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Abstract

As language models (LMs) deliver increasing performance on a range of
NLP tasks, probing classifiers have become an indispensable technique in the
effort to better understand their inner workings. A typical setup involves
(1) defining an auxiliary task consisting of a dataset of text annotated with
labels, then (2) supervising small classifiers to predict the labels from the
representations of a pretrained LM as it processes the dataset. A high
probing accuracy is interpreted as evidence that the LM has learned to
perform the auxiliary task as an unsupervised byproduct of its original
pretraining objective. Despite the widespread usage of probes, however,
the robust design and analysis of probing experiments remains a challenge.
We develop a formal perspective on probing using structural causal models
(SCM). Specifically, given an SCM which explains the distribution of tokens
observed during training, we frame the central hypothesis as whether the
LM has learned to represent the latent variables of the SCM. Empirically,
we extend a recent study of LMs in the context of a synthetic grid-world
navigation task, where having an exact model of the underlying causal
structure allows us to draw strong inferences from the result of probing
experiments. Our techniques provide robust empirical evidence for the
ability of LMs to induce the latent concepts underlying text.

1 Introduction

As large LMs pretrained on massive amounts of unlabeled text continue to reach new
heights in NLP tasks (and beyond), the question of what kinds of information such models
encode about their training data remains a topic of intense discussion and research. One
prominent technique is to supervise small probing classifiers to extract some linguistically
relevant property from the representations of the pretrained LM (Shi et al., 2016; Adi et al.,
2017; Alain & Bengio, 2018), with the intuition being that the success of the probe reveals
the LM has, in fact, learned to encode the property of interest as a byproduct of its training.

Despite their widespread usage, however, probes themselves are also an active area of
research, with a number of interconnected open questions in the design and interpretation
of probing experiments (Belinkov, 2022), including:

(Q1) Control and interpretation. Given that the probe itself is directly supervised to
perform the auxiliary task, the observed outcomes could depend not only on the information
inherently encoded in the LM but also the ability of the probe to extract the information itself.
For instance, researchers have found that training probes to predict randomized labels can
often yield comparably high accuracies on certain tasks, calling into question the significance
of prior results (Hewitt & Liang, 2019). As a result, drawing robust conclusions from the
classification accuracy of a probe remains up for debate.

(Q2) Classifier selection and training. To combat the risk of measuring the probe’s capacity
to learn the auxiliary task, researchers often limit probes to low capacity architectures such

∗We gratefully acknowledge the contributions of senior author Martin Rinard, who was unfortu-
nately left off the official author list due to a late-night clerical error.

1



Published as a conference paper at COLM 2024

as linear classifiers (Maudslay et al., 2020). However, other works have countered with
evidence that LMs encode more complex concepts using non-linear representations, which
can only be accurately measured using higher capacity classifiers (Belinkov & Glass, 2019;
Li et al., 2022). A related question which has received little attention is how the training
procedure itself (e.g., optimizer selection, training hyperparameters, auxiliary dataset size)
interacts with the outcome of the probing experiment.

(Q3) Auxiliary task design. Finally, as large, pretrained LMs have progressed from produc-
ing human-like text to exhibiting increasingly “intelligent” behaviors such as reasoning and
in-context learning (Brown et al., 2020), there is an emerging need to better understand the
limitations and capabilities of LMs along dimensions such world knowledge and theory of
mind. These domains present a distinct set of challenges compared to traditional linguistic
tasks such as part-of-speech tagging and dependency parsing.

The theoretical section of this paper develops a formal perspective on probing using the
language of structural causal models (SCM). Specifically, given a causal model which explains
the distribution of tokens observed during training, we pose the central hypothesis as
determining whether the LM has learned to represent the latent variables of the SCM: concepts
that explain how the text was generated, but are never directly observed during training.
We then introduce probes as a means of empirically testing such hypotheses, by extracting
the value of the latent concepts given only the LM representations as input. Our setting
naturally captures broader questions about the inductive bias of LMs trained solely on text,
and the latent concepts they acquire over the course of training (Q3).

Next, by extending the SCM beyond the data generation process to cover the training of
the LM (unsupervised) and probe (supervised), we further show that Q1 and Q2 can be
understood as the mediating and moderating effects of the probe, respectively. We propose
a general technique based on causal mediation analysis which isolates the causal path through
the LM while excluding the probe’s influence. Our analysis yields clear, testable conditions
for accepting or rejecting our hypotheses based on a probing experiment’s outcomes.

