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ABSTRACT

We investigate the generation of minority samples using pretrained text-to-image
(T2I) latent diffusion models. Minority instances, in the context of T2I generation,
can be defined as ones living on low-density regions of text-conditional data distri-
butions. They are valuable for various applications of modern T2I generators, such
as data augmentation and creative AI. Unfortunately, existing pretrained T2I diffu-
sion models primarily focus on high-density regions, largely due to the influence
of guided samplers (like CFG) that are essential for producing high-quality gener-
ations. To address this, we present a novel framework to counter the high-density-
focus of T2I diffusion models. Specifically, we first develop an online prompt
optimization framework that can encourage the emergence of desired properties
during inference while preserving semantic contents of user-provided prompts.
We subsequently tailor this generic prompt optimizer into a specialized solver that
promotes the generation of minority features by incorporating a carefully-crafted
likelihood objective. Our comprehensive experiments, conducted across various
types of T2I models, demonstrate that our approach significantly enhances the ca-
pability to produce high-quality minority instances compared to existing samplers.

Figure 1: Example results from our minority generation approach using SDXL-Lightning. Our
framework is designed to produce unique minority samples w.r.t. user-provided prompts, which are
rarely generated by standard samplers like DDIM (Song et al., 2020a). Due to its low-likelihood
encouraging nature, our sampler often demonstrates counteracting results against demographic bi-
ases in text-to-image models (Friedrich et al., 2023). See the samples in the last row for instance,
where our sampler mitigates prevalent age and racial biases (e.g., associating “man” with “young”
and “woman” with “white”) by modifying the demographic traits of the subjects.
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1 INTRODUCTION

Text-to-image (T2I) generative models (Xu et al., 2018; Ramesh et al., 2021; Nichol et al., 2021)
have recently attracted substantial interest for their capability to convert textual descriptions into
visually striking images. At the forefront of the surge are diffusion models (Song & Ermon, 2019;
Ho et al., 2020), augmented by guidance techniques (Dhariwal & Nichol, 2021; Ho & Salimans,
2022) such as classifier-free guidance (CFG) (Ho & Salimans, 2022). The guided T2I samplers
encourage generations from high-density regions of a data manifold (Dhariwal & Nichol, 2021),
producing realistic images that faithfully respect the provided prompts.

A key challenge is that the inherent high density focus of modern T2I samplers makes it difficult to
generate minority samples – instances that reside in low-density regions of the manifold. This lim-
itation is particularly significant as T2I-generated data is increasingly incorporated in downstream
applications (Tian et al., 2024a;b; Afkanpour et al., 2024) where the majority-focused bias within
the data may be perpetuated. Furthermore, the unique attributes found in minority instances are
crucial for applications like creative AI (Rombach et al., 2022; Han et al., 2022), where generating
novel and highly creative outputs is essential.

In this work, we present a novel approach dubbed as MinorityPrompt that counteracts the high-
density bias of T2I samplers to improve their capability of minority generation. Our framework is
built upon the concept of prompt optimization, an intuitive technique that exhibits strong perfor-
mance in enhancing T2I diffusion models for various tasks (Gal et al., 2022; Chung et al., 2023b;
Park et al., 2024). Unlike existing T2I-based online prompt-tuning methods that modify the entire
input prompts (e.g., by optimizing their text-embeddings during inference), our approach updates
the prompts in a selective fashion to preserve the intended semantics while encouraging generations
of unique low-density features. Specifically during inference, we incorporate learnable tokens into
the input prompts, e.g., by appending them to the end of the text. We then adjust the embeddings
of these tokens across sampling timesteps, targetting the minimization of a likelihood metric de-
signed to capture the uniqueness of noisy intermediate samples. See Figure 2 for an overview. An
additional benefit of our token-based approach is that it offers enhanced semantic controllability,
enabling users to express specific desired semantics in generated samples by selecting appropriate
initialization words for the learnable token embeddings. To further improve the performance of our
sampler, we provide new design choices that can be synergistically employed with our approach
for T2I minority generation. Comprehensive experiments validate that our method can significantly
improve the ability of creating minority instances of modern widely-adopted T2I models (including
Stable Diffusion (SD) (Rombach et al., 2022)) with minimal compromise in sample quality and text-
image alignment. In addition, we emphasize that our framework can work on distilled backbones
like SDXL-Lightning (Lin et al., 2024), which demonstrates its robustness and practical relevance.
As an additional application, we explore the potential of our prompt optimization framework to
improve the diversity of T2I models, further exhibiting its versatility as a general-purpose solver
applicable across various tasks.

Given that our prompt optimization is performed in an online manner, does not require expensive
fine-tuning of T2I models, and is entirely self-contained, i.e., implementable solely with a pretrained
T2I model, we believe our approach open a new avenue for creative AI, emphasizing the practical
relevance of our framework.

2 RELATED WORK

The generation of minority samples has been explored in a range of different scenarios and gener-
ative frameworks (Yu et al., 2020; Lin et al., 2022; Sehwag et al., 2022; Qin et al., 2023; Huang &
Jafari, 2023; Um & Ye, 2023; 2024). However, significant progress has been recently made with the
introduction of diffusion models, due to their ability to faithfully capture data distributions (Sehwag
et al., 2022; Um & Ye, 2023; 2024). As an initial effort, Sehwag et al. (2022) incorporate separately-
trained classifiers into the sampling process of diffusion models to yield guidance for low-density
regions. The approach by Um & Ye (2023) shares similar intuition of integrating an additional clas-
sifier into the reverse process for low-density guidance. A limitation is that their methods rely upon
external classifiers that are often difficult to obtain, especially for large-scale datasets such as T2I
benchmarks (Schuhmann et al., 2022). The challenge was recently addressed by Um & Ye (2024)
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Figure 2: Overview of MinorityPrompt. Unlike existing online prompt tuning approaches that
adjust the entire text-embedding (e.g., the output of the text-encoder) during inference, our frame-
work focuses on optimizing a dedicated token-embedding to better preserve the semantics within the
prompt. Specifically given a user-prompt (e.g., “A portrait of a dog”), we integrate a placeholder
string (e.g., S in the figure) into the prompt, marking the position of the learnable token embedding
v. With the text-embedding Cv that incorporates the contents of v, we update v on-the-fly during the
inference process to maximize the reconstruction loss of the denoised version of zt (i.e., ẑ1

0 in the
figure). The optimized token v∗ is subsequently used to progress the inference at the corresponding
timestep; see Section 3 for details.

where the authors develop a self-contained minority sampler that works without expensive extra
components (such as classifiers). However, their method is tailored for canonical image benchmarks
(like LSUN (Yu et al., 2015) and ImageNet (Deng et al., 2009)) and exhibits limited performance
gain in more challenging scenarios like T2I generation. Moreover, none of these approaches have
explored the dimension of prompt optimization specifically for minority generation, which is the
central focus of our framework.

A related yet distinct objective is enhancing the diversity of diffusion models, an area that has been
relatively overlooked compared to improving their quality. Significant progress was recently made
in Sadat et al. (2023), where the authors demonstrated that adding noise perturbations, if gradually
annealed over time, to conditional embeddings could greatly enhance the diversity of generated sam-
ples. However, unlike our approach, their method focuses on producing diverse samples that remain
consistent with the ground-truth data distribution, rather than targeting the low-density regions of
the distribution. Another notable contribution was done by Corso et al. (2023). Their idea is to repel
intermediate latent samples that share the same condition, thereby encouraging the final generated
samples to exhibit distinct features. A disadvantage is that it requires generating multiple instances
for each prompt, which can be redundant in many practical scenarios.

