
A Holistic Approach for Answering Logical
Queries on Knowledge Graphs
Yuhan Wu

East China Normal University
yuhanwu0001@163.com

Xuemin Lin
Shanghai Jiao Tong University

lxue@cse.unsw.edu.au

Yuanyuan Xu
Zhejiang Lab, University of New South Wales

xyycn8@163.com

Wenjie Zhang
University of New South Wales

wenjie.zhang@unsw.edu.au

Abstract—Logical queries on Knowledge Graphs (KGs) is a
fundamental sub-task of knowledge graph reasoning. A promis-
ing paradigm for answering logical queries, recently, has been
proposed based on versatile deep learning techniques. In this
line, the query is first broken down into a series of first-order
logical predicates, and then both the query and knowledge graph
entities are jointly encoded in the same embedding space. Some
approaches are able to support the full range of traditional
First-Order Logic (FOL) operations for complex queries in
real-world scenarios, while others have attempted to create a
new combination of FOL operations by replacing the negation
operation with the difference operation due to the poor per-
formance of the negation operation. Our empirical observations
show that the difference operator is more effective for multi-
hop reasoning, while the negation operator is better suited for
use as the final operation in the query, particularly in single-
hop settings. In addition, other fundamental limitations such as
linear transformation assumption for negation operator and the
fixed-lossy problem for difference operator further degrade the
performance of these methods. In light of these, we propose
the HaLk, a holistic approach for answering logical queries
that, to our knowledge, is the first to support a full set of
logical operators in a unified end-to-end framework. In this
approach, we propose specific neural models for each operator
by considering their own intrinsic properties, based on which
HaLk effectively mitigates the cascading error of projection
and negation operators as well as delicately provides closed-
formed solutions for difference operator. Extensive experimental
results on three datasets demonstrate that HaLk outperforms all
competitors and achieves up to 32% improvement in accuracy.

Index Terms—Logical queries, knowledge graph, geometry
deep learning.

I. INTRODUCTION

Knowledge graphs are prevalent in real-life scenarios due to
their ability to provide flexible, structured representation for
entities and the intricate connections among them. Answering
logical queries on knowledge graphs is a fundamental and im-
portant task that has a range of applications, including search
engines, semantic webs [1], and recommendation systems [2],
etc. The goal of this task is to identify answer entities in
the knowledge graph that are likely to be entailed by known
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facts or inferred through generalization based on observed
knowledge facts. In practical applications, logical queries on
KGs require dealing with many kinds of complex logical
operators over multi-hop relations. As shown in Fig. 1a and
Fig. 1b, a natural language question like ”What are the films
directed by Oscar-winning American directors?” can be de-
fined as the composition of logical predicates. Based on it, the
aforementioned question can be first translated into a logical
query graph and a corresponding computation graph after that.
Next, query processing methods are proposed to provide the
solutions, and desirable entities such as ”7th Heaven” will
be returned as the answers of the above query in Fig. 1d.
Existing query processing methods can be roughly divided into
subgraph matching-based methods and embedding-based ones.

The former one [3]–[5] relies on exact or approximate
matching between the query graph and candidate subgraphs
in KGs, which can be problematic due to incomplete or noisy
KGs and may lead to empty or incorrect answers. To address
these issues, an alternative solution is to use advanced deep
learning techniques to embed the queries and KG entities in
a vector space. These embedding-based methods [2], [6]–[9]
are robust to handle incomplete or noisy KGs and have good
response efficiency. Embedding-based methods can be further
divided into three categories based on their support for first-
order logical operations.

The first group [2], [10], [11] only considers existential
positive first-order (EPFO) logical operations, thereby limiting
their practicality. In the second group, negation operation is
modelled based on the linear transformation assumption [8],
[9], [12], which enables them to process negative logical
queries. However, they suffer from the following problems: (1)
The candidate answer set of the negation operator tends to be
large owing to the nature of complementary set. For example,
in Fig. 2(b), a general survey question ”Find out people who
have never studied abroad.” can be transformed into a form
with the negation operator ¬B, whose answer entities may be
larger than 1000 or even 10000. In this case, the linear one-
to-multiple projection model for the negation operator does
not perform well. This is why the accuracy of queries with
the negation operator is often quite low (generally less than



(a) Logical query graph (b) Computation graph (c) Embedding generation (d) Vector space

Fig. 1: Overall query processing procedures for a query ”What are the films directed by Oscar-winning American directors?”.

Fig. 2: Illustration of difference and negation operators.

20%), making it impractical for real-world applications. (2)
Furthermore, for multi-hop queries with intermediate negation
operators, the uncertainty of a large candidate answer set will
disturb the overall learning process.

To better handle complex queries, some methods in the third
group [6], [7] introduce an alternative operation called the
difference operation to replace the negation operation, which
avoids the problem of uncertainty. For example, consider the
query ”Please find out the chemical researchers who have not
won the Nobel Prize in chemistry.”. As shown in Fig. 2(a), it
is better to translate this question into a logical query with the
difference operator (i.e., B-C) rather than using the negation
operator (i.e., ¬C ∧ B), as has been empirically validated.
However, the difference operator is not able to process one-
hop queries like the one in Fig. 2(b) since it cannot define and
model the universal set due to the limitations of these methods.
More importantly, [6] does not offer an explicit method for
modeling the difference operation; another one [7] is only
able to model a partial answer region due to the limitations
of box embedding, leading to false negatives/positives. When
processing multi-hop queries, these errors can be amplified
and accumulated, causing further degradation in model per-
formance.

Our observation. The difference and negation operators
have their own strengths. We empirically observe that dif-
ference operation performs better when processing multi-hop
queries, as it generates compact but accurate candidate answer
sets, while negation operation is more effective as the tail
operation, particularly in single-hop settings. While these two
operations complement each other, they cannot be perfectly
interchangeable. However, none of the existing solutions is
able to formulate and learn the five types of first-order logic
operations in a unified framework, and they are incompatible
with each other due to different embedding backbones.

To fill the gap, we propose a Holistic Approach to an-
swer Logical queries on Knowledge graphs based on a new
arc embedding (namely HaLk) in this paper, in which we
introduce a full set of first-order logical operations, which
is a union of traditional FOL operations and newly-defined
FOL operations, covering projection, intersection, difference,
negation and union. Specifically, we reformulate the differ-
ence operation and propose a new model with a closed-
form solution 1 by taking semantic center, arc overlap, and
cardinality constraint into account, which boosts the long and
complex logical query processing. The negation operator is
learned using neural networks to better model the dependency
mapping between queries and multiple answer entities, and to
reduce the cascading error from previous sub-queries, making
it more effective and applicable. Similarly, HaLk optimizes the
projection operation by giving more flexibility to the start and
end points of the arc embedding based on their intrinsic prop-
erties to improve accuracy. Finally, HaLk provides a powerful
pruning method for subgraph matching-based algorithms and
significantly reduces online response time with only a slight
sacrifice in accuracy.

To sum up, the main contributions of this paper are:

• To the best of our knowledge, this is the first attempt to
introduce and support a new full set of first-order logical
operations in a unified end-to-end framework, which
enables HaLk more practical in real-world scenarios.