Finally, we conduct an empirical study that extends Jin & Rinard (2024), who use probes to
quantify the extent to which LMs are capable of learning “meaning” from text, as opera-
tionalized by the semantics of a synthetic programming language for grid-world navigation.
By leveraging the proposed latent causal probing framework, our experiments allow us to
draw precise conclusions about the causal relationship between the latent dynamics that gener-
ated the training data and what is learned by the LM. In particular, we find evidence that (1)
the LM has, in fact, learned to represent the latent variables corresponding to the underlying
semantics of the language, and (2) the LM representations exhibit an inductive bias that gen-
eralizes to novel action sequences. Our study marks the first rigorous empirical evaluation
of the hypothesis that language models are latent concept learners, revealing intriguing insights
into how language models might acquire an understanding of language. Code to reproduce
our experiments is available at https://github.com/charlesjin/emergent-semantics.

2 Structural causal models of text

This section introduces the setting of our framework for probing, which is based on the
idea that the text used to train LMs may exhibit latent causal structure; we formalize these
concepts using the approach of structural causal models.

2.1 Background: structural causal models

Structural causal models are graphical models which represent causal relationships in a data
generation process as directed graphs (Pearl et al., 2000). We refer the reader to Pearl (2010)
for a comprehensive overview. Suppose that we are interested in the effect the weather has
on employees bringing an umbrella to work. In this case, we may hypothesize a SCM like
the one in Figure 1a. Each node represents a random variable: the weather, the weather
forecast, whether the employee’s morning gets off to a late start, and whether the employee
brings an umbrella to work. Nodes without parents are exogenous variables, whose causes
are left unexplained; they are often used to model nature or randomness. Nodes with a
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(a) The original SCM.
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Figure 1: An SCM for bringing an umbrella to work.

parent indicate the possibility of a causal relationship, e.g., the edge from weather to forecast
indicates that the weather might influence the forecast. A standard assumption of causal
analysis is that the underlying causal graph is Markovian (or acyclic).

Mediators and moderators. The SCM hypothesizes 3 possible causes for how the weather
affects employees bringing an umbrella to work: the weather, the weather forecast, and
having a late start. The forecast is a mediator because total causal effect of the weather on
umbrella in partially transferred by the path-specific effect over the weather-forecast-umbrella
pathway (Avin et al., 2005; Imai et al., 2010). A natural question is how much the forecast
is responsible for the increase in likelihood that an employee brings an umbrella to work
when, for instance, the weather changes from sunny to rainy. This can be analyzed via
necessary indirect effects, which quantify how much the presence of the causal path through
the mediator contributes to the total measured effect (Weinberger, 2019):

NIErain,sun(Forecast) = E[Umbrella | Weather = rain]

− E[Umbrella | Weather = rain, do(Forecast = sun)],

where do(Forecast = sun) is a causal intervention that can be conceptualized as forcing the
weather station to forecast sun regardless of the weather, thereby severing the weather-
forecast-umbrella pathway. Figure 1b depicts the SCM post-intervention.

The late start variable is a moderator of the weather-umbrella causal effect: variables that
do not directly mediate a causal effect, but affect the strength (and possibly direction)
of another causal path (Baron & Kenny, 1986). For instance, the forecast’s effect (i.e.,
NIErain,sun(Forecast)) might be lower if the employee has a late start and rushes out the
door without checking the forecast.

2.2 Case study: causal structure in programming languages

Jin & Rinard (2024) propose an experiment to study whether LMs are able to ground a
sequence of actions into a sequence of states, having only seen instances of the initial
and final state during training. Specifically, they train a 350M parameter Transformer
(Vaswani et al., 2017) on a corpus of specification-program examples using a standard causal
language modeling objective. The programs are strings in a grid-world navigation language
with 5 actions (move, turn_right, turn_left, put_marker, pick_marker), sampled uniformly
between lengths 6 and 10, inclusive. The specifications consist of the initial and final state,
which are 8x8 grids. Executing the program navigates a single robot in the initial state to
the final state. We refer to Jin & Rinard (2024) for more details about the language.

Figure 2 displays an SCM of the data generation process (along with an example assignment
of values to each variable). The exogeneous variables are the initial state and the program
actions. Each action produces a latent state (green), save for the last action, which is observed
as the final state. A training sample consists of the sequence: s0, sn, p1, . . . , pn, where each
grid world is converted to text by scanning in row order, with one token per entry.

