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ABSTRACT

Federated learning (FL) is an emerging collaborative learning paradigm that aims
to protect data privacy. Unfortunately, recent works show FL algorithms are
vulnerable to the serious data reconstruction attacks, and a series of follow-up works
are proposed to enhance the attack effectiveness. However, existing works lack a
theoretical foundation on to what extent the devices’ data can be reconstructed and
the effectiveness of these attacks cannot be compared fairly due to their unstable
performance. To address this deficiency, we propose a theoretical framework to
understand data reconstruction attacks to FL. Our framework involves bounding
the data reconstruction error and an attack’s error bound reflects its inherent attack
effectiveness. Under the framework, we can theoretically compare the effectiveness
of existing attacks. For instance, our results on multiple datasets validate that the
iDLG data reconstruction attack inherently outperforms the DLG attack.

1 INTRODUCTION

The emerging collaborative data analysis using federated learning (FL) (McMahan et al., 2017)
has been a great potential to protect data privacy. In FL, the participating devices keep and train
their data locally, and only share the trained models (e.g., gradients or parameters), instead of the
raw data, with a center server (e.g., cloud). The server updates its global model by aggregating
the received device models, and broadcasts the updated global model to all participating devices
such that all devices indirectly use all data from other devices. FL has been deployed by many
companies such as Google Federated Learning (2022), Microsoft Federated Learning (2022), IBM
Federated Learning (2022), and Alibaba Federated Learning (2022), and applied in various privacy-
sensitive applications, including on-device item ranking (McMahan et al., 2017), content suggestions
for on-device keyboards (Bonawitz et al., 2019), next word prediction (Li et al., 2020a), health
monitoring (Rieke et al., 2020), and medical imaging (Kaissis et al., 2020).

Figure 1: Impact of the ini-
tial parameters of a Gaussian
distribution on the data recon-
struction attack performance.
a (b) in the x-axis indicates
the mean (standard deviation)
of the Gaussian. The default
mean and standard deviation
are both 1.

Unfortunately, recent works show that, although only sharing device
models, it is still possible for an adversary (e.g., the malicious server)
to perform the severe data reconstruction attack to FL (Zhu et al.,
2019), where an adversary could directly reconstruct the device’s
training data via the shared device models. Later, a bunch of follow-
up enhanced attacks (e.g, Hitaj et al. (2017); Wang et al. (2019);
Zhao et al. (2020); Wei et al. (2020); Yin et al. (2021); Jeon et al.
(2021); Zhu & Blaschko (2021); Dang et al. (2021); Balunovic et al.
(2022); Li et al. (2022); Fowl et al. (2022); Wen et al. (2022); Haim
et al. (2022)) are proposed by either incorporating some (known
or unrealistic) prior knowledge or requiring an auxiliary dataset to
simulate the training data distribution.

However, we note that existing attack methods have several limita-
tions: First, they are sensitive to the initialization. For instance, we
show in Figure 1 that the attack performance of iDLG (Zhao et al.,
2020) and DLG (Zhu et al., 2019) are significantly influenced by ini-
tial parameters (i.e., the mean and standard deviation) of a Gaussian
distribution, where the initial data is sampled from. Second, existing
attack methods mainly show comparison results on a FL model at a snapshot, which cannot reflect
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attacks’ true effectiveness. As FL training is dynamic, an adversary can perform attacks in any stage
of the training. Hence, Attack A shows better performance than Attack B at a snapshot does not
imply A is truly more effective than B. Third, worse still, they lack a theoretical understanding on to
what extent the training data can be reconstructed. These limitations make existing attacks cannot be
easily and fairly compared and hence it is unknown which attacks are inherently more effective.

In this paper, we would like to ask the questions: is it possible to measure the effectiveness of data
reconstruction attacks to FL from a theoretical perspective? Also, can we theoretically compare
the existing data reconstruction attacks at any stage of training? The answers are “Yes", under
certain (mild) assumptions. Specifically, we propose a theoretical framework to understand data
reconstruction attacks to FL. Our framework aims to bound the error between the private data and
the reconstructed counterpart in the whole FL training, where an attack’s (smaller) error bound
reflects its inherent (better) attack effectiveness. Our theoretical results show that when an attacker’s
reconstruction function has a smaller Lipschitz constant, then this attack intrinsically performs better.
Under the framework, we can theoretically compare the existing attacks by directly comparing their
bounded errors. We test our framework on state-of-the-art attacks and multiple benchmark datasets.
For example, our experimental results show that InvGrad (Geiping et al., 2020) performs better than
both DLG (Zhu et al., 2019) and iDLG (Zhao et al., 2020) on complex datasets, while iDLG is
comparable or performs slightly better than DLG.

2 RELATED WORK

Existing data reconstruction attacks to FL are classified as optimization-based and close-form based.

Optimization-based data reconstruction attacks to FL: A series of works (Hitaj et al., 2017;
Zhu et al., 2019; Wang et al., 2019; Zhao et al., 2020; Wei et al., 2020; Yin et al., 2021; Jeon et al.,
2021; Dang et al., 2021; Balunovic et al., 2022; Fowl et al., 2022; Wen et al., 2022; Li et al., 2022)
formulate data reconstruction attacks as the gradient matching problem, i.e., an optimization problem
that minimizes the difference between gradient from the raw data and that from the reconstructed
counterpart. Some works found the gradient itself includes insufficient information to well recover
the data (Jeon et al., 2021; Zhu & Blaschko, 2021). For example, Zhu & Blaschko (2021) show
there exist pairs of data (called twin data) that visualize different, but have the same gradient. To
mitigate this issue, a few works propose to incorporate prior knowledge (e.g., total variation (TV)
regularization (Geiping et al., 2020; Yin et al., 2021), batch normalization (BN) statistics (Yin
et al., 2021)) into the training data, or introduce an auxiliary dataset to simulate the training data
distribution (Hitaj et al., 2017; Wang et al., 2019; Jeon et al., 2021) (e.g., via generative adversarial
networks (GANs) Goodfellow et al. (2014)). Though empirically effective, these methods are less
practical or data inefficient, e.g., TV is limited to natural images, BN statistics are often unavailable,
and training an extra model requires a large amount of data samples.

Closed-form data reconstruction attacks to FL: A few recent works (Geiping et al., 2020; Zhu
& Blaschko, 2021; Fowl et al., 2022) derive closed-form solutions to reconstruct data, but they
require the neural networks used in the FL algorithm are fully connected (Geiping et al., 2020),
linear/ReLU Fowl et al. (2022), or convolutional (Zhu & Blaschko, 2021).

We will design a framework to theoretically understand the data reconstruction attack to FL in a
general setting, and provide a way to compare the effectiveness of the existing attacks.

