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ABSTRACT

Automated theorem proving (ATP) in complex mathematical domains remains a
fundamental challenge for large language models (LLMs), due to the scarcity and
imbalance of formalized training data. Combinatorics, with its discrete structures
and symbolic reasoning, provides a demanding testbed for evaluating ATP capabil-
ities. Addressing this data scarcity gap, we propose a comprehensive data-centric
framework built upon two essential components: LEANCOMB, a high-quality
human-curated dataset, and ATG4CI, a novel method for automated theorem
generation. LEANCOMB is a manually curated dataset of formalized combinatorial
identities in Lean 4. It encompasses eight fundamental areas of combinatorics,
with training and test sets derived from the classical literature, enabling robust
evaluation of cross-domain generalization. To overcome the data sparsity, we
develop a data augmentation framework, the Automated Theorem Generator for
Combinatorial Identities (ATG4CI). It introduces a novel "Learn-from-Failure"
paradigm, combining LLM-guided exploration with reinforcement learning-driven
search to systematically discover new theorems from the boundaries of models’
reasoning capabilities. Applied to LEANCOMB, ATG4CI generates over 260K
Lean-verifiable theorems, each with a complete proof. Fine-tuning models on the
human-curated training set and the augmented dataset results in average improve-
ments of 4.0% and 7.2%, respectively, on LEANCOMB-Test set. The fine-tuned
models also achieve promising performance on challenging ATP benchmarks,
PutnamBench and CombiBench, demonstrating the effectiveness of our approach.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive performance on well-structured
automated theorem proving (ATP) tasks (Wei et al., [2024; Xin et al., 2025} [Lin et al.|, |2025; |Guo et al.,
2025 |Wang et al., [2025). However, their capabilities remain limited in more complex mathematical
domains, particularly due to the scarcity and imbalance of formalized training data (Wei et al.,|2024;
Yu et al.l 2025). These limitations are especially pronounced in fields that demand intricate symbolic
reasoning. Combinatorial identities are central to the study of combinatorics (Britz, 2010), and play
an important role in a wide range of mathematical and computational disciplines, including algebra,
probability, and algorithm design (Chen & Guol [2024; |Konvalinka, [2008). They serve as essential
tools for counting, enumeration, and establishing relationships between discrete structures. Despite
their fundamental importance, automated theorem proving for combinatorial identities remains highly
challenging due to the inherently discrete and structural nature of combinatorics, as well as the
complexity and length of intricate proofs (Trinh et al.,[2024; LessWrong|, [2024).

These challenges necessitate large-scale training data, which is severely lacking in current formal
theorem libraries. For instance, although the Lean-based standard library Mathlib4 (The mathlib
Community, |2020) contains over 213K theorems and proofs, it includes fewer than 2K results related
to combinatorics, with only around 100 specifically involving combinatorial identities. This stark
imbalance highlights the urgent need for domain-specific formal data. While various automated
theorem generation (ATG) approaches have been proposed to alleviate data scarcity, these methods
generally focus on broad or well-studied domains. INT (Wu et al., 2021) and STP (Dong & Mal[2025)
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synthesize theorems from axioms or conjectures, while LeanDojo (Yang et al.,[2024), Alchemy (Wu
et al.| [2024a), and MUSTARD (Huang et al., [2024) extract or generate formal statements by applying
known tactics within existing formal mathematics libraries (Wu et al.| 2024a; Huang et al., [2024).
However, automated theorem generation for combinatorial identities remains largely unexplored by
existing techniques, creating a critical shortfall in this specialized area.

To mitigate this shortfall, we propose a data-centric solution by constructing a specialized formalized
dataset and developing an automated theorem generation framework. Specifically, we introduce
LEANCOMB, a manually curated dataset of formalized combinatorial identities in Lean 4 (Ying
et al.,2024). Covering eight core topics, LEANCOMB comprises a training set of 418 combinatorial
identities ( along with 209 supporting lemmas), each accompanied by formal statements and proofs,
as well as a test set of 100 combinatorial identities containing only formal statements. To further
augment the training data, we propose ATG4CI, a self-improving framework of automated theorem
generation for combinatorial identities. This framework integrates LLM-guided tactic exploration with
reinforcement learning-driven Monte Carlo Tree Search (MCTS) to generate high-quality theorems.
Using the training set of LEANCOMB, this framework builds a large-scale dataset, LEANCOMB++,
containing 260, 466 Lean-verifiable theorems with full proofs. We evaluate models fine-tuned on
both LEANCOMB and LEANCOMB++. Our models achieve up to 25% pass@8 accuracy on the test
set, with average gains of 4.0% and 7.2% from the human-curated and generated data, respectively.
Moreover, our fine-tuned models exhibit generalization on challenging formal benchmarks, including
PutnamBench (Tsoukalas et al.,[2024)) and CombiBench (Liu et al., 2025), demonstrating the utility
of our datasets and approach for advancing automated theorem proving in combinatorics. Our
contributions are summarized as follows:

* We present LEANCOMB, a human-annotated dataset of formalized combinatorial identities
in Lean 4, covering 8 core areas. The training and test sets are drawn from different classical
references, enabling robust evaluation of generalization.

* We propose ATG4CI, a novel framework that transforms failed proof attempts into valuable
training signals. It systematically generates new, verifiable theorems from the boundaries of
a model’s current reasoning capabilities, establishing a self-improving paradigm for data
creation in specialized mathematical domains. It generates LEANCOMB++, a large dataset
of 260 K+ formally verified combinatorial theorems.

* We show that models fine-tuned on LEANCOMB and LEANCOMB++ achieve significant
improvements on our test set and promising performance on two external ATP benchmarks,
highlighting the domain-specific value and general applicability of our framework.

2 RELATED WORK

Automated Theorem Proving and Generation. Mathematical reasoning has gained increasing
attention in artificial intelligence (Saxton et al.l [2019; |Wang et al.| 2023). ATP systems typically
follow two main paradigms: tree search and whole-proof generation. Tree search methods, like GPT-
f (Polu & Sutskever, [2020)), explore proof steps incrementally, while BFS-Prover (Xin et al., 2025)
scales this approach with breadth-first search. MPS-Prover (Liang et al.| [2025)) creates structured
plans to guide subsequent formalization. Whole-proof generation methods synthesize complete proofs
in a single step. Leading representatives of this approach, such as Goedel-Prover-V2 (Lin et al.} 2025)),
DeepSeek-Prover-v2 (Guo et al., [2025)), Kimina-Prover (Wang et al.,[2025)), and Seed-Prover (Chen
et al.} 2025) incorporate expert iteration, massive synthetic data, reinforcement learning, and self-
exploration, achieving state-of-the-art results on general benchmark. A key challenge fueling ATP
research is the acquisition of training data, which has led to the growing subfield of automated theorem
generation (ATG). Recent work increasingly employs LLMs for this task. MUSTARD (Huang et al.,
2024) uses a concept-driven pipeline to produce high-quality theorem—proof pairs, while AIPS (Wei
et al.l |2024) enables proof generation for algebraic inequalities without human demonstrations.
Extending beyond static datasets, STP (Dong & Mal [2025)) proposes a self-play framework where
conjecturing and proving co-evolve. Despite these advances, both general ATP and specialized ATG
methods remain limited in domains like combinatorics, motivating our work on a scalable generation
framework for this area.

Datasets and Benchmarks for Theorem Proving. Lean’s mathematical library, Mathlib (The
mathlib Community, |2020), serves as the primary source of training data for many neural theorem
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provers, containing a large collection of formalized theorems. To further enhance this, datasets
like HERALD have been generated via data augmentation. Another large-scale resource is Lean
WorkBook (Ying et al.,2024), which provides formal proofs sourced from mathematics competitions.
For evaluation, several benchmarks have been proposed. MiniF2F (Zheng et al2022)) and PuttAna
target problems from high-level competitions, while FormalMATH (Yu et al.| 2025)) offers a broad,
domain-diverse testbed. More specialized benchmarks include CombiBench (Liu et al.} 2025)) for
combinatorics, FIMO (Liu et al. 2023) for IMO problems, and ProofNet (Geuvers| [2009) for
undergraduate-level mathematics. However, a common limitation across these resources is the
scarcity of combinatorial data.

3 LEANCOMB: A COMBINATORIAL IDENTITIES DATASET

We introduce LEANCOMB, a manually curated dataset of formalized combinatorial identities in Lean
4, designed to support ATP research in symbolic mathematics. Unlike prior datasets, LEANCOMB
focuses on identities that require precise algebraic manipulation and multi-step reasoning. The
dataset is split into 627 training theorems, each equipped with full Lean 4 formal proofs, and 100
test theorems, which are proof-free and drawn from broader combinatorics literature (Gould, [1972),
enabling evaluation under full synthesis settings. The training identities are sourced from classical
references (Spiveyl [2019;|Shil, [2001). To ensure both novelty and coverage, any theorems overlapping
with Mathlib4, PutnamBench, CombiBench, FIMO, and ProofNet were rigorously removed. The
construction process involved more than 1,800 hours of expert effort from a team of 15+ trained
formalizers, each following a detailed annotation protocol. Further dataset statistics and curation
methodology are available in Appendix [B]
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Figure 1: Statistics of the LEANCOMB dataset. (a) Theorem categories: the dataset spans 8
mathematical areas, with the majority coming from Basic Techniques (157), Combinatorics (93), and
Calculus (82). (b) Tactic diversity: most proofs require 2—6 unique tactic types, with some using
over 60; the maximum reaches 282, indicating high procedural complexity. (c) Proof length: average
proof lengths range from 33-38 steps, depending on category, with some extreme cases exceeding
400 steps. (d) Statement complexity: formal statements vary in syntactic length across topics, with
Special Numbers and Generating Functions often exhibiting the highest structural depth.