Prompt optimization has been widely explored in the context of T2I diffusion models due to their
strong dependence on language models. This approach has exhibited significant performance across
various tasks, including inverse problems (Chung et al., 2023b) and image editing (Park et al., 2024;
Mokady et al., 2023). A key difference is that most existing methods in these lines tune the en-
tire prompts to find the ones that best perform the focused tasks (e.g., minimizing data consistency
loss (Chung et al., 2023b)). In contrast, our framework updates only the attached learnable tokens,
thereby preserving the original prompt’s semantics while encouraging the emergence of low-density
features. Additional use cases of prompt tuning include personalization (Gal et al., 2022; Han et al.,
2023) and object counting (Zafar et al., 2024). Similar to ours, their frameworks introduce vari-
able tokens and tune their embeddings. However, their optimizations aim to learn visual concepts
captured in user-provided images, whereas our focus is to invoke low-density features through opti-
mized prompts. Also, their methods are not online, requiring separate training procedure which can
be potentially expensive.
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3 METHOD

Our focus is to generate high-quality minority instances using text-to-image (T2I) diffusion models,
which faithfully reflect user-provided prompts while featuring unique visual attributes rarely pro-
duced via standard generation techniques1. To this end, we start with providing a brief overview
on T2I diffusion frameworks and the essential background necessary to understand the core of our
work. We subsequently present our proposed framework for minority generation based on the idea
of prompt optimization.

3.1 BACKGROUND AND PRELIMINARIES

The task of T2I diffusion models is to generate an output image x0 ∈ Rd from a random noise vector
zT ∈ Rk (where typically k < d), given a user-defined text prompt P . Similar to standard (non-T2I)
diffusion frameworks, the core of T2I diffusion sampling lies in an iterative denoising process that
progressively removes noise from zT until a clean version z0 is obtained. This denoising capability
is learned through noise-prediction training (Ho et al., 2020; Song & Ermon, 2019), mathematically
written as:

max
θ

Ez0,y,ϵ∼N (0,I),t∼Unif{1,...,T}[∥ϵ− ϵθ(zt, C)∥22],

where z0 := E(x0), yielded by passing a training image x0 through a compressive model E (e.g.,
the encoder of VQ-VAE (Esser et al., 2021; Rombach et al., 2022)). Here, zt represents a noise-
perturbed version of z0, given by zt :=

√
αtz0 +

√
1− αtϵ, where {αt}Tt=1 defines the noise-

schedule. ϵθ refers to a T2I diffusion model parameterized to predict the noise ϵ, and C represents
the embedding of the text prompt P . See below for details on how to obtain C from P .

Once trained, T2I generation can be done by starting from zT ∼ N (0, I) and implementing an
iterative noise removal process guided by the text embedding C. A common approach is to follow
the deterministic DDIM sampling (Song et al., 2020a; Chung et al., 2023a):

zt−1 =
√
αt−1ẑ0(zt, C) +

√
1− αt−1ϵθ(zt, C)

where ẑ0(zt, C) :=
1

√
αt

(
zt −

√
1− αtϵθ(zt, C)

)
.

(1)

Here ẑ0(zt, C) indicates a denoised estimate of zt conditioned on the text embedding C, imple-
mented via Tweedie’s formula (Chung et al., 2022).

To further strengthen the impact of text conditioning, classifier-free guidance (CFG) (Ho & Sal-
imans, 2022) is commonly integrated into the sampling process. In particular, one can obtain a
high-density-focused noise estimation through extrapolation using an unconditional prediction:

ϵ̃wθ (zt, C) := wϵθ(zt, C) + (1− w)ϵθ(zt),

where ϵθ(zt) indicates an unconditional noise prediction, often implemented via null-text condition-
ing (Ho & Salimans, 2022). CFG refers to the technique that employs ϵ̃wθ (zt, C) in place of ϵθ(zt, C)
(in Eq. (1)), which has been shown in various scenarios to significantly improve both sample quality
and text alignment yet at the expense of diversity (Sadat et al., 2023).

Text processing. A key distinction from non-T2I diffusion models is the incorporation of the text
embedding C, a continuous vector yielded by a text encoder T (such as BERT (Devlin, 2018)) based
on the user prompt P . To obtain this embedding, each word (or sub-word) in P is first converted into
a token – an index in a pre-defined vocabulary. Each token is then mapped to a unique embedding
vector through an index-based lookup. These token-wise embedding vectors, often referred to as
token embeddings, are typically learned as part of the text encoder. The token embeddings are then
passed through a transformer model, yielding the final text embedding C. For simplicity, we denote
this text processing operation as the forward pass of the text encoder T ; thus, C = T (P).

Prompt optimization. In the context of T2I diffusion models, prompt tuning is performed by
intervening in the text-processing stage. A common approach is to adjust the text embedding C

1More formally, this can be expressed as drawing instances from Sc := {z ∈ Mc : pθ(z|C) < ϵ}, where
C is the prompt, Mc represents the (latent) data manifold associated with C, and pθ denotes the probability
density captured by the T2I diffusion model. Here ϵ is a small positive constant.
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over inference time, which is widely adopted in existing online prompt optimizers (Chung et al.,
2023b; Park et al., 2024). Specifically at sampling timestep t, existing online prompt tuners can be
formulated as the following optimization problem:

C∗
t := argmax

C
J (zt, C), (2)

where zt is a noisy latent at step t and J represents a task-specific objective function, such as data
consistency in inverse problems (Chung et al., 2023b). Once C∗

t is obtained, it is used as a drop-
in replacement for C at time t (e.g., in Eq. (1)), encouraging the desired property to manifest in
subsequent timesteps.

A problem is that the optimization in Eq. (2) may lead to a loss of user-intended semantics in P ,
due to the comprehensive updating of the entire text-embedding C. This is critical, especially in
the context of our focused T2I minority generation where preserving prompt semantics is essen-
tial; see Table 2a for our empirical results that support this. One can resort to tuning the null-text
embedding while keeping C intact (as suggested by Mokady et al. (2023)). However, this method
requires reserving the null-text dimension for this specific purpose, limiting its potential use for im-
proving sample quality or serving other functions. In the following sections, we present an online
prompt optimization framework designed to better preserve semantics. Building on this foundation,
we develop our T2I minority sampler, which promotes the generation of minority features while
maintaining both sample quality and text-alignment performance.

3.2 SEMANTIC-PRESERVING PROMPT OPTIMIZATION

The key idea of our optimization approach is to incorporate learnable tokens into a given prompt P
and update its embedding on-the-fly during inference. Specifically, we append a placeholder string2

S to the prompt P , which acts as a mark for the learnable tokens. For instance, the augmented
prompt could be PS := “A portrait of a dog S”. This additional string is treated as a new vocabulary
item for the text-encoder T . We assign a token embedding v to S, and denote the text encoder
incorporating it as T ( · ;v).
We propose optimizing this embedding v rather than C. The proposed online prompt optimization
at sampling step t can then be formalized as follows:

v∗
t := argmax

v
J (zt, Cv), (3)

where Cv := T (PS ;v). Afterward, the optimized text-embedding Cv∗
t

is obtained by text-processing
PS with the updated token-embedding of S, therefore Cv∗

t
:= T (PS ;v

∗
t ).

