
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEANCOMB: A COMBINATORIAL IDENTITIES BENCH-
MARK FOR THEOREM PROVING VIA AUTOMATED THE-
OREM GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Automated theorem proving (ATP) in complex mathematical domains remains a
fundamental challenge for large language models (LLMs), due to the scarcity and
imbalance of formalized training data. Combinatorics, with its discrete structures
and symbolic reasoning, provides a demanding testbed for evaluating ATP capabil-
ities. Addressing this data scarcity gap, we propose a comprehensive data-centric
framework built upon two essential components: LEANCOMB, a high-quality
human-curated dataset, and ATG4CI, a novel method for automated theorem
generation. LEANCOMB is a manually curated dataset of formalized combinatorial
identities in Lean 4. It encompasses eight fundamental areas of combinatorics,
with training and test sets derived from the classical literature, enabling robust
evaluation of cross-domain generalization. To overcome the data sparsity, we
develop a data augmentation framework, the Automated Theorem Generator for
Combinatorial Identities (ATG4CI). It introduces a novel "Learn-from-Failure"
paradigm, combining LLM-guided exploration with reinforcement learning-driven
search to systematically discover new theorems from the boundaries of models’
reasoning capabilities. Applied to LEANCOMB, ATG4CI generates over 260K
Lean-verifiable theorems, each with a complete proof. Fine-tuning models on the
human-curated training set and the augmented dataset results in average improve-
ments of 4.0% and 7.2%, respectively, on LEANCOMB-Test set. The fine-tuned
models also achieve promising performance on challenging ATP benchmarks,
PutnamBench and CombiBench, demonstrating the effectiveness of our approach.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive performance on well-structured
automated theorem proving (ATP) tasks (Wei et al., 2024; Xin et al., 2025; Lin et al., 2025; Guo et al.,
2025; Wang et al., 2025). However, their capabilities remain limited in more complex mathematical
domains, particularly due to the scarcity and imbalance of formalized training data (Wei et al., 2024;
Yu et al., 2025). These limitations are especially pronounced in fields that demand intricate symbolic
reasoning. Combinatorial identities are central to the study of combinatorics (Britz, 2010), and play
an important role in a wide range of mathematical and computational disciplines, including algebra,
probability, and algorithm design (Chen & Guo, 2024; Konvalinka, 2008). They serve as essential
tools for counting, enumeration, and establishing relationships between discrete structures. Despite
their fundamental importance, automated theorem proving for combinatorial identities remains highly
challenging due to the inherently discrete and structural nature of combinatorics, as well as the
complexity and length of intricate proofs (Trinh et al., 2024; LessWrong, 2024).

These challenges necessitate large-scale training data, which is severely lacking in current formal
theorem libraries. For instance, although the Lean-based standard library Mathlib4 (The mathlib
Community, 2020) contains over 213K theorems and proofs, it includes fewer than 2K results related
to combinatorics, with only around 100 specifically involving combinatorial identities. This stark
imbalance highlights the urgent need for domain-specific formal data. While various automated
theorem generation (ATG) approaches have been proposed to alleviate data scarcity, these methods
generally focus on broad or well-studied domains. INT (Wu et al., 2021) and STP (Dong & Ma, 2025)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

synthesize theorems from axioms or conjectures, while LeanDojo (Yang et al., 2024), Alchemy (Wu
et al., 2024a), and MUSTARD (Huang et al., 2024) extract or generate formal statements by applying
known tactics within existing formal mathematics libraries (Wu et al., 2024a; Huang et al., 2024).
However, automated theorem generation for combinatorial identities remains largely unexplored by
existing techniques, creating a critical shortfall in this specialized area.

To mitigate this shortfall, we propose a data-centric solution by constructing a specialized formalized
dataset and developing an automated theorem generation framework. Specifically, we introduce
LEANCOMB, a manually curated dataset of formalized combinatorial identities in Lean 4 (Ying
et al., 2024). Covering eight core topics, LEANCOMB comprises a training set of 418 combinatorial
identities (along with 209 supporting lemmas), each accompanied by formal statements and proofs,
as well as a test set of 100 combinatorial identities containing only formal statements. To further
augment the training data, we propose ATG4CI, a self-improving framework of automated theorem
generation for combinatorial identities. This framework integrates LLM-guided tactic exploration with
reinforcement learning-driven Monte Carlo Tree Search (MCTS) to generate high-quality theorems.
Using the training set of LEANCOMB, this framework builds a large-scale dataset, LEANCOMB++,
containing 260, 466 Lean-verifiable theorems with full proofs. We evaluate models fine-tuned on
both LEANCOMB and LEANCOMB++. Our models achieve up to 25% pass@8 accuracy on the test
set, with average gains of 4.0% and 7.2% from the human-curated and generated data, respectively.
Moreover, our fine-tuned models exhibit generalization on challenging formal benchmarks, including
PutnamBench (Tsoukalas et al., 2024) and CombiBench (Liu et al., 2025), demonstrating the utility
of our datasets and approach for advancing automated theorem proving in combinatorics. Our
contributions are summarized as follows:

• We present LEANCOMB, a human-annotated dataset of formalized combinatorial identities
in Lean 4, covering 8 core areas. The training and test sets are drawn from different classical
references, enabling robust evaluation of generalization.

• We propose ATG4CI, a novel framework that transforms failed proof attempts into valuable
training signals. It systematically generates new, verifiable theorems from the boundaries of
a model’s current reasoning capabilities, establishing a self-improving paradigm for data
creation in specialized mathematical domains. It generates LEANCOMB++, a large dataset
of 260 K+ formally verified combinatorial theorems.

• We show that models fine-tuned on LEANCOMB and LEANCOMB++ achieve significant
improvements on our test set and promising performance on two external ATP benchmarks,
highlighting the domain-specific value and general applicability of our framework.

2 RELATED WORK

Automated Theorem Proving and Generation. Mathematical reasoning has gained increasing
attention in artificial intelligence (Saxton et al., 2019; Wang et al., 2023). ATP systems typically
follow two main paradigms: tree search and whole-proof generation. Tree search methods, like GPT-
f (Polu & Sutskever, 2020), explore proof steps incrementally, while BFS-Prover (Xin et al., 2025)
scales this approach with breadth-first search. MPS-Prover (Liang et al., 2025) creates structured
plans to guide subsequent formalization. Whole-proof generation methods synthesize complete proofs
in a single step. Leading representatives of this approach, such as Goedel-Prover-V2 (Lin et al., 2025),
DeepSeek-Prover-v2 (Guo et al., 2025), Kimina-Prover (Wang et al., 2025), and Seed-Prover (Chen
et al., 2025) incorporate expert iteration, massive synthetic data, reinforcement learning, and self-
exploration, achieving state-of-the-art results on general benchmark. A key challenge fueling ATP
research is the acquisition of training data, which has led to the growing subfield of automated theorem
generation (ATG). Recent work increasingly employs LLMs for this task. MUSTARD (Huang et al.,
2024) uses a concept-driven pipeline to produce high-quality theorem–proof pairs, while AIPS (Wei
et al., 2024) enables proof generation for algebraic inequalities without human demonstrations.
Extending beyond static datasets, STP (Dong & Ma, 2025) proposes a self-play framework where
conjecturing and proving co-evolve. Despite these advances, both general ATP and specialized ATG
methods remain limited in domains like combinatorics, motivating our work on a scalable generation
framework for this area.

Datasets and Benchmarks for Theorem Proving. Lean’s mathematical library, Mathlib (The
mathlib Community, 2020), serves as the primary source of training data for many neural theorem

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

provers, containing a large collection of formalized theorems. To further enhance this, datasets
like HERALD have been generated via data augmentation. Another large-scale resource is Lean
WorkBook (Ying et al., 2024), which provides formal proofs sourced from mathematics competitions.
For evaluation, several benchmarks have been proposed. MiniF2F (Zheng et al., 2022) and PuttAna
target problems from high-level competitions, while FormalMATH (Yu et al., 2025) offers a broad,
domain-diverse testbed. More specialized benchmarks include CombiBench (Liu et al., 2025) for
combinatorics, FIMO (Liu et al., 2023) for IMO problems, and ProofNet (Geuvers, 2009) for
undergraduate-level mathematics. However, a common limitation across these resources is the
scarcity of combinatorial data.

3 LEANCOMB: A COMBINATORIAL IDENTITIES DATASET

We introduce LEANCOMB, a manually curated dataset of formalized combinatorial identities in Lean
4, designed to support ATP research in symbolic mathematics. Unlike prior datasets, LEANCOMB
focuses on identities that require precise algebraic manipulation and multi-step reasoning. The
dataset is split into 627 training theorems, each equipped with full Lean 4 formal proofs, and 100
test theorems, which are proof-free and drawn from broader combinatorics literature (Gould, 1972),
enabling evaluation under full synthesis settings. The training identities are sourced from classical
references (Spivey, 2019; Shi, 2001). To ensure both novelty and coverage, any theorems overlapping
with Mathlib4, PutnamBench, CombiBench, FIMO, and ProofNet were rigorously removed. The
construction process involved more than 1,800 hours of expert effort from a team of 15+ trained
formalizers, each following a detailed annotation protocol. Further dataset statistics and curation
methodology are available in Appendix B.

Basic
 Tech.

Combinatorics
Calcu

lus
Prob.

Specia
l Numb.

Generat
ing Func.

Recurren
ce &

 Diff.

Misc.
Tech.

0

25

50

75

100

125

150

Th
eo

re
m

 N
um

be
r

157

93
82

37 35 34

62

18

(a): Overall Distribution of Theorem Categories

0 10 20 30 40 50 60
Number of Tactic Types

0

10

20

30

40

50

Th
eo

re
m

 N
um

be
r

45

22
24

17

11

(b): Theorem Distribution over Tactic Type Counts

Basic
 Tech.

Combinatorics
Calcu

lus
Prob.

Specia
l Numb.

Generat
ing Func.

Recurren
ce &

 Diff.

Misc.
Tech.

Theorem Categories

0

10

20

30

40

50

60

70

Pr
oo

f S
te

ps

318 547 609
(c): Proof Steps by Theorem Category

Basic
 Tech.

Combinatorics
Calcu

lus
Prob.

Specia
l Numb.

Generat
ing Func.

Recurren
ce &

 Diff.

Misc.
Tech.

Theorem Categories

2

4

6

8

10

St
at

em
en

t L
en

gt
h

16 21
(d): Formal Statement Length by Theorem Category

Basic Technique
Combinatorics
Calculus
Probability
Special Numbers
Generating Functions
Recurrence Relations & Difference
Miscellaneous Techniques

Figure 1: Statistics of the LEANCOMB dataset. (a) Theorem categories: the dataset spans 8
mathematical areas, with the majority coming from Basic Techniques (157), Combinatorics (93), and
Calculus (82). (b) Tactic diversity: most proofs require 2–6 unique tactic types, with some using
over 60; the maximum reaches 282, indicating high procedural complexity. (c) Proof length: average
proof lengths range from 33–38 steps, depending on category, with some extreme cases exceeding
400 steps. (d) Statement complexity: formal statements vary in syntactic length across topics, with
Special Numbers and Generating Functions often exhibiting the highest structural depth.