Consider now modeling a distribution of text drawn from this SCM. In particular, for each
sample x there is an assignment e to the exogenous variables in the SCM M such that
M(e) = x. One strategy would be to learn a model of the SCM depicted in Figure 2, and
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Figure 2: An SCM of the data generation process for the grid world corpus. The exogenous
variables are the initial state and the actions; latent variables are green and observed
variables are gray. The training corpus consists of programs of length between 6 and 10.

integrate the latent variables during inference. For instance, knowing that the robot is one
space away from sn in sn−1 could help a learner predict pn = move.

More generally, given observations generated according to some unknown causal mecha-
nism, a learner could propose various SCMs of the underlying causal mechanism consistent
with the observations, then use these SCMs to inform future predictions, an approach known
as causal learning (Schölkopf et al., 2021). A major challenge in the foregoing approach is
the problem of latent variable induction, or inferring the latent variables over which candidate
SCMs are to be defined. In this work, we focus on the causal structure of programming
languages, where the underlying causal dynamics are governed by a precise formal semantics,
and the latent variables are given by program states. Having formally defined semantics
and latent variables enables us interpret the results of our probing experiments in an unam-
biguous way; we refer the reader to Sloman (2005); Feder et al. (2022) for surveys of causal
structure in natural language.

3 Latent causal probing

We present latent causal probing, a formal framework for empirically testing the hypothesis

Language models are latent concept learners.

At a high level, given an SCM that models the training data as the observed variables,
we probe the LM for representations of the latent variables of the SCM. Our main insight,
as illustrated in Figure 2, is that knowing the latent value of sn−1 could help predict the
observed value of pn; hence, an LM trained to predict pn might eventually induce the
existence of the latent variable sn−1.

3.1 Probing for latent concepts

We begin by defining the auxiliary task and dataset for probing. Fix some structural causal
model M, and let vM be the latent variable of interest. Given some text x, we use vM(x)
to denote the value of the latent variable in the SCM of text x. For instance, the value of
vM = s1 in the sample x from Figure 2 is the grid depicted in the s1 node. We assume that
the value of each latent variable is uniquely determined by x and M.

Given a language model LM with parameters θ, we denote an arbitrary representation
function as LM(x; θ). The auxiliary dataset consists of input features {LM(x; θ) | x ∈ X}
and labels {vM(x) | x ∈ D}, where D = {xi}N

i=1 is a corpus of text. We then split D into
two auxiliary datasets: one for calibration and one for measurement. The probe is trained
to predict vM(x) given LM(x; θ) on the calibration data, and the accuracy is taken over the
measurement data. We next discuss the design and interpretation of these two datasets.
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calibration measurement

bound free

bound deductive knowledge inductive bias (inference)
free deductive bias (consistency) inductive knowledge

Table 1: Interpreting probing with different calibration and measurement datasets.

Bound vs. free latent variable outcomes. In general, there may exist several causal
dynamics that explain the data equally well. For instance, the following dynamics could
also generate the data in Figure 2:

put_marker Jump to a random location.
turn_right Return to the last position, put a marker, then turn right.

These dynamics assign a different value to s1, but explain the observed variables equally
well. Assuming the training corpus consists entirely of this single example, it would be
impossible to distinguish between M and M′ on the basis of data alone. In other words:

1. M and M′ share the same set of set of latent, observed, and exogenous variables;
2. M and M′ agree on the observed data; and
3. there exists an assignment e to the exogenous variables such that vM(x) ̸= vM′(x′)

for x = M(e) and x′ = M′(e).

In this case, we say that the latent variable v is free over the assignment e. More generally,
given a hypothesis class M of SCMs over the same set of variables, denote the LM training
data as Dtrain and define M|train to be the subset of SCMs that generate Dtrain. The free
latent variable outcomes consist of pairs of latent variables and assignments (v, e) such that
there exist M, M′ ∈ M|train where vM(M(e)) ̸= vM′(M′(e)). Any latent variable outcome
(v, e) which is not free is bound, i.e., its value is fully determined by the training data.

Probing with free vs. bound splits. Table 1 details four possible probing setups when
separating the auxiliary dataset D into free and bound splits. In particular, when calibration
and measurement occur on the same split, the probe quantifies the knowledge, or informa-
tion content, that can be extracted from the LM representations; conversely, probing with
different splits measures the transferability of the representations across different splits,
which is a bias. Additionally, because the bound variables outcomes, can, by definition, be
deduced from the given data (and hypothesis class M), measuring on the bound split relates
to the deductive ability of the LM; conversely, measuring on the free split is inherently an
inductive process. We highlight that the inductive bias can be understood as quantifying
the capacity of the LM representations to infer values in unseen data by applying theories derived
from known data, a form of inductive inference; while the deductive bias measures the extent
to which the LM representations produce theories of unseen data that are consistent with the
observed data, a key tenet of deductive logic.

