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ABSTRACT

A well-known challenge in large attention-based architectures, e.g., Vision Trans-
formers (ViTs) and large language models (LLMs), is the emergence of attention
sinks, where a small subset of tokens disproportionately attracts attention and ulti-
mately degrades downstream performance. Prior work typically casts these high-
norm tokens in ViTs as “computational scratchpads” and analogously character-
izes sinks in LLMs as pressure valves that absorb surplus attention with little se-
mantic content. This work revisits that view from the perspective of vision models.
It is shown that, in large-scale vision architectures, register features in fact encode
global, task-relevant information and can act as a plug-and-play global memory.
Building on this insight, a training-free framework is proposed that leverages test-
time register tokens as global priors to enhance both dense prediction and genera-
tive tasks, while mitigating adverse sink effects. In contrast to heuristic placement
rules, a theoretically grounded token—neuron interpolation rule is introduced for
robust, model-agnostic insertion. Experiments demonstrate improved generative
quality and stronger text—image alignment for one-dimensional token generation
with ViTs, reflected by gains in FID, IS, CLIPScore, and SigL.IP metrics.

1 INTRODUCTION

Attention sinks refer to a small subset of tokens attracting a disproportionate fraction of attention
mass, which in turn disrupts useful information flow. Recent studies in LLMs and LMMs (Xiao
et al., 2024; Sun et al., 2024; Kang et al., 2025; Wang et al., 2025; Gu et al., 2025) frequently
attribute such tokens to pressure—valve behavior that absorbs surplus attention with limited seman-
tic content, often at sequence boundaries or visually irrelevant regions. On the vision side, Vision
Transformers (ViTs) (Dosovitskiy et al., 2021) exhibit related artifacts: several works (Darcet et al.,
2024; Jiang et al., 2025) report that high-norm outlier tokens emerge and attract the majority of at-
tention, commonly aligning with background areas. While works like (Darcet et al., 2024) mitigate
this behavior by adding register tokens during training as computational scratchpads, (Jiang et al.,
2025) identify a sparse set of register neurons whose large activations cause these outliers and in-
troduce test-time registers that can be injected without training. These views are compatible: the
neuron-level mechanism explains the token-level emergence of high-norm outliers, and both link to
sink-like behavior also observed in StreamingL.LM (Xiao et al., 2024) and Sun et al. (2024)s’ work.

As Figure | illustrates, this paper revisits the prevailing assumption that register features carry little
semantic information. Empirically, test-time registers (Jiang et al., 2025) provide stable improve-
ments on downstream tasks, suggesting that the associated features are not merely noise. Building
on this observation, a hypothesis is advanced that register features encode global, task-relevant infor-
mation that behaves as a plug-and-play global memory. To probe this, frequency-domain analyses
are conducted on PCA embeddings of token features across OpenCLIP and DINOv2 using 1000
ImageNet images: test-time [REG] tokens concentrate more energy in low-frequency bands than
[CLS] and patch-mean, and the trend persists after whitening. Together with PCA scatter visu-
alizations, these results indicate that registers primarily store slowly varying global content that is
distinct from [CLS] (task readout) and local patch details; this makes them particularly suitable as
global priors for generative and dense prediction tasks. Figure 2 illustrates the trend for both model
families. Motivated by this perspective, a training-free framework is proposed that operationalizes
registers as plug-and-play global memory at inference. The procedure first identifies intervention
locations at the layer/module level via a forward-only alignment score, then uses the register-neuron
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Figure 1: Overview of the proposed approach. (a) Unlike prior training-free register insertion
methods that rely on empirical heuristics (Jiang et al., 2025) and lack generalization across architec-
tures, our method introduces a theoretically grounded token—neuron interpolation rule for adaptable
insertion. (b) Through detailed observation and analysis, we demonstrate that register tokens serve
as a global memory and, in particular, significantly enhance token-level generative capabilities.

view to extract and transfer large activations into test-time registers. Finally, a value-aware global-
importance analysis bridges token- and neuron-level effects, providing a principled rule for where
and how to insert registers. The main contributions can be summarized as follows: (1) We revisit
register features and show that they concentrate low-frequency bands, global information that is dis-
tinct from [CLS] and local patches supporting registers as a compact global memory for generation
and dense prediction; (2) We introduce a practical, reproducible test-time pipeline that uses a theo-
retically grounded token—neuron interpolation rule for model-agnostic insertion, avoiding empirical
heuristics for selecting insertion locations; (3) We use test-time registers as plug-and-play global
memory (a knowledge prior) to enhance generation, delivering improvements without modifying
pretrained weights.