• We reformulate the difference operation and propose a
new model based on its intrinsic characteristics, which
can provide closed-formed solutions and facilitate the
process of complex logical queries.

• We go beyond linear transformation assumption and
model logical operations (i.e., projection and negation)
by considering their properties to mitigate the cascading
error, thus significantly improving the accuracy.

• Extensive experimental results demonstrate that HaLk
achieves up to averaged 32% improvement over the best
competitor on three benchmark datasets in MRR and
Hit@3 metrics; meanwhile, HaLk is significantly faster
than subgraph matching-based methods.

1The solution of a logical operator can be expressed in the closed form if
the region of the answer set is still the arc segment, which is slightly different
from the definition of mathematical expression.



II. PRELIMINARIES

In this section, we introduce basic concepts, give the prob-
lem definition and then discuss some related works.

A. Basic Concepts

Knowledge Graphs. A knowledge graph is denoted as G =
{V,R, T} where V = {v1, v2, · · · , vn} is the entity set,
R = {r1, r2, · · · , rm} is the relation set and T is the fact
triplet set. Each triplet in KGs can be denoted as (h, r, t)
where h, t ∈ V is a subject (head entity) and an object (tail
entity), respectively, and r ∈ R is the predicate (relation) of
the triplet that connects h to t. Suppose that aj(· , · ) ∈ A is
a binary function aj : V × V → {1, 0} corresponding to rj ,
where aj(hi, tk) = 1 if and only if (hi, rj , tk) is a factual
triple. Note that A is the relational function set. To avoid
learning from scratch, we randomly divide all the nodes in
KGs into different groups with video memory-friendly size
and record the group ownership of each node by one-hot
vectors. In addition, a relation-based 3D adjacency matrix is
adopted to track the connectivity between groups based on
each predicate. Specifically, we use a row one-hot vector to
denote the group attribute of each node vi. If node vi belongs
to group j then [hi]j = 1, otherwise, it equals to 0. As for
the adjacency matrix, for each rj ∈ R, Mik

j = 1 if any node
in group i connects with any node in group k by relation rj ,
else Mik

j = 0.
First-Order Logic (FOL). Following the definition in [2],
a FOL query contains an anchor entity set Ũ ⊂ V and
a variable node set. Here, the variable node set includes
existentially quantified bound variables u1, u2, · · · , uk and the
target variable u? (i.e., the answers to the query). Then, a FOL
query q is defined as 2

q[u?] = u?.∃ u1, u2, · · · , uk : τ1 ∨ τ2 ∨ · · · ∨ τn, (1)

where ∃ is existential quantifier operator, ∨ is logical disjunc-
tion operator, and τi are logical conjunctions sub-items, i.e.,
τi = ϖi1 ∧ · · · ∧ϖim, ∧ is the logical conjunction operator.
Here ϖij = a(ũa, ui) or ¬a(ũa, ui) or a(ui, uj) or a(ui, u?)
, and ¬ is the logical negation operator. Using the above
notations, answering a query q is equivalent to finding a set
of entities JqK ⊂ V , where v ∈ JqK if and only if q[v] is True.
Computation Graphs. We represent a logical query as a
Directed Acyclic computation Graph (DAG): Q = {U,R,L},
where U = {Ũ , U?} refers to the node set with Ũ denotes the
anchor nodes that are the source nodes of DAG and U? denotes
the variable nodes, R denotes the relation set that is the same
as the relation set of G, and L denotes logical operations. We
give an example of logical query graph and computation graph
in Fig. 1a and Fig. 1b. When building the computation graph
for the query, it has been shown through literature [2], [12] and
our own experiments that the order of operator selection should
be projection > intersection/difference > negation >
union for effectiveness.

2We use FOL queries in its Disjunctive Normal Form (DNF) [2], which
represents FOL queries as a disjunction of conjunctions.

Fig. 3: The illustration of polar coordinate system.

Arc Embedding. In this paper, we propose the arc embedding
as the basis for HaLk based on the rotation paradigm, in which
embedding based on the rotation paradigm has been applied to
many tasks [8], [13]–[16]. Given a KG G and a logical query
graph Q, we aim to embed each entity of the KG as a point on
the circle with radius ρ, namely point embedding and encode
each node of the query graph as an arc segment on the same
circle, namely arc embedding, in polar coordinates, as shown
in Fig. 3. We elaborate the arc embedding below.

For the arc embedding, we aim to represent the semantic
center with a center embedding and the cardinality of the
answer set with an arclength embedding. Therefore, we model
the answer region of JqK as a Cartesian product of the arc with
a fixed radius in all dimensions. Specifically, we denote the
semantic center point and the arc span/cardinality of JqK with
the parameter Ac and the parameter Al, respectively. If the em-
bedding dimensionality is d, we use a d-ary Cartesian product
to define the arc segment as Aq = ((A1

c , A
1
l ), · · · , (Ad

c , A
d
l )),

where Ai
c = (ρ,Ai

c,a), Ai
c,a are polar angles of the center

points, Ai
c,a ∈ [0, 2π)d. Ai

l ∈ [0, 2πρ]d are arclengths. For
simplicity, we also omit radius learning and will study it in
future work. Thus Ac refers to the polar angle in this paper.

For an entity/node v ∈ V , it can be regarded as an entity
set with a single element, i.e., {v}. Thus, we can represent an
entity as a Cartesian product of arc segments with arclengths 0,
where the center point indicates the entity semantic. In Fig. 1d,
each yellow dot on the circle denotes an entity embedding, and
each green or blue arc segment on the same circle denotes a
query arc embedding in the embedding space.
Logical Operations. To our knowledge, we are the first to
introduce a full set of logical operations, which is a union of
traditional FOL operations and newly-defined FOL operations,
containing projection P, difference D, intersection I, negation
N and union U. Fig. 4 illustrates the five types of logical
operations in the embedding space.

B. Problem Statement

Based on the above notation, the key challenge of answering
logical queries on knowledge graphs is to effectively generate
the arc embedding for the target node in Q, the point em-
bedding for each entity in G, and the arc embedding for each
relation r ∈ R. Here, we focus on the single target variable
and formally define the problem as follows.



Fig. 4: Illustration of five logical operations. The shaded region
is the desirable output of the logical operation.

Problem 1: Given a knowledge graph G = {V,R, T}, a
logical query graph Q with anchor node(s) and variable nodes,
the problem of answering logical queries on knowledge graphs
aims to find a set of entities as answers such that these entity
embeddings should be included or close to the arc embedding
of the given query in the embedding space.

C. Related Work

We review related studies in two categories: subgraph
matching-based methods and embedding-based methods.

Subgraph matching based methods first represent logical
queries as DAGs and then obtain a set of answers via subgraph
matching methods [3]–[5]. While simple and intuitive, such
approaches have many drawbacks including long response
time. In addition, subgraph matching is very sensitive as it has
difficulty in correctly answering queries with missing relations
and noisy information [17], [18]. One potential solution is
to impute missing relations, but this will lead to a denser
knowledge graph, which would exacerbate the issue [19].