3.2 Causal mediation analysis of probing

We next turn to controlling for the probe (Q1). Intuitively, the challenge is any measurement
using a supervised probe conflates the LM’s representation of the auxiliary labels with the
probe’s ability to learn the auxiliary task (Hewitt & Liang, 2019). While there exist a number
of proposals for controlling for the contribution of the probe, such techniques typically do
not provide any formal guarantees, rendering their correct application and interpretation a
challenge (Belinkov, 2022).

We propose a method of disentangling the two effects using the formal framework of causal
mediation analysis, and specifically, path-specific effects, which analyze how causal effects
decompose over multiple causal paths (Avin et al., 2005; Imai et al., 2010). To begin, we
extend the SCM of the data generation process to include (1) the LM training, (2) the probe
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Figure 3: An SCM depicting the LM training, probe calibration, and probe measurement.
We use plate notation for repeated iid samples, e.g., we draw N samples for LM training.

calibration, and (3) the probe measurement. Figure 3 illustrates an example where the
hypothesis class M consists of 3-variable SCMs with a single exogenous, observed variable
s0, a latent variable vM, and another observed variable s1.

Observe that there are three causal paths from the true SCM of the data generation process
to the auxiliary task accuracy, each of which is mediated by a different set of the latent
variables vM: (1) during LM training, the LM is trained on a dataset whose text is causally
affected by vM; (2) during probe calibration, the probe is calibrated using vM directly; and
(3) during probe measurement, the probe is evaluated for accuracy on vM directly. However,
we only care to measure the effect over the first of these causal paths, i.e.:

To what extent can the auxiliary task performance be attributed to what LM learns from the latent
variables in its training data?

This question can be posed formally as the necessary indirect effect of the paths mediated
by the LM’s learned representation for some baseline causal dynamics M′:

NIEM,M′(θLM) =

E
[
accuracy | LM is trained on M, probe is calibrated and measured on M

]
− E

[
accuracy | do(LM is trained on M′), probe is calibrated and measured on M],

Although path-specific effects offer a crisp conceptual framework for isolating the contribu-
tion of the LM in probing experiments, actually computing NIE is not straightforward. First,
picking a proper baseline M′ is critical: if we pick an inappropriate M′, then the NIE will
measure the difference between the data generated by M and M′ in addition to the latent
variables hypothetically mediated by the LM representations. For instance, we could have
M′ produce gibberish text. Then the LM wouldn’t learn anything, biasing the NIE to be
positive. Second, measuring the effect requires training a new LM with the baseline M′,
which would be prohibitively expensive for large pretrained LMs.

Let accaux(M0, M1) denote the (expected) auxiliary task accuracy after the LM is trained
using the SCM M0 and the probe is calibrated and measured on M1. The following result
addresses these challenges (proof in Appendix C).
Definition 3.1 (Valid baseline). M′ is a valid baseline for M if

accaux(M′, M′) ≥ accaux(M, M) (1)

accaux(M, M′) ≥ accaux(M′, M). (2)
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Proposition 3.2. Let M′ be a valid baseline for M. Then

accaux(M, M)− accaux(M, M′) > 0

implies both NIEM,M′(θLM) > 0 and NIEM′ ,M(θ′LM) > 0.

Intuitively, M′ is a valid baseline when measuring M′ is easier than measuring M under
both normal or intervened circumstances. The conclusion then states that, so long as
accaux(M, M)− accaux(M, M′) > 0 (which can be evaluated by running probe calibration
and measurement twice rather than training the LM twice), there is no bias in which SCM is
used to train the LM and which is the baseline: the LM representations always mediate a
positive amount of the measured effect. Intuitively, given (1) an LM trained on either M
or M′ and (2) some neutral text x that is equally likely to have been generated by either
M or M′, we could distinguish which data the LM was trained on purely on the basis of
which latent concepts it assigns to the neutral text x. A positive NIE now also has a rigorous
interpretation as the LM having induced latent concepts, as some positive amount of causal
effect is transferred through the representations of the LM. For instance, a positive mediated
measurement for inductive bias implies that

The presence of latent causal variables in the pretraining data causes the LM to learn representations
that generalize to unknown data.