Figure 1 presents key dataset characteristics: (a) Theorem Categories. Most entries fall under Basic
Techniques (157), followed by Combinatorics (93). Categories such as Generating Functions (34)
are relatively underrepresented, reflecting both their mathematical niche and the scarcity of formal
resources in these areas. (b) Tactic Diversity. While the majority of theorems use between 2 and 6

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

different tactic types, 21.7% involve more than 60 distinct tactics, with the most complex proof using
282 unique tactics. This highlights the need for ATP systems to master not just individual tactics but
also strategy composition across reasoning chains. (c) Proof Length. Proof depths vary significantly
by topic. Average lengths are 38 steps for Basic Techniques, 35 for Combinatorics, and 33 for
Calculus. Several outliers, especially in Generating Functions and Probability, require over 400 steps
(e.g., 509 steps in one instance), posing a substantial challenge for both annotation and automated
reasoning. (d) Statement Complexity. We measure the syntactic complexity of theorem statements
by code length. Categories with sparse mathematical definitions—such as Special Numbers and
Generating Functions—tend to produce longer, more nested statements. In contrast, Combinatorics
typically benefits from richer existing definitions, resulting in relatively concise formal encodings.

4 THE FRAMEWORK OF AUTOMATED THEOREM GENERATION

This section introduces ATG4CI, a general iterative framework for automated theorem generation
designed to enhance the discovery of new theorems through policy-guided prediction. In this work,
ATG4CI is built upon LEANCOMB training set, combining self-improving LLMs with a reinforcement
learning-based search algorithm. Candidate theorems are generated via policy prediction and filtered
through a theorem verification process, with only non-redundant and correct theorems retained to
construct the extended LEANCOMB++ dataset.

Shown in Fig. 2, ATG4CI comprises three stages: Partial Proof Paths (P3s) Construction, Candidate
Theorem Generation, and Theorem Validation. The procedure begins with the LEANCOMB training
set L∗

t , consisting of formalized identities, serving as the foundational data for data augmentation
and model fine-tuning. Using this, the pipeline enters the P3s Construction phase, where Lean4Kit
is employed to transform each theorem into a proof tree. Their corresponding state-policy pairs are
extracted from these trees. The states are then corrected to ensure their quality and correctness.

...

P3s Construction

Theorem Validation

Tactic
 Prediction Mct

input
 LeanComb

Training Set

 Candidate Theorems

...
candidate
tactis cts

output

RLSCI

 LeanComb++.
Dataset

Fintune

Generated
Dataset

ATG4CI

Theorem DeduplicationError Correction Correct Validation

Candidate Theorem Generation

Figure 2: The Framework of ATG4CI.

Following this, in the Candidate Theorem Generation phase (top right of Fig. 2), the procedure begins
with generating candidate tactics using a fine-tuned model Mct. The candidate tactics are then refined
by selecting the most appropriate ones for each partial proof path (P3) through a Reinforcement
Learning-based search tailored to address the specific requirements of the combinatorial identities
domain. This tactic prediction process is repeated to ultimately derive candidate theorems, followed
by the Theorem Validation stage (bottom of Fig. 2), where redundant theorems are eliminated, and
the correctness of the theorems is verified. Specifically, this stage consists of two key steps: Theorem
Deduplication and Error Correction, both of which ensure the uniqueness and correctness of the
dataset. Ultimately, the validated theorems are compiled into a new dataset G∗, fed to train the
model Mct, enhancing its ability to generate more effective candidate tactics. Finally, the generated
dataset is combined with the LEANCOMB training set L∗

t to form the LEANCOMB++ dataset E∗,
which subsequently improves the performance of automated theorem proving. We demonstrate the
procedure of ATG4CI using a typical example is provided in Appendix A.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 PARTIAL PROOF PATHS (P3s) CONSTRUCTION

We focus on the P3s construction process, explaining how to use our Lean4Kit tool to extract
partial proof paths Ps from formalized theorems. Built on Lean 4, Lean4Kit supports robust data
extraction and interaction with both Lean and LLMs, with further details available in Appendix D.
To facilitate the exploration of new proof paths for P3s, the tool visualizes all tactics within the
proof environment, capturing the state transitions that occur before and after the application of each
tactic. A fully formalized proven theorem, consisting of n tactics, can be represented as a proof tree:

 rw [mul_sum]

n : ℕ
⊢ ∑ k ∈ Ico 1 (n + 1), n * (n - 1).choose (k -
1) = n * ∑ l ∈ range n, (n - 1).choose l

⊢ ∑ k ∈ range (n + 1 - 1), n * (n - 1).choose (1
+ k - 1) = ∑ i ∈ range n, n * (n - 1).choose i

Proof Tree

NO
GOALS

⊢ ∑ k ∈ Ico 1 (n + 1), n * (n - 1).choose (k - 1) =
∑ i ∈ range n, n * (n - 1).choose i

rw [sum_Ico_eq_sum_range]

simp

Lean4Kit

Figure 3: P3s Constructed by Lean4Kit.

the root theorem forms the root node, tactics are
the edges, intermediate states are the child nodes,
and the “no goals” state is the leaf node. From
this tree, Ps = {pi}n−1

i=1 is extracted by tracing
the paths from the root to the intermediate states.
For example, the root theorem shown in Fig. 3,
represented by the root node in

∑n
k=1 nC

k−1
n−1 =

n
∑n−1

l=0 C
l
n−1, transits through three sequential

tactics and eventually reaches the “no goals” state
at the leaf node, resulting in a four-layer proof tree.
From this tree, two P3s are extracted: one from the
root to the state after applying “rw[mul_sum]”,
and another from the root to the state after apply-
ing “rw[sum_Ico_eq_sum_range]”.

4.2 CANDIDATE THEOREM GENERATION

The section explains how to generate candidate theorems from a given partial proof path, which
consists of two key steps: candidate tactic generation and tactic prediction, based on a reinforcement
learning search for combinatorial identities (RLSCI). We start with employing a fine-tuned model
Mct, trained by the training set of LEANCOMB, to generate candidate tactics cts for P3s.

n : ℕ
⊢ ∑ k ∈ Ico 1 (n + 1), n * (n - 1).choose (k
- 1) = ∑ i ∈ Ico 0 n, n * (n - 1).choose i

. . .

NO
GOALS

... ...

: ring_nf : rw [Nat.sub_add_cancel]

: rw [range_eq_Ico]

...

Figure 4: Candidate Theorems with RLSCI.

Candidate Tactic Generation. To enhance the
quality and diversity of candidate tactics, we adopt
an iterative refinement tactic inspired by self-
improving techniques for fine-tuning models. Ini-
tially, the model is fine-tuned on the training set
of the LEANCOMB dataset L∗

t and Lean’s founda-
tional library, Mathlib4. Given a partial proof path,
the improved model can generate n candidate tac-
tics, where n is a prior positive integer. The model
will be continuously refined in subsequent itera-
tions through fine-tuning with the augmented the-
orems generated from the previous iteration. This
iterative framework not only enhances the model’s
capacity to propose effective tactics but also broad-
ens its exploration of diverse tactic spaces.

Tactic Prediction. The tactic prediction, based on RLSCI, consists of three primary steps: selecting
candidate tactics, expanding the P3s, and back-propagating values from the leaf nodes to the root.
These steps are iteratively performed until the proof is completed or no viable tactic is identified.
If successful, the process discovers a complete proof path for the root theorem RT ; otherwise, it
generates a candidate proof path cpk for k = 0, 1, . . . , s. Our RL framework comprises a critic model
Cθ and a policy model Pθ. Completed proof nodes are assigned a value of 1, while failed nodes are
assigned a value of −1. Unresolved nodes are evaluated using the Polynomial Upper Confidence
Trees (PUCT) method (Silver et al., 2017):

QPUCT (s) = Q(s, t) + cpuct · P (s, t) ·
√∑

bN(s, b)

N(s, t) + 1
,

where Q(s, t) is the estimated value of the state-tactic pair, obtained from the value network or
learned from past simulations, and P (s, t) is the probability of selecting a tactic in state s based

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

on the policy network, and cpuct is the exploration coefficient. In contrast, N(s, t) is the count of
executions of tactic t in state s during the prediction process. All successful tactics are stored as
training data for LLMs. During backpropagation, values from the leaf nodes are propagated to the
root, updating the visit counts N(s, t) and cumulative action values.

The process aims to propagate proof paths as far as possible, terminating when the proof is complete
or when no viable tactic can be found. In the former case, the leaf node is marked as “no goals”,
indicating the discovery of a new proof for the root theorem RT . In the latter case, the goals
corresponding to the leaf nodes of the candidate proof paths are treated as candidate theorems,
CTm = {CTi}mi=0. To generate new proofs, we incorporate the original root theorem RT into the
hypotheses and then apply tactics from the candidate path until the goal aligns with the target. Once
aligned, the “assumption” tactic resolves the goal, completing the proof.

4.3 THEOREM VALIDATION

Note that not all candidate theorems are correct or unique, so a validation process, including theorem
deduplication and correction, is necessary to retain the valid theorems. A detailed description of
theorem validation is given in Appendix C.

Theorem Deduplication: Candidate theorems are deduplicated from two perspectives. First, textual
duplication is identified by comparing the goals, premises, and proof steps. Identical theorems are
merged, retaining only one. Second, mathematical equivalence is checked by simplifying redundant
terms (e.g., +0, −0, ∗1, and /1), ensuring that only one mathematically equivalent version is kept.

Theorem Correction: After deduplication, as some candidate theorems may still contain expression
errors or fail to pass the proof process, correctness refinement is performed. After candidate theorems
are verified successfully by interacting with Lean, they are directly added to the generated dataset
G∗. Those that fail verification are categorized by error type and corrected using the corresponding
correction methods. The corrected theorems are then added to G∗.

We introduce the main steps of ATG4CI implemented in Algorithm 1. The procedure takes as inputs
the training set of LEANCOMB dataset L∗

t , the model Mct that provides candidate tactics cts, search
method RLSCI, the maximum round of iterations n, and returns the LEANCOMB++ dataset E∗. We
construct partial proof paths Ps and initialize the generated dataset as G0 based on the LEANCOMB
training set L∗

t . Subsequently, the following steps are iteratively performed within a predefined
maximum number of iterations. First, the model Mct is fine-tuned using the current generated dataset
(as described in Line 4). Next, based on P3s, Mct is employed to generate candidate tactics (line 5).
Subsequently, the search algorithm RLSCI is applied to generate candidate theorems (Line 6). The
generated candidate theorems must undergo rigorous validation before being incorporated into the
generated dataset G∗

i and further integrated into the enhanced dataset E∗ (Line 7-8).

Algorithm 1 The Framework of ATG4CI

Input: the training set of LEANCOMB Dataset L∗
t , the model Mct that provides candidate tactics

cts, search method RLSCI, maximum round of iterations n
Output: LEANCOMB++ dataset E∗

1: Ps ← Construct_P3s(L∗
t)

2: G0 ← L∗
t

3: E∗ ← L∗
t

4: for i = 0→ n do
5: M i

ct ← Fintune(Gi)
6: cts ← Produce_cts(Ps,M

i
ct)

7: Gi ← Generate_CTs(cts, RLSCI)
8: G∗

i ← V alidation(Gi)
9: E∗ ← E∗ +G∗

i
10: end for
11: return E∗

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

This section evaluates the effectiveness and generalization of our data-centric framework. LLMs
are fine-tuned on both the handcrafted dataset and the generated one. To evaluate the effectiveness
of our datasets, we report pass@8 on the LEANCOMB-Test set, and two increasingly challenging
external benchmarks: the mathematics competition dataset PutnamBench and the recently proposed
combinatorics-focused benchmark CombiBench. Experimental results across these benchmarks
demonstrate the effectiveness and generalization of the approach.

5.1 MAIN RESULTS

Analysis of LEANCOMB++ Dataset. Using the training set of LEANCOMB as a seed dataset, our
generator, ATG4CI, generate 260,466 novel combinatorics theorems in two iterations, forming the
enhanced dataset, LEANCOMB++. To provide candidate tactics for RLSCI, we iteratively fine-tune a
general-purpose LLM, LLaMA3.1-8B (Biderman et al., 2023) with generated data in each round.