Another category is embedding based works, which embed
logical queries and entities of KGs into the same embedding
space. They can robustly handle missing relations while being
faster than subgraph matching based methods due to the simple
vector computation when answering online queries. In this
line, existing solutions learn query embeddings and entity em-
beddings based on different embedding backbones including
geometric shapes [2], [10], [20], probability distributions [12],
and other complex objects [6], [21]. We divide them into three
groups from the perspectives of logical operations.

The first group only support existential positive first-order
(EPFO) logical operations [2] or a subset of EPFO logical op-
erations [10], [20]. However, they are not capable of process-
ing complex logical queries with negative operations, thereby
limiting their practicability. To cope with such drawbacks,
some works in the second group manage to support four types
of logical operations (including EPFO logical operations and
negation). Specifically, BetaE [12] proposed a probabilistic
embedding framework for answering arbitrary FOL queries
over KGs; ConE [8] learnt logical operations based on cone
embedding and MLPMix [9] employed the MLP to model log-
ical queries. Among them, linear transformation assumption
was employed to model negation operation, which limits the
fitting ability of the negation operator for the one-to-multiple
relations, and might generate a biased answer area with high

uncertainty in the embedding space. Meanwhile, the intrinsic
characteristics of negation operator may lead to dramatically
poor performance, especially for multi-hop queries.

Alternatively, researchers attempt to define a new opera-
tion to replace the negation operation, based on which four
types of logical operations (including EPFO logical operations
and difference operator) can be supported in the last group.
NewLook [7] was able to support difference operator, but
its answer region cannot be exactly represented by a hyper-
rectangle box embedding, and it would introduce false negative
entities or false positive entities in the answer set, and even
cascading errors with the iteration of multi-hop reasoning.
EmQL [6] claimed that it can support difference operation but
did not provide the concrete algorithm in the original paper.
In addition, these methods are not able to process single-hop
logical queries with negation operation since the universal set
cannot be defined in these methods.

To summarize, HaLk has several key advantages over exist-
ing works. (1) We propose the arc embedding paradigm that
allows us to derive closed-form solutions for all operators,
which is not possible in existing approaches. (2) We introduce
a coordinated information pair consisting of a start point and
an end point, which can work together to adjust both location
and range information, reducing cascading errors. (3) HaLk
supports five logical operations, making it more versatile and
applicable in a wider range of situations compared to existiing
methods which support a maximum of four logical operators.

III. OUR APPROACH

In this section, we start with the overall framework of the
proposed HaLk followed by the details of its key components.

A. Overall Framework

We aim to map the logical query graphs (q) and the knowl-
edge graph (G) into a low-dimensional space, where each q
is mapped as arc segments and entities of G are represented
as points on the same circle. Entities could be answers to the
query are included or close to the arc segments of the query
target node. During the training stage, the computation graph
is regarded as a sequence of geometric logical operations and
each logical operation is modelled using a neural network (see
Fig. 1c). We then learn entity embeddings and relation embed-
dings for G, as well as the parameterized neural networks for
all the logical operators, until the convergence of the model.

For the online step, the trained model generates the arc
embedding for the target node of the test logical query by
executing a logical operation set. Using the obtained result arc
embedding, we estimate the probability that the knowledge
graph entities satisfy the query using a search algorithm in
the low-dimensional vector space, such as a nearest neighbor
search. In the answer identification phase, we retrieve entities
inside or close to the target arc embedding as candidate
answers to the query.

In the following subsections, we will introduce specific
implementations of five logical operations and provide details
on model training.



B. Projection Operation

The projection operator P typically transforms one entity
set into another one using the given relation (see Fig. 4(e)).
This operator is used to answer many basic questions, such
as ”Who are authors of <Deep Learning>?”. Many previous
works [2], [10], [20] suffer from severe cascading error [22] in
modelling projection operator due to the linear transformation
assumption. Here, cascading error arises from two parts: the
center embedding deviates from the ideal semantic center
and the range embedding does not match the set cardinality.
Later, some solutions [7], [8] attempt to employ non-linear
neural networks to alleviate the cascading error problem.
However, they independently learn the center and cardinality
of the answer region, which leads to a semantic gap between
the center embedding and range embedding. Furthermore,
simply concatenating both as input to the learning model
lacks guidance for their combination and association, so the
learning process of the semantic center and set cardinality
cannot benefit from each other to alleviate cascading error.

To bridge the semantic gap, we introduce a combination
representation, including the start and end point, which in-
cludes both center and cardinality information. This allows for
rotating and scaling to be performed in a cooperative manner.
we first give the definitions below.

Definition 1 (Start point of an arc segment.): Given an arc
embedding A = (Ac,Al), the start point is Ac − Al/(2ρ),
denoted as AS .

Definition 2 (End point of an arc segment.): Given an arc
embedding A = (Ac,Al), the end point is Ac + Al/(2ρ),
denoted as AE .

Based on Definitions 1 and 2, we can adaptively fit the
candidate answer region by directly adjusting the start point
and end point. This process employs both center and cardinal-
ity information to generate the target arc embedding, which
helps to bridge the ”semantic gap” caused by the independent
learning of center and cardinality. Later we will describe how
we use them to model each operator.

Given the head arc embedding Ah, we first obtain an
approximate arc embedding (Ãc, Ãl) by rotations of head em-
bedding according to the relation embedding r = (Ar,c,Ar,l),
that is, Ãc = Ah,c + Ar,c, Ãl = Ah,l + Ar,l. Based on
Definitions 1 and 2, we compute the start point ÃS and end
point ÃE , and take them as the input of the learning network.
We formulate the learning model of the projection operator as

Ac = g(MLP(ÃS∥ÃE)) Aα = g(MLP(ÃS∥ÃE)),
Al = ρAα.

(2)

Here, MLP is a multi-layer perceptron [23], and ∥ represents
the concatenation of two vectors. Aα is the corresponding
arc angles of the arclengths. Since center embedding repre-
sents angles and arclength embedding models arclengths, it
is necessary to overcome the information gap between them
with the help of arc angles. g(· ) is a function that regulates
Ac ∈ [0, 2π)d and Aα ∈ [0, 2π]d. We define g(· ) as

[g(x)]i = πtanh(λxi) + π. (3)

where [g(x)]i denotes the i-th element of g(x), λ is a fixed
parameter to control the scale. The center embedding Ac and
arclength embedding Al of the answering region are generated
by using neural networks to learn the combination represen-
tations jointly in Eq. (2) and (3). Through the collaborative
adjustment of rotation and scaling transformations, the output
would cover corresponding answer entities more accurately,
thus cascading errors are greatly reduced.

Fig. 5: Illustration of two models for difference operator.

C. Difference Operation

Difference operation is a useful logical operation as shown
in Fig. 4(a). It aims to answer questions like ”Who won the
world championships in the badminton but didn’t win the
Olympic Games?”.

To date, only NewLook [7], based on box embedding, can
provide solutions with the inevitable lossy problem for the
modelling of difference operator. However, NewLook often
struggles with the difference operation due to its inability
to produce a precise valid box in most cases where input
box embeddings have partial overlaps. This can lead to either
false positives/negatives in the answer region. For instance, in
Fig. 5(a), the ideal result of the answer region for b1−b2−b3
should include both the yellow and orange regions. If the
learning process focuses on including more correct answer
entities, it may also result in false positive entities being
included in the answer region. On the other hand, if the model
is trained to minimize the number of wrong answers, it may
result in false negatives.