3.3 Discussion

We summarize the latent causal probing framework as follows:

1. Fix the exogenous, latent, and observed variables and design a hypothesis class M.
2. Pick a target SCM M ∈ M and a set of latent variables v ∈ M to test.
3. Construct the auxiliary dataset and create the bound vs. free splits (if possible).
4. Identify a valid baseline M′ and perform the mediation analysis.

A significant measurement accaux(M, M)− accaux(M, M′) > 0 is interpreted evidence that
the LM encodes the latent concepts in its representations. We conclude with some remarks.

Choice of hypothesis class. One requirement of our framework is to pick an explicit
hypothesis class M, which yields a separation of the latent variables into bound vs. free
splits. Conceptually, the choice of hypothesis class forces the experimenter to make explicit
their prior about what a language model can "deduce" from data. In our case, we will assume
that language models can perfectly memorize the behavior of previously seen programs, but
cannot extrapolate this information to any previously unseen programs. Our construction
of the hypothesis class reflects this assumption, and the deductive knowledge measures the
ability of the language model to directly recall this information from the training data.

Interventions, and probing for non-causal latent variables. Our mediation technique re-
quires knowing “what would the text have been if the underlying dynamics were different?”,
which could be difficult (especially in non-synthetic domains). Similarly, for non-causal
latent variables, such as part-of-speech, producing a hypothesis class M with more than
one SCM may seem unnatural: what would the data look like in a counterfactual world in
which “dog” is actually an adverb? Our analysis suggests that a baseline M′ which induces
a different distribution of text is a necessary precondition, since otherwise NIEM,M′(θLM)
and NIEM′ ,M(θ′LM) cannot both be positive (as M and M′ are indistinguishable when used
to train the LM and hence θLM = θ′LM). Intuitively, we interpret this result as saying any
measurement is inherently biased when the auxiliary task has only one “right” answer.

Probe architecture and hyperparameters. Our framework also explicates the role of the
probe’s architecture and other hyperparameters in the training process, such as the optimizer,
learning rate, dataset size, etc., as potential moderators, but not mediators (Q2). In other
words, so long as there exists hyperparameters such that the NIE is positive, the analysis
concludes that there exists a causal effect mediated by the model’s parameters (although
crucially, these choices must not introduce new confounders). Practically speaking, our
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framework also offers a novel way to interpret (and justify) complex probes (Voita & Titov,
2020; Pimentel & Cotterell, 2021).

4 Experiments

We conduct an empirical study of whether an LM, trained from scratch on a corpus of
program data, induces the latent concepts in the underlying data generation process. We
obtained the original LM checkpoints from Jin & Rinard (2024). As the LM achieves 92.4%
accuracy on generating semantically correct programs for unseen specifications by the end
of training, we consider the LM to be well trained in the sense that it has successfully fit not
only the explicit objective of minimizing the next-token prediction loss, but also the implicit
task encoded by the SCM, i.e., generating programs that correctly implement specifications.
We thus evaluate the hypothesis that a well trained language model is a latent concept
learner. Appendix A.2 contains further experiments and analyses, including two additional
valid baselines and a study of the moderating effect of the probe architecture and training.

4.1 Methods

We describe the key steps according to the framework in Section 3.3; Appendix A.1 contains
full experimental details (e.g., LM and probe architecture and training, LM representations).

Hypothesis class. The exogenous variables are the initial state and program. The latent
variables are the intermediate states, and the observed variables are the initial and final
state and the program. For the hypothesis class M, we will assume that each program is a
purely symbolic string that represents a sequence of instructions, but that the instructions
are not necessarily compositional. For instance, the string “turn_right” could map to the
function [[move move]] while the string “turn_right turn_left” could map to the function
[[move]]. Then to execute the program “turn_right turn_left” on an initial state s0, the
robot would first execute “turn_right” and visit s1 = move(move(s0)), and then execute
“turn_right turn_left” which would result in the final state being s2 = move(s0). Note that
the function represented by each string can be inferred from input-output examples, but that
the intermediate states in the execution cannot.

Target SCM and latent variables. The target SCM M ∈ M is the true data generation
process in Figure 2. The target latent variables consist of the robot’s position, facing direction,
and whether the robot is facing a rock for each intermediate state.