3 PRELIMINARIES AND PROBLEM SETUP

3.1 FEDERATED LEARNING (FL)
Objective function: The FL paradigm enables a server to coordinate the training of multiple local
devices through multiple rounds of global communications, without sharing the local data. Suppose
there are N devices and a central server participating in FL. Each k-th device owns a training dataset
Dk = {(xk

j , y
k
j )}

nk
j=1 with nk samples, and each sample xk

j has a label ykj . FL considers the following
distributed optimization problem:

min
w
L(w) =

∑N

k=1
pkLk(w), (1)

where pk ≥ 0 is the weight of the k-th device and
∑N

k=1 pk = 1; the k-th device’s local objective is
defined by Lk(w) = 1

nk

∑nk

j=1 ℓ(w; (xk
j , y

k
j )), with ℓ(·; ·) an algorithm-dependent loss function.
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FedAvg McMahan et al. (2017): It is the de factor FL algorithm to solve Equation (1) in an iterative
way. In each communication round, it only shares the gradients ∇wLk(w) instead of the original
data Dk to the server for each k-th device. Specifically, in the current round t, each k-th device first
downloads the latest global model (denoted as wt−1) from the server and initializes its local model
as wk

t = wt−1; then it performs (e.g., E) local SGD updates as below:

wk
t+j ← wk

t+j−1 − ηt+j∇Li(w
k
t+j ; ξ

k
t+j), j = 1, 2, · · · , E, (2)

where ηt+j is the learning rate and ξkt+j is sampled from the local data Dk uniformly at random.

Next, the server updates the global model wt for the next round by aggregating either full or partial
device models. The final global model is downloaded by all devices for their learning tasks.
• Full device participation. It requires all device models used for aggregation, and the server performs
wt ←

∑N
k=1 pk w

k
t with pk = nk∑N

i=1 ni
and wk

t = wk
t+E . Note that full device participation

means the server must wait for the slowest devices, which is often unrealistic in practice.
• Partial device participation. This is a more realistic setting as it does not require the server to know

all device models. Suppose the server only needs K (< N ) device models for aggregation and
discards the remaining ones. Let St be the set of K chosen devices in the t-th iteration. Then, the
server’s aggregation step performs wt ← N

K

∑
k∈St

pk w
k
t with wk

t = wk
t+E .

Quantifying the degree of non-iid (heterogeneity): Real-world FL applications often do not satisfy
the iid assumption for data among local devices. Li et al. (2020b) proposed a way to quantify the
degree of non-iid. Specifically, let L∗ and L∗

k be the minimum values of L and Lk, respectively.
Then, the term Γ = L∗ −

∑N
k=1 pkL∗

k is used for quantifying the degree of non-iid. If the data are
iid, then Γ obviously goes to zero as the number of samples grows. If the data are non-iid, then Γ is
nonzero, and its magnitude reflects the heterogeneity of the data distribution.

Assumptions on the devices’ loss function: To ensure FedAvg guarantees to converge to the global
optimal, existing works have the following assumptions on the local devices’ loss functions {Lk}.
Assumption 1. {Lk}′s are L-smooth: Lk(v) ≤ Lk(w)+ (v−w)T∇Lk(w)+ L

2 ∥v−w∥22,∀v,w.

Assumption 2. {Lk}′s are µ-strongly convex: Lk(v) ≥ Lk(w) + (v − w)T∇Lk(w) + µ
2 ∥v −

w∥22,∀v,w.
Assumption 3. Let ξkt be sampled from the k-th device’s data uniformly at random. The variance of
stochastic gradients in each device is bounded: E

∥∥∇Lk(w
k
t , ξ

k
t )−∇Lk(w

k
t )
∥∥2 ≤ σ2

k, ∀k.
Assumption 4. The expected squared norm of stochastic gradients is uniformly bounded, i.e.,
E
∥∥∇Lk(w

k
t , ξ

k
t )
∥∥2 ≤ G2,∀k, t.

Note that Assumptions 1 and 2 are generic. Typical examples include regularized linear regression,
logistic regression, softmax classifier, and recent convex 2-layer ReLU networks (Pilanci & Ergen,
2020). Assumptions 3 and 4 are used by the existing works (Stich, 2018; Stich et al., 2018; Yu et al.,
2019; Li et al., 2020b) to derive the convergence condition of FedAvg to reach the global optimal.

3.2 OPTIMIZATION-BASED DATA RECONSTRUCTION ATTACKS ON FL

Existing works assume the honest-but-curious server, i.e., it follows the FL protocol but wants to
infer devices’ private information. In data reconstruction attacks, the server has access to all device
models in all communication rounds and infers devices’ private training data. Given the private data
x ∈ [0, 1]d with label y1, we denote the reconstructed data by a malicious server as x̂ = R(wt),
whereR(·) indicates a data reconstruction function, and wt can be any intermediate server’s global
model. Modern optimization-based data reconstruction attacks use differentR(·) functions, but are
majorly based on gradient matching. Specifically, they aim to solve the below optimization problem:

(x̂, ŷ) = R(wt) = arg min
(x′∈[0,1]d,y′)

E
(x,y)

[GML(gwt
(x, y), gwt

(x′, y′)) + λReg(x′)], (3)

where we let the gradient w.r.t. (x, y) be gwt
(x, y) := ∇wL(wt; (x, y)) for notation simplicity.

GML(·, ·) means the gradient matching loss (i.e., the distance between the real gradients and estimated
gradients) and Reg(·) is an auxiliary regularizer for the reconstruction. Here, we list GML(·, ·) and
Reg(·) for three representative data reconstruction attacks, and more attack are in Appendix C.1.2.

1This can be a single data sample or a batch of data samples.
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Algorithm 1 Iterative solvers for optimization-based
data reconstruction attacks

Input: Model parameters wt; true gradient g(x, y); η, λ.
Output: Reconstructed data x̂.

1: Initialize dummy input(s) x′
0 and dummy label(s) y′

0

2: for i = 0; i < I; i++ do
3: L(x′

i) = GML(gwt(x, y), gwt(x
′
i, y

′
i)) + λReg(x′

i)
4: x′

i+1 ← SGD(x′
i; θ

i) = x′
i − η∇x′

i
L(x′

i)

5: x′
i+1 = Clip(x′

i+1, 0, 1)
6: end for
7: return return x′

I

… …𝑥!"𝑥#" 𝑥!"#$ 𝑥$"𝑆𝐺𝐷
(%; 𝜃!)

Figure 2: Iterative solvers for data recon-
struction attacks as unrolled deep feed-forward
networks: We map the i-th SGD iteration
(parametrized by θi) into a single network layer,
and stack I layers to form an I-layer deep net-
work. Feeding forward data through the I-layer
network is equivalent to executing I SGD up-
dates. The trainable parameters {θi} are colored
in blue. These parameters can be learned from
real (reconstructed) data by training the deep
network in an end-to-end fashion.

• DLG (Zhu et al., 2019). It uses the mean squared error as the gradient matching loss, i.e.,
GML(gwt

(x, y), gwt
(x′, y′)) = ∥gwt

(x, y)− gwt
(x′, y′)∥22 and uses no regularizer.