Figure[I] presents key dataset characteristics: (a) Theorem Categories. Most entries fall under Basic
Techniques (157), followed by Combinatorics (93). Categories such as Generating Functions (34)
are relatively underrepresented, reflecting both their mathematical niche and the scarcity of formal
resources in these areas. (b) Tactic Diversity. While the majority of theorems use between 2 and 6
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different tactic types, 21.7% involve more than 60 distinct tactics, with the most complex proof using
282 unique tactics. This highlights the need for ATP systems to master not just individual tactics but
also strategy composition across reasoning chains. (c) Proof Length. Proof depths vary significantly
by topic. Average lengths are 38 steps for Basic Techniques, 35 for Combinatorics, and 33 for
Calculus. Several outliers, especially in Generating Functions and Probability, require over 400 steps
(e.g., 509 steps in one instance), posing a substantial challenge for both annotation and automated
reasoning. (d) Statement Complexity. We measure the syntactic complexity of theorem statements
by code length. Categories with sparse mathematical definitions—such as Special Numbers and
Generating Functions—tend to produce longer, more nested statements. In contrast, Combinatorics
typically benefits from richer existing definitions, resulting in relatively concise formal encodings.

4 THE FRAMEWORK OF AUTOMATED THEOREM GENERATION

This section introduces ATG4CI, a general iterative framework for automated theorem generation
designed to enhance the discovery of new theorems through policy-guided prediction. In this work,
ATG4Cl is built upon LEANCOMB training set, combining self-improving LLMs with a reinforcement
learning-based search algorithm. Candidate theorems are generated via policy prediction and filtered
through a theorem verification process, with only non-redundant and correct theorems retained to
construct the extended LEANCOMB++ dataset.

Shown in Fig.[2] ATG4CI comprises three stages: Partial Proof Paths (P3s) Construction, Candidate
Theorem Generation, and Theorem Validation. The procedure begins with the LEANCOMB training
set L, consisting of formalized identities, serving as the foundational data for data augmentation
and model fine-tuning. Using this, the pipeline enters the P3s Construction phase, where Lean4Kit
is employed to transform each theorem into a proof tree. Their corresponding state-policy pairs are
extracted from these trees. The states are then corrected to ensure their quality and correctness.
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Figure 2: The Framework of ATG4CI.

Following this, in the Candidate Theorem Generation phase (top right of Fig. [2), the procedure begins
with generating candidate tactics using a fine-tuned model M,;. The candidate tactics are then refined
by selecting the most appropriate ones for each partial proof path (P3) through a Reinforcement
Learning-based search tailored to address the specific requirements of the combinatorial identities
domain. This tactic prediction process is repeated to ultimately derive candidate theorems, followed
by the Theorem Validation stage (bottom of Fig. [2), where redundant theorems are eliminated, and
the correctness of the theorems is verified. Specifically, this stage consists of two key steps: Theorem
Deduplication and Error Correction, both of which ensure the uniqueness and correctness of the
dataset. Ultimately, the validated theorems are compiled into a new dataset G*, fed to train the
model M, enhancing its ability to generate more effective candidate tactics. Finally, the generated
dataset is combined with the LEANCOMB training set L; to form the LEANCOMB++ dataset E*,
which subsequently improves the performance of automated theorem proving. We demonstrate the
procedure of ATG4CI using a typical example is provided in Appendix
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4.1 PARTIAL PROOF PATHS (P3s) CONSTRUCTION

We focus on the P3s construction process, explaining how to use our Lean4Kit tool to extract
partial proof paths P from formalized theorems. Built on Lean 4, Lean4Kit supports robust data
extraction and interaction with both Lean and LLMs, with further details available in Appendix
To facilitate the exploration of new proof paths for P3s, the tool visualizes all tactics within the
proof environment, capturing the state transitions that occur before and after the application of each
tactic. A fully formalized proven theorem, consisting of n tactics, can be represented as a proof tree:
the root theorem forms the root node, tactics are
the edges, intermediate states are the child nodes, /" ——

and the “no goals” state is the leaf node. From (RT|- 3k eico1 (n+1),
this tree, Py = {p;}/'-] is extracted by tracing | B E-Srneen
the paths from the root to the intermediate states.
For example, the root theorem shown in Fig. [3]
represented by the root node in ) ;'_, nCSj =

Proof Tree

n * (n - 1).choose (k -
(n - 1) .choose 1

l rw [mul_sum]

FY¥k€Icol (n+1), n* (n- 1).choose (k - 1) E
1|y i € range n, n * (n - 1).choose i '

l rw [sum_Ico_eq sum_range].

ver
18y

") CL_,, transits through three sequential
tactlcs and eventually reaches the “no goals” state
at the leaf node, resulting in a four-layer proof tree.
From this tree, two P3s are extracted: one from the

root to the state after applying “rw[mul_sum]”,

F ¥k €Erange (n +1 - 1), n * (n - 1).choose (1 E
+k-1) =3 i€ rangen, n * (n - 1).choose i

and another from the root to the state after apply-
ing “rw[sum_Ico_eq_sum_range]”.

4.2 CANDIDATE THEOREM GENERATION

Figure 3: P3s Constructed by Lean4Kit.

The section explains how to generate candidate theorems from a given partial proof path, which
consists of two key steps: candidate tactic generation and tactic prediction, based on a reinforcement
learning search for combinatorial identities (RLSCI). We start with employing a fine-tuned model
M, trained by the training set of LEANCOMB, to generate candidate tactics cts for P3s.

Candidate Tactic Generation. To enhance the
quality and diversity of candidate tactics, we adopt
an iterative refinement tactic inspired by self- o
improving techniques for fine-tuning models. Ini- s
tially, the model is fine-tuned on the training set / ; o

of the LEANCOMB dataset L; and Lean’s founda- Q/ or; [P DTS i’ W ?gﬁi‘é’iii“‘} or, ="
tional library, Mathlib4. Given a partial proof path, Qo) =1
the improved model can generate n candidate tac-
tics, where n is a prior positive integer. The model
will be continuously refined in subsequent itera-
tions through fine-tuning with the augmented the-
orems generated from the previous iteration. This
iterative framework not only enhances the model’s
capacity to propose effective tactics but also broad-
ens its exploration of diverse tactic spaces.

: rw [range_eq_Ico]

ring_nf ct, : rw [Nat.sub_add_cancel]

= Qrucr

Figure 4: Candidate Theorems with RLSCI.

Tactic Prediction. The tactic prediction, based on RLSCI, consists of three primary steps: selecting
candidate tactics, expanding the P3s, and back-propagating values from the leaf nodes to the root.
These steps are iteratively performed until the proof is completed or no viable tactic is identified.
If successful, the process discovers a complete proof path for the root theorem RT'; otherwise, it
generates a candidate proof path cpy, for k =0, 1,...,s. Our RL framework comprises a critic model
Cp and a policy model Py. Completed proof nodes are assigned a value of 1, while failed nodes are
assigned a value of —1. Unresolved nodes are evaluated using the Polynomial Upper Confidence
Trees (PUCT) method (Silver et al.,[2017):

2.5 N(s,0)

Qpruct(s) NGO+

= Q(s,t) + cpuct - P(s,1) -

where (Q)(s,t) is the estimated value of the state-tactic pair, obtained from the value network or
learned from past simulations, and P(s,t) is the probability of selecting a tactic in state s based
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on the policy network, and ¢, is the exploration coefficient. In contrast, N (s, t) is the count of
executions of tactic ¢ in state s during the prediction process. All successful tactics are stored as
training data for LLMs. During backpropagation, values from the leaf nodes are propagated to the
root, updating the visit counts N (s, t) and cumulative action values.

The process aims to propagate proof paths as far as possible, terminating when the proof is complete
or when no viable tactic can be found. In the former case, the leaf node is marked as “no goals”,
indicating the discovery of a new proof for the root theorem RT'. In the latter case, the goals
corresponding to the leaf nodes of the candidate proof paths are treated as candidate theorems,
CT,, = {CT;}",. To generate new proofs, we incorporate the original root theorem RT into the
hypotheses and then apply tactics from the candidate path until the goal aligns with the target. Once
aligned, the “assumption” tactic resolves the goal, completing the proof.

4.3 THEOREM VALIDATION

Note that not all candidate theorems are correct or unique, so a validation process, including theorem
deduplication and correction, is necessary to retain the valid theorems. A detailed description of
theorem validation is given in Appendix

Theorem Deduplication: Candidate theorems are deduplicated from two perspectives. First, textual
duplication is identified by comparing the goals, premises, and proof steps. Identical theorems are
merged, retaining only one. Second, mathematical equivalence is checked by simplifying redundant
terms (e.g., +0, —0, *1, and /1), ensuring that only one mathematically equivalent version is kept.

Theorem Correction: After deduplication, as some candidate theorems may still contain expression
errors or fail to pass the proof process, correctness refinement is performed. After candidate theorems
are verified successfully by interacting with Lean, they are directly added to the generated dataset
G*. Those that fail verification are categorized by error type and corrected using the corresponding
correction methods. The corrected theorems are then added to G*.

We introduce the main steps of ATG4CI implemented in Algorithm[I} The procedure takes as inputs
the training set of LEANCOMB dataset Ly, the model M, that provides candidate tactics ct,, search
method RLSCI, the maximum round of iterations n, and returns the LEANCOMB++ dataset £*. We
construct partial proof paths P and initialize the generated dataset as G based on the LEANCOMB
training set L;. Subsequently, the following steps are iteratively performed within a predefined
maximum number of iterations. First, the model M,; is fine-tuned using the current generated dataset
(as described in Line 4). Next, based on P3s, M, is employed to generate candidate tactics (line 5).
Subsequently, the search algorithm RLSCI is applied to generate candidate theorems (Line 6). The
generated candidate theorems must undergo rigorous validation before being incorporated into the
generated dataset G} and further integrated into the enhanced dataset E* (Line 7-8).