Auxiliary dataset splits. For the auxiliary dataset, we use the same data generation process,
except that programs range in length between 1 and 15, and we replace the final state in
the specification with the initial state. We assume the LM observes all combinations of the
exogenous variables. The bound latent variables are s6 to s10 (they correspond to the final
state of programs observed during training). The free latent variables are s1 to s5 and s11 to
s15. Note that we overapproximate the bound latent variables (the input-output behavior
for some programs of length 6 to 10 might not be completely known given the training data),
but the free latent variables are guaranteed to be free (i.e., the training data does not contain
any input-output behavior for programs of length less than 6 or greater than 10).

Valid baseline. We construct a valid baseline by using the same causal structure as the
target SCM, but permuting the causal dynamics of the turn_right, turn_left, and move
actions (e.g., the robot turns left when executing a turn_right action). Note that the valid
baseline still has compositional semantics. As M and M′ are clearly symmetric from a
language modeling perspective, Definition 3.1 (and hence Proposition 3.2) holds.

4.2 Results

Figure 4 plots the main results. For all four measurements (deductive knowledge, inductive
bias, deductive bias, and inductive knowledge) and across all three probes (linear, 1-layer
MLP, 2-layer MLP), the mediated measurements are significantly positive (each green region
is entirely above the corresponding red region) by the end of training. We thus conclude
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(b) Inductive bias.
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(c) Deductive bias.
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(d) Inductive knowledge.

Figure 4: Experimental results. Solid, dashed, and dotted lines plot the median accuracy of
a linear, 1-layer MLP, and 2-layer MLP probes, respectively. Each shaded area represents the
full range over 5 random seeds. Green is the target SCM and red is the baseline.

that a positive fraction of the observed measurements of latent concepts can be attributed to what
is learned by the LM’s representations. We make several additional observations:

Spurious features dominate early training. Early in training, both raw and mediated
measurements show significant variance and can even decrease with additional training.
For example, the mediated measurement for inductive knowledge starts high for all three
probes but drops to a minimum around halfway through training. Furthermore, for both
the deductive bias and inductive knowledge, the highest raw measurement over the entirely
of training is achieved in the first quarter of training by the baseline, rather than the target,
SCM. Finally, when using the linear probe to measure the deductive bias, the highest raw
measurement for the target SCM does not even occur at the end of training, but at the
beginning. We attribute such behavior to spurious features, which are not the result of
training but rather exist in random initialization of the LM parameters. These observations
suggest that (1) spurious features early in training can lead to uninformative results for
probing experiments, and (2) LMs can unlearn spurious features even when correlated with
the target SCM, before relearning them again later in training.

Deeper probes are (generally) more accurate. For almost every raw measurement across
the entirety of training, deeper probes exhibit better auxiliary accuracy. Furthermore, at
the end of training, the linear probe exhibits the lowest mediated measurements while the
2-layer MLP exhibits the highest mediated measurement in two of the four tasks. Only in the
case of the deductive bias does the 1-layer MLP achieve a substantially higher measurement
than the 2-layer MLP. The improved mediated measurements suggests that probes with
greater capacity can yield clearer signals and, more generally, highlights the importance of
probing frameworks that can robustly account for the design of different probes.
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Raw measurements can be biased. At the end of training, the raw measurements for
inductive knowledge are approximately 52% and 58%, compared to 48% and 51% for de-
ductive knowledge, using a 1-layer and 2-layer MLP, respectively. However, for the mediate
measurements, the inductive knowledge shows roughly 4% and 7%, while deductive knowl-
edge shows 12% and 15%, respectively. This reversal demonstrates how raw measurements
can be confounded by how easy or hard the auxiliary task is for the probe to fit.

5 Related work

Causal interpretability of LMs. Several prior lines of work apply causal techniques
to the interpretability of LMs. These works typically intervene on either the model’s
representations (Elazar et al., 2021; Geiger et al., 2021; Meng et al., 2022; Abraham et al., 2022;
Li et al., 2022) or the model’s inputs (Kaushik et al., 2020; Vig et al., 2020; Gangal & Hovy,
2020; Amini et al., 2023), and analyze the causal effect on the LM’s outputs. In contrast, we
present a formal framework that, conceptually, intervenes on the model’s training data, and
measures the causal effect on the LM’s internal representations. Elazar et al. (2022) also
study the causal relationship between the LM and its training data, but they focus on the
causal effect of dataset statistics on the factuality of LM’s outputs.