• iDLG (Zhao et al., 2020). It show that the private labels y can be estimated be-
fore solving Equation 3. Assuming the estimated label as ŷ, iDLG solves for x̂ =
argminx′ Ex[GML(gwt

(x, y), gwt
(x′, ŷ)) + λReg(x′)], where it uses the same GML(·) as DLG

and also has no regularizer.
• InvGrad (Geiping et al., 2020). InvGrad improves upon DLG and iDLG. It first estimates

the private label as ŷ in advance. Then it uses a negative cosine similarity as GML(·) and a
total variation regularizer RegTV(·) as an image prior. Specifically, InvGrad solves for x̂ =

argminx′ Ex[1−
⟨gwt (x,y),gwt (x

′,ŷ)⟩
∥gwt (x,y)∥2·∥gwt (x

′,ŷ∥2
+ λRegTV(x

′)].

Algorithm 1 shows the pseudo-code of iterative solvers for data reconstruction attacks and Algorithm 4
in Appendix shows more details for each attack. Finally, the attack performance is measured by
the similarity sim(x̂,x) between x̂ and x. The larger similarity, the better attack performance. In
the paper, we consider the most common similarity metric, i.e., the negative mean-square-error
sim(x̂,x) = −E∥x̂− x∥2, where the expectation E considers the randomness during reconstruction.

4 A THEORETICAL FRAMEWORK TO UNDERSTAND DATE RECONSTRUCTION
ATTACKS TO FEDERATED LEARNING

Though many data reconstruction attacks to FL have been proposed, it is still unknown how to
theoretically compare the effectiveness of existing attacks, as stated in the Introduction. In this
section, we will understand data reconstruction attacks to FL from a theoretical perspective. We
first derive a reconstruction error bound for convex objective losses, under the Assumptions 1-
4. The error bound involves knowing the Lipschitz constant of the data reconstruction function.
Directly calculating the exact Lipschitz constant is computationally challenging. We then adapt
existing methods to calculate its upper bound. We argue that an attack with a smaller upper bound is
intrinsically more effective. We also emphasize that our theoretical framework is applicable to any
adversary who knows the global model during FL training (see below Theorems 1 and 2).

4.1 BOUNDING THE DATA RECONSTRUCTION ERROR

Give random data x from a device, our goal is to bound the common norm-based reconstruction error2,
i.e., E∥x−R(wt)∥2 at any round t, where theR(·) function can be any existing data reconstruction
attack. Directly bounding this error is challenging because the global model dynamically aggregates
local device models, which are trained by a (stochastic) learning algorithm and whose learning
procedure is hard to characterize during training. To alleviate this issue, we introduce the optimal
global model w⋆ that can be learnt by the FL algorithm. Then, we can bound the error as follows:

E∥x−R(wt)∥2 = E∥x−R(w⋆) +R(w⋆)−R(wt)∥2

≤ 2
(
E∥x−R(w⋆)∥2 + E∥R(w⋆)−R(wt)∥2

)
. (4)

2The norm-based mean-square-error (MSE) bound can be easily generalized to the respective PSNR bound.
This is because PSNR has a strong connection with MSE, i.e., PSNR = -10 log (MSE). However, the MSE bound
is unable to generalize to SSIM or LPIPS since these metrics focus more on image structural information but not
pixel differences, and they also do not have an analytic form.
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Note that the first term in Equation (4) is a constant and can be directly computed under a given
reconstruction function and a strongly convex loss used in FL. Specifically, if the loss in each
device is strongly convex, then the global model can converge to the optimal w∗ based on (Li et al.,
2020b)’s theoretical results. Then we can obtainR(w∗) per attack and compute the first term. In our
experiments, we run the FL algorithm until the loss difference between two consecutive iterations
does not exceed 1e−5, and treat the resultant global model as w∗.

Now our goal reduces to bounding the second term. However, it is still challenging without knowing
any properties of the reconstruction function. To mitigate it, we will have another assumption on the
reconstruction functionR(·) as below, which can also be verified in our later sections.
Assumption 5. The existing data reconstruction function R(·) is LR-Lipschitz continuous: there
exists a constant LR such that ∥R(v)−R(w)∥ ≤ LR∥v −w∥,∀v,w.

The smallest LR is called the Lipschitz constant, which indicates the maximum ratio between
variations in the output space and those in the input space. Next, we present our theoretical results.
Note that our error bounds consider all randomness in FL training and data reconstruction, and
hence they are the worst-case error under such randomness.

Theoretical results with full device participation: We first analyze the case where all devices
participate in the aggregation on the server in each communication round. Assume the FedAvg
algorithm stops after T iterations and returns wT as the solution. Let L, µ, σk, G, LR be defined in
Assumptions 1 to 5. Then, we have:
Theorem 1. Let Assumptions 1 to 5 hold. Choose γ = max{8L/µ,E} and the learning rate
ηt =

2
µ(γ+t) . Then, for any communication round t, FedAvg with full device participation satisfies

E∥x−R(wt)∥2 ≤ 2E∥x−R(w⋆)∥2 + 2L2
R

γ + t

(4B
µ2

+ (γ + 1)E∥w1 −w∗∥2
)
, (5)

where B =
∑N

k=1 p
2
kσ

2
k + 6LΓ + 8(E − 1)2G2.

Theoretical results with partial device participation: As discussed in Section 3, partial device
participation is more practical. Recall that St contains the K active devices in the t-th iteration. To
show our theoretical results, we need to make an assumption on St. Specifically, we have the below
Assumption 6 stating the K devices are selected from the distribution pk independently and with
replacement, following (Sahu et al., 2018; Li et al., 2020b).
Assumption 6. Assume St includes a subset of K devices randomly selected with replacement
according to the probabilities p1, · · · , pN . FedAvg performs aggregation as wt ← 1

K

∑
k∈St

wk
t .

Theorem 2. Let Assumptions 1 to 6 hold. Let γ, ηt, and B be defined in Theorem 1, and define
C = 4

KE2G2. Then, for any communication round t,

E∥x−R(wt)∥2 ≤ 2E∥x−R(w⋆)∥2 + 2L2
R

γ + t

(4(B + C)

µ2
+ (γ + 1)E∥w1 −w∗∥2

)
. (6)

4.2 COMPUTING THE LIPSCHITZ CONSTANT FOR DATA RECONSTRUCTION FUNCTIONS

In this part, we show how to calculate the Lipschitz constant for the data reconstruction function. Our
idea is to first leverage the strong connection between optimizing data reconstruction attacks and the
deep neural networks; and then adapt existing methods to approximate the Lipschitz upper bound.