Algorithm 1 The Framework of ATG4CI

Input: the training set of LEANCOMB Dataset L}, the model M, that provides candidate tactics
cts, search method RLSCI, maximum round of iterations n
Output: LEANCOMB++ dataset E*
: Ps < Construct_P3s(Ly)
GO — LI
E* «+ Lj
fori =0—n do
M}, «+ Fintune(G;)
cts + Produce_ct,(Ps, M)
G; < Generate_CTs(cts, RLSCI)
G} < Validation(G;)
E* +— E*+ G}
end for
return E*

TReYReRUNRLD 2

—_ =
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5 EXPERIMENTS

This section evaluates the effectiveness and generalization of our data-centric framework. LLMs
are fine-tuned on both the handcrafted dataset and the generated one. To evaluate the effectiveness
of our datasets, we report pass@8 on the LEANCOMB-Test set, and two increasingly challenging
external benchmarks: the mathematics competition dataset PutnamBench and the recently proposed
combinatorics-focused benchmark CombiBench. Experimental results across these benchmarks
demonstrate the effectiveness and generalization of the approach.

5.1 MAIN RESULTS

Analysis of LEANCOMB++ Dataset. Using the training set of LEANCOMB as a seed dataset, our
generator, ATG4CI, generate 260,466 novel combinatorics theorems in two iterations, forming the
enhanced dataset, LEANCOMB++. To provide candidate tactics for RLSCI, we iteratively fine-tune a
general-purpose LLM, LLaMA3.1-8B (Biderman et al.,|2023) with generated data in each round.
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Figure 5: Theorem Distribution by Proof Steps and Tactic Types in LEANCOMB++.

To assess the difficulty and quality of LEANCOMB++, we examine the distribution of proof steps and
tactic types. Figure[5{a) shows that while a significant portion of proofs are short (50% are within 8
steps), a substantial long tail of 65,117 theorems requires more than 16 steps, with the longest proof
reaching 192 steps. For tactic diversity (Figure [5(b)), while most proofs use a small set of common
tactics, 5,857 theorems require more than 20 distinct tactics, indicating high procedural complexity.
This long-tail distribution indicates that ATG4CI successfully discovers a significant number of
high-complexity theorems beyond the scope of trivial proof search, which is crucial for training
models to move beyond simple pattern matching and develop long-horizon reasoning capabilities.

Model Performance on LEANCOMB-Test. We evaluate the impact of fine-tuning on our datasets
with respect to in-domain performance. As shown in Table[I] training on the hand-curated LEAN-
CoMB dataset results in performance gains of up to 6 percentage points, with models like DeepSeek-
Prover-v2 (Guo et al.,2025) reaching 25% pass@8. Training on LEANCOMB++ dataset leads to even
further improvements, with performance increasing by up to 12 percentage points over the baseline
(e.g., Mathstral3-8B (Mistral AlL|[2024) improves from 12% to 24%). An interesting finding is that
DeepSeek-Prover-v2, a whole-proof generator, showed a performance decline with LEANCOMB++,
while other tree-search models performed excellently. We hypothesize that this is due to a mismatch
between the model architecture and data style. ATG4CI’s "learn-from-failure" mechanism generates
data suited for step-by-step reasoning, which is more effectively leveraged by tree-search models. Our
multi-round experiments (see Tabled] show that as training data increases, DeepSeek-Prover-v2’s
performance improves, suggesting it benefits from the additional data despite slower learning.

5.2 GENERALIZATION ANALYSIS: CROSS-DOMAIN PERFORMANCE.

We evaluated the models fine-tuned on LEANCOMB++ using two external public benchmarks:
PutnamBench, CombiBench. The results (see Table |Z[) demonstrate that our dataset enables the
models to solve a broader range of mathematical problems. All models outperform their baselines
on CombiBench. Notably, the number of problems solved by InternLM2.5-Step-Prover increased
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Table 1: Model Performance on LEANCOMB-Test Set Using Pass@ 1 and Pass@8 Metrics.

Model Pass@1 Pass@8

Base LEANCOMB LEANCOMB++ Base LEANCOMB LEANCOMB++

Tree Search Methods

Mathstral3 - 8B 9% 15% 19% 12% 18% 24%
Llama3 - 8B 9% 12% 16% 11% 15% 22%
Mistral - 7B 9% 12% 17 % 13% 18% 23%
InternLM2.5-Step 12% 16% 13% 16% 18% 25%

Whole-Proof Generation

DeepSeek-Prover-v2-7B 19% 21% 13% 23% 25% 17%

from 2 to 7, indicating a significant improvement in its combinatorial reasoning capabilities. On
PutnamBench, the fine-tuned Mathstral model even solved a previously unsolved combinatorics
problem by leveraging auxiliary lemmas from LEANCOMB, highlighting the potential of our approach
to enhance a model’s ability to solve out-of-distribution problems.

Table 2: Model Performance on CombiBench and PutnamBench with Pass@8(%).

Model CombiBench PutnamBench

Base LEANCOMB++ Base LEANCOMB++

Tree Search Methods

Mathstral3 - 8B 4/100 7/100 0/658 6/658
Llama3 - 8B 3/100 4/100 0/658 6/658
Mistral - 7B 3/100 7/100 0/658 6/658
InternLM2.5-Step-7B 2/100 7/100 6/658 7/658

Whole-proof Generation
DeepSeek-Prover-v2-7B 3/100 9/100 9/658 10/658

5.3 ANALYSIS AND DISCUSSION

The Challenges of LEANCOMB Benchmark. Although the relative performance improvements
are significant, the absolute success rate on the test set highlights the challenges of the LEANCOMB
benchmark. We attribute these challenges to category imbalance and inherent reasoning complexity.

Table 3: Distribution of Generated Theorems and Solved Ratio per Category.

Theorem Category # Generated (% of Total) Avg. Proof Length Solved / Total
Basic Techniques 71003 (27.3%) 14.83 18/34
Combinatorics 21905 (8.4%) 34.76 4/17
Calculus 27564 (10.6%) 25.10 2/14
Probability 33648 (13.0%) 46.18 4/8
Special Numbers 29691 (11.4%) 30.66 3/10
Generating Functions 12446 (4.8%) 41.18 0/5
Recurr. Rel. & Diff. 47213 (18.1%) 19.82 3/6
Misc. & Mech. Summation 16993 (6.5%) 49.13 2/6
Total 260466 (100.0%) - 39/100

Our analysis shows a strong correlation between data distribution and model performance. As seen
in Table 3] the theorem generation process produces more structured proofs, such as those in the
"Basic Techniques" category (27.3% of LEANCOMB++), where the success rate exceeds 50%. In
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contrast, for more challenging problems like "Generating Functions" (only 4.8% of data), the success
rate is 0%. The inherent complexity of the problems is a more fundamental factor. The average
proof length (used as a complexity proxy) is negatively correlated with success rate. The "Basic
Techniques" category, with the shortest average proof length (14.8 steps), has the highest success
rate, while longer proofs, like those in "Miscellaneous Techniques" (49.1 steps) and "Generating
Functions" (41.2 steps), have success rates close to zero. These findings suggest that the performance
bottleneck is not just due to data imbalance, but also the lack of long-horizon reasoning capabilities,
which LEANCOMB aims to rigorously test. These results highlight that LEANCOMB is a high-quality
benchmark that distinguishes the "comfort zone" and "capability boundary" of models, revealing that
long-horizon reasoning and complex combinatorial identities remain core challenges in ATP.

Effect of Iterative Theorem Generation. We analyze model performance across four rounds of
iterative fine-tuning on generated theorems. As shown in Table[d] most models, including Mathstral,
LLaMA3, and InternLM2.5, achieve peak performance in Round 2. The subsequent performance
decline can be attributed to diversity saturation, where later rounds yield fewer novel theorems, and
distribution shift, where generated data drifts from the original handcrafted distribution, potentially
harming generalization. DeepSeek-Prover-v2 is an exception, reaching its highest accuracy in Round
4. Based on the overall trends, we adopt the Round 2 dataset as our final augmented training set, as it
offers the best trade-off between performance and data quality across most models.

Table 4: Model performance (pass@8) across rounds of iterative theorem generation.

Round Mathstral-8B  LLaMA3-8B Mistral-7B  InternLM2.5 DeepSeek-v2

Round 1 19% 17% 15% 18% 16%
Round 2 24% 22% 23% 25% 17%
Round 3 16% 15% 16% 18% 19%
Round 4 12% 8% 14% 13% 21%

Impact of Reinforcement Learning and LLM-based Tactic Generation. To evaluate the role
of reinforcement learning and LLM-generated tactics, we conduct two ablation studies: Replace
LLaMA3.1-8B tactics with naive MCTS search results; Use BFS with 100 expert-curated tactics.
As shown in Table E], both ablations produce more data than our method (BFS yields the most).
However, models trained on our data perform better, surpassing MCTS and BFS by 13.5% and 14.2%,
respectively, on LEANCOMB-Test set. This supports the effectiveness of reinforcement learning and
LLM-guided tactic generation.

Table 5: Ablation results comparing ATG4CI with/without RL or LLM components.