0 10 20 30 40
Proof Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
eo

re
m

 N
um

be
r (
×1

03
)

25% 50% 75%

0.391

2.564

0.488

0.047 0.008

(a) Theorem Count Across Proof Steps

0 10 20 30 40 50
Number of Tactic Types

0

5

10

15

20

25

Th
eo

re
m

 N
um

be
r (
×1

03
)

5.885

25.753

16.258

3.440

1.153
2.162

(b) Theorem Distribution by Tactic Types

Figure 5: Theorem Distribution by Proof Steps and Tactic Types in LEANCOMB++.

To assess the difficulty and quality of LEANCOMB++, we examine the distribution of proof steps and
tactic types. Figure 5(a) shows that while a significant portion of proofs are short (50% are within 8
steps), a substantial long tail of 65,117 theorems requires more than 16 steps, with the longest proof
reaching 192 steps. For tactic diversity (Figure 5(b)), while most proofs use a small set of common
tactics, 5,857 theorems require more than 20 distinct tactics, indicating high procedural complexity.
This long-tail distribution indicates that ATG4CI successfully discovers a significant number of
high-complexity theorems beyond the scope of trivial proof search, which is crucial for training
models to move beyond simple pattern matching and develop long-horizon reasoning capabilities.

Model Performance on LEANCOMB-Test. We evaluate the impact of fine-tuning on our datasets
with respect to in-domain performance. As shown in Table 1, training on the hand-curated LEAN-
COMB dataset results in performance gains of up to 6 percentage points, with models like DeepSeek-
Prover-v2 (Guo et al., 2025) reaching 25% pass@8. Training on LEANCOMB++ dataset leads to even
further improvements, with performance increasing by up to 12 percentage points over the baseline
(e.g., Mathstral3-8B (Mistral AI, 2024) improves from 12% to 24%). An interesting finding is that
DeepSeek-Prover-v2, a whole-proof generator, showed a performance decline with LEANCOMB++,
while other tree-search models performed excellently. We hypothesize that this is due to a mismatch
between the model architecture and data style. ATG4CI’s "learn-from-failure" mechanism generates
data suited for step-by-step reasoning, which is more effectively leveraged by tree-search models. Our
multi-round experiments (see Table 4) show that as training data increases, DeepSeek-Prover-v2’s
performance improves, suggesting it benefits from the additional data despite slower learning.

5.2 GENERALIZATION ANALYSIS: CROSS-DOMAIN PERFORMANCE.

We evaluated the models fine-tuned on LEANCOMB++ using two external public benchmarks:
PutnamBench, CombiBench. The results (see Table 2) demonstrate that our dataset enables the
models to solve a broader range of mathematical problems. All models outperform their baselines
on CombiBench. Notably, the number of problems solved by InternLM2.5-Step-Prover increased

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Model Performance on LEANCOMB-Test Set Using Pass@1 and Pass@8 Metrics.

Model Pass@1 Pass@8

Base LEANCOMB LEANCOMB++ Base LEANCOMB LEANCOMB++

Tree Search Methods

Mathstral3 - 8B 9% 15% 19% 12% 18% 24%
Llama3 - 8B 9% 12% 16% 11% 15% 22%
Mistral - 7B 9% 12% 17% 13% 18% 23%
InternLM2.5-Step 12% 16% 13% 16% 18% 25%

Whole-Proof Generation

DeepSeek-Prover-v2-7B 19% 21% 13% 23% 25% 17%

from 2 to 7, indicating a significant improvement in its combinatorial reasoning capabilities. On
PutnamBench, the fine-tuned Mathstral model even solved a previously unsolved combinatorics
problem by leveraging auxiliary lemmas from LEANCOMB, highlighting the potential of our approach
to enhance a model’s ability to solve out-of-distribution problems.

Table 2: Model Performance on CombiBench and PutnamBench with Pass@8(%).

Model CombiBench PutnamBench

Base LEANCOMB++ Base LEANCOMB++

Tree Search Methods

Mathstral3 - 8B 4/100 7/100 0/658 6/658
Llama3 - 8B 3/100 4/100 0/658 6/658
Mistral - 7B 3/100 7/100 0/658 6/658
InternLM2.5-Step-7B 2/100 7/100 6/658 7/658

Whole-proof Generation

DeepSeek-Prover-v2-7B 3/100 9/100 9/658 10/658

5.3 ANALYSIS AND DISCUSSION

The Challenges of LEANCOMB Benchmark. Although the relative performance improvements
are significant, the absolute success rate on the test set highlights the challenges of the LEANCOMB
benchmark. We attribute these challenges to category imbalance and inherent reasoning complexity.

Table 3: Distribution of Generated Theorems and Solved Ratio per Category.

Theorem Category # Generated (% of Total) Avg. Proof Length Solved / Total

Basic Techniques 71003 (27.3%) 14.83 18 / 34
Combinatorics 21905 (8.4%) 34.76 4 / 17
Calculus 27564 (10.6%) 25.10 2 / 14
Probability 33648 (13.0%) 46.18 4 / 8
Special Numbers 29691 (11.4%) 30.66 3 / 10
Generating Functions 12446 (4.8%) 41.18 0 / 5
Recurr. Rel. & Diff. 47213 (18.1%) 19.82 3 / 6
Misc. & Mech. Summation 16993 (6.5%) 49.13 2 / 6

Total 260466 (100.0%) – 39 / 100

Our analysis shows a strong correlation between data distribution and model performance. As seen
in Table 3, the theorem generation process produces more structured proofs, such as those in the
"Basic Techniques" category (27.3% of LEANCOMB++), where the success rate exceeds 50%. In

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

contrast, for more challenging problems like "Generating Functions" (only 4.8% of data), the success
rate is 0%. The inherent complexity of the problems is a more fundamental factor. The average
proof length (used as a complexity proxy) is negatively correlated with success rate. The "Basic
Techniques" category, with the shortest average proof length (14.8 steps), has the highest success
rate, while longer proofs, like those in "Miscellaneous Techniques" (49.1 steps) and "Generating
Functions" (41.2 steps), have success rates close to zero. These findings suggest that the performance
bottleneck is not just due to data imbalance, but also the lack of long-horizon reasoning capabilities,
which LEANCOMB aims to rigorously test. These results highlight that LEANCOMB is a high-quality
benchmark that distinguishes the "comfort zone" and "capability boundary" of models, revealing that
long-horizon reasoning and complex combinatorial identities remain core challenges in ATP.

Effect of Iterative Theorem Generation. We analyze model performance across four rounds of
iterative fine-tuning on generated theorems. As shown in Table 4, most models, including Mathstral,
LLaMA3, and InternLM2.5, achieve peak performance in Round 2. The subsequent performance
decline can be attributed to diversity saturation, where later rounds yield fewer novel theorems, and
distribution shift, where generated data drifts from the original handcrafted distribution, potentially
harming generalization. DeepSeek-Prover-v2 is an exception, reaching its highest accuracy in Round
4. Based on the overall trends, we adopt the Round 2 dataset as our final augmented training set, as it
offers the best trade-off between performance and data quality across most models.

Table 4: Model performance (pass@8) across rounds of iterative theorem generation.

Round Mathstral-8B LLaMA3-8B Mistral-7B InternLM2.5 DeepSeek-v2

Round 1 19% 17% 15% 18% 16%

Round 2 24% 22% 23% 25% 17%

Round 3 16% 15% 16% 18% 19%

Round 4 12% 8% 14% 13% 21%

Impact of Reinforcement Learning and LLM-based Tactic Generation. To evaluate the role
of reinforcement learning and LLM-generated tactics, we conduct two ablation studies: Replace
LLaMA3.1-8B tactics with naive MCTS search results; Use BFS with 100 expert-curated tactics.
As shown in Table 5, both ablations produce more data than our method (BFS yields the most).
However, models trained on our data perform better, surpassing MCTS and BFS by 13.5% and 14.2%,
respectively, on LEANCOMB-Test set. This supports the effectiveness of reinforcement learning and
LLM-guided tactic generation.

Table 5: Ablation results comparing ATG4CI with/without RL or LLM components.

Method # Candidate #New Success Rate(Avg.)

w/o RL (Naive MCTS) 1,350,474 182,288 7.0%

w/o LLM (BFS + Expert Tactics) 2,896,533 433,073 6.3%

ATG4CI (Ours) 1,033,010 260,466 22.2%

6 CONCLUSION

We address the scarcity of formal data in combinatorics by proposing ATG4CI, based on a novel
"Learn-from-Failure" paradigm that leverages unsuccessful proof attempts into Lean-verifiable
theorems. By leveraging our expert-curated LEANCOMB dataset, ATG4CI generated the augmented
LEANCOMB++. Experiments show that models fine-tuned on our datasets achieve significant
performance gains on the in-domain test set (a 7.2% average improvement) and that their symbolic
reasoning capabilities generalize to other challenging benchmarks like PutnamBench. Our work
provides valuable resources for combinatorial ATP and demonstrates a scalable methodology to data
creation, offering a promising template for addressing data scarcity in other mathematical domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. We explicitly acknowledge this adherence during
the submission process. Our study does not involve human subjects, sensitive personal data, or any
practices that would raise ethical concerns. We have made sure to comply with legal requirements,
including data privacy and security, and have ensured the integrity of the research process.

We have taken the necessary steps to avoid any potential conflicts of interest or biases in the research.
The methods and results are presented objectively and transparently to ensure the highest standards
of research integrity.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we provide the
following resources and details.

Code and Data Availability: All code for our ATG4CI framework, including scripts for data
generation, model fine-tuning, and evaluation, will be made publicly available. All resources,
including the LEANCOMB test set, trained models, code for data generation, training, and evaluation,
as well as detailed results, are available at the LEANCOMB repository.

Experimental Details: A comprehensive description of our experimental setup is provided in Section
5. This includes the list of all baseline models, fine-tuning hyperparameters (learning rate, batch size,
optimizer, etc.), and the hardware used (NVIDIA L40 GPUs). Further details and prompt examples
are available in Appendix G.

Dataset and Evaluation: The construction protocol, sources, and statistical properties of the
LEANCOMB dataset are detailed in Section 3 and Appendix B. The evaluation protocol, including
the use of Best-First Search (BFS) and the pass@k metrics, is described in Section 5. All proofs
were verified using Lean 4 (v4.14.0) and its corresponding Mathlib4 library.

LLM USAGE STATEMENT

A Large Language Model (LLM) was used to assist in the writing and polishing of this manuscript.
Specifically, an LLM aided in improving grammar, clarity, and readability through tasks such as
sentence rephrasing and proofreading.

It is critical to note that the LLM was not involved in any core scientific aspects of this work, including
ideation, formulation of the research methodology, experimental design, or data analysis. All research
concepts, ideas, and scientific conclusions were developed exclusively by the human authors. The
LLM’s contribution was strictly limited to improving the linguistic quality of the text. The authors
take full responsibility for all content in this manuscript, including the accuracy and integrity of any
text modified by the LLM.