Furthermore, although the attention neural network is
proved to be effective in modelling the difference operator
based on box embedding in NewLook, the usual raw-value
attention calculation is not compatible with the rotation-based
embedding backbone due to the periodicity of the rotation
transformation. The ordinary weighted average may result
in inconsistent semantics, which is illustrated in Supplemen-
tary [24].

To avoid the fixed-lossy problem and semantic inconsis-
tency, we aim to reformulate the difference operation to pro-
vide a closure solution. The challenges are summarized below:
(1) The difference operation is asymmetric to the input order.
For example, the result of input {A1,A2, · · · ,Ak} should
be different from the result of input {A2,A1, · · · ,Ak}, with
the former being inside A1 and the latter being inside A2.
When the original input is {A1,A2, · · · ,Ak}, no matter how



the order of A2, · · · ,Ak is changed, the result should be
invariant to permutations. However, off-the-shelf permutation-
invariant neural networks cannot directly model the asymmetry
of part of the original input. (2) How to quantify the overlap
of multiple arcs while taking the periodicity into account since
the polar angle of center embedding is periodic. (3) How to
leverage the semantic center scheme and cardinality constraint
in modelling? Due to the fact that the result JqK is always the
subset of the input Jq1K, Ac should be inside A1,c and Al

should be no longer than A1,l. To address them, we propose
a new model to learn the difference operator, which will be
introduced from the semantic center view and the arclength
view, respectively.

Semantic average centers. Specifically, to avoid the peri-
odic problem and learn the semantic average centers, we first
convert the coordinates of input center points to rectangular
coordinates by

Ai,c,r = (xi, yi) = (ρ cos(Ai,c), ρ sin(Ai,c)) (4)

where (xi,yi) is the corresponding rectangular coordinates of
center points embedding Ai,c. cos(·) and sin(·) are element-
wise cosine and sine functions. Then, we model the arc
embedding Ac using an attention mechanism-based network in
the rectangular coordinate system. Formally, the computation
process is

xsa =

k∑
i=1

wi ⊙ xi ysa =

k∑
i=1

wi ⊙ yi

Asa = (ρ, arctan(ysa/xsa)), (xsa ̸= 0)

(5)

Here, (xsa, ysa) is the generated semantic average center
points in rectangular coordinates and wi are positive weight
vectors that satisfy

∑k
i=1[wi]j = 1 for all j = 1, · · · , d.

The computation of w is given in Eq. (7). After obtaining
the semantic average center points, we restore the coordinates
to the polar coordinate system Asa. Then, the result arc
embedding Ac is obtained by

Ac = Reg(xsa,ysa),

Reg([xsa]j , [ysa]j) =

 (Asa)j + π, if [x]j < 0, [y]j > 0
(Asa)j − π, if [x]j < 0, [y]j < 0
Asa, otherwise.

(6)
Here, j = 1, 2, · · · , d. Reg(·) 3 is the function that regularize
the value range of the final result to be in a single period.

To compute weights wi in Eq. (5), we take the start point
and end point of the arc segment (Ai,S and Ai,E) as weight
measurement factors to better measure the cross-correlation
among arc segments:

wi =
exp(κiMLP([Ai,S∥Ai,E ]))∑k

j=1 exp(κjMLP([Aj,S∥Aj,E ]))
, (7)

where i = 1, 2, · · · , k κi is a weighted vector to make Ac

inside the A1. Meanwhile, κ can also consider the different

3Note that we manually set [x]j to be a small number (e.g., 10−3) when
[x]j = 0, to avoid the illegal division.

effects of rest input entity sets on the final result independently
of the input order.

Arclengths with cardinality constraint. To calculate the
arclengths, we consider the cardinality constraint, periodic-
ity, and overlap computation. Specifically, we hard code the
asymmetry between A1 and Ai (i = 2, · · · , k) by taking
the overlaps between A1 and A2, · · · ,Ak as the initial input
formation of model fitting. Hence, we compute Al of Aq by

Al = A1,l · σ(DeepSets({A1 −Aj}kj=2)), (8)

where σ(·) is the element-wise sigmoid function, DeepSets(·)
is a permutation-invariant function [25], and {A1 − Aj}kj=2

satisfies the permutation invariance among Aj . When evalu-
ating the overlap, there is a information gap between angle
and length, and the polar angles of center points are periodic.
To address these issues, we use the chord lengths of A1,c and
Ai,c to measure the degree of overlap between center points.
DeepSets({A1 −Aj}kj=2) is then computed by

MLP(
1

k − 1

k∑
j=2

MLP([δc∥δl]))

δc = 2 · ρ · sin((A1,c −Aj,c)/2), δl = A1,l −Aj,l

(9)

Last, the boundary of answer region returned by HaLk is
tighter than the one returned by NewLook, which is theoreti-
cally analysed in the Supplementary.

D. Intersection Operation

Intersection operation is a widely-used logic operation (see
Fig. 4(b)). It is applied to answer questions like ”which
animals can live on the land and under the water?”.

Similar to the difference operation, we use the semantic
center scheme to model the intersection operation to avoid
semantic inconsistency. Additionally, we utilize the coarse-
grained random group information to guide the learning pro-
cess. Specifically, we compute the one-hot/multi-hot vector for
Ut by hUt = hU1⊙hU2⊙· · ·⊙hUk, where ⊙ is the element-
wise product. We expect that arc segments with similar group
information should be highly correlated. For instance, if hUi

is similar to hUt, arc segment Ai should accordingly have a
greater impact on the intersected output. We provide more
details on how we use semantic centers and arclengths to
implement this technique below.

Semantic average centers. Like with the difference op-
erator, we use attention neural networks in the rectangular
coordinate system to learn the semantic center embedding Ac

using the same initial computation process as in Eq. (4), (5)
and (6). Moreover, since the intersection operator is per-
mutation invariant to all the input order, we can use the
similarity of group information and the similarity of the (start
point embedding, end point embedding) pair representation
together as the weight measurement factor to measure the
cross-correlation among input arc segments:

wi =
exp(ziMLP([Ai,S∥Ai,E ]))∑k

j=1 exp(zjMLP([Aj,S∥Aj,E ]))
, (10)



where i = 1, 2, · · · , k and Ai,S , Ai,E are the start point and
end point of Ai. zi = 1/(∥hUi − hUt∥ + 1) reflects the
similarity between the two entity sets. Using Eq. (10), due
to the different degrees of cross-correlation with target arc
segment, we can learn different effects that the k input arc
embeddings should have on the results, so as to locate the
semantic center of the candidate answer set more accurately.