Note that our optimization does not affect the embeddings of the tokens w.r.t. the original prompt
P . This is inherently more advantageous for preserving semantics compared to existing methods,
which alter the entire text-embedding C and thereby effectively impact all token embeddings. We
also highlight that unlike existing learnable-token-based approaches that share the same embedding
throughout inference (Gal et al., 2022; Han et al., 2023; Zafar et al., 2024), our framework allows
the token embedding v to change over timesteps t. This adaptive feature offers potential advan-
tages, since the role of v in maximizing J can vary with the changing nature of zt across different
timesteps. This point is also implied in previous works that employ adaptive text-embeddings over
time (Chung et al., 2023b; Park et al., 2024).

Intuitively, our optimization can be understood as capturing a specific concept relevant to noisy
latent zt within the token v∗

t , guided by the objective function J . Thanks to its general design that
accommodates any arbitrary objective function J , this framework is versatile and can be employed
in various contexts beyond minority generation. For instance, it can be used to diversify the outputs
of T2I models. See details in Table 3b.

3.3 MINORITYPROMPT: MINORITY-FOCUSED PROMPT TUNING

We now specialize the generic solver in Eq. (3) for the task of minority generation. The key ques-
tion is how to formulate an appropriate objective function J for this purpose. To address this, we

2The placeholder string can be placed at any position in the prompt, but we empirically found that inserting
it at the end of the prompt yields the best performance; see Table 6b for details.
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Algorithm 1 MinorityPrompt

Require: ϵθ, T ,D,v(0)
T ,PS , C, N,K,w, T, s, λ.

1: zT ∼ N (0, I)
2: for t← T to 1 do
3: Cv∗

t
← C

4: if t mod N = 0 then
5: v∗

t ← OPTIMIZEEMB(zt,v
(0)
t , ϵθ, T ,K, s, λ)

6: Cv∗
t
← T (PS ;v

∗
t )

7: end if
8: ϵ̃wθ ← wϵθ(zt, Cv∗

t
) + (1− w)ϵθ(zt)

9: ẑw
0 ← (zt −

√
1− αtϵ̃

w
θ )/
√
αt

10: zt−1 ←
√
αt−1ẑ

w
0 +
√
1− αt−1ϵ̃

w
θ

11: v
(0)
t−1 ← v∗

t

12: end for
13: return x0 ← D(z0)

Algorithm 2 Prompt optimization

1: function OPTIMIZEEMB(zt,v
(0)
t , ϵθ, T ,K, s, λ)

2: for k ← 1 to K do
3: Cv ← T (PS ;v

(k−1)
t )

4: ϵ1θ ← ϵθ(zt, Cv)
5: ẑ1

0 ← (zt −
√
1− αtϵ

1
θ)/
√
αt

6: ϵ ∼ N (0, I)
7: zs|t,0 ←

√
αsẑ

1
0 +
√
1− αsϵ

8: ϵ2θ ← ϵθ(zs|t,0, C)
9: ẑ2

0 ← (zs|t,0 −
√
1− αsϵ

2
θ)/
√
αs

10: Jt ← ∥ẑ1
0 − sg(ẑ2

0)∥22 + λ∥sg(ẑ1
0)− ẑ2

0∥22
11: v

(k)
t ← v

(k−1)
t + AdamGrad(Jt)

12: end for
13: return v∗

t ← v
(K)
t

14: end function

draw inspiration from Um & Ye (2024), employing their likelihood metric as the starting point for
developing our objective function.

Since the metric was originally defined in the pixel domain using non-T2I diffusion models (see Sec-
tion B.1 for details), we initially perform a naive adaptation to accommodate the latent space of
interest, zt ∈ Rk, and integrate text conditioning using CFG as is typical in the T2I context (Kim
et al., 2023). The adapted version of the metric reads:

J (zt, C) := Eϵ

[
∥ẑw

0 (zt, C)− sg(ẑw
0 (z

w
s|t,0, C))∥

2
2

]
, (4)

where ẑw
0 (zt, C) represents a clean estimate of zt using the CFG noise term ϵ̃wθ (zt, C). Here zw

s|t,0
indicates a noised version of ẑw

0 (zt, C) w.r.t. timestep s: zw
s|t,0 :=

√
αsẑ

w
0 (zt, C) +

√
1− αsϵ, and

ẑw
0 (z

w
s|t,0, C) is a clean version of zw

s|t,0 conditioned on C. sg(·) denotes the stop-gradient operator
for reducing computational cost when used in guided sampling (Um & Ye, 2024). Notice that the
squared L2 error is used as the discrepancy loss, rather than the originally used LPIPS (Zhang et al.,
2018), due to its incompatibility with our latent space. The quantity in Eq. (4) is interpretable as a
reconstruction loss of ẑw

0 (zt, C). As exhibited in Um & Ye (2024), the loss may become large if
zt (represented by ẑw

0 (zt, C)) contains highly-unique minority features that often vanish during the
reconstruction process. The comprehensive details regarding the original metric due to Um & Ye
(2024) are provided in Section B.1.

Considering Eq. (4) as the objective function, a natural approach for minority-focused prompt tuning
would be to incorporate Cv and optimize for the best v:

v∗
t := argmax

v
J (zt, Cv)

where J (zt, Cv) := Eϵ

[
∥ẑw

0 (zt, Cv)− sg(ẑw
0 (z

w
s|t,0, Cv))∥

2
2

]
.

(5)

However, we argue that this naively extended framework has theoretical issues that lead to limited
performance gain over standard samplers. Specifically, three aspects of this objective weaken the
desired connection to the target log-likelihood log pθ(z0 | C) that we aim to capture: (i) the reliance
on the CFG-based clean predictions; (ii) obstructed gradient flow through the second term in the
squared-L2 loss; and (iii) the incorporation of Cv within the second term in the loss. See Section A.2
on a detailed analysis on these points.

Hence, we propose the following optimization to address the theoretical issues:

v∗
t := argmax

v
JC(zt, Cv)

where JC(zt, Cv) := Eϵ

[
∥ẑ0(zt, Cv)− ẑ0(zs|t,0, C)∥22

] (6)

where ẑ0(zt, Cv) := (zt −
√
1− αtϵθ(zt, Cv))/

√
αt, indicating a non-CFG clean estimate. We

found that the proposed optimization maintains a close connection to the focused log-likelihood.
Below we provide a formal statement of our finding. See Section A.1 for the proof.
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Figure 3: Enhanced semantic controllability by MinorityPrompt. The samples in the first column
are generations due to DDIM using the two base prompts (e.g., “A portrait of a dog” for the first row).
The third and fifth columns exhibit generated samples from our framework, where we selected the
corresponding word embeddings as the starting points of the prompt optimizations. For comparison,
we also present DDIM samples produced using attached prompts with the corresponding words in
the the second and fourth columns. For instance in the first row, the image in the second column
corresponds to the generation due to “A portrait of a dog dirty”. All samples were obtained using
SDXL-Lightning (Lin et al., 2024)

Proposition 1. The objective function in Eq. (6) is equivalent (upto a constant factor) to the negative
ELBO w.r.t. log pθ(ẑ0(zt, Cv) | C) when integrated over timesteps with w̄s := αs/(1− αs):

T∑
s=1

w̄sJC(zt, Cv) =
T∑

s=1

Eϵ[∥ϵ− ϵθ(
√
αsẑ0(zt, Cv) +

√
1− αsϵ, C)∥22]

⪆ − log pθ(ẑ0(zt, Cv) | C).