World models in LMs. The hypothesis that LMs can induce latent concepts is related to
evidence of world models in LMs, or the extent to which LMs are capable of grounding their
inputs to (some representation of) reality. For instance, Li et al. (2021) find that LMs perform
entity state tracking over the course of simple stories. Li et al. (2022) show that an LM
trained on Othello transcripts develops a representation of the underlying board state. Our
work is based on Jin & Rinard (2024), who show that an LM can develop representations of
the intermediate world states underlying a sequence of instructions, given only instances of
the initial and final states. However, none of these works provide theoretical guarantees
for controlling the classifier’s ability to fit the auxiliary objective. This leaves open the
possibility that the LM might simply represent the text as is, with either the text directly
encoding the world model or the probe learning to infer the latent world model from the
text. Our formulation of world models according to the underlying data generation process
is also highly related to the position developed by Andreas (2022), who argues that LMs
could act as “agent models” that model properties of agents that are likely to have generated
the language in their training data.

Frameworks for probing. A number of works have proposed frameworks toward a more
rigorous understanding of probing. One line takes an information-theoretic view on the
information represented by the LM (Zhu & Rudzicz, 2020; Pimentel et al., 2020; Voita &
Titov, 2020; Pimentel & Cotterell, 2021). Our work leverages causal analysis to attribute
the presence of knowledge and biases in the LM’s learned representations. Immer et al.
(2022) propose an interpretation of probing as quantifying the inductive bias of pretrained
representations for downstream tasks, but their framework differs significantly from ours
in that the model is understood as a representation-probe pair. In contrast, our approach
explicitly aims to separate the LM training and probe calibration procedures using causal
mediation analysis, and interprets probes as a means of measuring causal effects. Our
analyses also reveals settings in which prior techniques, such as control tasks (Hewitt &
Liang, 2019) and the use of untrained or otherwise random baselines (Zhang & Bowman,
2018; Belinkov, 2022), can yield misleading estimates of the intended auxiliary measurement.

6 Conclusion

This paper presents latent causal probing, a probing framework that studies whether LMs
induce latent variables as a byproduct of the language modeling objective. Our framework
offers robust tools for interpreting experiment results through the lens of causal analysis,
and in particular, rigorously controls for the probe’s contribution in learning the auxiliary
task. Experimentally, we extend a previous study of whether Transformers can infer the
intermediate states that underlie a sequence of actions. Our results provide strong empirical
evidence that LMs can induce latent concepts from textual pretraining.
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A Additional experimental details and results

A.1 Language model and probe details

Following Jin & Rinard (2024), the language model is a 350M parameter CodeGen model
(Nijkamp et al., 2023) taken from the HuggingFace Transformers library (Wolf et al., 2020).
The model was trained for 2.5 billion tokens, which was roughly 6 passes or 80000 training
batches over the training corpus. We refer to Jin & Rinard (2024) for further details.

We next describe the design and training of the probing classifiers; these notes apply to
all the probing experiments, unless otherwise noted. The linear probe is a single linear
layer. The MLP probes have ReLU, batch_norm, then dropout(p=.2) after each linear layer.
The hidden dimensions of the 1-layer and 2-layer MLP probes were (256,) and (256, 1024),
respectively. The auxiliary datasets consisted of 500000 randomly selected samples. To
extract representations from the LM, we use the same strategy as Jin & Rinard (2024),
averaging the LM hidden states over the layer dimension after processing each program
token. Probes were trained using AdamW (Loshchilov & Hutter, 2019) with weight decay
of 1e-4. The learning rate starts at 0.01, then decays by .1 at 75% and 90% through training.
All probes are trained for 2000000 steps using a batch size of 256.

For the mediated results reported in Figure 4, we generated the auxiliary dataset using an
SCM that maps turn_right to turn_left, turn_left to move, and move to turn_right.

A.2 Ablation studies

This section present some ablation studies on the set up of the probing experiments.

A.2.1 Valid baseline selection

To test the sensitivity of the mediated results (and hence, overall conclusions) on the choice
of valid baseline, we generate two additional auxiliary datasets with the following SCMs:

1. swap move and turn_left

2. swap turn_right and turn_left

The results are plotted in Figure 5 and Figure 6, respectively. We find that the mediated
measurements in the first case are nearly identical to those in Figure 4, despite only swapping
two actions (instead of permuting three). However, in the second case, the mediated
measurements are essentially noise, with almost complete overlap between the target and
baseline auxiliary measurements. We attribute this to the fact that the resulting labels are
extremely similar, as, in most cases, the robot is simply reflected along the starting axis.