2 RELATED WORK

Attention sink in large attention-based model. We discuss attention sinks from two complemen-
tary perspectives, the token level and the neuron/channel level. In large language models, Xiao et al.
(2024) show at the token level that early tokens systematically attract attention and that preserving
their KV states stabilizes long-context decoding; they also show that inserting a dedicated sink token
works without fine-tuning. Sun et al. (2024) then examine the neuron/channel level, identifying rare
input-invariant spikes that behave like implicit biases and concentrate attention largely independent
of semantics. Gu et al. (2025) further probe the token-level mechanism, tying sinks to pretraining
dynamics and softmax normalization, and observe that non-normalized attention suppresses the ef-
fect in sub-1B models. In multimodal decoders, Kang et al. (2025) report the presence of irrelevant
visual tokens that absorb attention and demonstrate that redistributing surplus attention (VAR) im-
proves performance. On the vision side, Darcet et al. (2024) document high-norm outlier tokens
in low-information regions and show that adding learned register tokens during training suppresses
artifacts and smooths features, whereas Jiang et al. (2025) trace these outliers to a sparse set of reg-
ister neurons and demonstrate that shifting their activations into an extra test-time token reproduces
the benefits without training. It is worth mentioning that most prior studies frame sinks/registers as
non-semantic or bias-like reservoirs that stabilize attention rather than carriers of task content (Xiao
et al., 2024; Sun et al., 2024; Gu et al., 2025; Kang et al., 2025; Darcet et al., 2024).

Interpretations of transformer attention. Recent work revisits how to read and operationalize
attention beyond raw weights. Yang et al. (2025) propose a training-free sparse-attention rule for
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long-form reasoning that aggregates per-head local selections together with a short recency win-
dow into a single global token ranking used by subsequent layers; the method preserves or im-
proves accuracy while attending to roughly half as many tokens and yields about 1.1x decoding
speed-ups. Hayou et al. (2025) study interpretation at the module level: using Normalized Feature
Norms (NFN) computed with forward passes only, they score module—data alignment and place
LoRA where alignment is lowest, consistently matching or outperforming common attention-only
or MLP-only placement heuristics across supervised finetuning and reinforcement learning for rea-
soning. Orthogonally, Erel et al. (2025) models each attention matrix as a discrete-time Markov
chain; the resulting steady-state TokenRank captures indirect (multi-hop) influence and provides a
robust notion of global token importance, improving zero-shot segmentation and unconditional im-
age generation compared with first-order maps. We build on these insights to structure our pipeline:
NFEN from PLoP guides where to intervene (layers/modules), while TokenRank from the Markov
view quantifies which tokens matter globally; the two meet in a Value x TokenRank bridge that links
module-level interventions to token-level effects. This design makes our training-free test-time reg-
isters both targeted and interpretable.

Tokenization for Generative Vision. Recent work rethinks where generative semantics should live,
inside the tokenizer, in a highly compressed latent space, or in an explicit global token. Zha et al.
(2025) propose TexTok, which conditions image tokenization on text, allowing visual tokens to focus
on fine details while language provides high-level semantics. By simply swapping the tokenizer into
a DiT, TexTok achieves strong FID with good inference speedups at only 32 tokens. Lu et al.
(2025) introduce a unified visual tokenizer (AToken) that encodes images, videos, and 3D assets
into a shared 4D latent space and supports both continuous and discrete tokens, enabling competitive
reconstruction and downstream generation across modalities. Orthogonally, Wang et al. (2025) show
that vision features for VLMs concentrate energy in low frequencies; a parameter-free DCT/FFT
low-pass compresses vision tokens, reducing FLOPs and boosting generation speed with minimal
accuracy loss. Pushing compression further, Beyer et al. (2025) demonstrate that a 1D tokenizer
(32 discrete tokens) already enables image generation and editing via test-time token optimization
with plug-and-play losses (e.g., CLIP or reconstruction), requiring no generative training. Finally,
Wu et al. (2025) entangle denoising latents with a single high-level class token throughout diffusion,
yielding faster convergence and improved FID while producing coherent image—class pairs from
noise. We build on these insights by treating test-time registers as a plug-and-play global prior:
compatible with frequency-domain compression (Fourier-VLM), alignable with 1D token spaces
for token-optimization (HCT), and complementary to language-conditioned tokenization and class-
token entanglement (TexTok/REG), all without retraining the generator.