Arclengths with cardinality constraint. Since JqK is the
subset of all JqiK (i = 1, 2, · · · , k), Al should be no larger
than any input arclengths Ai,l. To identify the appropriate arc
segment for the target, we incorporate cardinality constraint
and center location information into the modeling process and
also consider the arc angles of the arclengths as intermediate
results. The computation process is

Ai,α = Ai,l/ρ for i = 1, 2, · · · , k,
Aα = min{A1,α, · · · ,Ak,α} · σ([DeepSets({Aj}kj=1)]),

(11)
Here, min{A1,α, · · · ,Ak,α} ensures that the cardinality of the
output entity set is no larger than the minimum one of input,
and the DeepSets(·) network is used to obtain a permutation
invariant comprehensive influence factor. Specifically, given
the input of start point embeddings and end point embeddings,
DeepSets({Aj}kj=1) is defined as

MLP(Mean(
k∑

j=1

MLP([Aj,S∥Aj,E ]))), (12)

where Mean(·) is the dimension-wise mean function. Last,
we transfer the arc angle embeddings Aα into arclength
embeddings Al by Al = ρAα.

E. Negation Operation
Negation operator is used for negative queries. From the

modelling and performance perspective, it is more suitable to
be the tail operation of logical queries, especially when dealing
with single-hop problems like the universality survey problem.

Only a few methods (i.e., BetaE, ConE, and MLPMix)
support the negation operation. However, a major disadvantage
is that they all model the negation operator based on the
assumption of linear transformation, which limits their infer-
ence ability since linear transformation restricts the model’s
ability to fit complex mappings between queries and their
large answer entity set. In this paper, we use a non-linear
neural network to learn negation operation, which helps fit
the dependency mapping between queries and their multiple
answer entities as well as mitigate the cascading errors accu-
mulated from previous sub-queries. Moreover, to represent the
semantic difference between JqK and J¬qK, we assume that the
included angle between their center points to be π, and the arc
segment of JqK and J¬qK should form a complete circle. We
first obtain an approximate arc embedding Ã¬q = (Ã¬c, Ã¬l)
to help determine the initial transformation direction via linear
transformation as follows:

[Ã¬c]i =

{
[Ac]i + π, if [Ac]i ∈ [0, π)
[Ac]i − π, if [Ac]i ∈ [π, 2π)

[Ã¬l]i = 2πρ− [Al]i [Ã¬α]i = [Ã¬l]i/ρ,

(13)

where i = 1, 2, · · · , d, Ã¬α is the corresponding arc angle of
Ã¬l. Then, we treat Ã¬c and Ã¬α as the input of the neural
network to obtain the final centers and arclengths for the query
target node. We define the neural network below.

t1 = MLP(Ã¬c) t2 = MLP(Ã¬α)
A¬c = g(MLP(t1∥t2)) A¬α = g(MLP(t1∥t2)).
A¬l = ρA¬α

(14)

Here, g(·) is defined in Eq. (3). By Eq. (14), we first obtain
the intermediate results t1 and t2 using neural networks. We
then learn the center embedding and arc angle embedding by
jointly using t1 and t2, which allows us to better fit the answer
entity set. In cases where the negation operation is the final
operation in the input query, non-linear transformation can also
be used to correct errors that may have accumulated from sub-
queries in previous iterations. Finally, we obtain the arclength
embedding by transforming the target arc angle embedding.

F. Union Operation

Unlike the previous logical operators, we aim to provide an
exact solution for the union operation, so we do not model
it using a neural network. In some cases, the k input arc
segments may not form single result region, as shown in
Fig. 4(c), thus the output of the union operator may not be
a single arc segment. If we model the result of union as a
single arc segment, it would include a large false positives.
To solve this issue, we adopt the DNF technique [2], which
allows us to transform any union operation to the last step of
the computation graph.

Specifically, for the computation graph Q = (Uq, Rq)
of a given FOL query q, let Uunion be the set of nodes
whose prepositive operators are ”union”, and let Pu be the
set of parent nodes for each u ∈ Uunion. DNF will generate
N =

∏
u∈Uunion

|Pu| new computation graphs. And each
computation graph corresponds to a conjunctive query. After
that, we only need to find the answers for each of these
computation graphs and take the union of the answers as the
result of union operation. Therefore, the union operator for
HaLk is non-parametric and corresponds to the exact set. In
practical applications, both the number of union operations
and the inputs for each union operator in a query are typically
very small (i.e., ≤ 5). Additionally, the N conjunctive sub-
queries can also be executed in parallel, so the additional cost
caused by the DNF technique is completely acceptable.

G. Model Training

To obtain the answers of a given query based on the
principle of maximum similarity, we expect that the point
embeddings of entities v ∈ JqK are pushed closer to the arc
embedding of q, and the point embeddings of entities v′ /∈ JqK
are pulled away from the arc embedding of q. We achieve
this by defining a function to measure the distance between
a given query embedding and an entity embedding in KGs.
Besides, we use a negative sampling trick to help train the
model efficiently, where m negative samples are selected from
the negative entity set using the random sampling strategy.



Distance Function. First, we define the function to measure
the distance between entities and the query. Inspired by [2],
the distance d comprises two parts: the outside distance do
and the inside distance di. Suppose that v = (Av,c,0), Aq =
(Ac,Al), AS = Ac − Al/2ρ and AE = Ac + Al/2ρ. We
define the distance function as

d(v∥Aq) = do(v∥Aq) + ηdi(v∥Aq), (15)

where 0 < η < 1 is a weighted parameter to down-
weight the within-arc distance. Furthermore, we consider the
periodicity problem and take the corresponding chord length
of the included angle that won’t lead to duality due to the
periodicity as the measurement of the distance between the
two points. Hence, the outside distance and the inside distance
are respectively calculated by

do = 2ρ∥min{| sin((Av,c −AS)/2)|, | sin((Av,c −AE)/2)|}∥1
di = 2ρ∥min{| sin((Av,c −Ac)/2)|, | sin((Al/2ρ)/2)|}∥1.

(16)
where ∥·∥1 is the ℓ1 norm, sin(·) and min(·) are element-wise
sine and minimization functions. The parameter η ∈ (0, 1)
is fixed during training, so that v is encouraged to be inside
the arc Aq , but not necessarily be equal to the centers of
Aq (i.e., semantic center point). Since the union operator is
represented by a set of arc embeddings, the distance function d
defined above is not directly applicable. Therefore, we take the
minimum distance between the entity point embedding and the
set of query arc embeddings to be the result as the Disjunctive
Normal Form [2].

Loss Function. Given a set of logical queries during the
training stage, we optimize the following loss function

Loss = − log σ(γ − d(v∥Aq)− ξ∥Relu(hv − hUq )∥1)

− 1

m

m∑
i=1

log σ(ξ∥Relu(hv′
i
− hUq

)∥1 + d(v′
i∥Aq)− γ),

(17)

where γ > 0 is a fixed margin, v ∈ JqK is a positive entity,
v′i /∈ JqK is the i-th negative entity, m is the number of
negative entities and σ(·) is the sigmoid function. The term
ξ∥Relu(hv −hUq )∥1 is used to measure the distance between
the one-hot vector hv and one-hot/multi-hot vector hUq . In
summary, the overall training procedure of the proposed HaLk
is summarized in Algorithm 1.

It is worth mentioning that, our framework and ConE are
both based on the rotation paradigm, but there are major
differences: (1) Based on the proposed arc embedding with
chord length as the new distance measurement standard, we
avoid the duality of results caused by the periodicity of
the angle in ConE. (2) HaLk has the potential to capture
hierarchical relations in KGs through the polar radius, while
ConE cannot. (3) The issue of cascading error is further
addressed by introducing the start point embedding and end
point embedding, which bridge the semantic gap between
center modeling and cardinality modeling. (4) HaLk improves
the applicability of logical queries in practice by implementing
five operators in a unified model.

