone through four gates in the x, y, z
axis. The top, middle, and bottom plots represent the tracking performance in
the x, y, z axis, respectively. The horizontal error indicates the control delay.

Vehicles (UAVs) using fourth-order minimum snap trajectory
generation and Nonlinear Model Predictive Control (NMPC).
The framework is designed to address the challenges of agile
high-speed flight in auto race, aiming to minimize flight time
while adhering to strict dynamical constraints.

The proposed method utilizes the fourth-order polynomial
trajectory generation approach to generate smooth yet ag-
gressive trajectories. By minimizing the snap term (fourth
derivative of position), the generated trajectories are optimized
for high-speed performance while ensuring their feasibility and
safety. The integration of NMPC controller further enhances
the system capabilities by dynamically adjusting control inputs
based on real-time state feedback, enabling precise trajectory
tracking and resilience against uncertainties during flight.

The effectiveness of the proposed framework is evaluated
using the Flightmare simulation platform, a high-fidelity drone
simulator based on the Unity engine. The experimental results
demonstrate that the integration of fourth-order minimum
snap trajectory generation with NMPC generates efficient
and smooth flight trajectories, significantly reducing flight
time while ensuring UAV stability and safety. This approach
is well-suited for autonomous UAV operations in complex
environments, such as drone racing and aerial photography.

Future work could further optimize the trajectory planning
and control algorithms, explore adaptive control strategies, and
investigate their application in real-world UAV platforms.

REFERENCES

[1] Hanover D, Loquercio A, Bauersfeld L, Romero A, Penicka R, Song
Y, et al. Autonomous Drone Racing: A Survey. IEEE Trans Robot.
2024;40:3044–67.

[2] Loquercio A, Kaufmann E, Ranftl R, Müller M, Koltun V, Scaramuzza
D. Learning high-speed flight in the wild. Sci Robot. 2021 Oct 13;6(59).

[3] Romero A, Sun S, Foehn P, Scaramuzza D. Model Predictive Contouring
Control for Time-Optimal Quadrotor Flight. IEEE Trans Robot. 2022
Dec;38(6):3340–56.

[4] Foehn P, Romero A, Scaramuzza D. Time-optimal planning for quadro-
tor waypoint flight. Sci Robot. 2021 Jul 21;6(56).

[5] Falanga D, Foehn P, Lu P, Scaramuzza D. PAMPC: Perception-Aware
Model Predictive Control for Quadrotors. In: 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE;
2018.

[6] Houska B, Ferreau HJ, Diehl M. ACADO toolkit-An open-source
framework for automatic control and dynamic optimization. Optim
Control Appl Meth. 2010 May 25;32(3):298–312.

[7] Ferreau HJ, Kirches C, Potschka A, Bock HG, Diehl M. qpOASES: a
parametric active-set algorithm for quadratic programming. Math Prog
Comp. 2014 Apr 30;6(4):327–63.

[8] Song Y, Naji S, Kaufmann E, Loquercio A, Scaramuzza D. Flightmare:
A Flexible Quadrotor Simulator. Conference on Robot Learning. 2020;

[9] Sun S, Romero A, Foehn P, Kaufmann E, Scaramuzza D. A Comparative
Study of Nonlinear MPC and Differential-Flatness-Based Control for
Quadrotor Agile Flight. IEEE Trans Robot. 2022;1–17.

[10] Kohlbrecher S, Meyer J, Graber T, Petersen K, Klingauf U, von Stryk O.
Hector Open Source Modules for Autonomous Mapping and Navigation
with Rescue Robots. In: RoboCup 2013: Robot World Cup XVII. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2014. p. 624–31.

[11] Guerra W, Tal E, Murali V, Ryou G, Karaman S. FlightGoggles:
Photorealistic Sensor Simulation for Perception-driven Robotics using
Photogrammetry and Virtual Reality. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE; 2019.

[12] Shah S, Dey D, Lovett C, Kapoor A. AirSim: High-Fidelity Visual and
Physical Simulation for Autonomous Vehicles. In: Field and Service
Robotics. Cham: Springer International Publishing; 2017. p. 621–35.

[13] Furrer F, Burri M, Achtelik M, Siegwart R. RotorS—A Modular Gazebo
MAV Simulator Framework. In: Studies in Computational Intelligence.
Cham: Springer International Publishing; 2016. p. 595–625.

[14] Faessler M, Franchi A, Scaramuzza D. Differential Flatness of Quadrotor
Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed
Trajectories. IEEE Robot Autom Lett. 2018 Apr;3(2):620–6.

[15] Mellinger D, Kumar V. Minimum Snap Trajectory Generation and
Control for Quadrotors. In: 2011 IEEE International Conference on
Robotics and Automation. IEEE; 2011.

[16] Mellinger D, Michael N, Kumar V. Trajectory generation and control
for precise aggressive maneuvers with quadrotors. Int J Rob Res. 2012
Jan 25;31(5):664–74.

[17] Nguyen H, Kamel M, Alexis K, Siegwart R. Model Predictive Control
for Micro Aerial Vehicles: A Survey. In: 2021 European Control
Conference (ECC). IEEE; 2021.

[18] Houska B, Ferreau HJ, Diehl M. An auto-generated real-time iteration
algorithm for nonlinear MPC in the microsecond range. Automatica
(Oxf). 2011 Oct;47(10):2279–85.

[19] ”Unity3d Game Engine,” https://unity3d.com/, 2019, [Online; accessed
28-February-2019].

[20] ZeroMQ: High-performance brokerless messaging. ZeroMQ.
https://zeromq.org