3 OBSERVATION

We turn attention sinks — tokens that attract a disproportionate share of attention mass across layers
— into a few-token global memory for generation, without any retraining. Prior work shows that
(1) ViTs exhibit high-norm outlier tokens that can be stabilized by adding register tokens (Darcet
et al., 2024); (ii) a sparse set of register neurons produces these outliers, which enables injecting
registers at test time (Jiang et al., 2025); and (iii)) LMMs and LRMs universally exhibit attention
sinks that act like key biases and help decode long contexts when preserved (Xiao et al., 2024;
Gu et al., 2025; Kang et al., 2025). While these studies often frame such tokens as computational
scratchpads or pressure valves that mitigate over-mixing with limited semantic content, (Jiang et al.,
2025) report that test-time register features achieve competitive linear-probe accuracy on ImageNet
(Table 1 in original paper) relative to the [CLS] token. This observation raises two questions:
“What do registers store?” and “How do registers differ from other tokens?”

Notation and preliminaries. Let X* € RY*? denote the input token embeddings to the attention
layer ¢, with N = 1 4+ R 4+ P comprising 1 [CLS], R [REG], and P [PATCH] tokens. The
Attention module can be formulated as follows:

Q' = X'W§, K' = X'W, v =X'W{, (1
Al = softmax(Qj/I%T) , AttnOut = AZVZ, 2)

where W5, W, WY, are parameter matrices and A’ is the attention matrix for a single attention
head. We call a token an attention sink if it receives persistently large incoming attention mass
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Figure 2: PCA of token embeddings across layers. The 1-D FFT spectrum of PCA-projected
features is shown for three types of tokens: Register, Patch-mean, and CLS. Notably, the CLS token
exhibits higher-frequency components, consistent with its role in aggregating high-level semantic
information. In contrast, register tokens display stronger low-frequency components compared to
the other two types.

across layers. In vision models such as ViTs, a register token is an explicit position that absorbs
global or statistical computation (Darcet et al., 2024), and a register neuron is a sparse subset of
channels whose large activations concentrate on outlier tokens (Jiang et al., 2025). In LLMs and
LRMs, initial-token sinks act like key-bias reservoirs (Xiao et al., 2024; Kang et al., 2025; Sun
et al., 2024; Beyer et al., 2025; Yang et al., 2025). This paper focuses on large vision models.

3.1 WHAT REGISTERS STORE?

Prior evidence. ViT studies report high-norm outlier tokens that arise in low-information regions
and act as internal workspaces; adding register tokens absorbs these outliers and yields smoother
dense features and attention maps (Darcet et al., 2024). A training-free variant identifies sparse
register neurons whose activations drive high norms and shows that test-time registers (extra tokens
plus neuron activation) replicate the trained-register effect across OpenCLIP and DINOv2 (Jiang
et al., 2025). Recent DINOv3 (Siméoni et al., 2025) includes four learned register tokens and intro-
duces Gram anchoring to stabilize dense features, which indicates that modern ViT backbones treat
registers as first-class global workspaces.

Hypothesis and analysis. Building on these findings and on test-time register results, we hypothe-
size that registers primarily carry global, low-frequency scene information such as color tone, illu-
mination, and coarse layout, rather than local high-frequency details. We test this hypothesis with
a signal-level analysis. Using 1000 ImageNet images, we compute one-dimensional FFT spectra of
token features for OpenCLIP and DINOv2, and we compare test-time [REG], the patch mean, and
[CLS]. Across models, [REG] concentrates more energy in low-frequency bins (0-15), whereas
[CLS] and patch-mean allocate relatively more energy to higher bins (16-31). The trend persists
after PCA whitening; see Figure 2a for OpenCLIP and Figure 2b for DINOv2. Together with the
PCA scatter, these results support the view that registers serve as compact carriers of global, slowly
varying content that is distinct from [CLS] (task readout) and local patch details. Such features
naturally serve as a global memory that benefits generation tasks, whereas [CLS] remains strong
for discriminative tasks such as classification and retrieval.