Iterative solvers for optimization-based data reconstruction attacks as unrolled deep feed-
forward networks: Recent works Chen et al. (2018); Li et al. (2019); Monga et al. (2021) show a
strong connection between iterative algorithms and deep network architectures. The general idea is:
starting with an abstract iterative algorithm, we map one iteration into a single network layer, and
stack a finite number of (e.g., H) layers to form a deep network, which is also called unrolled deep
network. Feeding the data through an H-layer network is hence equivalent to executing the iterative
algorithm H iterations. The parameters of the unrolled networks are learnt from data by training the
network in an end-to-end fashion. From Algorithm 1, we can see that the trajectory of an iterative
solver for an optimization-based data reconstruction attack corresponds to a customized unrolled
deep feed-forward network. Specifically, we treat wt and the initial x′

0 as the input, the intermediate
reconstructed x′

i as the i-th hidden layer, followed by a clip nonlinear activation function, and the
final reconstructed data x̂ = x′

I as the output of the network. Given intermediate {x′
i} with a set of
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Algorithm 2 AutoLip

Input: function f and its computation graph (g1, ..., gH)
Output: Lipschitz upper bound LAutoLip ≥ Lf

1: ϕ0(x) = x; ϕh(x) = f(x)
2: ϕh(x) = gh(x, ϕ1(x), · · · , ϕh−1(x)),∀h ∈ [1, H]
3: Z = {(z0, ..., zH) : ∀h ∈ [0, H], ϕh is constant ⇒

zh = ϕh(0)}
4: L0 ← 1
5: for h = 1 to H do

6: Lh ←
h−1∑
i=1

max
z∈Z
∥∂igh(z)∥2Li

7: end for
8: return LAutoLip = LH

Algorithm 3 Power method to calculate
the matrix ℓ2-norm
Input: affine function f : Rn → Rm, #itera-

tions Iter
Output: Upper bound of the Lipschitz con-

stant Lf

1: for j = 1 to Iter do
2: v ← ∇g(v) where g(x) = 1

2
∥f(x) −

f(0)∥22
3: λ← ∥v∥2
4: v ← v/λ
5: end for
6: return Lf = ∥f(v)− f(0)∥2

data samples, we can train deep feed-forward networks (with an universal approximation) to fit them,
e.g., via the greedy layer-wise training strategy Bengio et al. (2006). Figure 2 visualizes the unrolled
deep feed-forward network for the optimization-based data reconstruction attack.

Definition 1 (Deep Feed-forward Network). An H-layer feed-forward network is an function
TMLP (x) = fH ◦ ρH−1 ◦ · · · ◦ ρ1 ◦ f1(x), where ∀h, the h-th hidden layer fh : x 7→Mhx+ bh is
an affine function and ρh is a non-linear activation function.

Upper bound Lipschitz computation: Virmaux & Scaman (2018) showed that computing the exact
Lipschitz constant for deep (even 2-layer) feed-forward networks is NP-hard. Hence, they resort to
an approximate computation and propose a method called AutoLip to obtain an upper bound of the
Lipschitz constant. AutoLip relies on the concept of automatic differentiation Griewank & Walther
(2008), a principled approach that computes differential operators of functions from consecutive
operations through a computation graph. When the operations are all locally Lipschitz-continuous
and their partial derivatives can be computed and maximized, AutoLip can compute the Lipschitz
upper bound efficiently. Algorithm 2 shows the details of AutoLip.

With Autolip, Virmaux & Scaman (2018) showed that a feed-forward network with 1-Lipschitz
activation functions has an upper bounded Lipschitz constant below.

Lemma 1. For any H-layer feed-forward network with 1-Lipschitz activation functions, the AutoLip
upper bound becomes LAutoLip =

∏H
h=1 ∥Mh∥2, where Mh is defined in Definition 1.

Note that a matrix ℓ2-norm equals to its largest singular value, which could be computed efficiently
via the power method (Mises & Pollaczek-Geiringer, 1929). More details are shown in Algorithm 33.
Obviously, the used Clip activation function is 1-Lipschitz. Hence, by applying Lemma 1 to the
optimization-based data reconstruction attacks, we can derive an upper bounded Lipschitz LR.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Datasets and models: We conduct experiments on three benchmark image datasets, i.e., MNIST (Le-
Cun, 1998), Fashion-MNIST (FMNIST) (Xiao et al., 2017), and CIFAR10 (Krizhevsky et al., 2009).
We examine our theoretical results on the FL algorithm that uses the ℓ2-regularized logistic regression
(ℓ2-LogReg) and the convex 2-layer linear convolutional network (2-LinConvNet) (Pilanci & Ergen,
2020), since their loss functions are convex and satisfy Assumptions 1-4. In the experiments, we
evenly distribute the training data among all the N devices. Based on this setting, we can calculate
L, µ, σk, and G in Assumptions 1-4, respectively. In addition, we can compute the Lipschitz constant
LR via the unrolled feed-forward network. These values together are used to compute the upper
bound of our Theorems 1 and 2. More details about the two algorithms, the unrolled feed-forward
network, and the calculation of these parameter values are shown in Appendix C.1.

Attack baselines: We test our theoretical results on four optimization-based data reconstruction
attacks, i.e., DLG (Zhu et al., 2019), iDLG (Zhao et al., 2020), InvGrad (Geiping et al., 2020), and the
GGL (Li et al., 2022). The algorithms and descriptions of these attacks are deferred to Appendix C.1.
We test these attacks on recovering both the single image and a batch of images in each device.

3A better estimation algorithm can lead to a tighter upper bounded Lipschitz constant.
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(a) Impact of E (b) Impact of N (c) Impact of T

Figure 3: Results of federated ℓ2-LogReg on MNIST—single image recovery. Dashed lines are best
empirical reconstruction errors obtained by existing data reconstruction attacks, while solid lines are
upper bound errors obtained by our theoretical results. Y-axis is in a log form.

(a) Impact of E (b) Impact of N (c) Impact of T

Figure 4: Results of federated ℓ2-LogReg on FMNIST—single image recovery.

(a) Impact of E (b) Impact of N (c) Impact of T

Figure 5: Results of federated ℓ2-LogReg on CIFAR10—single image recovery.

Parameter setting: There are several important hyperparameters in the FL training that would affect
our theoretical results: the total number of devices N , the total number of global rounds T , and the
number of local SGD updates E. By default, we set T = 100 and E = 2. We set N = 10 on the
three datasets for the single image recovery, while set N = 15, 10, 5 on the three datasets for the
batch images recovery, considering their different difficulty levels. We also study the impact of these
hyperparameters.

5.2 EXPERIMENTAL RESULTS

In this section, we will test the upper bound reconstruction error by our theoretical results. We also
show the best reconstruction errors that are empirically obtained by the existing well-known attacks.
We will show results on both single image recovery and batch images recovery.

5.2.1 RESULTS ON THE SINGLE IMAGE RECOVERY

Figures 3-8 show the single image recovery results on the three datasets and two FL algorithms,
respectively. We have several observations: Empirically, comparing the best reconstruction errors,
GGL performs the best; InvGrad is (slightly) smaller than iDLG, which is (slightly) smaller than DLG
in most cases. These observations are consistent with those shown in Zhao et al. (2020) and Geiping
et al. (2020). This is because GGL uses a pretrained encoder to enforce the reconstructed image to be
aligned with natural images. iDLG can first accurately estimate the data label in a closed form and
then performs the data reconstruction attack, while DLG needs to estimate both data features and data
labels at the same time in an iterative way. Further, on top of iDLG, InvGrad adds a regularization
prior to enforce a relatively stable data reconstruction process.

7



Under review as a conference paper at ICLR 2024

(a) Impact of E (b) Impact of N (c) Impact of T

Figure 6: Results of federated 2-LinConvNet on MNIST—single image recovery.

(a) Impact of E (b) Impact of N (c) Impact of T

Figure 7: Results of federated 2-LinConvNet on FMNIST—single image recovery.