Intuitively, our optimization seeks to make the text-conditioned clean view ẑ0(zt, Cv) of the current
sample zt as unique as possible, from the perspective of the log-likelihood log pθ(ẑ0(zt, Cv)|C).
Techniques for improvement. In practice, we found that our optimization could be further stabi-
lized by introducing a sg-related trick into the objective function:

J̃C := J 1
C + λJ 2

C , λ > 0

where J 1
C := Eϵ

[∥∥ẑ0(zt, Cv)− sg
(
ẑ0(zs|t,0, C)

)∥∥2
2

]
J 2
C := Eϵ

[∥∥sg (ẑ0(zt, Cv))− ẑ0(zs|t,0, C)
∥∥2
2

]
.

(7)

In our empirical results, setting λ = 1 consistently produces the best performance across all con-
sidered T2I models. We note that this technique allows the gradient flow through the second term
(contrary to the case of Eq. (5)), thereby sidestepping the gradient blocking issue that we mentioned
earlier. Another significant improvement comes from the use of an annealed timestep s, which was
originally adhered to a fixed value in Um & Ye (2024). We empirically found that employing an an-
nealing schedule based on the inverse of the sampling step (e.g., s = T − t) outperforms other fixed
choices of s. Similar to Um & Ye (2024), we conduct our prompt optimization intermittently (i.e.,
once every N sampling steps) to reduce computational costs. We found that during non-optimizing
steps, employing the base prompt C instead of Cv (with the most recently updated token embed-
ding) yields improvements in text-alignment and sample quality. See Algorithms 1 and 2 for the
pseudocode of our approach.

Enhanced semantic controllability. A key benefit of our prompt optimization approach is its ability
to provide an additional dimension of semantic control over the generated samples. Specifically, by
selecting an appropriate initial point for v (i.e., v(0)

T in Algorithm 1), such as a word embedding

7
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Figure 4: Sample comparison on SDXL-Lightning. Generated samples from three different ap-
proaches: (i) DDIM (Song et al., 2020a); (ii) SGMS (Um & Ye, 2024); (iii) MinorityPrompt (ours).
Six distinct prompts were used for this comparison, and random seeds were shared across all three
methods.

with relevant semantics, one can impart the desired semantics to the generated output; see Figure 3
for instance. Note that the controllability is not achievable with existing minority samplers that rely
upon latent-space optimizations (Sehwag et al., 2022; Um & Ye, 2023; 2024). In addition, we found
that properly choosing a initial word can yield improved minority generation performance compared
to approaches that rely upon random starting points; see Table 2c for details.

4 EXPERIMENTS

4.1 SETUP

T2I backbones and dataset. Our experiments were conducted using three distinct versions of
Stable Diffusion (SD) (Rombach et al., 2022), encompassing both standard and distilled versions
to demonstrate the robustness of our approach. Specifically, we consider: (i) SDv1.5; (ii) SDv2.0;
(iii) SDXL-Lightning (SDXL-LT) (Lin et al., 2024). For all pretrained models, we employed the
widely-adopted HuggingFace checkpoints trained on LAION (Schuhmann et al., 2022) without any
further modifications. As convention, we randomly selected 10K captions from the validation set of
MS-COCO (Lin et al., 2014) for the generations with SDv1.5 and SDv2.0 while using 5K captions
for the SDXL-Lightning results.

Baselines. The same four baselines were considered over all SD versions: (i) the standard
DDIM (Song et al., 2020a); (ii) a null-prompted DDIM; (iii) CADS (Sadat et al., 2023); (iv)
SGMS (Um & Ye, 2024). The null-prompted DDIM serves as a naive baseline that attempts
to encourage unique sampling by incorporating a proper null-text prompt, such as “commmonly-
looking”. CADS (Sadat et al., 2023) is the state-of-the-art diversity-focused sampler that may rival
our approach in minority generation, while SGMS (Um & Ye, 2024) is the state-of-the-art of mi-
nority generation outside the T2I domain. We adhered to standard sampling setups for all methods.
Specifically, 50 DDIM steps (i.e., T = 50) with w = 7.5 were used for SDv1.5 and SDv2.0, while
w = 1.0 was employed for the 4-step SDXL-Lightning model.

Evaluations. For evaluating text-alignment and user-preference, we consider three distinct quanti-
ties: (i) ClipScore (Hessel et al., 2021); (ii) PickScore (Kirstain et al., 2023); (iii) Image-Reward (Xu
et al., 2023). We additionally employ two metrics for quality and diversity: Precision and Re-
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Model Method CLIPScore ↑ PickScore ↑ ImageReward ↑ Precision ↑ Recall ↑ Likelihood ↓

SDv1.5

DDIM 31.4801 21.4830 0.2106 0.5907 0.6328 1.0367
DDIM + null 31.1007 21.5391 0.2422 0.5660 0.6236 1.0339
CADS 31.4178 21.2836 0.1012 0.5696 0.6346 1.0127
SGMS 31.1665 21.2126 0.1230 0.4943 0.5960 0.9540
MinorityPrompt 31.5376 21.3111 0.2352 0.5671 0.6228 0.8971

SDv2.0

DDIM 31.8490 21.6801 0.3821 0.5930 0.6292 1.1100
DDIM + null 31.7223 21.7190 0.4024 0.5861 0.6308 1.0769
CADS 31.7687 21.5225 0.2981 0.5811 0.6194 1.0851
SGMS 31.4750 21.4457 0.2981 0.5166 0.6130 0.9898
MinorityPrompt 31.9586 21.5958 0.4249 0.6047 0.6100 0.9143

SDXL-LT

DDIM 31.5714 22.6822 0.7317 0.5306 0.6648 0.6102
DDIM + null 31.5754 22.7124 0.7397 0.5194 0.6602 0.6093
CADS 31.0837 22.3690 0.4946 0.5244 0.6594 0.6038
SGMS 31.3589 22.5866 0.6759 0.4868 0.6968 0.5470
MinorityPrompt 31.3838 22.6157 0.7042 0.4758 0.6928 0.5463

Table 1: Quantitative comparisons. “SDXL-LT” denotes SDXL-Lightning (4-step version) (Lin
et al., 2024). “DDIM + null” indicates a baseline that leverages a properly-chosen null-prompt
to encourage minority generations, where we used “commonly-looking” for the results herein.
“CADS (Sadat et al., 2023)” is the state-of-the-art in diverse sampling, while SGMS (Um & Ye,
2024) denotes a minority sampler similar to ours, representing the state-of-the-art outside the T2I
context. “Likelihood” represents log-likelihood values measured in bpd (bits per dimension).

call (Kynkäänniemi et al., 2019). For the likelihood of generated samples, we rely upon the exact
likelihood computation method based on PF-ODE as proposed by Song et al. (2020b). Notably, we
do not include Fréchet Inception Distance (FID) (Heusel et al., 2017) as an evaluator, since FID
measures closeness to baseline real data (e.g., the MS-COCO validation set), which diverges from
our focus on promoting generations in low-density regions.