Method # Candidate #New Success Rate(Avg.)
w/o RL (Naive MCTS) 1,350,474 182,288 7.0%
w/o LLM (BFS + Expert Tactics) 2,896,533 433,073 6.3%
ATGA4CI (Ours) 1,033,010 260,466 22.2%

6 CONCLUSION

We address the scarcity of formal data in combinatorics by proposing ATG4ClI, based on a novel
"Learn-from-Failure" paradigm that leverages unsuccessful proof attempts into Lean-verifiable
theorems. By leveraging our expert-curated LEANCOMB dataset, ATG4CI generated the augmented
LEANCOMB++. Experiments show that models fine-tuned on our datasets achieve significant
performance gains on the in-domain test set (a 7.2% average improvement) and that their symbolic
reasoning capabilities generalize to other challenging benchmarks like PutnamBench. Our work
provides valuable resources for combinatorial ATP and demonstrates a scalable methodology to data
creation, offering a promising template for addressing data scarcity in other mathematical domains.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we provide the
following resources and details.

Code and Data Availability: All code for our ATG4CI framework, including scripts for data
generation, model fine-tuning, and evaluation, will be made publicly available. All resources,
including the LEANCOMB test set, trained models, code for data generation, training, and evaluation,
as well as detailed results, are available at the LEANCOMB repositoryl

Experimental Details: A comprehensive description of our experimental setup is provided in Section
5. This includes the list of all baseline models, fine-tuning hyperparameters (learning rate, batch size,
optimizer, etc.), and the hardware used (NVIDIA L40 GPUs). Further details and prompt examples
are available in Appendix |G|

Dataset and Evaluation: The construction protocol, sources, and statistical properties of the
LEANCOMB dataset are detailed in Section [3|and Appendix [B] The evaluation protocol, including
the use of Best-First Search (BFS) and the pass@k metrics, is described in Section [5| All proofs
were verified using Lean 4 (v4.14.0) and its corresponding Mathlib4 library.

LLM USAGE STATEMENT

A Large Language Model (LLM) was used to assist in the writing and polishing of this manuscript.
Specifically, an LLM aided in improving grammar, clarity, and readability through tasks such as
sentence rephrasing and proofreading.

It is critical to note that the LLM was not involved in any core scientific aspects of this work, including
ideation, formulation of the research methodology, experimental design, or data analysis. All research
concepts, ideas, and scientific conclusions were developed exclusively by the human authors. The
LLM’s contribution was strictly limited to improving the linguistic quality of the text. The authors
take full responsibility for all content in this manuscript, including the accuracy and integrity of any
text modified by the LLM.
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A AN ILLUSTRATIVE EXAMPLE FOR ATG4CI

We now illustrate the end-to-end workflow of ATG4CI using a single identity, sum_mul_congr,
from our seed dataset.

Example 1. Consider a combinatorial identity and its formalization in Lean 4:

n n—1
> nCki=nd Cl_,. M
k=1 1=0

theorem sum_mul_congr {n : N}:
2| ¥ k € Finset.Ico 1 (n + 1), n x= Nat.choose (n - 1) (k - 1) =

n = % 1 € Finset.range n, Nat.choose (n - 1) 1 := by
4 rw [Finset.mul_sum]
5 rw [Finset.sum_Ico_eq_sum_range]

6 simp only [add_tsub_cancel_right,
7 add_tsub_cancel_left]

Listing 1: The root theorem ’sum_mul_congr’ in Lean 4.

We formalize identity ([I)) as a root theorem named sum_mul_congr. Its proof concisely demon-
strates typical multi-step reasoning in Lean 4: first, the common factor n is factored out of the sum-
mation using the rw [Finset.mul_sum)] tactic; next, the rw [Finset.sum_Ico_eq_sum_range]
tactic is used to unify the summation bounds; and finally, the simp tactic is called to complete the
algebraic simplification, reaching the "no goals" state, which signifies the proof is complete. This
example clearly reflects the precision and logical steps required for proving the identities within
LEANCOMB.

Stage 1: P3s (Partial Proof Paths) Construction

During the P3s construction process, the root theorem sum_mul_congr shown in Example 1
transitions through three sequential tactics and eventually reaches the “no goals” state at the leaf node,
resulting in a four-layer proof tree. From this tree, two P3s are extracted: one from the root to the
state after applying “rw [Finset.mul_sum]”, and another from the root to the state after applying
“rw [Finset.sum_Ico_eq_sum_range]”:

theorem P3s_1 {n : N}:

2| ¥ k € Finset.Ico 1 (n + 1), n = Nat.choose (n - 1) (k - 1)
n » X 1 € Finset.range n, Nat.choose (n - 1) 1 := by

4 rw [Finset.mul_sum]

Listing 2: The first P3s of the root theorem.

theorem P3s_2 {n : N}:

2| ¥ k € Finset.Ico 1 (n + 1), n = Nat.choose (n - 1) (k - 1)
n x X 1 € Finset.range n, Nat.choose (n - 1) 1 := by

rw [Finset.mul_sum]

rw [Finset.sum_Ico_eq_sum_range]

AW

W

Listing 3: The second P3s of the root theorem.

Stage 2: Candidate Theorem Generation (Learning from Failure)

The P3s is then fed to an LLM, which attempts to continue the proof by generating new candidate
tactics. In many explorations, the model-generated path does not immediately complete the proof.
The code below shows one such failed candidate proof-path, where the predicted tactics (Lines 7-10)
do not close the goal:
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theorem cp_1 {n : N}
> k € Finset.Ico 1 (n + 1), n * Nat.choose (n - 1) (k - 1) =

W

n x X k € Finset.range n, Nat.choose (n - 1) k := by
4 rw [Finset.mul_sum]
5 —-— Prediction starts here!
6 rw [range_eq_Ico]
7 rw [sum_Ico_eq_sum_range]
8 rw [add_tsub_cancel_right]

9 rw [range_eqg_Ico]
10 —-— Prediction ends, goal is not closed

Listing 4: A candidate proof-path that fails to close the goal.

When this path terminates, the final unproven subgoal is identified. Our framework’s core innovation
is to transform this "failure" into a new, valid theorem. The original theorem sum_mul_congr
is repurposed as a new hypothesis h, and the final subgoal from the failed path becomes the new
conclusion:

Zzzoncrlilfil = Z?:O”szfr (2)

The proof for this new theorem is constructed by replaying the tactics from the failed path on the
hypothesis and using the assumption tactic to finalize it, as shown in the new candidate theorem
CT_1:

theorem CT_1 (n : N)
2 (h : ¥ k € Finset.Ico 1 (n + 1), n * Nat.choose (n - 1) (k - 1)

=n x X 1 € Finset.range n, Nat.choose (n - 1) 1)
k —— Candidate theorem
4 > k in range n, n * Nat.choose (n - 1) k =
5 > x in Ico 0 n, n * Nat.choose (n - 1) x := by

6 rw [mul_sum] at h
7 rw [range_eqg_Ico] at h

8 rw [sum_Ico_eqg_sum_range] at h
9 rw [add_tsub_cancel_right] at h
10 assumption

Listing 5: A new candidate theorem generated from the failed path.

As shown in Lines 3-5, the root theorem is adopted as the new hypothesis ~. Then, in Lines 10-13,
all tactics along the candidate path are sequentially applied to rewrite h until it aligns with the target
goal. Finally, the tactic "assumption" in Line 14 is applied to conclude the proof.

Stage 3: Theorem Validation

The newly generated candidate theorem, like CT_1, then enters the final validation stage. Its proof is
first formally verified by Lean. If successful, the theorem is deduplicated to ensure it is unique from
other generated theorems. If the theorem contained errors, it would be sent to an automated correction
module. Only correct and unique theorems that pass all checks are added to the LEANCOMB++
dataset.

B LEANCOMB DATASET

The LEANCOMB dataset is constructed based on authoritative literature in the field of classical
combinatorics (Spiveyl, [2019;|Gould, [1972;|Shi, |2001), aiming to provide a high-quality mathematical
reasoning benchmark to support automated theorem proving for combinatorial identities. The dataset
comprises a total of 727 theorems, with the training set consisting of 627 theorems (including 418
combinatorial identities and 209 lemmas), while the test set contains 100 identities.

When annotating, we strive to cover more combinatorial mathematics fields. The specific classification
of theorems in LEANCOMB is shown in Table[6] All identities in the training set and test sets are

15



Under review as a conference paper at ICLR 2026

Theorem Categories Training Set | Test Set
The Generalized Binomial Coefficient 42 16
Basic Techniques|Absorption Identity 35 12
Binomial Inversion 46 6
Choosing with Replacement 26 6
Combinatorics  |Alternating Binomial Sums & Involutions 23 6
Inclusion-Exclusion 27 5
Differentiation 20 5
Calculus Integration 26 3
Beta Integral & Gamma Function 22 6
Probability Binomial & Hypergeometric Distributions 13 5
Expected Values & Moments 16 3
Special Numbers 25 10
Generating Functions 29 5
Recurrence Relations & Finite Differences 56
Miscellaneous Techniques & Mechanical Summation 12
Total 418 100

Table 6: Theorem categories with training and test set counts.

classified into 8 categories, including Combinatorics, Calculus, Probability, and others. The Basic
Techniques category contains the most significant samples in training and test sets, with 123 and 40
samples, respectively. In the “Basic Techniques” category, the Binomial Coefficient and Binomial
Inversion, along with the Recurrence Relations & Differences categories, have relatively higher
sample counts, totaling 42, 46, and 56, respectively. Additionally, we have formally introduced 9 new
mathematical definitions, covering fundamental concepts such as Bell numbers, Stirling numbers of
the first and second kinds, and combinations and permutations, thereby enhancing the expressiveness
of the benchmark dataset. All resources, including the LEANCOMB test set, trained models, code for
data generation, training, and evaluation, as well as detailed results, are available at the LEANCOMB
repositoryl

This dataset encompasses numerous classical theorems in combinatorics, including Negative Binomial
Series, Binet’s Formula, Trinomial Revision, and Cassini’s Identity. For example:

1 - k
Negative Binomial Series:m = Z <n * )xk7

=0 N "
no__ .hn
Binet’s Formula: F,, = il

7

Cassini’s Identity: F,, 1 F,_1 — F2 = (—=1)".