REFERENCES

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, and Edward Raff.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Thomas Britz. Three combinatorial dual identities: Proximity to something useful. https:
//www.unsw.edu.au/science/our-schools/maths/engage-with-us/semi
nars/2010/three-combinatorial-dual-identities-proximity-to-somet
hing-useful, 2010. UNSW Mathematics Seminar.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun,

10

https://anonymous.4open.science/r/LeanComb-A-Combinatorial-Identities-Benchmark-for-Theorem-Proving-via-Automated-Theorem-Generation-E0D3/README.md
https://www.unsw.edu.au/science/our-schools/maths/engage-with-us/seminars/2010/three-combinatorial-dual-identities-proximity-to-something-useful
https://www.unsw.edu.au/science/our-schools/maths/engage-with-us/seminars/2010/three-combinatorial-dual-identities-proximity-to-something-useful
https://www.unsw.edu.au/science/our-schools/maths/engage-with-us/seminars/2010/three-combinatorial-dual-identities-proximity-to-something-useful
https://www.unsw.edu.au/science/our-schools/maths/engage-with-us/seminars/2010/three-combinatorial-dual-identities-proximity-to-something-useful

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu,
Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan,
Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, and Thomas Hanwen
Zhu. Seed-prover: Deep and broad reasoning for automated theorem proving, 2025. URL
https://arxiv.org/abs/2507.23726.

Yulei Chen and Dongwei Guo. Combinatorial identities concerning binomial quotients. Symmetry,
16(6):746, 2024. doi: 10.3390/sym16060746. URL https://www.mdpi.com/2073-899
4/16/6/746.

Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization, 2022. URL https://arxiv.org/abs/2110.02861.

Kefan Dong and Tengyu Ma. STP: Self-play LLM theorem provers with iterative conjecturing and
proving, 2025. URL https://arxiv.org/abs/2502.00212.

Herman Geuvers. Proof assistants: History, ideas and future. Sadhana, 34:3–25, 2009.

H. W. Gould. Combinatorial Identities. West Virginia University, Morgantown, WV, 1972.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, and Alex Vaughan. The Llama 3 herd of
models, 2024. URL https://arxiv.org/abs/2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, and Xiao Bi. DeepSeek-R1: Incentivizing reasoning capability in LLMs
via reinforcement learning, 2025.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Yinya Huang, Xiaohan Lin, Zhengying Liu, Qingxing Cao, Huajian Xin, Haiming Wang, Zhenguo
Li, Linqi Song, and Xiaodan Liang. Mustard: Mastering uniform synthesis of theorem and proof
data, 2024.

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Shuaiwen Leon Song, Samyam
Rajbhandari, and Yuxiong He. DeepSpeed Ulysses: System optimizations for enabling training of
extreme long sequence transformer models, 2023. URL https://arxiv.org/abs/2309
.14509.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, and Lucile Saulnier.
Mistral 7B, 2023.

Matjaž Konvalinka. Combinatorics of Determinantal Identities. PhD thesis, Massachusetts Institute
of Technology, 2008. URL https://dspace.mit.edu/handle/1721.1/43790.

LessWrong. AI achieves silver medal standard solving International Mathematics Olympiad problems,
2024. URL https://bit.ly/4hxf9UI. Retrieved January 4, 2025.

Zhenwen Liang, Linfeng Song, Yang Li, Tao Yang, Feng Zhang, Haitao Mi, and Dong Yu. Mps-
prover: Advancing stepwise theorem proving by multi-perspective search and data curation, 2025.
URL https://arxiv.org/abs/2505.10962.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Danqi Chen, and Sanjeev Arora. Goedel-Prover: A frontier model for open-source automated
theorem proving, 2025.

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
Chuanyang Zheng, Yichun Yin, and Lin Li. FIMO: A challenge formal dataset for automated
theorem proving, 2023.

11

https://arxiv.org/abs/2507.23726
https://www.mdpi.com/2073-8994/16/6/746
https://www.mdpi.com/2073-8994/16/6/746
https://arxiv.org/abs/2110.02861
https://arxiv.org/abs/2502.00212
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://dspace.mit.edu/handle/1721.1/43790
https://bit.ly/4hxf9UI
https://arxiv.org/abs/2505.10962

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Junqi Liu, Xiaohan Lin, Jonas Bayer, Yael Dillies, Weijie Jiang, Xiaodan Liang, Roman Soletskyi,
Haiming Wang, Yunzhou Xie, and Beibei Xiong. CombiBench: Benchmarking LLM capability
for combinatorial mathematics, 2025.

Mistral AI. Mathstral: Advancing mathematical reasoning with 7B parameters. Technical Report,
2024. Available at https://mistral.ai/news/mathstral/.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Judea Pearl. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley
Longman Publishing Co., Inc., USA, 1984. ISBN 0201055945.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,
2020.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models, 2019.

Jihuai Shi. Combinatorial Identities. University of Science and Technology of China Press, 2001.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, and Thore Graepel. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm, 2017.

Michael Z Spivey. The art of proving binomial identities. Chapman and Hall/CRC, 2019.

The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, POPL ’20. ACM, January 2020. doi:
10.1145/3372885.3373824. URL http://dx.doi.org/10.1145/3372885.3373824.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. PutnamBench: A multilingual competition-mathematics
benchmark for formal theorem-proving. In AI for Math Workshop@ ICML 2024, 2024.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han Shi,
Yujun Li, Lin Li, Jian Yin, Zhenguo Li, and Xiaodan Liang. DT-Solver: Automated Theorem
Proving with Dynamic-Tree Sampling Guided by Proof-level Value Function. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 12632–12646, Toronto, Canada, July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.706. URL https://aclanthology.org/2023.acl-l
ong.706/.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood Sung,
Marina Vinyes, Zhenzhe Ying, and Zekai Zhu. Kimina-Prover preview: Towards large formal
reasoning models with reinforcement learning, 2025.

Chenrui Wei, Mengzhou Sun, and Wei Wang. Proving olympiad algebraic inequalities without human
demonstrations, 2024.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2022. URL
https://arxiv.org/abs/2109.01652.

Shaonan Wu, Shuai Lu, Yeyun Gong, Nan Duan, and Ping Wei. Alchemy: Amplifying theorem-
proving capability through symbolic mutation, 2024a.

12

https://mistral.ai/news/mathstral/
https://arxiv.org/abs/2203.02155
http://dx.doi.org/10.1145/3372885.3373824
https://aclanthology.org/2023.acl-long.706/
https://aclanthology.org/2023.acl-long.706/
https://arxiv.org/abs/2109.01652

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuhuai Wu, Albert Q. Jiang, Jimmy Ba, and Roger Baker Grosse. INT: an inequality benchmark
for evaluating generalization in theorem proving. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=O6LPudowNQm.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and Kai Chen.
InternLM2.5-StepProver: Advancing automated theorem proving via expert iteration on large-scale
lean problems, 2024b.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and
Kai Shen. BFS-Prover: Scalable best-first tree search for LLM-based automatic theorem proving,
2025.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. LeanDojo: Theorem proving with retrieval-augmented
language models, 2024.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook: A
large-scale lean problem set formalized from natural language math problems, 2024.

Zhouliang Yu, Ruotian Peng, Keyi Ding, Yizhe Li, Zhongyuan Peng, Minghao Liu, Yifan Zhang,
Zheng Yuan, Huajian Xin, and Wenhao Huang. FormalMATH: Benchmarking formal mathematical
reasoning of large language models, 2025.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. MiniF2F: a cross-system benchmark for
formal Olympiad-level mathematics, 2022. URL https://arxiv.org/abs/2109.00110.

13

https://openreview.net/forum?id=O6LPudowNQm
https://arxiv.org/abs/2109.00110

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A AN ILLUSTRATIVE EXAMPLE FOR ATG4CI

We now illustrate the end-to-end workflow of ATG4CI using a single identity, sum_mul_congr,
from our seed dataset.

Example 1. Consider a combinatorial identity and its formalization in Lean 4:

n∑
k=1

nCk−1
n−1 = n

n−1∑
l=0

Cl
n−1. (1)

1 theorem sum_mul_congr {n : N}:
2 Σ k ∈ Finset.Ico 1 (n + 1), n * Nat.choose (n - 1) (k - 1) =
3 n * Σ l ∈ Finset.range n, Nat.choose (n - 1) l := by
4 rw [Finset.mul_sum]
5 rw [Finset.sum_Ico_eq_sum_range]
6 simp only [add_tsub_cancel_right,
7 add_tsub_cancel_left]

Listing 1: The root theorem ’sum_mul_congr’ in Lean 4.

We formalize identity (1) as a root theorem named sum_mul_congr. Its proof concisely demon-
strates typical multi-step reasoning in Lean 4: first, the common factor n is factored out of the sum-
mation using the rw [Finset.mul_sum] tactic; next, the rw [Finset.sum_Ico_eq_sum_range]
tactic is used to unify the summation bounds; and finally, the simp tactic is called to complete the
algebraic simplification, reaching the "no goals" state, which signifies the proof is complete. This
example clearly reflects the precision and logical steps required for proving the identities within
LEANCOMB.

Stage 1: P3s (Partial Proof Paths) Construction

During the P3s construction process, the root theorem sum_mul_congr shown in Example 1
transitions through three sequential tactics and eventually reaches the “no goals” state at the leaf node,
resulting in a four-layer proof tree. From this tree, two P3s are extracted: one from the root to the
state after applying “rw [Finset.mul_sum]”, and another from the root to the state after applying
“rw [Finset.sum_Ico_eq_sum_range]”:

1 theorem P3s_1 {n : N}:
2 Σ k ∈ Finset.Ico 1 (n + 1), n * Nat.choose (n - 1) (k - 1) =
3 n * Σ l ∈ Finset.range n, Nat.choose (n - 1) l := by
4 rw [Finset.mul_sum]

Listing 2: The first P3s of the root theorem.

1 theorem P3s_2 {n : N}:
2 Σ k ∈ Finset.Ico 1 (n + 1), n * Nat.choose (n - 1) (k - 1) =
3 n * Σ l ∈ Finset.range n, Nat.choose (n - 1) l := by
4 rw [Finset.mul_sum]
5 rw [Finset.sum_Ico_eq_sum_range]

Listing 3: The second P3s of the root theorem.

Stage 2: Candidate Theorem Generation (Learning from Failure)

The P3s is then fed to an LLM, which attempts to continue the proof by generating new candidate
tactics. In many explorations, the model-generated path does not immediately complete the proof.
The code below shows one such failed candidate proof-path, where the predicted tactics (Lines 7–10)
do not close the goal:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

1 theorem cp_1 {n : N} :
2 Σ k ∈ Finset.Ico 1 (n + 1), n * Nat.choose (n - 1) (k - 1) =
3 n * Σ k ∈ Finset.range n, Nat.choose (n - 1) k := by
4 rw [Finset.mul_sum]
5 -- Prediction starts here!
6 rw [range_eq_Ico]
7 rw [sum_Ico_eq_sum_range]
8 rw [add_tsub_cancel_right]
9 rw [range_eq_Ico]

10 -- Prediction ends, goal is not closed

Listing 4: A candidate proof-path that fails to close the goal.

When this path terminates, the final unproven subgoal is identified. Our framework’s core innovation
is to transform this "failure" into a new, valid theorem. The original theorem sum_mul_congr
is repurposed as a new hypothesis h, and the final subgoal from the failed path becomes the new
conclusion:

∑n
k=0nC

1+k−1
n−1 =

∑n
l=0nC

l
n−1. (2)

The proof for this new theorem is constructed by replaying the tactics from the failed path on the
hypothesis and using the assumption tactic to finalize it, as shown in the new candidate theorem
CT_1:

1 theorem CT_1 (n : N)
2 (h : Σ k ∈ Finset.Ico 1 (n + 1), n * Nat.choose (n - 1) (k - 1)

= n * Σ l ∈ Finset.range n, Nat.choose (n - 1) l) :
3 -- Candidate theorem
4 Σ k in range n, n * Nat.choose (n - 1) k =
5 Σ x in Ico 0 n, n * Nat.choose (n - 1) x := by
6 rw [mul_sum] at h
7 rw [range_eq_Ico] at h
8 rw [sum_Ico_eq_sum_range] at h
9 rw [add_tsub_cancel_right] at h

10 assumption

Listing 5: A new candidate theorem generated from the failed path.