4 METHOD

Since register features serve as a global memory, and (Jiang et al., 2025) provide a test-time mecha-
nism that reproduces trained-register effects without training, we treat registers as few-token global
controls for training-free generation, including style, lighting, and layout. We plug test-time regis-
ters and neurons into a token-optimization pipeline, which aligns with recent results showing that
very few tokens suffice for inpainting and text-guided editing via test-time optimization. We first
need to locate the register-neuron subspace.

4.1 LOCATING THE REGISTER SUBSPACE: BRIDGING TOKENS AND NEURONS

The original test-time register procedure (Jiang et al., 2025) proceeds as follows. It identifies a layer
L where token-norm or attention-mass statistics rise sharply, selects the top-n high-norm patch
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locations top-n(PATCH) in a small window of layers around L, and then ranks channels by average
activation over these outlier locations across layers preceding L to obtain the top-k register neurons.
While effective, this heuristic depends on architecture-specific hyperparameters.

NFN-based layer/module selection. Inspired by (Hayou et al., 2025), we first locate where to
intervene by measuring Normalized Feature Norms (NFN) across layers and submodules. For a
module W (e.g., a per-head ), K,V projection, attention output, or MLP up/down) with input
feature z;,(z) on an image x, define

ENCI

NFN(W;z) =
where Z,(x) is a random vector of the same dimension and norm as z,(x) with i.i.d. zero-mean
Gaussian coordinates. We aggregate over a dataset D and heads to obtain a layer- and module-level
score

NENy., = EIND[medianh NEN (W Emh); ) } )
with m € {Q,K,V,AttnOut,MLP4, MLP | }. We then condense per-layer evidence by
S¢ = min NFNg .. &)
m

Intuitively, Sy =~ 1 indicates module responses comparable to a matched-norm random baseline,
whereas low Sy highlights modules whose responses are disproportionately shaped by a small subset
of input directions, a signature we consistently find near sink/register effects. We select a small set of
candidate layers L..nq as the x layers with the lowest Sy (typically k € [3, 5]), optionally enforcing
a minimum separation to avoid redundant neighbors.

Token-level localization in candidate layers. For each ¢ € L.,,q we compute the per-token /5-
norm map over the last w layers around ¢ (e.g., w = 3) and automatically detect outlier positions
by a robust threshold (median+IQR). We keep the top-n spatial indices 2, = top-n(PATCH) that
consistently appear as high-norm across the window.

Neuron-level extraction and the register subspace. Given {2y, we rank channels by their mean
absolute activations on these outlier tokens, accumulated over a short backward window of A pre-
ceding layers (e.g., A€ {1,2,3}):

- L 2 ®

Jj=1 peQl

where a' d ~7) denotes the activation of channel d at token p and layer /—j. We take the top-k channels
Ry = top-k({rq}) as register neurons and define the register subspace as span{eq : d € Ry}. This
yields a scale-invariant, model-agnostic estimate of where and along which axes sink/register energy
concentrates.

From subspace to test-time registers. With R, fixed, we instantiate fest-time registers by adding
one (or a small number) of auxiliary tokens and transferring the large activations on R, from outlier
patch tokens to these auxiliary tokens before the residual update. Concretely, let ¢, denote the
new token; we modify its value channels on R, by a scaled copy of the outlier mean while zeroing
those channels at the original outlier positions. This preserves task-relevant global statistics in a few
tokens and suppresses artifact-causing outliers in patch tokens, without any training. The resulting
register tokens will be used downstream as plug-and-play global controls.

Defaults and practicality. Unless otherwise noted, we use k=5, n € [3, 8] (proportional to feature
map size), k € {32,64}, w=3, and A =2. We compute NFN on a 1000 ImageNet-val subset. All
weights remain frozen. This NFN — token — neuron pipeline makes the subsequent analysis and
interventions reproducible across ViT families and aligns with the training-free nature of test-time
registers.

4.2 TOKEN-SIDE IMPORTANCE VIA VALUE TOKENRANK

Only inspecting attention weights can be misleading: a token can attract attention but carry little
valuable content. Inspired by (Erel et al., 2025), we therefore quantify a token’s effective write by
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combining attention and value magnitudes, and couple it with a global centrality score derived from
attention-as-Markov-chains.