To systematically illustrate the diversity of the dataset and the core mathematical structures involved,
we have selected several representative combinatorial identity examples and categorized them based
on their roles within the dataset. The selected examples are divided into two parts: one from the
training set and the other from the test set. Each part includes various types of combinatorial identities,
covering key topics such as the properties of Stirling numbers, classical combinatorial identities,
and their variants. These examples not only provide an intuitive understanding of the dataset’s
composition but also establish a solid foundation for subsequent theoretical analysis and model
evaluation.
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B.1 TRAINING SET

idt_15:
Goal: Ty (1) = (")
idt_101

) " ny (zhtl_gh+lyyn—k n 2oty (g 4y) Yy R
Goal: >, _, (0% = 7 Dk=o (et 15+1 —
idt_105

Premises: a,b € R>q

Goal: B(a,b) = )

idt_106

Premises: —1 <n —k

Goal: & = (n+1) fol k(1 — )" Fde
idt_109

Premises: 0 <

n\ (—1)* n!
Goal: ZZ:O (k) (k+)$ = Z(z4D)...(z+n)

idt_112

Goal: Y7 () k(k +m) =n(n+ 2m + 1)2"2
idt_115

Goal: 75 (,2) (") (=1)F = (")
idt_117

Goal:> ", _, (2)% =278 — 1 — (n 4 3) — A
idt_121

Goal: Y7, m =z

idt_124

Goal: é =2(n+1) fog sin?* 1§ cos?n 2k +1 9dp
idt_131

Premises: 0 <p <1

Goal: ", (1)p"(1 — p)"*k? = n?p® + np(1 — p)
idt_132

Goal: 373 () (") % = (m:n)%

idt_179

Premises: n < m

Goal: A"F,, = Fp,,_,,

idt_212

. n n (71)k _ Hn ’HL_H’NL
Goal: 3, (k) ERTD(ktm) )
idt_285

Premises: 0 < y
Goal: ZZ:O (Z)Zkyn—k _ (y2 + 1)n/2einarctan(1/y)
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idt_318
Goal: Y215 (544)3* (~1)F = Zzsin &F

B.2 TEST SET

test_002
Goal: nF 1 = (k+1)! x (311)
test_005

Premises: 1 < n

. n 1 (2(k—1 2(n—k _ 1 /2n
Goal: >, E( (k—l)) ( (n—k)) = 2 (n)
test_011
Premises: 2n < m;1 <n

Goal: ki_o(—n’f <Z> (”;__21k> = 0.

test_025

Goal: ZIE’;/OZJ ("h) = %((12\/5) ntl (1_2\/5) n+1).
test_037

Gosl: Y3_o(-1)* () (") = (272)

test_054

Premises: 1 <n
Goal: Z;ano (k‘—i—n—l) — (n+m)

n—1 n

test_069
Premises: 3 < n
Goal: n® = 6(;) + 6(3) + (T)

test_076
Goal: 32320 (—1)* (cofk2))" = 2.

test_088
Premises: 1 <n
Goal: Y (%) = 221+ 3 (%)

test_100
Premises: k£ <n

Goal: () - Beta(k +1,n —k+1) = A5

B.3 DATA CONTAMINATION CHECK

We examine potential data contamination between the LEANCOMB dataset and established auto-
mated theorem proving (ATP) datasets and benchmarks. Specifically, we check for overlaps with
Mathlib4, as well as with benchmark suites including MiniF2F, PutnamBench, ProofNet, FIMO, and
CombiBench.

During this process, we identified 12 combinatorial identities in the training set that overlap with
the mathlib corpus, and one test problem that overlaps with CombiBench. To prevent data leakage,
we removed all overlapping examples from the training set, while annotating their original paths in
Mathlib. And, the overlapping test case was also removed.

18
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C MORE DETAILS ABOUT ATG4CI

C.1 AN ILLUSTRATIVE EXAMPLE FOR ATG4CI

For the LEANCOMB dataset, data augmentation is performed using our theorem generator, ATG4CI.
in one
iteration, resulting in a total of 260,466 newly generated theorems. Among these, 56,747 erroneous
typical

Some of the theorems in the dataset are augmented to generate up to 4,000 new instances

theorems are successfully corrected. Below, we demonstrate the workflow of ATG4CI using a
example, which corresponds to the mathematical formula ZZ:O (Z) Foik = Fonqem:

import Mathlib
import Theorem.valid.idt_179

T N

open Finset Nat

6| theorem idt_182 (mn : N) : ¥ k in Finset.range (n + 1),
Nat.choose n k * Nat.fib (m + k) = Nat.fib (2 » n + m) := by

7 suffices ¥ k in Finset.range (n + 1), Nat.choose n k % Nat.fib
(m + k) = (Nat.fib (2 * n + m) : R) by

8 norm_cast at this

9 let g := fun k => Nat.fib (m + n + k)

10 —— Ssum_{k=0}"{n} \binom{n}{k} * fib(m+k) = \sum {k=0}"{n}
\binom{n}{k} % fib(m+n-n+k)S$
1 have hi;: ¥ k in Finset.range (n + 1), Nat.choose n k * Nat.fib

(m + k) =

12 > k in Finset.range (n + 1), Nat.choose n k x Nat.fib (m + n
- n + k) = by

13 congr! 1 with k hk

14 simp at hk

15 congr; omega

16 rw [hi]

17 —— S\sum_{k=0}"{n} \binom{n}{k} * fib(m+n-n+k) = \sum_{k=0}"{n}
\binom{n}{k} % fib (m+n-k)S$

18 rw [4- Finset.sum_flip]
19 have hz: ¥ k € range (n + 1), n.choose (n - k) * fib (m + n - n
(n — k)) = X k € range (n + 1), n.choose k x fib (m + n - k)

:= by

20 congr! 1 with k hk

21 simp at hk

22 rw [choose_symm (by linarith)]

23 congr; omega

24 rw [ho]

25 —— S\sum_{k=0}"{n} \binom{n}{k} * \text{fib} (m+n-k) =

\sum_{k=0}"{n} \binom{n}{k} + \sum {3j=0}"{k} \binom{k}{j} =
g(F)*(-1) "k*(-1) "%

26
L
28
29 have hr: ¥ k € range (n + 1), n.choose k » g k % (-1)
€ range (n - k + 1), (n - k).choose (x) * (-1 : R) ~ (x + k)
30 > k € range (n + 1), n.choose k x g k *+ ¥ x € range (n - k +
1), (n - k).choose (x) = (-1 : R) ~ x := by

31 congr! 1 with k _

32 rw [mul_assoc, mul_sum]

33 congr 1

34 congr! 1 with j _

35 rw [mul_comm, pow_add, < mul_assoc, mul_assoc, < pow_add, <
two_mul, pow_mul]

36 ring

37 rw [h7, < Finset.sum_range_add_sum_Ico _ (m := n) (by omega),

show 2 * n + m =m + n + n by omega]
38 simp [g]
39 apply sum_eq_zero

19
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40 intro k hk

41 rw [_root_.mul_eqg zero]

42 right

43 simp at hk

44 rw [show (0 : R) = (-1 + 1) ~ (n - k) by simp; rw [zero_pow (by
omega) ], add_pow]

45 simp [mul_comm]

Combinatorial Identity 182 encompasses key concepts such as binomial coefficients, Fibonacci
numbers, and generating functions. The proof consists of 77 lines involving 23 distinct tactics,
resulting in a proof length and tactic diversity of 23. Structurally, it forms a 24-layer proof tree, from
which 22 distinct P3s can be extracted. The longest and shortest P3s are highlighted as follows:

I|theorem P3s_1 (mn : N) : ¥ k in Finset.range (n + 1), Nat.choose
n k « Nat.fib (m + k) = Nat.fib (2 * n + m) := by

2 suffices ¥ k in Finset.range (n + 1), Nat.choose n k x Nat.fib
(m + k) = (Nat.fib (2 * n + m) : R) by

norm_cast at this

5 rw [hi]

I|theorem P3s_22 (mn : N) : ¥ k in Finset.range (n + 1),
Nat.choose n k * Nat.fib (m + k) = Nat.fib (2 * n + m) := by

2 suffices ¥ k in Finset.range (n + 1), Nat.choose n k x Nat.fib
(m + k) = (Nat.fib (2 * n + m) : R) by

3 norm_cast at this

wn

rw [show (0 : R) = (-1 + 1) ~ (n - k) by simp; rw [zero_pow (by
omega) ], add_pow]

Based on these P3s, our RLSCI framework facilitates tactic prediction, enabling the generation of
candidate theorems. We further construct their proofs, followed by deduplication and correctness
verification. Below, we present a selection of intriguing combinatorial identities generated by our
theorem generator using the aforementioned examples:

> (1)

k
k=0 =0

idt_182_ 3 12:
j Fm+n+j(_1) (_1) = F2n+m

idt_182_1_3:
idt_182_0_5:

idt_182_0_72

B
Il
o

idt_182_6_5
>

k=0

AT o (st TR
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idt_182_6_23
n—1 n n—=k n—k .
(k) F’m-i—n—i—k Z ( . >(_1)J =0
k=0 j=0 J
idt_182_6_49
n n—~k n—k
(k)Fm+n+k ;} ( . )(‘Ur =0
idt_182_2_52
n—=k n—=k
> ( N )(—1)”6 =0
=0
idt_182_2 45

C.2 DATA CONTAMINATION CHECK

To enable a more comprehensive evaluation, we further examined overlaps between the LEAN-
CoMB++ dataset and existing formalized resources, including Mathlib and the Lean Community
Workbook. To prevent data contamination, we deduplicated at the tactic-level by converting each
proof into a sequence of (state, tactic) pairs and removing any duplicated tactic sequences across
datasets.