As shown in Lines 3–5, the root theorem is adopted as the new hypothesis h. Then, in Lines 10–13,
all tactics along the candidate path are sequentially applied to rewrite h until it aligns with the target
goal. Finally, the tactic "assumption" in Line 14 is applied to conclude the proof.

Stage 3: Theorem Validation

The newly generated candidate theorem, like CT_1, then enters the final validation stage. Its proof is
first formally verified by Lean. If successful, the theorem is deduplicated to ensure it is unique from
other generated theorems. If the theorem contained errors, it would be sent to an automated correction
module. Only correct and unique theorems that pass all checks are added to the LEANCOMB++
dataset.

B LEANCOMB DATASET

The LEANCOMB dataset is constructed based on authoritative literature in the field of classical
combinatorics (Spivey, 2019; Gould, 1972; Shi, 2001), aiming to provide a high-quality mathematical
reasoning benchmark to support automated theorem proving for combinatorial identities. The dataset
comprises a total of 727 theorems, with the training set consisting of 627 theorems (including 418
combinatorial identities and 209 lemmas), while the test set contains 100 identities.

When annotating, we strive to cover more combinatorial mathematics fields. The specific classification
of theorems in LEANCOMB is shown in Table 6. All identities in the training set and test sets are

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Theorem Categories Training Set Test Set

Basic Techniques
The Generalized Binomial Coefficient 42 16

Absorption Identity 35 12

Binomial Inversion 46 6

Combinatorics
Choosing with Replacement 26 6

Alternating Binomial Sums & Involutions 23 6

Inclusion-Exclusion 27 5

Calculus
Differentiation 20 5

Integration 26 3

Beta Integral & Gamma Function 22 6

Probability
Binomial & Hypergeometric Distributions 13 5

Expected Values & Moments 16 3

Special Numbers 25 10

Generating Functions 29 5

Recurrence Relations & Finite Differences 56 6

Miscellaneous Techniques & Mechanical Summation 12 6

Total 418 100

Table 6: Theorem categories with training and test set counts.

classified into 8 categories, including Combinatorics, Calculus, Probability, and others. The Basic
Techniques category contains the most significant samples in training and test sets, with 123 and 40
samples, respectively. In the “Basic Techniques” category, the Binomial Coefficient and Binomial
Inversion, along with the Recurrence Relations & Differences categories, have relatively higher
sample counts, totaling 42, 46, and 56, respectively. Additionally, we have formally introduced 9 new
mathematical definitions, covering fundamental concepts such as Bell numbers, Stirling numbers of
the first and second kinds, and combinations and permutations, thereby enhancing the expressiveness
of the benchmark dataset. All resources, including the LEANCOMB test set, trained models, code for
data generation, training, and evaluation, as well as detailed results, are available at the LEANCOMB
repository.

This dataset encompasses numerous classical theorems in combinatorics, including Negative Binomial
Series, Binet’s Formula, Trinomial Revision, and Cassini’s Identity. For example:

Negative Binomial Series:
1

(1− x)n+1
=

∞∑
k=0

(
n+ k

n

)
xk,

Binet’s Formula: Fn =
ϕn − ψn

√
5

,

Cassini’s Identity: Fn+1Fn−1 − F 2
n = (−1)n.

To systematically illustrate the diversity of the dataset and the core mathematical structures involved,
we have selected several representative combinatorial identity examples and categorized them based
on their roles within the dataset. The selected examples are divided into two parts: one from the
training set and the other from the test set. Each part includes various types of combinatorial identities,
covering key topics such as the properties of Stirling numbers, classical combinatorial identities,
and their variants. These examples not only provide an intuitive understanding of the dataset’s
composition but also establish a solid foundation for subsequent theoretical analysis and model
evaluation.

16

https://anonymous.4open.science/r/LeanComb-A-Combinatorial-Identities-Benchmark-for-Theorem-Proving-via-Automated-Theorem-Generation-E0D3/README.md
https://anonymous.4open.science/r/LeanComb-A-Combinatorial-Identities-Benchmark-for-Theorem-Proving-via-Automated-Theorem-Generation-E0D3/README.md

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.1 TRAINING SET

idt_15:
Goal:

∑m
k=0

(
n+k
k

)
=

(
n+m+1

m

)
idt_101

Goal:
∑n

k=0

(
n
k

) (xk+1
2 −xk+1

1)yn−k

(k+1)2 = 1
n+1

∑n
k=0

((x2+y)k+1−(x1+y)k+1)yn−k

k+1

idt_105
Premises: a, b ∈ R≥0

Goal: B(a, b) = Γ(a)Γ(b)
Γ(a+b)

idt_106
Premises: −1 < n− k
Goal: k!

nk = (n+ 1)
∫ 1

0
xk(1− x)n−kdx

idt_109
Premises: 0 < x

Goal:
∑n

k=0

(
n
k

) (−1)k

k+x = n!
x(x+1)...(x+n)

idt_112
Goal:

∑n
k=0

(
n
k

)
k(k +m) = n(n+ 2m+ 1)2n−2

idt_115
Goal:

∑r
k=0

(
n

r−k

)(
m+k
m

)
(−1)k =

(
n−m−1

r

)
idt_117

Goal:
∑n

k=0

(
n
k

) (n+1)(n+2)(n+3)
(k+1)(k+2)(k+3) = 2n+3 − 1− (n+ 3)− (n+2)(n+3)

2

idt_121
Goal:

∑∞
n=0

2n

(2n+1)(2nn)
= π

2

idt_124

Goal: 1

(nk)
= 2(n+ 1)

∫ π
2

0
sin2k+1 θ cos2n−2k+1 θdθ

idt_131
Premises: 0 ≤ p ≤ 1

Goal:
∑n

k=0

(
n
k

)
pk(1− p)n−kk2 = n2p2 + np(1− p)

idt_132
Goal:

∑m
k=0

(
m
k

)(
n

r−k

)
k =

(
m+n

r

)
rm

m+n

idt_179
Premises: n ≤ m
Goal: ∆nFm = Fm−n

idt_212

Goal:
∑n

k=1

(
n
k

) (−1)k

k(k+1)···(k+m) = −
Hn+m−Hm

m!

idt_285
Premises: 0 < y

Goal:
∑n

k=0

(
n
k

)
ikyn−k = (y2 + 1)n/2ei n arctan(1/y)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

idt_318
Goal:

∑
k≥0

(
n

2k+1

)
3k(−1)k = 2n√

3
sin nπ

3

B.2 TEST SET

test_002
Goal: nk+1 = (k + 1)! ×

(
n+k
k+1

)
test_005
Premises: 1 ≤ n
Goal:

∑n
k=1

1
k

(
2(k−1)
k−1

) (
2(n−k)
n−k

)
= 1

2

(
2n
n

)
test_011
Premises: 2n ≤ m; 1 ≤ n

Goal:
n∑

k=0

(−1)k
(
n

k

)(
m− 2k

n− 1

)
= 0.

test_025

Goal:
∑⌊n/2⌋

k=0

(
n−k
k

)
= 1√

5

((
1+

√
5

2

)n+1

−
(

1−
√
5

2

)n+1)
.

test_037
Goal:

∑n
k=0(−1) k

(
n
k

) (
m−k
r

)
=

(
m−n
r−n

)
.

test_054
Premises: 1 ≤ n
Goal:

∑m
k=0

(
k+n−1
n−1

)
=

(
n+m
n

)
.

test_069
Premises: 3 ≤ n
Goal: n3 = 6

(
n
3

)
+ 6

(
n
2

)
+

(
n
1

)
test_076

Goal:
∑n−1

k=0(−1)k
(
cos

(
kπ
n

))n

= n
2n−1 .

test_088
Premises: 1 ≤ n
Goal:

∑n
k=0

(
2n
k

)
= 22n−1 + 1

2

(
2n
n

)
test_100
Premises: k ≤ n
Goal:

(
n
k

)
· Beta(k + 1, n− k + 1) = 1

n+1

B.3 DATA CONTAMINATION CHECK

We examine potential data contamination between the LEANCOMB dataset and established auto-
mated theorem proving (ATP) datasets and benchmarks. Specifically, we check for overlaps with
Mathlib4, as well as with benchmark suites including MiniF2F, PutnamBench, ProofNet, FIMO, and
CombiBench.

During this process, we identified 12 combinatorial identities in the training set that overlap with
the mathlib corpus, and one test problem that overlaps with CombiBench. To prevent data leakage,
we removed all overlapping examples from the training set, while annotating their original paths in
Mathlib. And, the overlapping test case was also removed.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C MORE DETAILS ABOUT ATG4CI

C.1 AN ILLUSTRATIVE EXAMPLE FOR ATG4CI

For the LEANCOMB dataset, data augmentation is performed using our theorem generator, ATG4CI.
Some of the theorems in the dataset are augmented to generate up to 4,000 new instances in one
iteration, resulting in a total of 260,466 newly generated theorems. Among these, 56,747 erroneous
theorems are successfully corrected. Below, we demonstrate the workflow of ATG4CI using a typical
example, which corresponds to the mathematical formula

∑n
k=0

(
n
k

)
Fm+k = F2n+m:

1 import Mathlib
2 import Theorem.valid.idt_179
3

4 open Finset Nat
5

6 theorem idt_182 (m n : N) : Σ k in Finset.range (n + 1),
Nat.choose n k * Nat.fib (m + k) = Nat.fib (2 * n + m) := by

7 suffices Σ k in Finset.range (n + 1), Nat.choose n k * Nat.fib
(m + k) = (Nat.fib (2 * n + m) : R) by

8 norm_cast at this
9 let g := fun k => Nat.fib (m + n + k)

10 -- $sum_{k=0}^{n} \binom{n}{k} * fib(m+k) = \sum_{k=0}^{n}
\binom{n}{k} * fib(m+n-n+k)$

11 have h1: Σ k in Finset.range (n + 1), Nat.choose n k * Nat.fib
(m + k) =

12 Σ k in Finset.range (n + 1), Nat.choose n k * Nat.fib (m + n
- n + k) := by

13 congr! 1 with k hk
14 simp at hk
15 congr; omega
16 rw [h1]
17 -- $\sum_{k=0}^{n} \binom{n}{k} * fib(m+n-n+k) = \sum_{k=0}^{n}

\binom{n}{k} * fib(m+n-k)$
18 rw [← Finset.sum_flip]
19 have h2: Σ k ∈ range (n + 1), n.choose (n - k) * fib (m + n - n +

(n - k)) = Σ k ∈ range (n + 1), n.choose k * fib (m + n - k)
:= by

20 congr! 1 with k hk
21 simp at hk
22 rw [choose_symm (by linarith)]
23 congr; omega
24 rw [h2]
25 -- $\sum_{k=0}^{n} \binom{n}{k} * \text{fib}(m+n-k) =

\sum_{k=0}^{n} \binom{n}{k} * \sum_{j=0}^{k} \binom{k}{j} *
g(j)*(-1)^k*(-1)^j$

26

27
28

29 have h7: Σ k ∈ range (n + 1), n.choose k * g k * (-1) ^ k * Σ x
∈ range (n - k + 1), (n - k).choose (x) * (-1 : R) ^ (x + k) =

30 Σ k ∈ range (n + 1), n.choose k * g k * Σ x ∈ range (n - k +
1), (n - k).choose (x) * (-1 : R) ^ x := by