(a) Impact of E (b) Impact of N (c) Impact of T

Figure 8: Results of federated 2-LinConvNet on CIFAR10—single image recovery.

Theoretically, 1) on one hand, iDLG also has smaller upper bound errors than DLG, indicating iDLG
outperforms DLG intrinsically. One possible reason is that iDLG can accurately estimate the labels,
which ensures data reconstruction to be more stable. Such a stable reconstruction yields a smaller
Lipschitz LR in Assumption 5, and thus a smaller upper bound in Theorem 1. In contrast, we do not
see that InvGrad consistently outperforms iDLG. This implies that enforcing the TV data prior may
not be beneficial for theoretical results for single image recovery, as the prior on a single image may
not be accurate enough. On the other hand, the error bounds of these three attacks are (much) larger
than the empirical ones, indicating that there is still a gap between empirical results and theoretical
results. 2) Additionally, GGL has (much) smaller bounded errors than DLG, iDLG, and InvGrad. This
is because GGL trains an encoder on the whole dataset to learn the image manifold, and then uses the
encoder to stabilize the reconstruction, hence producing smaller LR. In certain cases, the bounded
error is also close to its best empirical error. 3) The error bounds do not show strong correlations with
empirical errors in some cases, e.g., InvGrad on FMNIST in Figure 4. The reason is that the reported
empirical errors are the best possible one-snapshot results with a certain initialization, which do not
reflect the attacks’ inherent effectiveness. Recall in Figure 1 that empirical errors obtained by these
attacks could be sensitive to different initializations. In practice, the attacker may need to try many
initializations (which could be time-consuming) to obtain the best empirical error. However, we show
in Figure 9c that the error bounds are consistent with the average empirical errors.

Impact of E, N , and T : When the local SGD updates E and the number of total clients N increase,
the upper bound error also increases. This is because a large E and N will make FL training unstable
and hard to converge, as verified in (Li et al., 2020b). On the other hand, a larger total number of
global rounds T tends to produce a smaller upper bounded error. This is because a larger T stably
makes FL training closer to the global optimal.

8
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(a) (b) (c)

Figure 9: (a) Impact of #classes on MNIST; (b) Impact of batch size on MNIST; (c) Averaged
empirical errors vs. bounded errors on FMNIST.

5.2.2 RESULTS ON THE BATCH IMAGES RECOVERY

Figure 10-Figure 12 in Appendix C.2 show the results of batch images recovery. Since federated
2-LinConvNet has similar trends, we only show federated ℓ2-LogReg results for simplicity. Our
key observations are: 1) Similar to results on single image recovery, GGL performs the best both
empirically and theoretically; iDLG outperforms DLG both empirically and theoretically, and a larger
E and N will incur larger upper bound error, while a larger T will generate smaller upper bound error.
2) Differently, InvGrad theoretically outperforms DLG and iDLG on CIFAR10 for batch images
recovery, implying that the data prior enforced by InvGrad is useful in this setting. This is possibly
because CIFAR10 is the most complex dataset among the three, and the TV prior could guide the
training to be relatively more stable, which hence leads to a smaller LR. 3) Both the best empirical
reconstruction errors and upper bound errors for batch images recovery are much larger than those
for single image recovery. This indicates that batch images recovery are more difficult than single
image recovery, as validated in many existing works such as Geiping et al. (2020); Yin et al. (2021).

6 DISCUSSION

Error bounds vs. number of classes: We tested #classes=2, 4, 6, 8 on MNIST and the results are
shown in Figure 9a. We can see the bounded errors are relatively stable vs. #classes on DLG, iDLG,
and GGL, while InvGrad has a larger error as the #classes increases. The possible reason is that DLG
and iDLG are more stable than InvGrad, which involves a more complex optimization.
Error bounds vs. batch size: Our batch results use a batch size 20. Here, we also test batch size=10,
15, 25, 30 and results are in Figure 9b. We see bounded errors become larger with larger batch size.
This is consistent with existing observations (Geiping et al., 2020) on empirical evaluations.
Error bounds vs. average empirical error: As stated, the best one-snapshot empirical errors are
not consistent with the bounded errors in some cases for certain attack (e.g., InvGrad on FMNIST).
However, we justify that the error bound per attack should have a strong correlation with its empirical
errors in expectation. To verify this, we obtain the expected empirical error per attack by running the
attack 10 times and we report the results (in the log form) on FMNIST in Figure 9c. Now, we can see
the consistency between the error bounds and average empirical errors.
Error bounds on closed-form data reconstruction attacks: Our theoretical results can be also
applied in closed-form attacks. Here, we choose the Robbing attack (Fowl et al., 2022) for evaluation
and its details are in Appendix C.1.2. The results are shown in Figure 13-Figure 15 in Appendix C.2.
We can see Robbing obtains both small empirical errors and bounded errors (which are even smaller
than GGL). This is because its equation solving is suitable to linear layers, and hence relatively
accurate on the federated ℓ2-LogReg and federated 2-LinConvNet models.

7 CONCLUSION AND FUTURE WORK

Federated learning (FL) is vulnerable to data reconstruction attacks. Existing attacks mainly enhance
the empirical attack performance, but lack a theoretical understanding. We study data reconstruction
attacks to FL from a theoretical perspective. Our theoretical results provide a unified way to compare
existing attacks theoretically. We also validate our theoretical results via experimental evaluations on
multiple image datasets and data reconstruction attacks. Future works include: 1) designing better or
adapting existing Lipschitz estimation algorithms to obtain tighter error bounds; 2) generalizing our
theoretical results to more challenging settings, e.g., non-convex losses; and 3) designing theoretically
better data reconstruction attacks (i.e., with smaller Lipschitz) as well as effective defenses against the
attacks (i.e., ensuring larger Lipschitz of their reconstruction function), inspired by our framework.
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Algorithm 4 Optimization-based data reconstruction attacks (e.g., DLG, iDLG, InvGrad, and GGL)

Input: Model parameters wt; true gradient g(x, y); η, λ; public generator G(·), transformation operator T .
Output: Reconstructed data x̂.

1: if DLG then
2: x′

0 ∼ N (0, 1), y′
0 ∼ N (0, 1)

3: else
4: if GGL then
5: z′0 ∼ N (0, Iu);
6: else
7: x′

0 ∼ N (0, 1) // Initialize dummy input(s)
8: end if
9: Estimate y as ŷ via methods in Zhao et al. (2020) for a single input or Yin et al. (2021) for a batch inputs

10: end if
11: for i = 0; i < I; i++ do
12: if DLG then
13: g(x′

i, y
′
i)← ∇wL(wt; (x

′
i, y

′
i))

14: GMLi ← ∥g(x, y)− g(x′
i, y

′
i)∥22

15: x′
i+1 ← x′

i − η∇x′
i
GMLi

y′
i+1 ← y′

i − η∇y′
i
GMLi

16: else if iDLG then
17: g(x′

i, ŷ)← ∇wL(wt; (x
′
i, ŷ))

18: GMLi ← ∥g(x, y)− g(x′
i, ŷ)∥22

19: x′
i+1 ← x′

i − η∇x′
i
GMLi

20: else if InvGrad then
21: g(x′

i, ŷ)← ∇wL(wt; (x
′
i, ŷ))