We emphasize that, strictly speaking, no amount of negative empirical results can defini-
tively prove that LMs are never capable of latent concept learning. Conversely, a single
positive result with a valid baseline does constitute evidence that LMs can sometimes induce
latent concepts from text.
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(d) Inductive knowledge.

Figure 5: Mediating with the valid baseline that swaps move and turn_left.
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Figure 6: Mediating with the valid baseline that swaps turn_right and turn_left.
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A.2.2 Probe architecture and hyperparameters
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Figure 7: Mediating with the valid baseline from the main text. Both the original and the
mediated measurements are retaken using the probe architecture and hyperparameters
from Jin & Rinard (2024).

We next ablate the probe architecture and hyperparameters by adopting the settings used
in Jin & Rinard (2024). The differences are: no dropout, a batch size of 1024, training the
probe for 10000000 steps, and using 100000 samples in the auxiliary dataset. We use the
same valid baseline as in Figure 4 of the main text.

The results are plotted in Figure 7. We observe that the general trends are preserved, and
all four target measurements are above the baseline measurements by the end of training
(i.e., the mediated measurements are positive). However, we note that both deductive
and inductive knowledge measure slightly lower, which is an example of the moderating
effect of the probe architecture and training hyperparameters. We attribute the effect to the
increased batch size and lack of dropout, which could encourage the probe to converge
more quickly to a global optimum, given that the risk of overfitting is low (due to the large
size and high quality of the training dataset). This is also consistent with (1) the general
intuition that simpler (or less optimal) probes are a proxy for “ease of extraction,” which is
often interpreted as evidence that the representations are “more aligned” with the target
features (Hewitt & Liang, 2019), and (2) the theoretical findings in Pimentel et al. (2020),
who conclude that probes of infinite capacity are most informative for measuring (syntactic)
knowledge.
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B Comparison with Jin & Rinard (2024)

In this section, we highlight several key departures from the experimental design in Jin &
Rinard (2024).

First, they do not split their auxiliary dataset into bound and free latent variables, and
hence their results do not yield fine-grained interpretations about probing with different
calibration and measurement datasets.

Second, our analysis reveals the presence of possible confounders in the design of their
interventional baseline, leading to uncontrolled effects. In particular, the auxiliary dataset is
constructed using programs generated by the LM itself, rather than randomly sampled as
we do. Intuitively, this means that the LM “sees” both s0 and sn, which reveals information
about the original casual dynamics. Formally, the representations of the LM used for probing
mediates all 3 causal pathways, rather than the simple causal pathway from the LM training
data (as in Figure 3), and hence their interventional baseline is not a proper measurement
of the causal effect mediated by the LM representations. Our solution is to use randomly
sampled programs and replace the occurrence of sn with s0 in the construction of the
auxiliary dataset, which breaks this causal dependence.

Finally, Jin & Rinard (2024) do not verify that their interventional baselines satisfy the condi-
tions in Equations (1) and (2). In particular, one of their baselines map the put_marker and
pick_marker actions to turn_right and turn_left, respectively, in addition to permuting
the turn_right, turn_left, and move actions. Because the extracted features all relate to the
position and direction of the robot, the new dynamics could present a more difficult task
(for both the LM and the probe) due to replacing what were effectively no-ops (put_marker
and pick_marker) with new operations that affect the position or direction (turn_right,
turn_left, and move). Hence, the observed drop in accuracy post-intervention could be
attributable to increased task difficulty, rather than the learned representations of the LM.

C Proofs

Proof of Proposition 3.2. The proof follows directly from substituting the appropriate assump-
tions into the definitions of NIE. Recall that

NIEM,M′(θLM) := accaux(M, M)− accaux(M′, M) (3)

NIEM′ ,M(θ′LM) := accaux(M′, M′)− accaux(M, M′), (4)

and, by Definition 3.1, M′ is a valid baseline for M if

accaux(M′, M′) ≥ accaux(M, M) (5)

accaux(M, M′) ≥ accaux(M′, M). (6)

Applying Equation (5) to the definitions of NIE,

NIEM,M′(θLM) ≤ accaux(M′, M′)− accaux(M′, M) (7)

= NIEM′ ,M(θ′LM). (8)

Applying Equation (6) to the definition of NIE,

NIEM,M′(θLM) = accaux(M, M)− accaux(M′, M) (9)

≥ accaux(M, M)− accaux(M, M′). (10)

Hence,

accaux(M, M)− accaux(M, M′) ≤ NIEM,M′(θLM) ≤ NIEM′ ,M(θ′LM) (11)
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