4.2 RESULTS

Qualitative comparisons. Figure 4 presents a comparison of generated samples of our approach
with two baselines. Notice that our MinorityPrompt tends to yield highly more distinct and com-
plex features (e.g., intricate visual elements (Arvinte et al., 2023; Serrà et al., 2019)) compared to
the baseline samplers, demonstrating its effectiveness even with distilled pretrained models. A sig-
nificant observation, also reflected in Figure 1, is that MinorityPrompt often counters the inherent
demographic biases of T2I models, e.g., by adjusting age or skin color. See the samples in the sec-
ond and third rows of the figure. A more extensive set of generated samples, including those from
SDv1.5 and v2.0, can be found in Section D.2.

Quantitative evaluations. Table 1 exhibits performance comparisons across three distinct T2I mod-
els. Observe that our sampler outperforms all baselines in generating low-likelihood samples, while
maintaining reasonable performance in text-to-alignment and user preference; also see Figure 5
where we present the distributions of log-likelihood. However, the performance trends for SDXL-LT
results differ slightly from those of SDv1.5 and SDv2.0 across all tailored samplers, with particularly
degraded results. We attribute this to the small-step nature of distilled models, which offer fewer
opportunities to intervene in the sampling process, thereby limiting the potential for quantitative
improvements.

Ablation studies. Table 2 investigates the impact of key design choices in our framework. Specif-
ically, Table 2a highlights the benefits of optimizing small sets of token embeddings, which outper-
form alternatives targeting text or null-text embeddings in both text alignment and log-likelihood.
The advantage of using the proposed objective function Eq. (6) is exhibited in Table 2b, where the
naively-extended framework based on Eq. (5) demonstrates significant performance gap compared
to our carefully-crafted approach. Table 2c explores various initialization techniques for v. While
all methods yield substantial improvements over the unoptimized sampler (see “unoptimized” in
Table 2b for comparison), we observe that further gains can be achieved with properly chosen initial
words. A more comprehensive analysis and ablation study, encompassing additional design choices
and applications to trending sampling techniques such as CFG++ (Chung et al., 2024), is presented
in Section C.1.
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Target CS ↑ LL ↓
Text 31.3503 0.9263
Null-text 31.1089 1.0175
Token (ours) 31.6465 0.9006

(a) Influence of optimization target

Method CS ↑ LL ↓
Unoptimized 31.4395 1.0465
Naive (Eq. (5)) 30.2994 0.9245
Ours (Eq. (6)) 31.7369 0.9230

(b) Impact of objective function J

Type CS ↑ LL ↓
Default 31.5154 0.9355
Gaussian 31.5054 0.9429
Word init 31.7369 0.9230

(c) Effect of initializing v

Table 2: Ablation study results. “CS” denotes ClipScore (Hessel et al., 2021), while ‘LL’ indicates
log-likelihood. “Text” is the optimization framework focused on updating the text-embedding C,
and “Null-text” refers to the one that adjusts the null-text embedding (as in (Mokady et al., 2023)).
“Unoptimized” corresponds to the standard DDIM sampler. “Default” denotes the case that simply
employs the default embedding assigned with an added learnable token, while “Gaussian” initializes
v from a multivariate Gaussian distribution constructed using the mean and variance of the token
embeddings from the text-encoder T . “Word init” indicates initializing with a specific word embed-
ding. We used SDv1.5 for the results herein.

Further applications. Beyond our primary focus on minority generation, we additionally inves-
tigate the potential of our framework, specifically in the perspectives of fairness and diversity. Ta-
ble 3a presents one such instance. Although not explicitly designed to address demographic biases,
our minority sampler demonstrates the ability to counteract gender bias and produce more neutral
generation results. This corroborates with our qualitative observations made in Figures 1 and 4.

Another area of investigation involves diversity, where we validate the versatility of our prompt
optimizer in Eq. (3) for fostering diverse generation. To achieve this, we develop a new objective
function aimed at encouraging diversity within a sampling batch that shares the same prompt (i.e.,
similar to the goal in Corso et al. (2023)) by enforcing repulsion between generated instances:

J̄ :=

B∑
i=1

∑
k ̸=i

∥ẑ0(z(i)
t , Cv)− ẑ0(z

(j)
t , Cv)∥22, (8)

where B is the batch size, and {z(i)
t }Bi=1 denotes the noisy instances in the batch. We found that

incorporating this objective into Eq. (3) yields impressive results, even rivaling the state-of-the-art
diverse sampler (Sadat et al., 2023); see Table 3b for details.

Method |pfemale − pmale| ↓
DDIM 0.3600
CADS 0.2686
Ours 0.2342

(a) Debiasing effect of ours

Method ClipScore ↑ PickScore ↑ ImReward ↑ Prec ↑ Rec ↑ IBS ↓
DDIM 31.4393 21.2478 0.0121 0.5860 0.6390 0.6164
CADS 31.2692 21.0262 -0.0976 0.5620 0.5980 0.5494
Ours 31.2724 21.0404 -0.1204 0.5480 0.6316 0.5439

(b) Effectiveness of our diversity-focused framework in Eq. (8)

Table 3: (a) Bias-mitigating impact of MinorityPrompt. pfemale indicates the proportion of fe-
males in generated samples via gender-neutral prompts that include “a person” (e.g., “A person
doing karate in a field at night”). On the other hand, pmale is the proportion of males in the sam-
ples. We employed SDXL-LT for these results. (b) Effectiveness of our diversity-focused prompt
optimization framework. “ImReward” denotes Image-Reward metric. “IBS” represents In-Batch
Similarity, a diversity metric (Corso et al., 2023) that evaluates the cosine similarity in the DINO
feature space (Caron et al., 2021). The results were obtained on SDv1.5.

5 CONCLUSION

We developed a novel framework for generating minority samples in the context of T2I generation.
Built upon our prompt optimization framework that updates the embeddings of additional learnable
tokens, our minority sampler offers significant performance improvements both in text-alignment
and low-likelihood generation compared to existing approaches. To accomplish this, we meticu-
lously tailor the objective function with theoretical justifications and implement several techniques
for further enhancements. Beyond our main interest of minority generation, we further demon-
strated the potential of our framework in promoting fairness and diversity. During this process, we
also showed that the proposed optimization framework can serve as a general solution, with potential
applicability to various optimization tasks associated with T2I generation.
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ETHICS STATEMENT

One potential concern associated with our approach is the possibility of its malicious use to inhibit
the generation of minority-featured samples. For instance, this could occur by flipping the sign of
the objective function Eq. (6), yielding a focus on high-density generations. It is crucial to recognize
this risk and to ensure that our proposed framework is employed responsibly to foster fairness and
inclusivity in generative modeling.

REPRODUCIBILITY

To ensure the reproducibility of our experiments, we provide a comprehensive description regarding
the employed pretrained models for our experiments. All experimental settings, including hyper-
parameter choices, are detailed in Section B.2. Additionally, we include the average running time
of our algorithm along with specific details about the computer configuration in the same section.
Finally, to assist with replication efforts, we have made our code available in a public repository:
https://github.com/anonymous-6898/MinorityPrompt.