22: GMLi ← 1− ⟨g(x,y),g(x′
i,ŷ)⟩

∥g(x,y)∥2·∥g(x′
i,ŷ∥2

23: x′
i+1 ← x′

i − η∇x′
i

(
GMLi + λRegTV(x

′
i)
)

24: else if GGL then
25: x′

i = G(z′i)
26: g(x′

i, ŷ)← ∇wL(wt; (x
′
i, ŷ))

27: GMLi ← ∥g(x, y)− T (g(x′
i, ŷ))∥22

28: Reg(G, z′i) = (∥zi∥22 − k)2

29: z′i+1 ← z′i − η∇z′i

(
GMLi + λReg(G, z′i)

)
30: end if
31: x′

i+1 = max(x′
i+1, 0)

32: end for
33: return return x′

I or G(z′I)

A PROOF OF THEOREM 1 FOR FULL DEVICE PARTICIPATION

Our proof is mainly inspired by the proofs in Stich (2018); Yu et al. (2019); Li et al. (2020b).

We first restate Theorem 1 as below:
Theorem 1. Let Assumptions 1 to 5 hold. Choose γ = max{8L/µ,E} and the learning rate
ηt =

2
µ(γ+t) . Then, for any communication round t, FedAvg with full device participation satisfies

E∥x−R(wt)∥2 ≤ 2E∥x−R(w⋆)∥2 + 2L2
R

γ + t

(4B
µ2

+ (γ + 1)E∥w1 −w∗∥2
)
, (5)

where B =
∑N

k=1 p
2
kσ

2
k + 6LΓ + 8(E − 1)2G2.

Notations: Let N be the total number of user devices and K(≤ N) be the maximal number of
devices that participate in every round’s communication. Let T be the total number of every device’s
SGDs, and E be the number of each device’s local updates between two communication rounds.
Thus T/E is the number of communications, assuming E is dividable by T .

Let wk
t be the model parameter maintained in the k-th device at the t-th step. Let IE be the set

of global aggregation steps, i.e., IE = {nE | n = 1, 2, · · · }. If t + 1 ∈ IE , i.e., the devices
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communicate with the server and the server performs the FedAvg aggregation on device models.
Then the update of FedAvg with partial devices active can be described as

vk
t+1 = wk

t − ηt∇Lk(w
k
t , ξ

k
t ), (7)

wk
t+1 =

{
vk
t+1 if t+ 1 /∈ IE ,∑N
k=1 puv

k
t+1 if t+ 1 ∈ IE .

(8)

Motivated by (Stich, 2018; Li et al., 2020b), we define two virtual sequences vt =
∑N

k=1 pkv
k
t and

wt =
∑N

k=1 pkw
k
t . vt+1 results from an single step of SGD from wt. When t + 1 /∈ IE , both

are inaccessible. When t + 1 ∈ IE , we can only fetch wt+1. For convenience, we define gt =∑N
k=1 pk∇Lk(w

k
t ) and gt =

∑N
k=1 pk∇Lk(w

k
t , ξ

k
t ). Hence, vt+1 = wt − ηtgt and Egt = gt.

Before proving Theorem 1, we need below key lemmas that are from Stich (2018); Li et al. (2020b).
Lemma 2 (Results of one step SGD). Assume Assumptions 1 and 2 hold. If ηt ≤ 1

4L , we have

E ∥vt+1 −w⋆∥2 ≤ (1− ηtµ)E ∥wt −w⋆∥2+ η2tE ∥gt − gt∥
2
+6Lη2tΓ+2E

N∑
k=1

pk
∥∥wt −wt

k

∥∥2
where Γ = L∗ −

∑N
k=1 pkL⋆

k ≥ 0.

Proof sketch: Lemma 2 is mainly from Lemma 1 in Li et al. (2020b). The proof idea is to bound
three terms, i.e., the inner product ⟨wt −w∗,∇L(wt)⟩, the square norm ||∇L(wt)||2, and the inner
product ⟨∇Lk(wt),w

k
t −wt⟩,∀k. Then, the left-hand term in Lemma 2 can be rewritten in terms

of the three terms and be bounded by the right-hand four terms in Lemma 2. Specifically, 1) It first
bounds ⟨wt −w∗,∇L(wt)⟩) using the strong convexity of the loss function (Assumption 2); 2) It
bounds ||∇L(wt)||2 using the smoothness of the loss function (Assumption 1); and 3) It bounds
⟨∇Lk(wt),w

k
t −wt⟩,∀k using the convexity of the loss function (Assumption 2).

Lemma 3 (Bounding the variance). Assume Assumption 3 holds. Then E ∥gt − gt∥
2 ≤

∑N
k=1 p

2
uσ

2
u.

Lemma 4 (Bounding the divergence of {wk
t }). Assume Assumption 4 holds, and ηt is non-increasing

and ηt ≤ 2ηt+E for all t ≥ 0. It follows that E
[∑N

k=1 pk ∥wt −wt
k∥

2
]
≤ 4η2t (E − 1)2G2.

Now, we complete the proof of Theorem 1.

Proof. First, we observe that no matter whether t+ 1 ∈ IE or t+ 1 /∈ IE in Equation (8), we have
wt+1 = vt+1. Denote ∆t = E ∥wt −w⋆∥2. From Lemmas 2 to 4, we have

∆t+1 = E ∥wt+1 −w⋆∥2 = E ∥vt+1 −w⋆∥2 ≤ (1− ηtµ)∆t + η2tB (9)

where B =
∑N

k=1 p
2
uσ

2
u + 6LΓ + 8(E − 1)2G2.

For a diminishing stepsize, ηt = β
t+γ for some β > 1

µ and γ > 0 such that η1 ≤ min{ 1µ ,
1
4L} =

1
4L

and ηt ≤ 2ηt+E . We will prove ∆t ≤ v
γ+t where v = max

{
β2B
βµ−1 , (γ + 1)∆1

}
.

We prove it by induction. Firstly, the definition of v ensures that it holds for t = 1. Assume the
conclusion holds for some t, it follows that

∆t+1 ≤ (1− ηtµ)∆t + η2tB

≤
(
1− βµ

t+ γ

)
v

t+ γ
+

β2B

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
β2B

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
.

By the L̄-Lipschitz continuous property of Rec(·),
∥Rec(wt)− Rec(w∗)∥ ≤ L̄ · ∥wt −w⋆∥ .
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Then we have

E∥Rec(wt)− Rec(w∗)∥2 ≤ L̄2 · E ∥wt −w⋆∥2 ≤ L̄2∆t ≤ L̄2 v

γ + t
.

Specifically, if we choose β = 2
µ , γ = max{8L

µ , E} − 1, then ηt =
2
µ

1
γ+t . We also verify that the

choice of ηt satisfies ηt ≤ 2ηt+E for t ≥ 1. Then, we have

v = max

{
β2B

βµ− 1
, (γ + 1)∆1

}
≤ β2B

βµ− 1
+ (γ + 1)∆1 ≤

4B

µ2
+ (γ + 1)∆1.