Write mass (per-token write-in). For an attention head with attention matrix A € RT*T (row-
stochastic) and value vectors {V;}1_,, we define the write mass of target token ¢ as

T
WriteMass(t) = ZAi,t V13, 7
i=1

which better reflects how much content is actually writfen into ¢ than attention alone.

TokenRank (global centrality). Viewing A as a discrete-time Markov chain, we define TokenRank
7 € AT~ as the stationary distribution satisfying 7" = 7" A. High TokenRank indicates tokens
that are globally central under multi-hop attention flow. In practice, we compute 7 per head and
average over heads within a layer (or take the maximum for sensitivity analysis).

Head mixing rate. Let 1 = A\; > Ay > --- be the eigenvalues of A. The second eigenvalue Ao
measures how slowly the head mixes (larger Ao — stickier dynamics). Empirically, heads/layers
with larger A\, align with the emergence of high-norm outliers; after adding test-time registers, both
A2 and the correlation between Ay and high-norm frequency decrease.

Register absorption test. Given a register token t,.,, We scale its value on the register subspace
by s € {0.5,1,2,4,8,16} and track TokenRank(t;cg), WriteMass(reg), and Ao. We observe
monotone increases that saturate with s, indicating an absorbing-register behavior desirable for
consolidating global statistics.

4.3 A TOKEN-NEURON INTERPOLATION RULE FOR ROBUST INSERTION

Let Ry be the set of register neurons (channels) extracted at layer ¢ (Section 4.2), and let P be
the detected outlier patch tokens at the same layer. We form an auxiliary register token .., and
reallocate large activations along the register subspace to t,., while preserving first- and second-
order statistics.

Projection and conservation. Write Pg for the orthogonal projector onto span{ey : d € R,}. Let
R = ﬁ Zp p PrV) be the outlier-average on the subspace. For a scale s > 0, we set

Viees & Vieey T SUR, Vo <V, — aPRrV,, VpeP, 8)
where a € (0, 1] controls how much register-subspace energy is removed from outliers. Choosing
a = min{l7 s [orll2 } )

ﬁ Zpep ||P72Vp||2

approximately conserves the mean register energy while shifting it from many patches into a few
registers, thus suppressing artifacts without losing global statistics.

Per-head normalization and stability. To keep layer-wise scales stable, we optionally normalize
by head-level Root Mean Square (RMS) on R before applying Equation 8, and re-center the non-
register subspace:

T
VieVi—B(I—Pr)($ > Vi), Be{0,1}. (10)

j=1
This recenters low-frequency biases in the complementary subspace and further reduces

checkerboard-like artifacts.

Complexity and defaults. We instantiate |t,cg| = 1 token per selected layer (or at most two), use
k € {32,64} channels in Ry, and s € {1,2,4} by default; the procedure is training-free and adds
negligible overhead. The whole algorithm is depicted in the Algorithm | in the Appendix.

4.4 PLUG-AND-PLAY REGISTERS FOR GENERATION

We close the loop by treating test-time registers as few-token global knowledge for tokenized de-
coders (e.g., TiTok/HCT). The idea is to map layer-wise register tokens to entries of a fixed codebook
and decode images, enabling training-free global edits.
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Figure 3: Distribution before and after register insert on DINOv2. Adding one register token
using NFN-selected layers (top-50 register neurons) yields higher register norm/attention with min-
imal change to image tokens.

Register to codebook mapping. Let () € R be the register token at layer £ € Loang obtained
by Section 4.2 and 4.3. Given a tokenizer codebook C = {c¢; € RP }JM:1 with similarity o (u,v) =

T .
T+ We pick the nearest entry

Jji = argjrg[zﬁ] O'(T(Z), ) ;O — Cji- (11)

For multiple layers, we fuse by a convex combination
F= > i >0, ) =1, (12)
LELyse L

where oy TokenRank(tEQ;) or uniform.

Insertion and strength control. Let z = (z1, ..., zr) be the tokenizer token sequence. We insert
the fused register vector at a designated global slot (e.g., token #0):
20 (1_7)20 + ’Yfa gS [Ovl]a (13)

Or replace K early tokens if the decoder expects multiple globals. The scalar y plays the same role
as the scale s in Section 4.3 and is swept over {0.25,0.5,0.75,1.0}.