H. Complexity Analysis

First, we give the complexity of each operator during the
training stage followed by the online cost. The time complexity
of training stage includes five parts as follows. For the projec-
tion/negation operator, the time complexity is O(|B|d), where
|B| denotes the batch size and d represents the dimension of
query embeddings and entity embeddings. The complexity of
difference/intersection operation is O(|B|kd+ |B|d), where k
denotes the number of input entities (e.g., 3i, k = 3). Union
operation takes O(1) cost since it only needs to simply gather
the results of n conjunctive queries.

During the online stage, answering a logical query simply
involves processing the n conjunctive queries in Eq. (1), where
n is typically small in practice. Note that all n computations
can be parallelized. Additionally, we execute a sequence of
simple logical operations based on arc embedding for each
conjunctive query. The time required for each conjunctive
query is a simple superposition of the execution times of
the operators it contains, which is usually a small constant
time. To get the final answers, we perform a range search in
the low-dimensional vector space, which can also be done
in constant time using search algorithms such as Locality
Sensitive Hashing (LSH) [26]. In total, processing a logical
query online is very fast, as discussed in Section IV-E. Plus,
the online time will not significantly increase as the knowledge
graphs/queries gradually expand.

IV. EXPERIMENTS

In this section, we give the experimental configurations and
conduct comprehensive experiments to evaluate the perfor-
mance of the proposed HaLk.

A. Experimental Settings

For a fair comparison, we follow the commonly-used ex-
perimental configurations in [7]–[9].

Datasets. We evaluate our approach on three standard
knowledge graphs: FB15k [20], FB15k-237(FB237) [27], and
NELL995 (NELL) [28]. We create three graphs respectively
for training, validation and test, which satisfies Gtraining ⊆
Gvalidation ⊆ Gtest.

Baselines. We compare HaLk against three state-of-the-art
methods, including ConE [8], NewLook [7], and MLPMix [9],
all of which are published in the last two years. NewLook is
SOTA among methods that can support newly-defined FOL
operations, ConE and MLPMix are SOTA among methods that
can support traditional FOL operations. Note that ConE and
MLPMix do not support difference operator, and NewLook do
not support negation operator. Thus corresponding results are
not included in the experiments.

Queries. We collect the same query structures from the
baselines, whose query workloads are in their public reposi-
tory. We obtain the 16 basic query structures in total, including
12 query structures (that is, 1p, 2p, 3p, 2i, 3i, ip, pi, 2u, up, 2d,
3d, dp) from NewLook, and 4 query structures with negation
(that is, 2in, 3in, pin, pni) from ConE and MLPMix, as shown
in Fig. 4 in the Supplementary. To assess the generalization



Algorithm 1: HaLk Algorithm
Input: Queries Q with positive entity Vp and negative

entities Vn, knowledge graph triples;
Output: Entity embeddings, relation embeddings;

1 Initialize e ∈ E and r ∈ R randomly;
2 for epoch≤ MaxEpoch or !convergence do
3 for batch query with the same structure ∈ Q do
4 loss = 0;
5 while (op = nextOp(·) ̸= NULL) do
6 if op == ’projection’ then
7 Compute the arc embedding (Ac,Al)

by Eq. (2);
8 if op == ’intersection’ then
9 Compute the arc embedding (Ac,Al)

by Eq. (10), (11), (12);
10 if op == ’difference’ then
11 Compute the arc embedding (Ac,Al)

by Eq. (6), (7), (8), (9);
12 if op == ’negation’ then
13 Compute the arc embedding (Ac,Al)

by Eq. (13), (14);
14 if op == ’union’ then
15 Union of k input query embeddings;

16 Compute the loss according to Eq. (17) ;
17 epoch+=1;

18 return E, R

ability of the model, complex query structures, i.e., ip, pi, 2u,
up and dp, are only evaluated in the validation and test stages.

Training protocol. We implement HaLk in Pytorch on
four Nvidia RTX 3090 GPU with 1TB RAM. And we set
embedding dimensionality d = 800, η = 0.02 (in Eq. (15))
and γ = 24 (in Eq. (17)). We use the uniform distribution to
initialize the entity embeddings and relation embeddings. In
each iteration, we sample a mini-batch of 512 queries and set
the negative sampling number to 128. We optimize the loss
function in Eq. (17) using Adam optimizer [29] with a learning
rate of 0.0001.

Evaluation protocols. We adopt two evaluation protocols,
i.e., Mean Reciprocal Rank (MRR) and Hits at K (Hit@K),
both of which are used in baselines [7]–[9]. We average the
evaluation scores over all the queries within the same query
structure, and report the results separately for different query
structures. For both evaluation metrics, a higher score indicates
better performance.

B. Effectiveness of Query Processing

Following the same settings as the baseline methods, we
compare HaLk against ConE, MLPMix and NewLook on
queries with and without negation operation. We evaluate the
effectiveness on three benchmark datasets under two widely-
used evaluation metrics (i.e., MRR and Hit@3).

Queries without negation operation. We can observe from
Tables I and II that (1) HaLk significantly and consistently
outperforms three baselines across all the query structures,
including those not seen (i.e., ip, pi, 2u, up, dp) during the
training stage. Overall, we gain averaged 14% higher MRR
and averaged 12% higher Hit@3 than the best competitor on
FB15k dataset, averaged 15% higher MRR and Hit@3 than the
best competitor on FB237 dataset, as well as averaged 16%
higher MRR and Hit@3 than the best competitor on NELL
dataset. (2) For multi-hop queries (e.g., 3p, ip, pi, dp), HaLk
achieves up to 31%, 29%, 36% absolute improvement over the
best competitor on FB15k, FB237 and NELL, respectively. It
suggests that closure modelling for the operations is beneficial
for processing complex queries based on arc embedding back-
bone since the cascading errors can be alleviated effectively.
In particular, the improvement of dp structure confirms that
the difference operator is suitable for multi-hop queries due
to the compact but accurate candidate answers. (3) Compared
to ConE that is also rotation-based embedding backbone, the
average accuracy of HaLk is 1.3-3 times that of ConE on
three datasets in terms of MRR and Hit@3, which suggests the
effectiveness of the proposed neural operators by considering
their own intrinsic properties. (4) In contrast to MLPMix
which employs the non-geometrical method to embed queries,
HaLk consistently beats it by a substantial margin (i.e., up to
60% improvement in MRR and Hit@3); meanwhile, NewLook
and ConE also perform better than MLPMix, which implies
that geometry-based methods might be beneficial for logical
queries on knowledge graphs. This may be because geometry-
based methods have the ability to model and employ the
cardinality of answer sets during the training stage. (5) For
the queries with difference operation (i.e., 2d, 3d, dp), HaLk
yields up to 8%, 5%, and 21% improvements in MRR and
Hit@3 against NewLook among three benchmark datasets. It
means that the proposed difference model can alleviate the
effects of false negatives and false positives, demonstrating the
superiority of modelling with closed-form solutions in HaLk.
(6) We can observe that queries with projection operation
universally outperform those of baselines, which indicates that
the introduction of the start point and end point of the arc
segment can boost each other and alleviate the cascading
errors. (7) For new queries unseen during the training stage,
HaLk gets an impressive improvement, which shows that
HaLk generalizes well within and beyond query structures.