REFERENCES

Arash Afkanpour, Vahid Reza Khazaie, Sana Ayromlou, and Fereshteh Forghani. Can generative
models improve self-supervised representation learning? arXiv preprint arXiv:2403.05966, 2024.

Marius Arvinte, Cory Cornelius, Jason Martin, and Nageen Himayat. Investigating the adversarial
robustness of density estimation using the probability flow ode. arXiv preprint arXiv:2310.07084,
2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
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A THEORETICAL RESULTS

A.1 PROOF OF PROPOSITION 1

Proposition 1. The objective function in Eq. (6) is equivalent (upto a constant factor) to the negative
ELBO w.r.t. log pθ(ẑ0(zt, Cv) | C) when integrated over timesteps with w̄s := αs/(1− αs):

T∑
s=1

w̄sJC(zt, Cv) =
T∑

s=1

Eϵ[∥ϵ− ϵθ(
√
αsẑ0(zt, Cv) +

√
1− αsϵ, C)∥22] (9)

⪆ − log pθ(ẑ0(zt, Cv) | C).

Proof. Remember the definition of the objective function in Eq. (6):

JC(zt, Cv) := Eϵ

[
∥ẑ0(zt, Cv)− ẑ0(zs|t,0, C)∥22

]
.

Plugging this into the LHS of Eq. (9) yields:

T∑
s=1

w̄sJC(zt, Cv) =
T∑

s=1

αs

1− αs
Eϵ

[
∥ẑ0(zt, Cv)− ẑ0(zs|t,0, C)∥22

]
=

T∑
s=1

αs

1− αs
Eϵ

[∥∥∥∥ 1
√
αs

(zs|t,0 −
√
1− αsϵ)−

1
√
αs

(zs|t,0 −
√
1− αsϵθ(zs|t,0, C))

∥∥∥∥2
2

]

=

T∑
s=1

αs

1− αs
Eϵ

[∥∥∥∥√1− αs√
αs

(ϵ− ϵθ(zs|t,0, C))
∥∥∥∥2
2

]

=

T∑
s=1

Eϵ[∥ϵ− ϵθ(
√
αsẑ0(zt, Cv) +

√
1− αsϵ, C)∥22],

(10)

where the second equality is from the definitions of zs|t,0 and ẑ0(zs|t,0, C):

zs|t,0 :=
√
αsẑ0(zt, Cv) +

√
1− αsϵ

ẑ0(zs|t,0, C) :=
1

√
αs

(zs|t,0 −
√
1− αsϵθ(zs|t,0, C)).

Note that the last expression in Eq. (10), which is the same as the RHS of Eq. (9), is equivalent (up to
a constant) to the expression of the negative ELBO w.r.t. ẑ0(zt, Cv) (Ho et al., 2020; Li et al., 2023).
The distinction here is that now we use a text-conditional diffusion model ϵθ(·, C) that approximates
log pθ(·|C). This completes the proof.

A.2 THEORETICAL ISSUES ON EQ. (5)

We continue from Section 3.3 to scrutinize the theoretical challenges that arise in the naively-
extended optimization framework in Eq. (5). To proceed, we first restate the objective function
in Eq. (5):

J (zt, Cv) := Eϵ

[
∥ẑw

0 (zt, Cv)− sg(ẑw
0 (z

w
s|t,0, Cv))∥

2
2

]
.

Remember that we identified three theoretical issues that impair the connection to the target log-
likelihood log pθ(z0 | C): (i) the reliance on the CFG-based clean predictions; (ii) obstructed gradi-
ent flow through the second term in the squared-L2 loss; and (iii) the incorporation of Cv within the
second term in the loss.

CFG-based clean prediction. We start by examining the first point, the pathology due to the CFG-
based clean predictions. Suppose we incorporate the CFG-based clean predictions ẑw

0 in our frame-
work Eq. (6), in place of the non-CFG terms ẑ0. The objective function then becomes:

J w
C (zt, Cv) := Eϵ

[
∥ẑw

0 (zt, Cv)− ẑw
0 (z

w
s|t,0, C)∥

2
2

]
.
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To see its connection to log-likelihood, let us consider the weighted sum of this objective with w̄s :=
αs/(1− αs) (as in Proposition 1). Manipulating the averaged objective similarly as in Section A.1
then yields:

T∑
s=1

w̄sJ w
C (zt, Cv) =

T∑
s=1

w̄sEϵ

[
∥ẑw

0 (zt, Cv)− ẑw
0 (z

w
s|t,0, C)∥

2
2

]
=

T∑
s=1

αs

1− αs
Eϵ

[∥∥∥∥ 1
√
αs

(zw
s|t,0 −

√
1− αsϵ)−

1
√
αs

(zw
s|t,0 −

√
1− αsϵ̃

w
θ (z

w
s|t,0, C))

∥∥∥∥2
2

]

=

T∑
s=1

Eϵ[∥ϵ− ϵ̃wθ (
√
αsẑ

w
0 (zt, Cv) +

√
1− αsϵ, C)∥22]. (11)

Observe that in the RHS of Eq. (11), we see the CFG noise estimation term ϵ̃wθ , instead of ϵθ as in
Eq. (10). This comes from the use of ẑw

0 (z
w
s|t,0, C) in the second term of the squared-L2 loss. Since

ϵ̃wθ represents a distinct probability density, say p̃θ(· | C), the averaged objective in Eq. (11) is no
longer connected to our focused conditional log-likelihood log pθ(· | C).
One may wonder whether the use of CFG for the first term in the squared-L2 loss of Eq. (6) is safe.
However, we claim that it is also problematic. To show this, we derive the associated log-likelihood,
which is immediate with the algebra used for Eq. (11):

T∑
s=1

w̄sEϵ

[
∥ẑw

0 (zt, Cv)− ẑ0(z
w
s|t,0, C)∥

2
2

]
⪆ − log pθ(ẑ

w
0 (zt, Cv) | C).

We see that now the diffusion model (represented by pθ) should estimate the conditional log-density
w.r.t. the CFG clean prediction ẑw

0 (zt, Cv). We argue that this estimation may be inaccurate, since
the CFG clean sample in the T2I context is potentially off-manifold. As analyzed in Chung et al.
(2024), the CFG clean prediction ẑw

0 (zt, Cv) is in fact an extrapolation between ẑ0(zt, Cv) and
ẑ0(zt) (controlled by w). As a result, it may deviate from the data manifold, particularly for high w
values commonly used in standard T2I scenarios; see Figure 3 in Chung et al. (2024) for details. This
off-manifold issue is especially pronounced during the initial phase of inference, as also reported in
other studies (Kynkäänniemi et al., 2024). See Table 4 for experimental results that support this
claim.

Obstructed gradient. Now we move onto the second issue. From the above analysis, we saw
that the noise prediction in the second term is crucial for relating the objective function to the log-
likelihood, meaning that allowing gradient flow through the second term is essential for accurate
likelihood optimization. However, blocking the gradient via the stop-gradient on the second term
contradicts this theoretical intuition. We found that the use of stop-gradient actually degrades per-
formance; see Table 4 for instance.

Cv in the second term. The reasoning behind the third challenge follows naturally from the previous
analyses. In this case, the corresponding log-likelihood term can be derived as:

T∑
s=1

w̄sEϵ

[
∥ẑ(zt, Cv)− ẑ0(zs|t,0, Cv)∥22

]
⪆ − log pθ(ẑ0(zt, Cv) | Cv).