C.3 THEOREM CORRECTION DETAILS

Theorem Correction: After deduplication, as some candidate theorems may still contain expression
errors or fail to pass the proof process, correctness refinement is performed. After candidate theorems
are verified successfully by interacting with Lean, they are directly added to the generated dataset
G*. Those that fail verification are categorized by error type and corrected using the corresponding
correction methods. The corrected theorems are then added to G*. The following section elaborates
on the error types and their corresponding correction tactics.

* Incomplete Error: An incomplete error occurs when a candidate tactic generates multiple
subgoals, at least one subgoal remains unproven, preventing the completion of the theorem’s
proof. The standard MCTS (Coulom, 2006) method can be applied to recover incomplete
theorems and generate additional proof steps to complete the proof.

» Type Errors: Type errors arise due to Lean’s representation methods, where variable types
in subgoals are not always explicitly stated during interactions with Lean or during the
data extraction process. To address this, we identify the type information from the original
theorem and annotate the generated theorems with correct type labels.

* Logical Errors: Logical errors occur when applying a tactic that generates multiple subgoals,
but at least one contains a logical inconsistency, preventing further progress in the proof.
Theorems with such logical inconsistencies are considered irreparable and must be discarded.

During the theorem generation process, we classify theorems and verify the correctness of candidate
theorems. Incorrect theorems are grouped separately, and different correction methods are applied
based on their types.

The standard MCTS with our fine-tuned Llama 3.1 corrects these theorems. We set the number
of candidate tactics (i.e., visit counts) per node to 16 and the number of simulations per node to
100. It generates full-proof search trees through selection, expansion, and backpropagation, and
complete-proof steps are engendered accordingly. The selection phase considers the average reward
and exploration of nodes, using the UCB1 algorithm to select the optimal node (Auer et al., 2002):
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Error Types

Error Example

Correction Example

Incomplete Proofs

ErrorExample;(n : N)
(goal : the goal of sum_mul_congr) :
3 hmo kCongr =2n374 4
rw(range_eq_Ico) at goal

assumption

k+1 n k.
CZT(, k=0 CZn i

CorrectedTheoremy (n : N)
(goal : the goal of sum_mul_congr) :
by im0 kConyr =203 CF, + 130, C3, =by
rw(range_eq_Ico] at goal
rwladd_mul] at goal

assumption

ErrorExamples(m : N)(hm : 0 < m) :

Corrected_Theoremsa(m : N)(hm : 0 < m) :

Type Errors
24 —1/(m+1)=2m+1)/(m+1) 24+ (-1:R)/(m+1)=(2m+1)/(m+1)
ErrorExamples(n : N) :
plea( ) CorrectedTheorems(n : N) :
2n+1—-—n=n+1:=by
2n+1—-—n=n+1:=by
rw[two_mul]
rw[two_mul]
Redundant Steps rwadd_assoc]

rwladd_comm)
simp

rw(two_mul]

rwladd_assoc]
rwladd_comm)|

simp

Table 7: The Error Types and Correction Process

W,

UCBlzﬁf#cX

(3

InN,

%

3

Detailed descriptions of the different types of errors and their respective correction methods are

provided in the table[7]

Example 1: Incomplete Proofs

N)
k * Nat.choose
(n - 1)

theorem congr_Ico_succ__2__73(n
» k in Ico 1 (n + 1),
Ico 0 n, (1 + 1) = Nat.choose

4 rw [sum_Ico_eq_ sum_range]

5 simp

6 refine’ sum_congr rfl fun y _

7 rw [add_mul]

8 rW [choose_eq _zero_of_1t]

9 rw [add_comm]

(n -
1

1)
by

(k = 1)

W

=>

=X 1 in

Listing 6: Type Error: unsolved goal n — 1 < .

After Corrected:

theorem congr_Ico_succ_2_73 (n N)
» k in Ico 1 (n + 1), k *= Nat.choose
in Ico 0 n, (1 4+ 1) = Nat.choose (n -
4 rw[sum_Ico_eqg_sum_range]
5 simp
6 refine’
7 simp
8 rw [add_comm]
9 exact Or.inl rfl

(n - 1)

1)

1)
l —

(k =
by

SIS

sum_congr rfl fun x _

%

1

Example 2: Type Errors

|| theorem sum_mul_add_distrib__ 0_ 36(n N) (h > k in range
1), (k + 1) » Nat.choose n k = ¥ k in range (n + 1), (
Nat.choose n k + 1 * Nat.choose n k))

22
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2 (1 + y) = Nat.choose n y =y % Nat.choose n y + Nat.choose n y :=

by
: refine’ sum_congr rfl fun y _ => _
4 simp [mul_assoc] at h
5 rw [add_comm] at h
6 assumption

Listing 7: Type Error : metavariables AddCommMonoid ?m.90801.

After Corrected:

theorem sum_mul_add_distrib_ 0_ 36(n : N) (h : ¥ k in range (n +
1), (k + 1) » Nat.choose n k = ¥ k in range (n + 1), (k =
Nat.choose n k + 1 * Nat.choose n k))

(1 + y) = Nat.choose n y =y % Nat.choose n y + Nat.choose n y

S}

:= by
: rw [add_mul]
4 rw [one_mul]
5 rw [add_comm]
D LEAN4KIT

In our automated theorem generator ATG4CI, Lean4Kit plays a key role in data extraction and
interaction. During the experimental evaluation and testing phase, Lean4Kit assists LLMs in theorem
proving through interaction with Lean 4. In fact, given any repo in Lean 4, our offline toolkit can
convert Lean files into JSON format data, extracting all state-tactic pairs.

D.1 DATA EXTRACTION FROM LEAN CODES

The complete Lean code (including imports) is converted into a JSON-formatted data structure
tree (infotree) in the static extraction process. The conversion function run_all_tactics(self, code,
env=None, verbose=True) returns data in a format that includes the tactic, as well as the before-and-
after states of the goals (goalsBefore and goalsAfter), for example:

pp: rw [abelidentity_eq_add]
name : Lean.Parser.Tactic.rwSeq
goalsBefore :

i{n : N

2lx y + R

3 hnl 1 <n

4lhx : x # 0

sthy vy # 0

6|F abelidentity x y (-1) (-1) n =

7M1/ x+1/y) *« (x+y+ T * (n-1)
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pp: rw [abelidentity_eq_add]
name : Lean.Parser. Tactic.rwSeq

goalsAfter :

Iln : N

2lxy ¢ R

3/ hnl 1 <n

4lhx : x # 0

slhy @y # 0

6|F abelidentity x (y + 1) (-1) (-1 + 1) (n - 1) +
abelidentity (x + 1) y (-1 + 1) (-1) (n - 1) = (1 / x +
1/7y) » (x+y+Tn ~ (n-1)

¢| case hn

9/n : N

njxy : R

11| hnl 1 <n
2|lhx : x # 0
3lhy =y # 0
“lEn>1

D.2 DYNAMIC INTERACTION WITH LEAN FOR THEOREM PROVING

In the dynamic interaction process, we interact with Lean to perform automated theorem proving.
The process mainly relies on the following functions:

* run_import(self, code, env=None, verbose=False) : Used to import necessary environments
and dependencies.

e new_thm(self, code, env=None, verbose=False) : Generates a new theorem based on the
provided theorem description.

The provided code parameter represents the description of the initial theorem, for example:

theorem idt_84 (n : N)(h : m < n): ¥ k in range (n + 1), n.choose
k *+ (n —k) "m* (-1 : R) ~ k =0 := by sorry

This function returns an initial state for subsequent tactic applications:

* run_tactic(self, tactic, proofState, cmd_type= tactic’, verbose=False): Executes a tactic and
returns the new state after the tactic is applied.

* run_have_tactic(self, tactic, proofState, cmd_type="have’, verbose=False) : Executes a
“have” tactic.

During the interaction, we can also use the function is_correct_and_finished(sel f, code, verbose =
False, timeout = 160) to check if the theorem is correct and whether the proof is complete, with
the judgment based on the information view (Lean Infoview) on the right side.
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ProcessingCmd :

example (a b ¢ : 2115)(h : a =Db): a * 2 + ¢c=Db ~ 2 + c:= by
SOrry“"
2lenv: O

proofstates : [0],
goals :

Il abc:N h:a bkFa”*2+c=Db"2+c

error: False

messages: [{’severity’: warning’, ’pos’: {’line’: 1,’column’: 0}, ’endPos’: {’line’: 1, col-
umn’: 7}, ’data’: “declaration uses ’sorry’”}]

sorries: [{ proofState’ : 0, ’pos’: {’line’ : 1,column’ : 58}, ’goals’, ’endPos’ : {’line’:
1, column’: 63} }]

is finish: False

The returned Tactic State format includes the following key fields:

* messages: Contains information during the interaction, such as “no goals,” “declare use

9 ¢

sorry,” “unknown tactic,” etc.

* proofstates : An integer list uniquely identifies the current state, where each integer corre-
sponds to a subgoal’s state.

* goals : The current subgoals.

* error, finishFlag : These parameters are assigned by analyzing messages . The error
indicates whether an error occurred (True for error), and finishFlag indicates whether the
proof is complete (True for completed proof).

E MORE STATISTIC RESULTS

E.1 PREDICTION STEPS DISTRIBUTION IN LEANCOMB++ DATASET.