Optional test-time token optimization. To refine semantics without training, we optimize only the
inserted token(s) for .S steps under a frozen decoder D:

min Lcrip(D([z0, z1:7)), text) + A||zo — 7|3, (14)

with A € [0.1,1], step size n € [1 x1072,5x1073], S € {50,100}. This keeps 2o close to the
register prior while aligning to the prompt.

The whole generation pipeline is depicted in the Algorithm 2 in the Appendix.

5 EXPERIMENTS

5.1 NFN LAYER LOCALIZATION YIELDS STRONGER ABSORBING BEHAVIOR

From Outliers to Register Neurons. We first identify the onset of outliers, Ly, using the patch-
norm curve, and detect outlier tokens within a small backward window. Within this window, we
rank channels to extract the top 50 register neurons, enforcing a per-layer cap and back-filling as
needed to ensure exactly 50 are selected. This procedure preserves the original outlier-to-neuron
selection pipeline and serves as a shared backbone for both the baseline and our NFN-guided variant.
As illustrated in Figure 3, inserting a register token yields the expected absorption effect: both the
register value-norm and the CLS—register attention increase substantially, while statistics for image
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Table 1: Norm gap between normal patch and register. The comparison between the proposed
method with different neuron positions and vanilla test-time register on OpenCLIP and DINOv2.

OpenCLIP (Cherti et al., 2023) DINOV2 (Oquab et al., 2024)

Method

norm gap norm gap (Attention) norm gap norm gap (Attention)
Vanilla(50 neuron) (Jiang et al., 2025) 62.03 0.58 468.83 0.60
NFN-guided (8 neuron) 61.36 0.52 485.23 0.59
NFN-guided (16 neuron) 64.42 0.55 494.63 0.63
NFN-guided (50 neuron) 70.09 0.58 633.71 0.66

Table 2: Effect on outliers and mixing (DINOv2-L/14, ImageNet-val 1k). Outlier fraction uses
the pre-95th percentile threshold fixed for post. A, is the second eigenvalue (median over heads); we
report spectral gap 1 — Ao (smaller spectral gap indicates stickier dynamics (i.e., slower mixing)).

Method OpenCLIP (Cherti et al., 2023) DINOV2 (Oquab et al., 2024)
A median(outlier) (|) A gap=—AX;(}) A median(outlier) () A gap=—AX; ()
Vanilla (Jiang et al., 2025) —0.013 —0.0024 —0.0215 —0.0036
Ours -0.014 —0.0027 —0.0312 —0.0946
OpenCLIP DINOv2
3020 .' 3020 : z 2035

000 005 010 015 020 025 030 0.0 01 02 03 10 0.1

000 005 O 5 020 0.00
Outlier fraction (Patches > 95th%) Outlier fraction (Patches > 95th%) Outlier fraction (Patches > 95th%)

5 015 020
Outlier fraction (Patches > 95th%)

Figure 4: \x—outlier coupling before/after register insertion. Each dot is one image (ImageNet-
val 1k). x—axis: fraction of patch tokens above the pre-95th norm threshold (fixed for post). y—axis:
Ao of the attention Markov chain (median over heads; lower A\, = larger spectral gap/faster mixing).
Left: vanilla test-time register yields a mild shift (left/down). Right: our method produces a larger
leftward shift (fewer outliers) and a clearer downward shift (stronger mixing), consistent with the
absorber behavior quantified in Table 2.

tokens remain nearly unchanged. On DINOv2-L/14, for example, the median register value-norm
rises from 517.2 to 682.6 (+32%), and the median CLS—register attention increases from 0.70
to 0.75 (+0.05). In contrast, the corresponding median values for image tokens remain steady at
approximately 49 and 0.10, respectively. OpenCLIP displays the same trend, with detailed results
provided in the Figure 7 in the Appendix. Furthermore, as shown in Table 1, the variant guided by
NFN achieves competitive performance compared to the standard test-time register approach, even
when using fewer neuron positions, demonstrating the effectiveness of our proposed method.