We see that Cv appears in conditioning variable, which diverges from our interest of approximating
log pθ(· | C). See Table 4 for experimental results that corroborate this.

B SUPPLEMENTARY DETAILS

B.1 DETAILS ON THE METRIC IN UM & YE (2024)

We continue from Section 3.3 to provide additional details on the likelihood metric developed by Um
& Ye (2024). This original version is defined on pixel space x0 ∈ Rd (rather than latent domain
z0 ∈ Rk as ours), formally written as (Um & Ye, 2024):

J (xt; s) := Eϵ

[
d(x̂0(xt), x̂0(xs|t,0))

]
,
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where xt is a noisy pixel-domain image, and x̂0(xt) represents a clean estimate of xt: x̂0(xt) :=
(xt −

√
1− αtϵ

′
θ(xt))/

√
αt, where ϵ′θ denotes a pixel diffusion model (different from our ϵθ).

Here xs|t,0 indicates a noised version of x̂0(xt) according to timestep s: xs|t,0 :=
√
αsx̂0(xt) +√

1− αsϵ, and x̂0(xs|t,0) is a denoised version of xs|t,0. d indicates a discrepancy metric (e.g.,
LPIPS (Zhang et al., 2018)). This quantity is interpretable as a reconstruction loss of x̂0(xt), and
theoretically, it is an estimator of the negative log-likelihood of x̂0(xt) (Um & Ye, 2024).

Similar to ours, the authors in Um & Ye (2024) employs this metric as a guidance function for
minority sampling, sharing similar spirit as ours. In doing so, they propose several techniques such
as stop-gradient, learning-rate scheduling, and the incorporation of LPIPS as d. Their proposed
metric for the guidance function is expressible as:

J (xt; s) := ηtEϵ

[
LPIPS(x̂0(xt),sg(x̂0(xs|t,0)))

]
,

where ηt indicates learning rate at time t designed to decrease over time, and LPIPS is the percep-
tual metric proposed by Zhang et al. (2018). Although this approach offers considerable advantages
in traditional image generation tasks (such as unconditional generation), it is not optimized for T2I
generation, which presents unique challenges and requires more specialized techniques. This is
confirmed by our experimental results, where a straightforward extension of their framework yields
only modest performance improvements. See Table 2b for details.

B.2 IMPLEMENTATION DETAILS

Pretrained models and baselines. We employed the official checkpoints provided in HuggingFace
for all three pretrained models. For the null-prompted DDIM baselines, we employed “commonly-
looking” as the null-text prompt for all three pretrained models. The CADS baselines were primarily
obtained using the recommended settings in the paper (Sadat et al., 2023), while we adjusted the hy-
perparameters on SDXL-Lightning for adaptation to distilled models. Specifically, we set τ1 = 0.8,
τ2 = 1.0, and s = 0.1, while keeping other settings unchanged. For SGMS, we respected the origi-
nal design choices (like the use of sg) and tuned the remaining hyperparameters to attain the optimal
performance in the T2I context. In particular, we used the squared-L2 loss as the discrepancy metric
and employed s = 0.75T . For their latent optimizations, we employed Adam optimizer (Kingma,
2014) (as ours) with learning rates between 0.005 and 0.01. Similar to ours, latent updates were
performed intermittently, with N = 3 (i.e., one update per three sampling steps). Each latent opti-
mization consisted of three distinct update steps: K = 3.

Evaluations. The ClipScore values reported in our paper were due to torchmetrics3. For
PickScore and Image-Reward, we employed the implementations provided in the official code repos-
itories45. Precision and Recall were computed with k = 5 using the official codebase of Han et al.
(2022)6. The log-likelihood values were evaluated based on the implementation of Hong et al.
(2024)7. In-Batch Similarity that we used in the diversity optimization (in Table 3b) were computed
with the repository of Corso et al. (2023)8.

Hyperparameters. Our results were obtained using s = T − t, and we used Adam optimizer with
K = 3, similar to SGMS. Learning rates were set between 0.001 and 0.002 across all experiments.
We shared the same intermittent update rate of N = 3 with SGMS. For initializing v, we shared
the same word embedding for “cool” for the main results (presented in Table 1). The number of
learnable tokens for our approaches was set to 1. As described in Section 3.3, we globally used
λ = 1 across all experiments. For the experiments on SDXL-Lightning that involves two distinct
text-encoders, we employed a single Adam optimizer to jointly update both embedding spaces to
minimize parameter complexity. We also synchronized other design choices for the two encoders,
e.g., sharing the same initial token embedding.

3https://lightning.ai/docs/torchmetrics/stable/multimodal/clip_score.
html

4https://github.com/yuvalkirstain/PickScore
5https://github.com/THUDM/ImageReward
6https://github.com/hichoe95/Rarity-Score
7https://github.com/unified-metric/unified_metric
8https://github.com/gcorso/particle-guidance
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Method CLIPScore ↑ PickScore ↑ ImageReward ↑ Precision ↑ Recall ↑ Likelihood ↓
DDIM 31.4395 21.4570 0.1845 0.6070 0.7094 1.0465
Eq. (6) (proposed) 31.7369 21.3522 0.2839 0.5420 0.7340 0.9230
Eq. (6) + ẑw0 30.5193 20.7307 -0.1468 0.4890 0.7182 0.9399
Eq. (6) + sg 31.6597 21.3114 0.2738 0.5230 0.7284 0.9290
Eq. (6) + Cv 31.6676 21.3652 0.2808 0.5550 0.7262 0.9281
Eq. (6) + all (i.e., Eq. (5)) 30.2994 20.4840 -0.1944 0.4760 0.6864 0.9245

Table 4: Impacts of theoretical flaws in Eq. (5). “+ ẑw0 ” indicates the case that further incorporates
the CFG clean predictions into Eq. (6). “+ sg” refers to the one employing the stop-gradient on
ẑ0(zs|t,0, C). “+ Cv” represents the setting of feeding Cv in the computations of ẑ0(zs|t,0, C) in
place of C. “+ all” is the case that employs all the above three flawed choices, i.e., Eq. (5). We
observe clear performance benefits of our theory-driven design choices over the naive framework
in Eq. (5). The results were obtained on SDv1.5.

Target CS ↑ LL ↓
Eq. (6) 31.3658 0.5449
Eq. (7) 31.4194 0.5449

(a) Influence of sg-trick

Type CS ↑ LL ↓
s = 0.75T 31.4534 0.9469
s = T − t 31.7369 0.9230

(b) Impact of adaptive s

Type CS ↑ LL ↓
C 31.7548 0.9744
Cv∗ 31.7871 0.9511

(c) Effect of using C

Table 5: Effectiveness of our new techniques. “CS” denotes ClipScore (Hessel et al., 2021), while
‘LL’ indicates log-likelihood. “C” refers to the use of C during sampling steps without prompt
optimization (when incorporating an intermittent prompt update, i.e., N > 1). On the other hand,
“Cv∗” refers to the use of optimized token embeddings in the latest steps. Our results show that the
proposed design choices consistently outperform naive approaches. The results in (a) were obtained
using SDXL-Lightning, while SDv1.5 was employed for (b) and (c).