31 congr! 1 with k _
32 rw [mul_assoc, mul_sum]
33 congr 1
34 congr! 1 with j _
35 rw [mul_comm, pow_add, ← mul_assoc, mul_assoc, ← pow_add, ←

two_mul, pow_mul]
36 ring
37 rw [h7, ← Finset.sum_range_add_sum_Ico _ (m := n) (by omega),

show 2 * n + m = m + n + n by omega]
38 simp [g]
39 apply sum_eq_zero

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

40 intro k hk
41 rw [_root_.mul_eq_zero]
42 right
43 simp at hk
44 rw [show (0 : R) = (-1 + 1) ^ (n - k) by simp; rw [zero_pow (by

omega)], add_pow]
45 simp [mul_comm]

Combinatorial Identity 182 encompasses key concepts such as binomial coefficients, Fibonacci
numbers, and generating functions. The proof consists of 77 lines involving 23 distinct tactics,
resulting in a proof length and tactic diversity of 23. Structurally, it forms a 24-layer proof tree, from
which 22 distinct P3s can be extracted. The longest and shortest P3s are highlighted as follows:

1 theorem P3s_1 (m n : N) : Σ k in Finset.range (n + 1), Nat.choose
n k * Nat.fib (m + k) = Nat.fib (2 * n + m) := by

2 suffices Σ k in Finset.range (n + 1), Nat.choose n k * Nat.fib
(m + k) = (Nat.fib (2 * n + m) : R) by

3 norm_cast at this
4
5 rw [h1]

1 theorem P3s_22 (m n : N) : Σ k in Finset.range (n + 1),
Nat.choose n k * Nat.fib (m + k) = Nat.fib (2 * n + m) := by

2 suffices Σ k in Finset.range (n + 1), Nat.choose n k * Nat.fib
(m + k) = (Nat.fib (2 * n + m) : R) by

3 norm_cast at this
4
5 rw [show (0 : R) = (-1 + 1) ^ (n - k) by simp; rw [zero_pow (by

omega)], add_pow]

Based on these P3s, our RLSCI framework facilitates tactic prediction, enabling the generation of
candidate theorems. We further construct their proofs, followed by deduplication and correctness
verification. Below, we present a selection of intriguing combinatorial identities generated by our
theorem generator using the aforementioned examples:

idt_182_3_12:
n∑

k=0

(
n

k

) k∑
j=0

(
k

j

)
Fm+n+j(−1)j(−1)k = F2n+m

idt_182_1_3:
n∑

k=0

(
n

k

)
Fm+n−k = F2n+m

idt_182_0_5:
n∑

x=0

x∑
k=0

(
n

k

)(
n− k
x− k

)
Fm+n+k(−1)x+k = F2n+m

idt_182_0_72
n∑

k=0

(
n

k

)
Fm+n−k = F2n+m

idt_182_6_5
n∑

k=0

(
n

k

)
Fm+n+k(−1)k

n−k∑
x=0

(
n− k
x

)
(−1)x+k = F2n+m

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

idt_182_6_23
n−1∑
k=0

(
n

k

)
Fm+n+k

n−k∑
j=0

(
n− k
j

)
(−1)j = 0

idt_182_6_49 (
n

k

)
Fm+n+k

n−k∑
x=0

(
n− k
x

)
(−1)x = 0

idt_182_2_52
n−k∑
x=0

(
n− k
x

)
(−1)x = 0

idt_182_2_45
n∑

r=0

(
n

n− r

)
Fm+(n−r) = F2n+m

C.2 DATA CONTAMINATION CHECK

To enable a more comprehensive evaluation, we further examined overlaps between the LEAN-
COMB++ dataset and existing formalized resources, including Mathlib and the Lean Community
Workbook. To prevent data contamination, we deduplicated at the tactic-level by converting each
proof into a sequence of (state, tactic) pairs and removing any duplicated tactic sequences across
datasets.

C.3 THEOREM CORRECTION DETAILS

Theorem Correction: After deduplication, as some candidate theorems may still contain expression
errors or fail to pass the proof process, correctness refinement is performed. After candidate theorems
are verified successfully by interacting with Lean, they are directly added to the generated dataset
G∗. Those that fail verification are categorized by error type and corrected using the corresponding
correction methods. The corrected theorems are then added to G∗. The following section elaborates
on the error types and their corresponding correction tactics.

• Incomplete Error: An incomplete error occurs when a candidate tactic generates multiple
subgoals, at least one subgoal remains unproven, preventing the completion of the theorem’s
proof. The standard MCTS (Coulom, 2006) method can be applied to recover incomplete
theorems and generate additional proof steps to complete the proof.

• Type Errors: Type errors arise due to Lean’s representation methods, where variable types
in subgoals are not always explicitly stated during interactions with Lean or during the
data extraction process. To address this, we identify the type information from the original
theorem and annotate the generated theorems with correct type labels.

• Logical Errors: Logical errors occur when applying a tactic that generates multiple subgoals,
but at least one contains a logical inconsistency, preventing further progress in the proof.
Theorems with such logical inconsistencies are considered irreparable and must be discarded.

During the theorem generation process, we classify theorems and verify the correctness of candidate
theorems. Incorrect theorems are grouped separately, and different correction methods are applied
based on their types.

The standard MCTS with our fine-tuned Llama 3.1 corrects these theorems. We set the number
of candidate tactics (i.e., visit counts) per node to 16 and the number of simulations per node to
100. It generates full-proof search trees through selection, expansion, and backpropagation, and
complete-proof steps are engendered accordingly. The selection phase considers the average reward
and exploration of nodes, using the UCB1 algorithm to select the optimal node (Auer et al., 2002):

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Error Types Error Example Correction Example

Incomplete Proofs

ErrorExample1(n : N)
(goal : the goal of sum_mul_congr) :∑n

k=0 kC2n+1 = 2n
∑n

k=0 C
k+1
2n

∑n
k=0 C

k
2n := by

rw[range_eq_Ico] at goal

assumption

CorrectedTheorem1(n : N)
(goal : the goal of sum_mul_congr) :∑n

k=0 kC2n+1 = 2n
∑n

k=0 C
k
2n + 1

∑n
k=0 C

k
2n := by

rw[range_eq_Ico] at goal

rw[add_mul] at goal

assumption

Type Errors
ErrorExample2(m : N)(hm : 0 < m) :

2 +−1/(m+ 1) = (2m+ 1)/(m+ 1)

Corrected_Theorem2(m : N)(hm : 0 < m) :

2 + (−1 : R)/(m+ 1) = (2m+ 1)/(m+ 1)

Redundant Steps

ErrorExample3(n : N) :
2n+ 1− n = n+ 1 := by

rw[two_mul]

rw[add_assoc]

rw[add_comm]

simp

rw[two_mul]

CorrectedTheorem3(n : N) :
2n+ 1− n = n+ 1 := by

rw[two_mul]

rw[add_assoc]

rw[add_comm]

simp

Table 7: The Error Types and Correction Process

UCB1 =
Wi

Ni
+ C ×

√
lnNp

Ni
. (3)

Detailed descriptions of the different types of errors and their respective correction methods are
provided in the table 7.

Example 1: Incomplete Proofs

1 theorem congr_Ico_succ__2__73(n : N) :
2 Σ k in Ico 1 (n + 1), k * Nat.choose (n - 1) (k - 1) = Σ l in
3 Ico 0 n, (l + 1) * Nat.choose (n - 1) l := by
4 rw [sum_Ico_eq_sum_range]
5 simp
6 refine’ sum_congr rfl fun y _ => _
7 rw [add_mul]
8 rW [choose_eq_zero_of_lt]
9 rw [add_comm]

Listing 6: Type Error: unsolved goal n− 1 < y.

After Corrected:

1 theorem congr_Ico_succ_2_73 (n : N) :
2 Σ k in Ico 1 (n + 1), k * Nat.choose (n - 1) (k - 1) = Σ l
3 in Ico 0 n, (l + 1) * Nat.choose (n - 1) l := by
4 rw[sum_Ico_eq_sum_range]
5 simp
6 refine’ sum_congr rfl fun x _ => _
7 simp
8 rw [add_comm]
9 exact Or.inl rfl

Example 2: Type Errors

1 theorem sum_mul_add_distrib__0__36(n : N)(h : Σ k in range (n +
1), (k + 1) * Nat.choose n k = Σ k in range (n + 1), (k *
Nat.choose n k + 1 * Nat.choose n k)) :

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

2 (1 + y) * Nat.choose n y = y * Nat.choose n y + Nat.choose n y :=
by

3 refine’ sum_congr rfl fun y _ => _
4 simp [mul_assoc] at h
5 rw [add_comm] at h
6 assumption

Listing 7: Type Error : metavariables AddCommMonoid ?m.90801.

After Corrected:

1 theorem sum_mul_add_distrib__0__36(n : N)(h : Σ k in range (n +
1), (k + 1) * Nat.choose n k = Σ k in range (n + 1), (k *
Nat.choose n k + 1 * Nat.choose n k)) :

2 (1 + y) * Nat.choose n y = y * Nat.choose n y + Nat.choose n y
:= by

3 rw [add_mul]
4 rw [one_mul]
5 rw [add_comm]

D LEAN4KIT

In our automated theorem generator ATG4CI, Lean4Kit plays a key role in data extraction and
interaction. During the experimental evaluation and testing phase, Lean4Kit assists LLMs in theorem
proving through interaction with Lean 4. In fact, given any repo in Lean 4, our offline toolkit can
convert Lean files into JSON format data, extracting all state-tactic pairs.

D.1 DATA EXTRACTION FROM LEAN CODES

The complete Lean code (including imports) is converted into a JSON-formatted data structure
tree (infotree) in the static extraction process. The conversion function run_all_tactics(self, code,
env=None, verbose=True) returns data in a format that includes the tactic, as well as the before-and-
after states of the goals (goalsBefore and goalsAfter), for example:

pp: rw [abelidentity_eq_add]
name : Lean.Parser.Tactic.rwSeq
goalsBefore :

1 n : N
2 x y : R
3 hn1 : 1 ≤ n
4 hx : x ̸= 0
5 hy : y ̸= 0
6 ⊢ abelidentity x y (-1) (-1) n =
7 (1 / x + 1 / y) * (x + y + ↑n) ^ (n - 1)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

pp: rw [abelidentity_eq_add]
name : Lean.Parser.Tactic.rwSeq

goalsAfter :

1 n : N
2 x y : R
3 hn1 : 1 ≤ n
4 hx : x ̸= 0
5 hy : y ̸= 0
6 ⊢ abelidentity x (y + 1) (-1) (-1 + 1) (n - 1) +

abelidentity (x + 1) y (-1 + 1) (-1) (n - 1) = (1 / x +
1 / y) * (x + y + ↑n) ^ (n - 1)

7

8 case hn
9 n : N

10 x y : R
11 hn1 : 1 ≤ n
12 hx : x ̸= 0
13 hy : y ̸= 0
14 ⊢ n ≥ 1

D.2 DYNAMIC INTERACTION WITH LEAN FOR THEOREM PROVING

In the dynamic interaction process, we interact with Lean to perform automated theorem proving.
The process mainly relies on the following functions:

• run_import(self, code, env=None, verbose=False) : Used to import necessary environments
and dependencies.

• new_thm(self, code, env=None, verbose=False) : Generates a new theorem based on the
provided theorem description.