Value x TokenRank bridge. As mentioned in the Section 4.1, attention alone can be misleading
since a token may attract probability mass yet write little content. We therefore pair a per-token
write measure WriteMass with a global centrality score TokenRank that the stationary distribution
of the head-wise attention Markov chain and a mixing diagnostic. Scaling the injected register on
its subspace yields monotonic increases in TokenRank and WriteMass and a concurrent drop in Ao,
indicating controlled absorption into the register rather than patch over-amplification as depicted in
Figure 4. Using TokenRank for head gating further strengthens this effect and reduces image-token
outliers. As Table 2 shown, quantitatively on DINOv2-L/14 (1k val), vanilla test-time registers
reduce median outlier fraction by —0.0215 with a companion AX; = —0.0036, while our NFN-
guided—+gated variant attains a larger outlier drop of —0.0312 and a markedly stronger Ay decrease.
The details are described in the Appendix A.2.

5.2 PLUG-AND-PLAY REGISTERS FOR GENERATION

Setting and Metrics. We adopt ViT-L/14 backbones (DINOv2) and extract register features from
layers L € {L, L — 1, L — 2}, selected via NFN. Register vectors are projected into the HCT/TiTok
code space using lightweight alignment, either whitening with nearest-neighbor search or a linear
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Table 3: HCT decoding with different global priors. All methods use the same protocol (VQ-LL-
32 codebook, 1000-seed CLIP top-1 association, token optimization), differing only in the injected
prior at test time. Lower is better for FID-5k; higher is better for IS/CLIP/SigLIP.

Method (VQ-LL-32, 1000, CLIP top-1%, token opt.) FID-5k () IS (1) CLIP (1) SigLIP (1)

HCT w/o prior (Beyer et al., 2025) 21.2 281 0.40 3.5
HCT w/ Random prior 22.5 278 0.39 34
HCT w/ [CLS] prior 20.5 281 0.39 3.6
HCT w/ test-time register prior (Jiang et al., 2025) 21.5 283 0.40 3.6
HCT w/ ours 20.3 287 0.41 39

Figure 5: Qualitative results. Following HCT evaluation protocol, our proposed method generates
reasonable and diverse images from a single input image using the simple prompt a photo of
the [class]. The top row is input images; the second row is the corresponding generations.

Procrustes method. At decode time, we inject a single global prior in one of two ways: (i) Init-prior:
mixing the first code with strength v € {0.25,0.5,0.75,1.0}; or (ii) Soft-bias: add a cosine prior
to the logits, I, = I + 3 - cos(ec, ), where & = (W, )/[|W-,., || and e. is the code embedding.
Equivalently, in probability space, p’(c) o p(c) - expP-cos(ee®) with 8 € {0.5,1,2}. Optionally,
we optimize the first m codes for 20-50 steps using a CLIP loss with a small /5 regularization
toward the injected prior. All other HCT hyperparameters (VQ-LL-32 codebook, 1000-seed CLIP
top-1 association, decoding temperature, CLIP crops/EMA) are held fixed across all methods. In
practice, we select 5 on a held-out validation split and report test metrics at the selected 5 = 1,
adopting the soft-bias.

Baselines. We compare against: No prior, Random prior (random vector matching the register’s
norm), [CLS] prior, and Test-time register prior (Jiang et al., 2025) (TTR). The proposed method
utilizes NFN-guided layer selection and TokenRank head gating to form a register-based prior.

Results. Table 3 summarizes quantitative results for the token optimization setting. As discussed in
Section 4.2, stronger absorber behavior (i.e., reduced outlier tokens and spectral gap 1—\s) yields
smoother global style and fewer checkerboard artifacts in the generated images. The proposed
method consistently outperforms Random and [CLS] priors, and matches or surpasses the training-
free baseline, all without any model retraining. Figure 5 presents qualitative examples, illustrating
the variability and visual quality enabled by register-based priors.

6 CONCLUSION

This work presents a plug-and-play global memory framework that injects a test-time register as a
global prior, grounded in empirical observations and a simple theory. The analysis shows that, in
large-scale vision architectures, register features encode global, task-relevant information and can be
repurposed as reusable memory. A theoretically motivated token—neuron interpolation rule enables
robust, model-agnostic insertion without tuning architecture-specific hyperparameters. Leveraging
the test-time register as prior knowledge improves 1D token generation, yielding higher visual qual-
ity and stronger text—image alignment. These results reposition registers beyond mere computational
scratchpads and highlight their potential as general-purpose priors for generative vision tasks.
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A APPENDIX

A.1 MORE ANALYSIS RESULTS OF MAIN COMPONENTS

NFN-based layer/module localization We compute NFN scores per module and aggregate by
S¢ = min,, NFN ,, over a 1000 ImageNet-val subset. The lowest-S, layers are selected as
k=>5 candidates. We report the distribution of Sy, cross-backbone consistency, and visualize the
a layer xmodule heatmap of DINOvV2 in Figure 6.