Computational complexity. The inference time for DDIM is approximately 1.136 seconds per sam-
ple, with CADS requiring a similar amount of time. The complexities of SGMS and our approach
are rather higher due to the inclusion of backpropagation and iterative updates of latents or prompts.
Specifically, SGMS takes 5.756 seconds per sample, while our sampler requires slightly more time
– 6.205 seconds per sample – which we attribute to the additional backpropagation pass introduced
by our removal of gradient-blocking. All computations herein were performed on SDv2.0 using a
single NVIDIA A100 GPU.

Other details. Our implementation is based on PyTorch Paszke et al. (2019), and experiments
were performed on twin NVIDIA A100 GPUs. Code is available at https://github.com/
anonymous-6898/MinorityPrompt. For

C ADDITIONAL ABLATIONS AND DISCUSSIONS

C.1 FURTHER ABLATION STUDIES

Table 4 exhibits the individual impacts of the three theoretical flaws in the naive framework
in Eq. (5). We highlight that our new design choices motivated by a set of careful theoretical analy-
ses yields significant advantages specifically in preserving text-alignment and user-preference. This
further validates our framework as a powerful minority sampler that achieves high-quality genera-
tion.

Table 5 explores the impact of our techniques developed for further improvements in Section 3.3. We
see consistent enhancements over naive design choices. A key insight from Table 5c is that reusing
token embeddings optimized at earlier timesteps, denoted as “Cv∗” in the table, offers limited benefit
compared to simply using the base prompts C. This finding highlights the evolutionary nature of
our prompt-tuning framework, which supports continual updates to embeddings across sampling
timesteps.

Table 6 investigates the design choices related to learnable tokens in our framework. Observe in Ta-
ble 6a that our framework consistently delivers significant performance gains across different initial
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Init word CS ↑ LL ↓
“uncommon” 31.6971 0.8868

“special” 31.6178 0.9342
“cool” 31.7369 0.9230

(a) Sensitivity to the initial word

Position CS ↑ LL ↓
– 31.4395 1.0465

Prefix 31.5519 0.9249
Postfix 31.7369 0.9230

(b) Impact of the position of S

# of tokens CS ↑ LL ↓
1 31.6465 0.9006
2 31.5866 0.9163
4 31.4989 0.9419

(c) Effect of # of learnable tokens

Table 6: Exploring the design space of learnable tokens. “Init word” indicates the word embed-
ding used for initializing v. “–” refers to standard DDIM sampling without prompt optimization.
“Prefix” denotes prepending the placeholder string S to P , while “Postfix” indicates appending it to
the end of P . “# of tokens” represents the number of tokens assigned to the string S. We observe
that the proposed approach is not highly sensitive to the choice of initial word, and as suggested,
attaching S at the end of the prompts yields the best performance. Additionally, using a single token
is sufficient to achieve performance gains. We used SDv1.5 for the results herein.

Method CLIPScore ↑ PickScore ↑ ImageReward ↑ Precision ↑ Recall ↑ Likelihood ↓
DDIM 31.4395 21.4570 0.1845 0.6070 0.7094 1.0465
DDIM-CFG++ 31.4755 21.4490 0.1938 0.5710 0.7100 1.0452
Ours 31.7369 21.3522 0.2839 0.5420 0.7340 0.9230
Ours-CFG++ 31.7627 21.3399 0.3062 0.5540 0.7284 0.9183

Table 7: Compatibility with other sampling techniques. “DDIM-CFG++” represents the DDIM
sampler integrated with CFG++ (Chung et al., 2024), while “Ours-CFG++” is our MinorityPrompt
framework implemented with CFG++. We highlight that MinorityPrompt demonstrates strong com-
patibility, delivering significant performance gains even when combined with CFG++. The guidance
weights for the CFG++ cases were set to 0.6, i.e., the recommended setting in the paper (Chung et al.,
2024). We used SDv1.5 for the results herein.

word embeddings. Regarding the position of S, appending it to the end of the prompts yields better
results. We speculate that prepending may have a greater impact on the semantics of the text embed-
dings due to the front-weighted nature of the training process for the CLIP text encoders (Radford
et al., 2021) employed in our T2I models. As exhibited in Table 6c, a single token is sufficient to
realize the performance benefits of our approach. The performance degradation observed with in-
creasing tokens is likely due to their heightened influence on semantics, similar to the effect of S’s
position.

Table 7 investigates the performance of MinorityPrompt when integrated with CFG++ (Chung et al.,
2024) across different sampling techniques. We see that MinorityPrompt consistently outperforms
standard DDIM-CFG++ by a notable margin, demonstrating the robustness and adaptability of our
approach. This compatibility with CFG++ highlights the flexibility of MinorityPrompt, enabling
substantial gains even when leveraging advanced conditioning strategies.

C.2 LIMITATIONS AND DISCUSSION

A disadvantage is that our framework introduces additional computational costs (similar to Um &
Ye (2024)), particularly when compared to standard samplers like DDIM. As noted in Section B.2,
this is mainly due to the incorporation of backpropagation and iterative updates of prompts. Addi-
tionally, the removal of gradient-blocking, aimed at restoring the theoretical connection to the target
conditional density, further contributes to the overhead. Future work could focus on optimizing
these processes to reduce computational demands. One potential approach is to develop an approx-
imation of our objective that mitigates the need for extensive backpropagation while maintaining its
alignment with the target log-likelihood.
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(a) SDv1.5 (b) SDv2.0 (c) SDXL-Lightning

Figure 5: Comparison of log-likelihood distributions. The likelihood values were measured using
the PF-ODE-based computation proposed by Song et al. (2020b). We observe that MinorityPrompt
better produces low-likelihood instances compared to the considered baselines across all three pre-
trained models.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 LOG-LIKELIHOOD DISTRIBUTIONS

Figure 5 exhibits the log-likelihood distributions for MinorityPrompt and the baseline models across
all three pretrained architectures. We see that MinorityPrompt consistently produces lower log-
likelihood instances, further demonstrating its improved capability of generating minority samples.
The distributions for SDXL-Lightning are more dispersed than in other scenarios, which may be
attributed to the larger latent space upon which SDXL-Lightning is based. The competitive results
compared to SGMS observed in SDXL-Lightning may arise from the limited optimization opportu-
nities available in distilled models (as discussed in the manuscript).

D.2 ADDITIONAL GENERATED SAMPLES

To facilitate a more comprehensive qualitative comparison among the samplers, we provide an ex-
tensive showcase of generated samples for all the focused T2I pretrained models. See Figures 6–8
for details.
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Figure 6: Generated samples on SDv1.5. Generated samples from three distinct samplers: (i)
DDIM (Song et al., 2020a); (ii) SGMS (Um & Ye, 2024); (iii) MinorityPrompt (ours). Random
seeds were shared across all three methods.
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Figure 7: Generated samples on SDv2.0. Generated instances from three different techniques: (i)
DDIM (Song et al., 2020a); (ii) SGMS (Um & Ye, 2024); (iii) MinorityPrompt (ours). We shared
the same random seeds across all three approaches.
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Figure 8: Additional generated samples on SDXL-Lightning. Generated samples from three dif-
ferent approaches: (i) DDIM (Song et al., 2020a); (ii) SGMS (Um & Ye, 2024); (iii) MinorityPrompt
(ours). We employed the same initial noises across all three samplers.
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