Hence,

E∥Rec(wt)− Rec(w∗)∥2 ≤ L̄2 v

γ + t
≤ L̄2

γ + t

(4B
µ2

+ (γ + 1)∆1

)
.

B PROOFS OF THEOREM 2 FOR PARTIAL DEVICE PARTICIPATION

We first restate Theorem 2 as below:

Theorem 2. Let Assumptions 1 to 6 hold. Let γ, ηt, and B be defined in Theorem 1, and define
C = 4

KE2G2. Then, for any communication round t,

E∥x−R(wt)∥2 ≤ 2E∥x−R(w⋆)∥2 + 2L2
R

γ + t

(4(B + C)

µ2
+ (γ + 1)E∥w1 −w∗∥2

)
. (6)

Recall that wk
t is k-th device’s model at the t-th step, IE = {nE | n = 1, 2, · · · } is the set of global

aggregation steps; gt =
∑N

k=1 pk∇Lk(w
k
t ) and gt =

∑N
k=1 pkLk(w

k
t , ξ

k
t ), and vt+1 = wt − ηtgt

and Egt = gt. We denote byHt the multiset selected which allows any element to appear more than
once. Note that Ht is only well defined for t ∈ IE . For convenience, we denote by St = HN(t,E)

the most recent set of chosen devices where N(t, E) = max{n|n ≤ t, n ∈ IE}.
In partial device participation, FedAvg first samples a random multiset St of devices and then only
performs updates on them. Directly analyzing on the St is compliated. Motivated by Li et al. (2020b),
we can use a thought trick to circumvent this difficulty. Specifically, we assume that FedAvg always
activates all devices at the beginning of each round and uses the models maintained in only a few
sampled devices to produce the next-round model. It is clear that this updating scheme is equivalent
to that in the partial device participation. Then the update of FedAvg with partial devices activated
can be described as:

vk
t+1 = wk

t − ηt∇Lk(w
k
t , ξ

k
t ), (10)

wk
t+1 =

{
vk
t+1 if t+ 1 /∈ IE ,

samples St+1 and average {vk
t+1}k∈St+1 if t+ 1 ∈ IE .

(11)

Note that in this case, there are two sources of randomness: stochastic gradient and random sampling
of devices. The analysis for Theorem 1 in Appendix A only involves the former. To distinguish with
it, we use an extra notation ESt

(·) to consider the latter randomness.

First, based on Li et al. (2020b), we have the following two lemmas on unbiasedness and bounded
variance. Specifically, Lemma 5 shows the scheme in Assumption 6 is unbiased, while Lemma 6
shows the expected difference between vt+1 and wt+1 is bounded.

Lemma 5 (Unbiased sampling scheme in Assumption 6). If t+1 ∈ IE , we have ESt
(wt+1) = vt+1.

Lemma 6 (Bounding the variance of wt). For t + 1 ∈ I, assume that ηt is non-increasing and
ηt ≤ 2ηt+E for all t ≥ 0. Then the expected difference between vt+1 and wt+1 is bounded by
ESt
∥vt+1 −wt+1∥2 ≤ 4

K η2tE
2G2.

Now, we complete the proof of Theorem 2.
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Proof. Note that

∥wt+1 −w∗∥2 = ∥wt+1 − vt+1 + vt+1 −w∗∥2

= ∥wt+1 − vt+1∥2︸ ︷︷ ︸
A1

+ ∥vt+1 −w∗∥2︸ ︷︷ ︸
A2

+2⟨wt+1 − vt+1,vt+1 −w∗⟩︸ ︷︷ ︸
A3

.

When expectation is taken over St+1, the last term (A3) vanishes due to the unbiasedness of wt+1.

If t+ 1 /∈ IE , A1 vanishes since wt+1 = vt+1. We use Lemma 6 to bound A2. Then it follows that

E ∥wt+1 −w∗∥2 ≤ (1− ηtµ)E ∥wt −w⋆∥2 + η2tB.

If t+ 1 ∈ IE , we additionally use Lemma 6 to bound A1. Then

E ∥wt+1 −w∗∥2 = E ∥wt+1 − vt+1∥2 + E ∥vt+1 −w∗∥2

≤ (1− ηtµ)E ∥wt −w⋆∥2 + η2tB +
4

K
η2tE

2G2

= (1− ηtµ)E ∥wt −w⋆∥2 + η2t (B + C), (12)

where C = 4
KE2G2 is the upper bound of 1

η2
t
ESt
∥vt+1 −wt+1∥2.

We observe that the only difference between eqn. (12) and eqn. (9) is the additional C. Thus we can
use the same argument there to prove the theorems here. Specifically, for a diminishing stepsize,
ηt =

β
t+γ for some β > 1

µ and γ > 0 such that η1 ≤ min{ 1µ ,
1
4L} =

1
4L and ηt ≤ 2ηt+E , we can

prove E ∥wt+1 −w∗∥2 ≤ v
γ+t where v = max

{
β2(B+C)
βµ−1 , (γ + 1)∥w1 −w∗∥2

}
.

Then by the L̄-Lipschitz continuous property of Rec(·),

E∥Rec(wt)− Rec(w∗)∥2 ≤ L̄2 · E ∥wt −w⋆∥2 ≤ L̄2∆t ≤ L̄2 v

γ + t
.

Specifically, if we choose β = 2
µ , γ = max{8L

µ , E} − 1,

E∥Rec(wt)− Rec(w∗)∥2 ≤ L̄2 v

γ + t
≤ L̄2

γ + t

(4(B + C)

µ2
+ (γ + 1)∥w1 −w∗∥2

)
.

C EXPERIMENTS

C.1 MORE EXPERIMENTAL SETUP

C.1.1 DETAILS ABOUT THE FL ALGORITHMS AND UNROLLED FEED-FORWARD NETWORK

We first show how to compute calculate L, µ, σu, and G in Assumptions 1-4 on federated ℓ2-
regularized logistic regression (ℓ2-LogReg) and federated 2-layer linear convolutional network
(2-LinConvNet); Then we show how to compute the Lipschitz LR on each data reconstruction attack.

Federated ℓ2-LogReg: Each device k’s local objective is Lk(w) = 1
n̄

∑n̄
j=1 log(1 +

exp(−yj⟨w,xk
j ⟩)) + γ∥w∥2. In our results, we simply set γ = 0.1 for brevity.

• Compute L: first, all Lk’s are 1
4 (

1
n̄

∑
j ∥xk

j ∥2)-smooth (Papailiopoulos, 2018); then L =

maxk∈[N ]
1
4 (

1
n̄

∑
j ∥xk

j ∥2) + 2γ;

• Compute µ: all Lk’s are γ-strongly convex for the γ regularized ℓ2 logistic regression (Papail-
iopoulos, 2018) and µ = γ.

• Compute σk and G: we first traverse all training data ξkt in the k-th device in any t-th round and
then use them to calculate the maximum square norm differences

∥∥∇Lk(w
k
t , ξ

k
t )−∇Lk(w

k
t )
∥∥2.