NFN heatmap (lower = better candidate)
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Figure 6: Heatmap visualization and candidate layer positions identified by NFN.

NFN layer localization yields stronger absorbing behavior OpenCLIP displays the same trend
as DINOV2, as Figure 7 illustrates, the median register value-norm rises from 84.91 to 92.95
(+10.5%), and the median CLS — register attention and the corresponding median values for image
tokens are nearly the same.

A.2 DETAILS FOR THE VALUE TO TOKENRANK BRIDGE

We couple a per-token write measure with a global centrality score to avoid interpreting raw atten-
tion. For a head with attention A € RT*T (row-stochastic) and values {v;}, we define the write
mass of token ¢ as

T
WriteMass(t) = > A [|ve3,
=1

which better reflects how much content is written info ¢ than attention alone. Treating A as a
Markov chain, TokenRank is the stationary distribution 77 = 7" A (computed per head and then
median—aggregated within a layer). We quantify head mixing by the second eigenvalue Ao of A
(smaller A2 < larger spectral gap, faster mixing). In practice, we use post—softmax A, power itera-
tion for , and report per—layer medians across heads for 7(REG), WriteMass(REG), and As.

To assay absorption, we scale the register coordinates on their subspace by s € {0.5,1,2,4,8,16}
and plot three curves: TokenRank(REG), WriteMass(REG), and the median A,. Monotone increases
in the first two with a concurrent decrease in )\, indicate that the added token acts as a controlled

12
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Figure 7: Distribution before and after register insert on OpenCLIP. Adding one register token
using NFN-selected layers (top-50 register neurons) yields higher register norm/attention with min-
imal change to image tokens.

absorber rather than amplifying patch outliers. We also use TokenRank to gate heads: at a candidate
layer, we keep the top-h heads by m(REG) (typically h = 1-3) and apply the test-time register only
on those heads. This strengthens absorption and reduces image-token outliers, yielding larger shifts
in the Ao—outlier joint plot than the vanilla baseline. All experiments share the same implementation
details as in the main text.

A.3 ALGORITHM

Algorithm 1 NFN—DNR—TokenRank: training-free registers
Require: ViT, dataset D, image batch B, k,n, k,w, A, s
: Compute NFNy ,, over D; pick Lcang = top-& layers with smallest Sy = min,, NFNy .,
: for ¢ € Leang do
Detect outlier tokens P via {5-norm maps across a window of w layers
Rank channels by mean |a,, 4| over p € P and previous A layers; take R, = top-k
Form t,¢; and update values by Equation 8 with scale s
end for
: For each head, compute WriteMass, 7 (TokenRank), and \; log curves vs. s
return Modified forward pass with test-time registers

A o

Algorithm 2 Register-guided decoding (training-free)

Require: Register tokens {r(“)}, codebook C, base tokens z, weights {a,}, strength ~
: foreach / € L. do
Ji ¢ argmax; o(r®), ) 70 Cjx
end for
P S api®
2o (L=9)zp +~T > insert as global prior
return decoded image D([z¢, z1.7])

SARNANE A s

A.4 LIMITATION

While the primary focus of this work is on large vision models, it is important to note that the phe-
nomenon of attention sinks also arises in large language models (LLMs), large multimodal models
(LMMs), and large retrieval models (LRMs). Although the underlying mechanism is conceptu-
ally similar across these architectures, our proposed approach has not yet been empirically vali-
dated on non-vision models. Furthermore, while our method demonstrates generative capabilities

13
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for tokenizer-based generative models, there exist more sophisticated generative architectures with
attention modules (e.g., DiT). Investigating the role of attention sinks in such models remains an
open avenue for future research.

A.5 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (i.e., ChatGPT and Gemini) only for language polishing, including
grammar correction, phrasing/clarity improvements, and typographical edits. All outputs were man-
ually reviewed. No LLLM contributed to scientific content, and LLMs are not eligible for authorship.
We did not share any confidential, reviewer-only, or identifying information with an LLM.
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