Fig.[6] presents the distribution of theorem counts across different prediction steps, categorized into
four groups: deduplicated, correct, corrected, and new theorems. The data reveal a peak around a
prediction step of 6, indicating that most theorems are concentrated at this length regardless of their
classification. The number of deduplicated theorems exhibits the highest count, peaking at 121, 457.
In contrast, the correct and new theorems follow similar trends but at lower magnitudes, suggesting
that a significant proportion of generated theorems are either duplicates or require correction. The
corrected theorems, represented by the green triangles, remain consistently lower than the other
categories, highlighting the challenges in refining generated theorems through correction mechanisms.

Additionally, the distribution demonstrates a sharp decline in theorem numbers beyond a prediction
step of 6, implying that longer proof sequences are less frequent and potentially more challenging
to generate and verify. These findings suggest that optimizing theorem generation should focus on
mid-range prediction steps, where the balance between uniqueness, correctness, and novelty is most
favorable.

E.2 THEOREM GENERATION STATISTICS ACROSS FOUR ITERATIVE ROUNDS

Figure[7] presents the statistics of theorem generation across four iterative rounds. In each round, a
large number of candidate theorems were initially generated by ATG4CI, followed by a deduplication
process to eliminate redundancies. As shown, the number of candidate theorems gradually decreased
from 592.81K in Round 1 to 393.87K in Round 4, indicating a convergence trend in the generation
process. After deduplication, approximately 66% of the candidate theorems were retained, suggesting
that a significant portion of redundancy existed among the initial outputs.
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Figure 6: Distribution of Theorem Numbers on Prediction Steps

Subsequent correctness verification further reduced the number of theorems, with only about 17-24%
of the deduplicated theorems passing the verification in each round. Moreover, a portion of the
incorrect theorems were successfully repaired, yielding additional correct theorems as indicated by
the yellow bars. Notably, the number of corrected theorems was consistently substantial, particularly
in Round 2, where 160.39k theorems were recovered.

—e— Candidate —e— Deduplicated Correct Fixed -®- Cumulative New

600

w ES @
S S 1<}
S 15} 15}

Theorem Number (x 103)
N

100

313 3 14.5 97

0
Round 1 Round 2 Round 3 Round 4
Iteration Round

Figure 7: Theorem generation statistics across iterations. Candidate denotes the number of candi-
date theorems generated by ATG4CI, Deduplicated are the theorems retained after deduplication,
Correct are those that passed correctness verification, are the repaired incorrect theorems, and
Cumulative New represents the cumulative count of new theorems.

In total, each round produced 68.77K, 135.80K, 95.38K, and 56.57K correct theorems, respectively,
reflecting both the effectiveness of the repair mechanism and the increasing difficulty of generating
novel valid theorems in later rounds. Overall, these results demonstrate that while the initial gener-
ation process produces a large volume of candidates, post-processing steps such as deduplication,
verification, and correction are critical to ensuring the quality and validity of the final theorem set.

E.3 DISTRIBUTION OF THEOREMS IN E* BY THEOREM TYPE COUNT

Fig. |§| shows the distribution of deduplicated, correct, corrected, and new theorems by proof steps in
the enhanced dataset £*, including newly added data. Deduplicated theorems peak at proof step 6
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Figure 8: Theorem distribution by proof Steps

with approximately 50, 000 and decline as steps increase, indicating shorter proofs dominate. Correct
theorems peak slightly earlier at step 5 with 22, 000, showing that many deduplicated theorems fail
correctness checks. Corrected theorems are fewer and decrease rapidly after step 5, suggesting that
errors in longer proofs are harder to address. The new data aligns with these trends, peaking at step
6 with 28, 000 theorems but maintaining a steady count for longer proofs, highlighting improved
generation of extended proofs yet persistent challenges in verification.

These results emphasize two key challenges in automated theorem proving: the gap between dedu-
plicated and correct theorems, particularly for longer proofs, underscores the need for more robust
verification methods, and the rapid decline in corrected theorems highlights the difficulty of resolving
errors in complex proofs. Improving proof generation and error correction tactics—especially for
longer proofs—remains a crucial direction, alongside integrating advanced validation mechanisms to
enhance correctness and diversity.

F MORE EXPERIMENTAL RESULTS

F.1 EFFECT OF CANDIDATE TACTIC QUANTITY ON THEOREM GENERATION

We first investigate how the number of candidate tactics affects theorem generation quality. Table|[g]
summarizes the results of ATG4CI under different settings (4, 8, and 16 candidates).

In the first iteration, setting 16 candidate tactics produced 592,811 theorems, which reduced to
392,818 after deduplication. Among them, 68,771 theorems were verified as correct, and 31,306
erroneous theorems were successfully corrected, resulting in a total of 100,077 new theorems.
In comparison, setting 4 and 8 candidate tactics resulted in 22,691 and 74,136 new theorems,
respectively. In the second iteration, the proportion of correct theorems significantly increased,
reaching up to 75.0%, and the new theorem generation rates also improved from 10.7%, 20.3%, and
16.9% to 33.7%, 41.7%, and 36.4%, respectively. While the 16-tactic setting produced the largest
number of theorems, the 8-tactic setting achieved the best success rate for generating new theorems.

F.2 AUTOMATED PROOF RESULTS OF OUR MODELS ON LEANCOMB-TEST

In this section, we analyze the proof process of the models. The table summarizes the average proof
lengths across all models, revealing that the proof lengths range from 2.7 to 3.9. Notably, for both
the Mathstral and Llama models, the enhanced versions consistently exhibit shorter proof lengths
compared to their comb counterparts. This suggests that the models have learned to adopt more
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Table 8: Performance per metric across iterations and tactic counts.

Theorem Types Tactics =4 Tactics =8 Tactics = 16

Round 1 Round2 Total Round1 Round2 Total Round1 Round 2 Total

# Candidate 211,087 247,996 459,083 364,789 376,158 740,947 592,811 440,199 1,033,010
# Deduplicated 73,385 185,850 259,235 229,541 225,797 455,338 392,818 238,425 631,243

# Correct 16,296 69,765 86,061 52,220 132,791 185,011 68,771 135,796 204,567
# Corrected 6,395 13912 20,307 21916 24,147 46,063 31,306 24,593 55,899
Subtotal 22,691 83,677 106,368 74,136 156,938 231,074 100,077 160,389 260,466

efficient and simpler tactics for generating proofs through extensive training on large datasets. For
instance, as shown in the example for test_087, Mathstral finetuned with LEANCOMB requires 11
steps to complete the proof, whereas Llama3 enhanced accomplishes the proof in just four steps.

theorem test_087_Mathstral comb {n : N} (hn : 0 < n):

2 (ascPochhammer R n).eval x = (x — 1 + n) % (ascPochhammer R
(n-1)) .eval x := by

: unfold ascPochhammer

4 cases n

5 all goals simp only [Polynomial.eval_one, CharP.cast_eq_zero,
add_zero, mul_one]

6 cases hn

7 rename_1i n

8 cases n

9 all_goals simp

10 rename_i n

11 rw [ascPochhammer_succ_right]

12 simp only [Polynomial.eval_mul, Polynomial.eval_add,
Polynomial.eval_X, Polynomial.eval_natCast]

13 ring

15| theorem test_087_1l1llama3_enhanced {n : N} (hn : 0 < n):

16 (ascPochhammer R n).eval x = (x — 1 + n) x= (ascPochhammer R
(n=-1)) .eval x := by

17 have hl : n=n -1 4+ 1 := by

18 rw [tsub_add_cancel_of_le]

19 exact hn

20 rw [hl, ascPochhammer_succ_right]

21 simp only [Polynomial.eval_mul, Polynomial.eval_add,
Polynomial.eval_X, Polynomial.eval_natCast,

22 cast_add, cast_one, sub_add_add_cancel, add_tsub_cancel_right]
23 rw [ mul_comm]

Beyond length reduction, enhanced models also show stronger proficiency in applying known
algebraic identities and leveraging library theorems to simplify otherwise tedious transformations.
For example, in test_048_1_dsv2_alp2, the model efficiently invokes symmetry properties of binomial
coefficients and uses arithmetic reasoning (via omega) to resolve index equalities:

I|theorem test_048_1_dsv2_alp2 (nm k : N) (hmk : m < k) (hkn : k <
n)

2 Nat.choose n k * Nat.choose k m = Nat.choose n (k - m) =
Nat.choose (n — k + m) m := by

3 rw [ choose_symm hmk]

4 rw [choose_mul hkn (tsub_le_self)]

5 rw [show k - (k — m) = m by omegal

6 congr 2

7 omega
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Similarly, in test_074_1_dsv2_alp2, the model correctly applies the binomial expansion of (x — 1)
using the identity add_pow, and then constructs the appropriate sum transformation by reasoning

over the sign alternation and index structure:

|| theorem test_074_1_dsv2_alp2 (x : R)(n : N) : (x - 1)"n=X k in
Finset.range (n+l),Nat.choose n k » x ~ k (-1 : R ) ~ (n -
k) := by

rw [sub_eq_add_neg, add_pow]
: refine’ sum_congr rfl fun k hk => _
4 ring

SN

Furthermore, we observed that after training on the enhanced dataset, models tend to rely heavily
on the theorems from the LEANCOMB training set when generating proofs. However, despite this
increased dependence on known theorems, the models occasionally introduce invalid or redundant
steps in the proof process. For instance, in the following example, the step “lemma this” is an

unnecessary operation; the proof remains valid even if this step is removed.

theorem test_031 (n : N)

)

> k in Finset.range (n / 2 + 1), (-1 : R) ~ k * Nat.choose
k ) k =(2 / Real.sgrt 3) * Real.sin ((n + 1) % Real.pi / 3)

(n

by

3 obtain hl := Idt_32 n (-1 : R)

4 have h2

5 > k in range (n / 2 + 1), ((n — k).choose k » (-1 : R) ~ k)
¥ k in range (n / 2 + 1), ((-1) : R) ~ k * choose (n - k) k
by

6 refine’ sum_congr rfl fun k _ => _

7 rw [mul_comm]

8 rw [h2] at hl

9 rw [hl]

10 have : 1 + 4 » (-1 : R) = -3 := by norm_num

11 rw [this]
12 exact_mod_cast complex_sqgrt_neg n

F.3 ANALYSIS OF THEOREM PROVING RESULTS ON PUTNAMBENCH

In this section, we examine the automated proof behavior of our models on the PUTNAMBENCH
benchmark. The results reveal that the models are capable of constructing structurally sound and
semantically accurate proofs, often emulating human-level strategies for algebraic manipulation and

symbolic reasoning.