Queries with negation operation Tables III and IV show
the results of HaLk against ConE and MLPMix on modelling
FOL queries with negation. Overall, HaLk outperforms ConE
and MLPMix by a large margin but the overall performance
of all methods is on the low level. This is because the size
of answer sets of queries is very large, sometimes up to
4000. Besides, it is observed that HaLk gains up to double
improvements than baselines on NELL dataset in terms of
MRR and Hit@3, which means that the neural model to
negation operator can make the target arc segment to get close
and cover more true answers. For the FB15k dataset, HaLk is
slightly better than baselines in most cases, which suggests



TABLE I: MRR results (%) for answering queries on FB15k, FB237, and NELL. The best result is highlighted in bold.

Dataset Method
Query

1p 2p 3p 2i 3i ip pi 2u up 2d 3d dp Average

FB15k
ConE 73.1 34.0 29.2 64.4 73.4 35.6 51.0 55.3 31.6 - - - 49.7
Newlook 84.1 56.6 45.1 60.1 77.9 28.7 56.9 82.5 34.0 92.0 45.8 42.8 58.9
MLPMix 71.4 29.0 24.8 60.0 70.7 32.7 47.7 39.6 26.0 - - - 44.7
Ours 98.4 72.7 57.9 81.1 86.7 59.8 67.6 95.6 48.1 97.3 47.5 64.3 73.1

FB237
ConE 42.1 12.7 11.0 32.4 47.6 14.8 26.2 14.1 10.0 - - - 23.4
Newlook 79.7 42.3 29.3 62.6 70.7 22.2 39.7 64.4 23.3 86.8 36.1 37.7 49.6
MLPMix 41.5 11.5 9.8 33.5 47.2 14.0 24.9 14.4 9.2 - - - 22.9
Ours 97.0 63.9 41.3 72.6 76.1 48.1 52.7 93.6 36.2 94.5 39.6 55.5 64.3

NELL
ConE 53.2 16.1 14.0 39.9 50.4 17.5 26.3 15.4 11.3 - - - 27.1
Newlook 86.2 57.0 45.6 72.0 79.1 26.0 44.0 76.7 31.3 91.5 44.5 53.8 59.0
MLPMix 55.4 16.5 13.9 39.5 51.0 18.3 25.7 14.7 11.2 - - - 27.4
Ours 96.1 79.4 59.4 87.2 88.8 59.3 71.5 91.8 47.6 96.0 49.9 68.3 74.6

TABLE II: Hit@3 results (%) for answering queries on FB15k, FB237, and NELL.

Dataset Method
Query

1p 2p 3p 2i 3i ip pi 2u up 2d 3d dp Average

FB15k
ConE 81.3 37.3 31.7 71.1 80.2 38.8 56.5 61.5 34.4 - - - 54.8
Newlook 88.8 63.9 51.4 72.3 77.7 31.2 61.5 93.8 35.8 94.2 52.4 45.7 64.1
MLPMix 79.1 32.0 27.0 66.4 77.0 35.8 52.7 45.1 28.1 - - - 49.2
Ours 99.8 76.0 60.8 84.5 89.4 61.9 71.3 99.1 51.8 97.1 55.3 63.8 75.9

FB237
ConE 47.2 13.4 11.2 37.9 52.7 15.4 25.8 15.0 11.6 - - - 25.6
Newlook 85.6 46.5 31.7 67.8 74.9 23.9 43.7 71.5 25.8 91.2 41.9 40.1 53.7
MLPMix 45.8 11.7 9.8 37.5 52.2 14.5 27.2 15.1 9.2 - - - 24.8
Ours 99.4 68.9 45.5 76.6 79.2 51.4 56.2 98.0 39.8 96.8 46.2 60.5 68.2

NELL
ConE 58.4 17.2 14.5 44.9 56.5 18.8 28.5 16.6 11.9 - - - 29.7
Newlook 90.5 62.2 49.7 77.2 83.4 28.8 47.4 83.5 34.6 94.6 50.0 59.6 63.5
MLPMix 58.8 15.4 13.6 43.7 55.0 15.9 26.8 14.0 10.8 - - - 28.2
Ours 98.6 85.3 64.7 90.0 92.1 64.1 75.3 95.9 52.5 98.4 56.6 74.2 79.0

TABLE III: MRR results (%) for answering queries with
negation on FB15K, FB237, and NELL.

Dataset Method
Query

2in 3in pni pin AVG

FB15k
ConE 18.0 18.6 15.2 9.7 15.4
MLPMix 16.2 17.2 14.5 8.1 14.0
Ours 18.6 19.0 16.3 10.2 16.0

FB237
ConE 5.7 9.4 3.9 4.4 5.9
MLPMix 6.3 10.8 4.4 4.5 6.5
Ours 7.8 11.7 4.5 5.0 7.3

NELL
ConE 5.5 7.8 3.9 3.9 5.3
MLPMix 5.3 8.9 3.4 3.8 5.4
Ours 11.6 15.5 7.7 6.6 10.4

that we need to make further exploration when processing
large answer sets and dense data graphs. There remains a large
room to further improve and optimize the negation operator
by considering its properties including a very large answer set
and limited query instances for learning in knowledge graphs.

TABLE IV: Hit@3 results (%) for answering queries with
negation on FB15K, FB237, and NELL.

Dataset Method
Query

2in 3in pni pin AVG

FB15k
ConE 18.4 19.9 15.5 9.0 15.7
MLPMix 16.8 18.3 14.7 7.1 14.2
Ours 19.8 21.4 16.1 10.3 16.9

FB237
ConE 4.8 8.6 3.0 3.4 5.0
MLPMix 5.6 10.1 3.4 3.6 5.7
Ours 7.8 12.1 4.4 4.4 7.2

NELL
ConE 3.9 6.3 2.8 2.8 4.0
MLPMix 4.0 7.9 2.5 2.7 4.3
Ours 12.0 16.7 7.5 6.2 10.6

C. Ablation Study

We conduct the following ablation studies for difference,
negation and projection operators on the NELL dataset under
two evaluation metrics. All ablated networks are trained on
the same experimental environment.

Difference operation. As we can see from the main effec-
tiveness experiment above, closure modelling of HaLk is better
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Fig. 6: (a) Accuracy and query time of GFinder before and after the pruning. (b) Offline time of different methods on three
datasets. (c) Online time of different methods on three datasets.

TABLE V: Ablation study on NELL under MRR and Hit@3.