The provided code parameter represents the description of the initial theorem, for example:

1 theorem idt_84 (n : N)(h : m < n): Σ k in range (n + 1), n.choose
k * (n - k) ^ m * (-1 : R) ^ k = 0 := by sorry

This function returns an initial state for subsequent tactic applications:

• run_tactic(self, tactic, proofState, cmd_type= ’tactic’, verbose=False): Executes a tactic and
returns the new state after the tactic is applied.

• run_have_tactic(self, tactic, proofState, cmd_type=’have’, verbose=False) : Executes a
“have” tactic.

During the interaction, we can also use the function is_correct_and_finished(self, code, verbose =
False, timeout = 160) to check if the theorem is correct and whether the proof is complete, with
the judgment based on the information view (Lean Infoview) on the right side.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

ProcessingCmd :

1 example (a b c : 2115)(h : a = b): a ^ 2 + c= b ^ 2 + c:= by
sorry“”

2 env: 0

proofstates : [0],
goals :

1 a b c : N h : a = b ⊢ a ^ 2 + c = b ^ 2 + c

error: False
messages: [{’severity’: ’warning’, ’pos’: {’line’: 1,’column’: 0}, ’endPos’: {’line’: 1,’col-
umn’: 7}, ’data’: “declaration uses ’sorry’”}]
sorries: [{’proofState’ : 0, ’pos’: {’line’ : 1,’column’ : 58}, ’goals’, ’endPos’ : {’line’:
1,’column’: 63}}]
is finish: False

The returned Tactic State format includes the following key fields:

• messages: Contains information during the interaction, such as “no goals,” “declare use
sorry,” “unknown tactic,” etc.

• proofstates : An integer list uniquely identifies the current state, where each integer corre-
sponds to a subgoal’s state.

• goals : The current subgoals.

• error, finishFlag : These parameters are assigned by analyzing messages . The error
indicates whether an error occurred (True for error), and finishFlag indicates whether the
proof is complete (True for completed proof).

E MORE STATISTIC RESULTS

E.1 PREDICTION STEPS DISTRIBUTION IN LEANCOMB++ DATASET.

Fig. 6 presents the distribution of theorem counts across different prediction steps, categorized into
four groups: deduplicated, correct, corrected, and new theorems. The data reveal a peak around a
prediction step of 6, indicating that most theorems are concentrated at this length regardless of their
classification. The number of deduplicated theorems exhibits the highest count, peaking at 121, 457.
In contrast, the correct and new theorems follow similar trends but at lower magnitudes, suggesting
that a significant proportion of generated theorems are either duplicates or require correction. The
corrected theorems, represented by the green triangles, remain consistently lower than the other
categories, highlighting the challenges in refining generated theorems through correction mechanisms.

Additionally, the distribution demonstrates a sharp decline in theorem numbers beyond a prediction
step of 6, implying that longer proof sequences are less frequent and potentially more challenging
to generate and verify. These findings suggest that optimizing theorem generation should focus on
mid-range prediction steps, where the balance between uniqueness, correctness, and novelty is most
favorable.

E.2 THEOREM GENERATION STATISTICS ACROSS FOUR ITERATIVE ROUNDS

Figure 7 presents the statistics of theorem generation across four iterative rounds. In each round, a
large number of candidate theorems were initially generated by ATG4CI, followed by a deduplication
process to eliminate redundancies. As shown, the number of candidate theorems gradually decreased
from 592.81K in Round 1 to 393.87K in Round 4, indicating a convergence trend in the generation
process. After deduplication, approximately 66% of the candidate theorems were retained, suggesting
that a significant portion of redundancy existed among the initial outputs.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 5 10 15
0

20

40

60

80

100

120

Prediction Steps

T
he

or
em

N
um

be
r(
×
1
0
3
)

Deduplicated
Correct

Corrected
New

Figure 6: Distribution of Theorem Numbers on Prediction Steps

Subsequent correctness verification further reduced the number of theorems, with only about 17–24%
of the deduplicated theorems passing the verification in each round. Moreover, a portion of the
incorrect theorems were successfully repaired, yielding additional correct theorems as indicated by
the yellow bars. Notably, the number of corrected theorems was consistently substantial, particularly
in Round 2, where 160.39k theorems were recovered.

Round 1 Round 2 Round 3 Round 4
Iteration Round

0

100

200

300

400

500

600

Th
eo

re
m
 N

um
be

r (
×
10

3)

592.8

440.2
426.3

393.9
392.8

238.4

167.8

116.6

68.8

135.8

95.4

56.6

31.3 24.6 14.5 9.7

100.1

260.5

370.4

436.6

Candidate Deduplicated Correct Fixed Cumulative New

Figure 7: Theorem generation statistics across iterations. Candidate denotes the number of candi-
date theorems generated by ATG4CI, Deduplicated are the theorems retained after deduplication,
Correct are those that passed correctness verification, Fixed are the repaired incorrect theorems, and
Cumulative New represents the cumulative count of new theorems.

In total, each round produced 68.77K, 135.80K, 95.38K, and 56.57K correct theorems, respectively,
reflecting both the effectiveness of the repair mechanism and the increasing difficulty of generating
novel valid theorems in later rounds. Overall, these results demonstrate that while the initial gener-
ation process produces a large volume of candidates, post-processing steps such as deduplication,
verification, and correction are critical to ensuring the quality and validity of the final theorem set.

E.3 DISTRIBUTION OF THEOREMS IN E∗ BY THEOREM TYPE COUNT

Fig. 8 shows the distribution of deduplicated, correct, corrected, and new theorems by proof steps in
the enhanced dataset E∗, including newly added data. Deduplicated theorems peak at proof step 6

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

5 10 15 20 25 30
0

10

20

30

40

50

Proof Steps

T
he

or
em

N
um

be
r(
×
10

3
)

New
Deduplicated

Correct
Corrected

Figure 8: Theorem distribution by proof Steps

with approximately 50, 000 and decline as steps increase, indicating shorter proofs dominate. Correct
theorems peak slightly earlier at step 5 with 22, 000, showing that many deduplicated theorems fail
correctness checks. Corrected theorems are fewer and decrease rapidly after step 5, suggesting that
errors in longer proofs are harder to address. The new data aligns with these trends, peaking at step
6 with 28, 000 theorems but maintaining a steady count for longer proofs, highlighting improved
generation of extended proofs yet persistent challenges in verification.

These results emphasize two key challenges in automated theorem proving: the gap between dedu-
plicated and correct theorems, particularly for longer proofs, underscores the need for more robust
verification methods, and the rapid decline in corrected theorems highlights the difficulty of resolving
errors in complex proofs. Improving proof generation and error correction tactics—especially for
longer proofs—remains a crucial direction, alongside integrating advanced validation mechanisms to
enhance correctness and diversity.

F MORE EXPERIMENTAL RESULTS

F.1 EFFECT OF CANDIDATE TACTIC QUANTITY ON THEOREM GENERATION

We first investigate how the number of candidate tactics affects theorem generation quality. Table 8
summarizes the results of ATG4CI under different settings (4, 8, and 16 candidates).

In the first iteration, setting 16 candidate tactics produced 592,811 theorems, which reduced to
392,818 after deduplication. Among them, 68,771 theorems were verified as correct, and 31,306
erroneous theorems were successfully corrected, resulting in a total of 100,077 new theorems.
In comparison, setting 4 and 8 candidate tactics resulted in 22,691 and 74,136 new theorems,
respectively. In the second iteration, the proportion of correct theorems significantly increased,
reaching up to 75.0%, and the new theorem generation rates also improved from 10.7%, 20.3%, and
16.9% to 33.7%, 41.7%, and 36.4%, respectively. While the 16-tactic setting produced the largest
number of theorems, the 8-tactic setting achieved the best success rate for generating new theorems.

F.2 AUTOMATED PROOF RESULTS OF OUR MODELS ON LEANCOMB-TEST

In this section, we analyze the proof process of the models. The table summarizes the average proof
lengths across all models, revealing that the proof lengths range from 2.7 to 3.9. Notably, for both
the Mathstral and Llama models, the enhanced versions consistently exhibit shorter proof lengths
compared to their comb counterparts. This suggests that the models have learned to adopt more

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 8: Performance per metric across iterations and tactic counts.

Theorem Types Tactics = 4 Tactics = 8 Tactics = 16

Round 1 Round 2 Total Round 1 Round 2 Total Round 1 Round 2 Total

Candidate 211,087 247,996 459,083 364,789 376,158 740,947 592,811 440,199 1,033,010

Deduplicated 73,385 185,850 259,235 229,541 225,797 455,338 392,818 238,425 631,243

Correct 16,296 69,765 86,061 52,220 132,791 185,011 68,771 135,796 204,567

Corrected 6,395 13,912 20,307 21,916 24,147 46,063 31,306 24,593 55,899

Subtotal 22,691 83,677 106,368 74,136 156,938 231,074 100,077 160,389 260,466

efficient and simpler tactics for generating proofs through extensive training on large datasets. For
instance, as shown in the example for test_087, Mathstral finetuned with LEANCOMB requires 11
steps to complete the proof, whereas Llama3 enhanced accomplishes the proof in just four steps.

1 theorem test_087_Mathstral_comb {n : N} (hn : 0 < n):
2 (ascPochhammer R n).eval x = (x - 1 + n) * (ascPochhammer R

(n-1)).eval x := by
3 unfold ascPochhammer
4 cases n
5 all_goals simp only [Polynomial.eval_one, CharP.cast_eq_zero,

add_zero, mul_one]
6 cases hn
7 rename_i n
8 cases n
9 all_goals simp

10 rename_i n
11 rw [ascPochhammer_succ_right]
12 simp only [Polynomial.eval_mul, Polynomial.eval_add,

Polynomial.eval_X, Polynomial.eval_natCast]
13 ring
14

15 theorem test_087_llama3_enhanced {n : N} (hn : 0 < n):
16 (ascPochhammer R n).eval x = (x - 1 + n) * (ascPochhammer R

(n-1)).eval x := by
17 have h1 : n = n - 1 + 1 := by
18 rw [tsub_add_cancel_of_le]
19 exact hn
20 rw [h1, ascPochhammer_succ_right]
21 simp only [Polynomial.eval_mul, Polynomial.eval_add,

Polynomial.eval_X, Polynomial.eval_natCast,
22 cast_add, cast_one, sub_add_add_cancel, add_tsub_cancel_right]
23 rw [← mul_comm]

Beyond length reduction, enhanced models also show stronger proficiency in applying known
algebraic identities and leveraging library theorems to simplify otherwise tedious transformations.
For example, in test_048_1_dsv2_alp2, the model efficiently invokes symmetry properties of binomial
coefficients and uses arithmetic reasoning (via omega) to resolve index equalities:

1 theorem test_048_1_dsv2_alp2 (n m k : N)(hmk : m ≤ k) (hkn : k ≤
n) :

2 Nat.choose n k * Nat.choose k m = Nat.choose n (k - m) *
Nat.choose (n - k + m) m := by

3 rw [← choose_symm hmk]
4 rw [choose_mul hkn (tsub_le_self)]
5 rw [show k - (k - m) = m by omega]
6 congr 2
7 omega

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Similarly, in test_074_1_dsv2_alp2, the model correctly applies the binomial expansion of (x− 1)n

using the identity add_pow, and then constructs the appropriate sum transformation by reasoning
over the sign alternation and index structure:

1 theorem test_074_1_dsv2_alp2 (x : R)(n : N) : (x - 1)^n=Σ k in
Finset.range (n+1),Nat.choose n k * x ^ k * (-1 : R) ^ (n -
k) := by

2 rw [sub_eq_add_neg, add_pow]
3 refine’ sum_congr rfl fun k hk => _
4 ring

Furthermore, we observed that after training on the enhanced dataset, models tend to rely heavily
on the theorems from the LEANCOMB training set when generating proofs. However, despite this
increased dependence on known theorems, the models occasionally introduce invalid or redundant
steps in the proof process. For instance, in the following example, the step “lemma this” is an
unnecessary operation; the proof remains valid even if this step is removed.