Similarly, G can be calculated as the maximum value of the expected square norm
∥∥∇Lk(w

k
t , ξ

k
t )
∥∥2

among all devices {k} and rounds {t}.
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Federated 2-LinConvNet (Pilanci & Ergen, 2020). Let a two-layer network f : Rd → R with m
neurons be: f(x) =

∑m
j=1 ϕ(x

Tuj)αj , where uj ∈ Rd and αj ∈ R are the weights for hidden and
output layers, and ϕ(·) is an activation function. Two-layer convolutional networks with U filters can
be described by patch matrices (e.g., images) Xu, u = 1, · · · , U . For flattened activations, we have
f(X1, · · ·Xu) =

∑U
u=1

∑m
j=1 ϕ(Xuuj)αj .

We consider the 2-layer linear convolutional networks and its non-convex loss is defined as:

min
{αj ,uj}m

j=1

L({αj ,uj}) =
1

2
∥

U∑
u=1

m∑
j=1

Xuujαju − y∥22. (13)

Pilanci & Ergen (2020) show that the above non-convex problem can be transferred to the below
convex optimization problem via its duality. and the two problems have the identical optimal values:

min
{wu∈Rd}U

u=1

L({wu}) =
1

2
∥

U∑
u=1

Xuwu − y∥22. (14)

We run federated learning with convex 2-layer linear convolutional network, where each device trains
the local loss Lk({wu}Uu=1) and it can converge to the optimal model w∗ = {w∗

u}.

• Compute L: Let w = {wu}Uu=1. For each client k, we require its local loss Lk should
satisfy ∥▽Lk(w)−▽Lk(v)∥2 ≤ Lk ∥w − v∥2 for any w,v; With Equation 14, we have∥∥∥∑U

u=1(X
k
u)

TXk
u(w − v)

∥∥∥
2
≤ Lk ∥w − v∥2; Then we have the smoothness constant Lk

to be the maximum eigenvalue of
∑U

u=1(X
k
u)

TXk
u, which is ∥

∑U
u=1(X

k
u)

TXk
u∥2; Hence,

L = maxk ∥
∑U

u=1(X
k
u)

TXk
u∥2.

• Compute µ: Similar as computing L, µ is the minimum eigenvalue of
∑U

u=1(X
k
u)

TXk
u for all k,

that is, µ = mink ∥
∑U

u=1(X
k
u)

TXk
u∥2.

• Compute σk and G: Similar computation as in ℓ2-regularized logistic regression.

Unrolled feed-forward network and its training and performance. In our experiments, we set
the number of layers to be 20 in the unrolled feed-forward network for the three datasets. We use
1,000 data samples and their intermediate reconstructions to train the network. To reduce overfitting,
we use the greedy layer-wise training strategy. For instance, the average MSE (between the input
and output of the unrolled network) of DLG, iDLG, InvGrad, and GGL on MNIST is 1.22, 1.01,
0.76, and 0.04, respectively—indicating that the training performance is promising. After training the
unrolled network, we use the AutoLip algorithm to calculate the Lipschitz LR.

C.1.2 DETAILS ABOUT DATA RECONSTRUCTION ATTACKS

GGL (Li et al., 2022): GGL considers the scenario where clients realize the server will infer their
private data and they hence perturb their local models before sharing them with the server as a
defense. To handle noisy models, GGL solves an optimization problem similar to InvGrad, but uses a
pretrained generator as a regularization. The generator is trained on the entire MNIST dataset and
can calibrate the reconstructed noisy image to be within the image manifold. Specifically, given a
well-trained generator G(·) on public datasets and assume the label y is inferred by iGLD, GGL
targets the following optimization problem:

z∗ = arg min
z∈Rk

GML(g(x, y), T (g(G(z), y))) + λReg(G; z), (15)

where z is the latent space of the generative model, T is a lossy transformation (e.g., compression or
sparsification) acting as a defense, and Reg(G; z) is a regularization term that penalizes the latent z if
it deviates from the prior distribution. Once the optimal z∗ is obtained, the image can be reconstructed
as G(z∗) and should well align the natural image.

In the experiments, we use a public pretrained GAN generator for MNIST, Fashion-MNIST, and
CIFAR. We adopt gradient clipping as the defense strategy T performed by the clients. Specifically,
T (g, S) = g/max(1, ∥g∥2/S). Note that since G(·) is trained on the whole image dataset, it
produces stable reconstruction during the optimization.
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(a) Impact of E (b) Impact of N (c) Impact of T

Figure 10: Results of federated ℓ2-LogReg on MNIST—batch images recovery. Dashed lines are
best empirical reconstruction errors obtained by existing data reconstruction attacks, while solid lines
are upper bound errors obtained by our theoretical results. Y-axis is in a log form. Similarly, we
observe that GGL performs the best both empirically and theoretically, due to its pretrained encoder
uses the whole dataset to force a stable reconstruction. iDLG (slightly) outperforms DLG both
empirically and theoretically; a larger E and N will incur larger upper bound error, while a larger T
will generate smaller upper bound error. Additionally, InvGrad theoretically outperforms DLG and
iDLG on CIFAR10, indicating that the data prior on complex datasets could be useful.

(a) Impact of E (b) Impact of N (c) Impact of T

Figure 11: Results of federated ℓ2-LogReg on FMNIST—batch images recovery.

Robbing (Fowl et al., 2022): Robbing approximately reconstructs the data via solving an equa-
tion without any iterative optimization. Assume a batch of data x1,x2, · · ·xn with unique labels
y1,y2, · · ·yn in the form of one-hot encoding. Let ⊘ be element-wise division. Then, Robbing
observes that each row i in ∂Lt

∂yt
, i.e., ∂Lt

∂yi
t

, actually recovers

xt =
∂Lt

∂yit
xt ⊘

∂Lt

∂yit
.

In other others, Robbing directly maps the model to the reconstructed data. Hence, in our experiment,
the unrolled feed-forward neural network reduces to 1-layer ReLU network. We then estimate
Lipschitz upper bound on this network.

C.2 MORE EXPERIMENTAL RESULTS

Figure 10 to Figure 12 show the batch images recovery results by the four considered data reconstruc-
tion attacks on federated ℓ2-LogReg.

Figure 13 to Figure 15 show the recovery results by Robbing on federated ℓ2-LogReg and federated
2-LinConvNet.
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(a) Impact of E (b) Impact of N (c) Impact of T

Figure 12: Results of federated ℓ2-LogReg on CIFAR10—batch images recovery.

(a) Impact of E (b) Impact of N (c) Impact of T

Figure 13: Results of federated ℓ2-LogReg on Robbing—single image recovery. We observe that
Robbing has much smaller bounded errors and is even smaller than GGL (See Figure 3-Figure 5).
This is because the equation solving used by Robbing is accurate on the simple federated ℓ2-LogReg
model that uses a linear layer.

(a) Impact of E (b) Impact of N (c) Impact of T

Figure 14: Results of federated ℓ2-LogReg on Robbing—batch images recovery.

(a) Impact of E (b) Impact of N (c) Impact of T

Figure 15: Results of federated 2-LinConvNet on Robbing—single image recovery. Robbing has
much smaller error bounds on federated 2-LinConvNet due to its accurate equation solving.
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