Difference
Hit@3 MRR

2d 3d dp 2d 3d dp

HaLk-V1 97.3 46.0 61.7 92.8 40.2 44.1
HaLk 98.4 56.6 74.2 96.0 49.9 68.3

Negation
Hit@3 MRR

2in 3in pin 2in 3in pin

HaLk-V2 9.7 12.5 4.5 9.5 11.7 5.0
HaLk 12.0 16.7 6.2 11.5 15.5 6.6

Projection
Hit@3 MRR

1p 2p 3p 1p 2p 3p

HaLk-V3 97.7 79.1 59.5 94.8 73.4 54.6
HaLk 98.6 85.3 64.7 96.1 79.4 59.4

than approximation modelling of NewLook. Here, we invoke
the overlap computation of NewLook to replace that of HaLk
and remove cardinality constraint to learn difference operator,
dubbed HaLk-V1. It is observed from Table V that the
proposed arclength computation in the HaLk achieves a much
better performance than the HaLk-V1. For instance, HaLk can
gain up to 14% improvement than HaLk-V1 on unseen query
structures (i.e., dp), which indicates the superiority of the
proposed difference model. Meanwhile, this also explains that
cardinality constraint facilitates generating more appropriate
regions for answers to logical queries.

Negation operation. We adapt the HaLk with the linear
transformation to model the negation operator, namely HaLk-
V2. We can see from Table V that HaLk with non-linear
transformation is better than HaLk-V2 under both metrics. It
means that HaLk has the ability to adaptively adjust the biased
arc segments and mitigate the cascading error accumulated
from previous paths. Besides, HaLk-V2 still outperforms ConE
and MLPMix which also follow the linear transformation as-
sumption, which suggests that HaLk can better learn projection
and intersection operators with smaller errors.

Projection We integrate the projection model of NewLook,
which performs better than the other two baselines, into HaLk,

namely HaLk-V3. We can see from Table V that HaLk is more
effective in alleviating cascading error, especially in multi-hop
queries (e.g., 2p, 3p). This also suggests that the introduction
of start point and end point of arc segment contributes to
adjusting the biased arcs by simultaneously using the location
information and range information. Furthermore, the more
accurate modelling of the projection operator also leads to
better intersection operations as shown in Tables I and II.

D. The Pruning Power of HaLk

To evaluate the pruning ability of HaLk, we perform experi-
ments on HaLk to offer a candidate set for subgraph matching
based methods, and we select the SOTA method GFinder [5]
as the base. We take 6 query structures (i.e., 2ipp, 2ippu,
2ippd, 3ipp, 3ippu, 3ippd) as test structures to evaluate the
pruning performance on NELL dataset in terms of accuracy.
For each query, we use HaLk to obtain top-20 candidates
for each variable node and add these candidates into a node
set S. After that, an induced data graph based on S could
be generated, and we thus start from these anchor nodes to
execute the GFinder on the induced data graph. Finally, we
make a comparison of GFinder’s accuracy and online query
time before and after the pruning.

As observed from Fig. 6a, the pruning strategy provided
by HaLk can significantly reduce the online query time of
GFinder by approximately two-thirds with acceptable accuracy
sacrifice (about 5% on average), which implies that HaLk
can help speed up subgraph matching based methods as a
pruning strategy. This also provides a promising direction to
further optimize subgraph matching based methods by using
the versatility of neural networks. For example, embedding
based methods can become an alternative to the index structure
of the data graph, which can reduce the large cost of index
construction.

E. Efficiency of Query Processing

To evaluate the efficiency of our HaLk, we perform exper-
iments on three datasets and report the offline training time
and online query time. Here we select the same six query
structures as the experiment in Section IV-D, each of which
includes 100 queries. For the offline time, we calculate the



Fig. 7: Procedure of answering a SPARQL query with the
HaLk executor.

total training time while taking the average running time of
these query structures. For the online query time, since the
index in the GFinder method is built dynamically according
to the characteristics of query, the time for building the index
should be included in the test time.

We can observe from Fig. 6b that the non-geometry method
MLPMix costs the most time during the training stage, while
geometric methods (i.e., NewLook, ConE, and HaLk) take
comparable computation costs. Note that HaLk accepts and
learns a new full set of logical operations including five types
of operators, while the other two methods only support four
ones. Thus, HaLK takes slightly more training time than them.

On the other, embedding based methods are much faster
than subgraph matching based methods in terms of online
time since the time required for a query is only a simple
superposition of the numerical calculation time of the operator
networks it contains, regardless of the size of the knowledge
graph. And the query times of embedding based methods are
competitive as shown in Fig. 6c.

F. Application: SPARQL Query Answering

Our HaLk can be integrated into the broad landscape of
query answering as the query executor and be compatible
with real query languages. To demonstrate this, we take the
widely-used query language SPARQL [30] as an example and
give the detailed query procedure. Specifically, we provide a
query Adaptor to map between graph patterns and our five
logical operators, as shown in Fig. 7(b), which also illustrates
the importance of supporting more types of first-order logical
operations to cover more scenarios in practice. Using the query
Adaptor, we can first obtain the corresponding logical query
for the given SPARQL query, and then HaLk can provide
the query results. We visualize the process of answering a
given SPARQL query on FB15k-237 test set using HaLk as
the query executor in Fig. 7. The query results are shown in the
Supplementary due to space limitation. Note that the process
of generating query plans for graph patterns can occur through

TABLE VI: Accuracy and execution time of different sizes of
queries on NELL. Here, ’QS’: Query Size, ’EQS’: Example
Query Structure, ’H’: HaLk, ’G’: GFinder, ’ET’: Execution
Time.

QS 1 2 3 4 5

EQS 1p 2p pi pip p3ip

Acc H G H G H G H G H G
99.4 89.3 93.7 84.2 87.9 73.9 74.8 64.5 75.8 60.7

ET (ms) H G H G H G H G H G
28 148 41 237 85 562 100 894 108 1205

the query transformation and optimization layers in the query
engine. For simplicity, these layers are omitted in Fig. 7.

G. Scalability with Query Size

To further evaluate the scalability of our HaLk, we conduct
experiments on different sizes of queries compared to subgraph
matching-based method (i.e., GFinder) on NELL dataset. As
mentioned before, both HaLk and GFinder can serve as the
query executor, where the inputs of query graphs can be
generated by SPARQL queries using the Adaptor. We report
the query execution time and accuracy in Table VI. The
results indicate that HaLk performs better than GFinder in
both accuracy and runtime, especially for larger query sizes.
HaLk is approximately 12 times faster than GFinder and
improves accuracy by up to 15.1% for large queries. HaLk’s
runtime slightly increases with an increase in query complex-
ity while GFinder’s runtime dramatically increases, which is
consistent with our theoretical analysis before. This suggests
that embedding-based methods like HaLk can significantly
optimize the query engine as an effective and efficient query
executor compared to subgraph matching-based methods. This
presents an opportunity for future research to explore more
advanced settings of the embedding-based query executor.

V. CONCLUSION

In this paper, we introduce a new full set of logical opera-
tions for the first time and propose a holistic approach to model
them. We propose effective models for logical operations to
mitigate the cascading error according to their own properties,
thereby making the HaLk suitable for processing multi-hop,
complex queries. HaLk is capable of providing elegant solu-
tions for five operations in a closed form, while the existing
solutions cannot. Extensive experimental results demonstrate
that HaLk consistently outperforms baselines by a large margin
(up to 32% improvement in MRR and Hit@3); meanwhile,
HaLk can serve as a pruning method for subgraph matching
based algorithms, which can significantly reduce online query
time and provide a promising direction to optimize subgraph
matching based methods by employing neural networks.
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