1 theorem test_031 (n : N) :
2 Σ k in Finset.range (n / 2 + 1), (-1 : R) ^ k * Nat.choose (n -

k) k =(2 / Real.sqrt 3) * Real.sin ((n + 1) * Real.pi / 3) :=
by

3 obtain h1 := Idt_32 n (-1 : R)
4 have h2 :
5 Σ k in range (n / 2 + 1), ((n - k).choose k * (-1 : R) ^ k) =

Σ k in range (n / 2 + 1), ((-1) : R) ^ k * choose (n - k) k :=
by

6 refine’ sum_congr rfl fun k _ => _
7 rw [mul_comm]
8 rw [h2] at h1
9 rw [h1]

10 have : 1 + 4 * (-1 : R) = -3 := by norm_num
11 rw [this]
12 exact_mod_cast complex_sqrt_neg n

F.3 ANALYSIS OF THEOREM PROVING RESULTS ON PUTNAMBENCH

In this section, we examine the automated proof behavior of our models on the PUTNAMBENCH
benchmark. The results reveal that the models are capable of constructing structurally sound and
semantically accurate proofs, often emulating human-level strategies for algebraic manipulation and
symbolic reasoning.

For example, in the case of putnam_1962_a5, the model successfully performs a sequence of algebraic
rewrites and summation transformations to establish the equality between a closed-form expression
and a finite sum involving binomial coefficients and powers:

1 theorem putnam_1962_a5
2 : ∀ n ≥ 2, (fun n : N => (n * (n + 1) * 2^(n - 2) : N → N)) n = Σ

k in Finset.Icc 1 n, Nat.choose n k * k^2 := by
3 intro n hn
4 rw [← Nat.Ico_succ_right (1 : N) n]
5 rw [← Nat.add_one]
6 have h1 : Σ k ∈ Finset.Ico 1 (n + 1), n.choose k * k ^ 2 = Σ k

∈ Finset.Ico 1 (n + 1), k ^ 2 * n.choose k := by
7 refine’ Finset.sum_congr rfl fun k hk => _
8 rw [mul_comm]
9 rw [h1]

10 obtain h2 := idt_71’ hn
11 rw [h2]
12 simp

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Notably, the proof includes a nontrivial index transformation and applies a known identity (idt_71’)
to simplify the summation, demonstrating the model’s understanding of combinatorial symmetry.

Similarly, in the proof of putnam_1986_a1, the model effectively uses logical reasoning and inequality
manipulation to prove that a function defined on a constrained domain achieves its maximum value at
a specific point. The proof correctly applies numerical reasoning (norm_num), functional rewriting,
and nonlinear arithmetic tactics:

1 theorem putnam_1986_a1
2 (S : Set R) (f : R → R)
3 (hS : S = {x : R | x ^ 4 + 36 ≤ 13 * x ^ 2})
4 (hf : f = fun x 7→ x ^ 3 - 3 * x) :
5 IsGreatest
6 {f x | x ∈ S}
7 ((18) : R) := by
8 simp only [hS, hf, Set.mem_setOf_eq, Set.mem_setOf_eq]
9 refine ⟨?_, fun x hx 7→ ?_⟩

10 refine ⟨3, by norm_num, by ring⟩
11 obtain ⟨y, hy1, rfl⟩ := hx
12 nlinarith [sq_nonneg (y ^ 2 - 9), (by nlinarith : (0 : R) ≤

9)]

These examples highlight the model’s ability to synthesize relevant lemmas, manipulate algebraic
structures, and apply inequalities effectively. However, occasional superfluous constructs—such as
unused hypotheses or redundant rewrites—can still appear, indicating room for refinement in proof
planning and step minimization.

F.4 ANALYSIS OF THEOREM PROVING RESULTS ON COMBIBENCH

We now turn our attention to the performance of the models on COMBIBENCH, a suite focused on
combinatorial identities and discrete function transformations. These tasks often require models to
manipulate indexed sums, alternating signs, and recursive operators such as finite differences.

A representative example is the proof of a well-known identity involving the k-th forward difference
operator applied to a function h : N→ Z. The goal is to show that this k-fold operator evaluates to a
specific alternating sum involving binomial coefficients. Two variants of the proof below illustrate
different strategies employed by the models:

1 theorem brualdi_ch8_9 (h : N → Z) (k n : N): (fwdDiff 1)^[k] h n
= Σ j ∈ Finset.range (k + 1),

2 (-1 : Z) ^ (k - j) * Nat.choose k j * h (n + j) := by
3 induction’ k with k hk
4 simp
5 rw [fwdDiff_iter_eq_sum_shift]
6 simp

In the first version, the model initiates an induction on k, aligning with the standard approach to
proving identities involving recursive operators. It simplifies the base case and applies the identity
fwdDiff_iter_eq_sum_shift to complete the inductive step. This structured approach reflects a strong
grasp of both the recursive nature of forward differences and the associated summation identities.

In contrast, the second version omits the inductive argument entirely:

1 theorem brualdi_ch8_9 (h : N → Z) (k n : N): (fwdDiff 1)^[k] h n
= Σ j ∈ Finset.range (k + 1),

2 (-1 : Z) ^ (k - j) * Nat.choose k j * h (n + j) := by
3 rw [fwdDiff_iter_eq_sum_shift]
4 simp

This version relies directly on applying the known identity fwdDiff_iter_eq_sum_shift, followed by
simplification. While this proof is shorter and still valid, it assumes the identity has already been

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

established or imported from prior training, bypassing the deeper structure that an inductive argument
would expose.

These examples highlight an important trade-off: the more concise proof indicates effective pattern
recognition and memorization of known identities, while the inductive version demonstrates con-
structive reasoning and generalizability. Across the benchmark, both behaviors were observed, with
models choosing between efficiency and explicit derivation depending on the problem context.

G EXPERIMENTS DETAILS

In our experiment, we selected multiple large language models as baselines, covering two categories:
one is general reasoning models, including Mathstral-8B (Mistral AI, 2024), LLaMA3-8B (Grattafiori
et al., 2024), and Mistral-7B (Jiang et al., 2023); the other is models optimized for theorem proving,
such as InternLM2.5-StepProver (Wu et al., 2024b) and DeepSeek-Prover-v2 (Guo et al., 2025).
For step-by-step models, the model generates 16 candidate tactics for each proof step, which are
deduplicated and ranked by their log-likelihood values. In the whole proof method, we call the model
32 times per Pass1, and a proof is considered successful if it passes once. All proofs were verified
using Lean 4 (v4.14.0) and the corresponding Mathlib4.

G.1 DETAILS AND HYPERPARAMETERS

We employed Llama-3.1-8B-Instruct as the candidate tactic model within our generator ATG4CI.
This model is a transformer-based, autoregressive language model optimized for high performance.
To enhance its alignment with human preferences in terms of utility and safety, we fine-tuned the
model using Supervised Fine-Tuning (SFT) (Wei et al., 2022) and Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al., 2022). The reinforcement learning component includes a
policy network and a critic network, both consisting of two linear layers with a hidden size of 16.
The training spans 10 iterations. Each decision step performs 100 simulations, and each iteration
includes 20 total episodes. Each node may generate up to 16 candidate theorems, with a search time
limit of 600 seconds.

Prompt Example:

Complete the following Lean 4 code:
“‘lean4

[Statement]:

1 import Mathlib
2 import Aesop
3 import Theorem
4 set_option maxHeartbeats 0
5 open BigOperators Real Nat Topology Rat Finset
6

7 theorem test_074 (x : R) (n : N) :
8 (x - 1)^n = Σ k in Finset.range (n + 1), Nat.choose n k *

x^k * (-1 : R)^(n - k) := by

All training tasks were conducted on a cluster of six NVIDIA L40 GPUs (48GB each). For SFT, we
employed Low-Rank Adaptation (LoRA) (Hu et al., 2021), leveraging bfloat16 mixed precision and
DeepSpeed ZeRO Stage 0 (Jacobs et al., 2023) for memory optimization. LoRA was applied to all
layers of the model. We used the AdamW optimizer (Dettmers et al., 2022) with a batch size of 4.
The learning rate was linearly warmed up from 0 to 5.0× 10−5 over the initial 5% of training steps,
followed by a cosine decay schedule for subsequent updates.

We adopted a best-first search (BFS) (Pearl, 1984) tactic for evaluation. At each search step, the
model generated 16 tactic candidates, deduplicated and ranked according to their log-likelihoods.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Each candidate was subsequently verified using Lean 4, determining whether it should have been
discarded or expanded into new proof states.

The ranking of states is based on the cumulative log-likelihood of the tactics leading to the current
state. The model is prompted using a structured (state, tactic) format, enabling the generation of
tactics conditioned on the current proof state. The prompt examples are presented as follows:

[Output]:

1 theorem test_074 (x : R) (n : N) :
2 (x - 1)^n = Σ k in Finset.range (n + 1), Nat.choose n k * x^k

* (-1 : R)^(n - k) := by
3 rw [sub_eq_add_neg]
4 rw [add_comm]
5 rw [add_comm]
6 -- Apply the binomial theorem to (x + (-1))^n
7 rw [add_pow]
8 -- Apply sum_congr to match the form of the binomial expansion
9 apply sum_congr rfl

10 intro k hk
11 -- implify the terms using const_mul
12 simp at hk
13 have h : k ≤ n := by linarith
14 simp [mul_assoc, mul_comm, mul_left_comm, h]

Prompt Example:

You are using Lean 4 for theorem proving. You are proving a theorem in Lean 4. Based on
the current state of the theorem, provide the most reasonable proof tactic. Ensure your tactic
is syntactically correct according to Lean 4’s tactic syntax and effectively progresses the proof.

[Current State]:
n : N
⊢ Nat.choose (2∗n) n ≤

∑
x ∈ range n, Nat.choose (2∗n) x +Nat.choose (2∗n) n

[Output Tactic]:

rw [sum_range_add], −0.30987493962877327
rw [sum_range_add_choose] , −0.3457271686162461
rw [sum_range_add_choose_add] , −0.3690287694334984
rw [sum_range_add_choose_eq] , −0.44889247231185436
......

32

	Introduction
	Related Work
	LeanComb: A Combinatorial Identities Dataset
	The Framework of Automated Theorem Generation
	Partial Proof Paths (P3s) Construction
	Candidate Theorem Generation
	Theorem Validation

	Experiments
	Main Results
	Generalization Analysis: Cross-Domain Performance.
	Analysis and Discussion

	Conclusion
	An Illustrative Example for ATG4CI
	LeanComb Dataset
	Training Set
	Test Set
	Data Contamination Check

	More Details about ATG4CI
	An Illustrative Example for ATG4CI
	Data Contamination Check
	Theorem Correction Details

	Lean4Kit
	Data Extraction from Lean Codes
	Dynamic Interaction with Lean for Theorem Proving

	More Statistic Results
	Prediction Steps Distribution in LeanComb++ Dataset.
	Theorem Generation Statistics Across Four Iterative Rounds
	Distribution of Theorems in E* by Theorem Type Count

	More Experimental Results
	Effect of Candidate Tactic Quantity on Theorem Generation
	Automated Proof Results of Our Models on LeanComb-Test
	Analysis of Theorem Proving Results on PutnamBench
	Analysis of Theorem Proving Results on CombiBench

	Experiments Details
	Details and Hyperparameters