For example, in the case of putnam_1962_a5, the model successfully performs a sequence of algebraic
rewrites and summation transformations to establish the equality between a closed-form expression

and a finite sum involving binomial coefficients and powers:

theorem putnam_1962_ab5

2 Vn>2, (funn : N=> (n « (n+ 1) » 22(n - 2) : N > N)
k in Finset.Icc 1 n, Nat.choose n k * k*2 := by

3 intro n hn

4 rw [+ Nat.Ico_succ_right (1 : N) n]

5 rw [ Nat.add_one]

6 have hl : X k € Finset.Ico 1 (n + 1), n.choose k » k ~ 2
€ Finset.Ico 1 (n + 1), k ~ 2 % n.choose k := by

7 refine’ Finset.sum_congr rfl fun k hk => _

8 rw [mul_comm]

9 rw [hl]

10 obtain h2 := idt_71’ hn

11 rw [h2]

12 simp

)

n

%

k

b))
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Notably, the proof includes a nontrivial index transformation and applies a known identity (idt_71")
to simplify the summation, demonstrating the model’s understanding of combinatorial symmetry.

Similarly, in the proof of putnam_1986_al, the model effectively uses logical reasoning and inequality
manipulation to prove that a function defined on a constrained domain achieves its maximum value at
a specific point. The proof correctly applies numerical reasoning (norm_num), functional rewriting,
and nonlinear arithmetic tactics:

|| theorem putnam_1986_al

2 (S : Set R) (£f : R —» R)

3 (hS : s ={x : R | x4+ 36 <13 % x ~ 2})
4 (hf : £ = fun x —» x ~ 3 - 3 % Xx)

5 IsGreatest

6 {f x | x € S}

7 ((18) : R ) := by

8 simp only [hS, hf, Set.mem_setOf_eq, Set.mem_setOf_eq]

9 refine (?_, fun x hx — ?2_)
10 refine (3, by norm_num, by ring)

1 obtain (y, hyi, rfl) := hx
12 nlinarith [sg_nonneg (y ~ 2 - 9), (by nlinarith : (0 : R) <
9) 1

These examples highlight the model’s ability to synthesize relevant lemmas, manipulate algebraic
structures, and apply inequalities effectively. However, occasional superfluous constructs—such as
unused hypotheses or redundant rewrites—can still appear, indicating room for refinement in proof
planning and step minimization.

F.4 ANALYSIS OF THEOREM PROVING RESULTS ON COMBIBENCH

‘We now turn our attention to the performance of the models on COMBIBENCH, a suite focused on
combinatorial identities and discrete function transformations. These tasks often require models to
manipulate indexed sums, alternating signs, and recursive operators such as finite differences.

A representative example is the proof of a well-known identity involving the k-th forward difference
operator applied to a function & : N — Z. The goal is to show that this k-fold operator evaluates to a
specific alternating sum involving binomial coefficients. Two variants of the proof below illustrate
different strategies employed by the models:

I|theorem brualdi_ch8_9 (h : N — Z) (kn : N): (fwdDiff 1)~[k] h n
= Y j € Finset.range (k + 1),

2 (-1 : Z) ~ (k — 3j) * Nat.choose kK 7 * h (n + j) := by

3 induction’ k with k hk

4 simp

5 rw [fwdDiff_iter_eq sum_shift]

6 simp

In the first version, the model initiates an induction on k, aligning with the standard approach to
proving identities involving recursive operators. It simplifies the base case and applies the identity
fwdDiff_iter_eq_sum_shift to complete the inductive step. This structured approach reflects a strong
grasp of both the recursive nature of forward differences and the associated summation identities.

In contrast, the second version omits the inductive argument entirely:

|| theorem brualdi_ch8_9 (h : N —- Z) (k n : N): (fwdDiff 1)~[k] h n
= 3 j € Finset.range (k + 1),

2 (-1 : Z) ~ (k - j) = Nat.choose k j * h (n + j) := by
rw [fwdDiff_iter_eq sum_shift]

4 simp

This version relies directly on applying the known identity fwdDiff_iter_eq_sum_shift, followed by
simplification. While this proof is shorter and still valid, it assumes the identity has already been
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established or imported from prior training, bypassing the deeper structure that an inductive argument
would expose.

These examples highlight an important trade-off: the more concise proof indicates effective pattern
recognition and memorization of known identities, while the inductive version demonstrates con-
structive reasoning and generalizability. Across the benchmark, both behaviors were observed, with
models choosing between efficiency and explicit derivation depending on the problem context.

G EXPERIMENTS DETAILS

In our experiment, we selected multiple large language models as baselines, covering two categories:
one is general reasoning models, including Mathstral-8B (Mistral All|2024), LLaMA3-8B (Grattafiori
et al.| 2024), and Mistral-7B (Jiang et al., 2023); the other is models optimized for theorem proving,
such as InternL.M?2.5-StepProver (Wu et al., [2024b)) and DeepSeek-Prover-v2 (Guo et al.| [2025).
For step-by-step models, the model generates 16 candidate tactics for each proof step, which are
deduplicated and ranked by their log-likelihood values. In the whole proof method, we call the model
32 times per Pass1, and a proof is considered successful if it passes once. All proofs were verified
using Lean 4 (v4.14.0) and the corresponding Mathlib4.

G.1 DETAILS AND HYPERPARAMETERS

We employed Llama-3.1-8B-Instruct as the candidate tactic model within our generator ATG4CI.
This model is a transformer-based, autoregressive language model optimized for high performance.
To enhance its alignment with human preferences in terms of utility and safety, we fine-tuned the
model using Supervised Fine-Tuning (SFT) (Wei et al.| |2022)) and Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al., 2022). The reinforcement learning component includes a
policy network and a critic network, both consisting of two linear layers with a hidden size of 16.
The training spans 10 iterations. Each decision step performs 100 simulations, and each iteration
includes 20 total episodes. Each node may generate up to 16 candidate theorems, with a search time
limit of 600 seconds.

Prompt Example:

Complete the following Lean 4 code:
“‘lean4

[Statement]:

| import Mathlib

2| import Aesop

3| import Theorem

4| set_option maxHeartbeats 0

5| open BigOperators Real Nat Topology Rat Finset

7| theorem test_074 (x : R) (n : N)
(x — 1)*n = ¥ k in Finset.range (n + 1), Nat.choose n k «*
x*k » (-1 : R)~(n - k) := by

)

All training tasks were conducted on a cluster of six NVIDIA L40 GPUs (48GB each). For SFT, we
employed Low-Rank Adaptation (LoRA) (Hu et al.,|2021), leveraging bfloat16 mixed precision and
DeepSpeed ZeRO Stage 0 (Jacobs et al.,[2023) for memory optimization. LoRA was applied to all
layers of the model. We used the AdamW optimizer (Dettmers et al.,[2022) with a batch size of 4.
The learning rate was linearly warmed up from 0 to 5.0 x 10~ over the initial 5% of training steps,
followed by a cosine decay schedule for subsequent updates.

We adopted a best-first search (BFS) (Pearl, [1984) tactic for evaluation. At each search step, the
model generated 16 tactic candidates, deduplicated and ranked according to their log-likelihoods.
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Each candidate was subsequently verified using Lean 4, determining whether it should have been
discarded or expanded into new proof states.

The ranking of states is based on the cumulative log-likelihood of the tactics leading to the current
state. The model is prompted using a structured (state, tactic) format, enabling the generation of
tactics conditioned on the current proof state. The prompt examples are presented as follows:

[Output]:
|| theorem test_074 (x : R) (n : N)
2 (x — 1)*"n = ¥ k in Finset.range (n + 1), Nat.choose n k * x"k
* (-1 : R)y»(n - k) := by
: rw [sub_eqg_add_neqg]
4 rw [add_comm]
5 rw [add_comm]

6 —-— Apply the binomial theorem to (x + (-1))"n

7 rw [add_pow]

—-— Apply sum_congr to match the form of the binomial expansion
9 apply sum_congr rfl

10 intro k hk

11 —-— implify the terms using const_mul

12 simp at hk

13 have h : k < n := by linarith

14 simp [mul_assoc, mul_comm, mul_left_comm, h]

Prompt Example:

You are using Lean 4 for theorem proving. You are proving a theorem in Lean 4. Based on
the current state of the theorem, provide the most reasonable proof tactic. Ensure your tactic
is syntactically correct according to Lean 4’s tactic syntax and effectively progresses the proof.

[Current State]:
n: N
F Nat.choose (2xn)n <> x € rangen, Nat.choose (2xn) x + Nat.choose (2¢n) n
[Output Tactic]:
rw [sum_range_add], —0.30987493962877327
rw [sum_range_add_choose] , —0.3457271686162461
rw [sum_range_add_choose_add] , —0.3690287694334984
rw [sum_range_add_choose_eq] , —0.44889247231185436
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