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ABSTRACT

Is In-Context Learning (ICL) implicitly equivalent to Gradient Descent (GD)?
Several recent works draw analogies between the dynamics of GD and the emer-
gent behavior of ICL in large language models. However, these works make as-
sumptions far from the realistic natural language setting in which language models
are trained. Therefore, such discrepancies between theory and practice necessitate
further investigation to validate their applicability.
We start by highlighting the assumptions in prior works that construct Transformer
weights to simulate gradient descent. Their experiments with training Transform-
ers on ICL objective, inconsistencies in the order sensitivity of ICL and GD, spar-
sity of the constructed weights, and sensitivity to parameter changes are some
examples of mismatch from the real-world setting.
Furthermore, we probe and compare the ICL vs. GD hypothesis in a natural
setting. We conduct comprehensive empirical analyses on language models pre-
trained on natural data (LLaMa-7B). Our comparisons on various performance
metrics highlight the inconsistent behavior of ICL and GD as a function of var-
ious factors such as datasets, models, and the number of demonstrations. We
observe that ICL and GD modify the output distribution of language models dif-
ferently. These results indicate that the equivalence between ICL and GD is an
open hypothesis, requires nuanced considerations, and calls for further studies.

1 INTRODUCTION

In-Context Learning (ICL) is an emergent behavior in Large Language Models (LLMs), which al-
lows them to recognize patterns among demonstrations provided as prompts and extend these pat-
terns to similar tasks (Brown et al., 2020). This fascinating on-the-fly learning behavior has moti-
vated ample studies to better of understand its dynamics.

In particular, a notable line of work tries to explain ICL via Gradient Descent (GD) (Garg et al.,
2022; Zhang et al., 2023). This connection is interesting because GD has been around for decades
and is well-understood, while ICL is a recent phenomenon that has emerged somewhat surpris-
ingly (Wei et al., 2022), and is not fully understood. Therefore, a solid formal bridge between the
two approaches would be an exciting finding as it can open new doors for understanding ICL.

Hypothesis 1. For any Transformer weights resulting from self-
supervised pretraining and for any well-defined task, ICL is al-
gorithmically equivalent to GD (whole model or sub-model).

In this work, we revisit the hy-
pothesis on the equivalence of
ICL and GD, i.e., whether these
two approaches to “learning”
are functionally equivalent. Consider hypothesis 1 that defines a universal notion of equivalence
between the ICL and GD. It defines equivalence as a property that must hold for any Transformer
model with parameters that emerge naturally from pretraining on massive unlabeled data (Brown
et al., 2020), and is applicable for any choice of well-defined tasks (Srivastava et al., 2023). For
example, Dai et al. (2022) claims that ICL is equivalent to implicit finetuning.

Hypothesis 2. For a given well-defined task, there exist Trans-

former weights such that ÎCL is algorithmically equivalent to
GD (whole model or sub-model).

However, other recent works
have focused on a different
claim outlined in hypothesis 2,
which focuses on in-context
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learning behavior that is not emergent (denoted as ÎCL). This deviates from hypothesis 1 in the
family of models (differences in training setups) and family of tasks, as we will see in detail in §3.
This hypothesis articulates a tangential target: being able to simulate GD on a given task with some
(trained or hand-constructed) Transformer weights. Achieving this target is mainly concerned with
the expressivity of Transformer architecture (Merrill et al., 2022; Chiang et al., 2023), ignoring how
they may emerge from pre-training. A few notable works use this hypothesis to provide a theoretical
argument for the ICL≈GD claim. Specifically, Akyürek et al. (2022); von Oswald et al. (2023) show
(via a different set of arguments) that Transformer-based architectures (Vaswani et al., 2017), for ap-
propriate choices of parameters, can process their in-context observations in a way that is equivalent
to running gradient updates on an implicit sub-model’s parameters using the same demonstrations.

emergent

whole model 
updates

sub-model 
updates

not emergent

      Hyp1                    Hyp2

These claims are made under strong assumptions, which raises the
question of whether these hold in practice or not. Specifically, do the
recent results focusing on hypothesis 2 provide any (even partial)
evidence for hypothesis 1? Although these works highlight interest-
ing abilities of the Transformer architecture, their claims about the
equivalence between ICL and GD are too strong for real-world mod-
els.

We divide our study into three parts. In the first part (§3), we show
that previous works make assumptions in their study of the ICL≈GD
hypothesis, that are hard to justify in the real world (hypothesis 2). Then, we use order-sensitivity
as an argument against the equivalence between ICL and GD (§4). Finally, we put these claimed
equivalences to the test (§5) by presenting a comprehensive empirical study. Our experiments reveal
that ICL operates and performs differently from GD (fine-tuning the whole model or intuitive sub-
models) on real-world language models across a variety of model sizes, datasets and the number of
demonstrations.

In summary, (1) we provide theoretical and empirical arguments against existing theories regarding
the equivalence of ICL and GD; (2) we empirically evaluate the equivalence between ICL and GD in
the real-world setting using a variety of metrics and find that the two function quite differently; and
(3) we highlight the gap in our understanding of the functional behavior of ICL between theoretical
and real-world settings, and call for more nuanced and realistic studies.

2 BACKGROUND

We start with our problem setting (§2.1). We use “sampling” to emphasize a priori unknown problem
parameters. Namely, sampling (choosing) a learning problem (task) and correspondingly sampling
a pretrained model as the computational setup for our study. We then cover the two learning setups
studied for equivalence (§2.2), followed by the treatment of ICL≈GD hypothesis in recent literature.

2.1 SAMPLING TASKS AND MODELS

Sampling from the space of well-defined tasks. Consider a family of functions (tasks) F such
that each (f : X → Y) ∈ F , maps inputs in the domain X to the domain Y . A particular function

f ∈ F elicits a sampling process x
f∼ X which samples input from X such that they are compatible

with f . For example, in natural language, F defines the space of all tasks that involve mapping from
language input to language output, like sentence completion, summarization, QA, translation, etc.
However, each task f (e.g., translating English to French) would require specific inputs (English
and not, say German) pertinent to the task. The goal is to find models that learn (imitate) f by

conditioning on a set of examples Sf =
{
Sf
i = (xi, f(xi))

∣∣∣f ∼ F , xi
f∼ X

}
. The model’s compe-

tence is then evaluated using a test set Sf
test = {(xt

i, f(x
t
i))}, which is disjoint from Sf . During the

evaluation, only the inputs in Sf
test are passed to the model, which we denote as Xf

test.

Sampling from the space of pretrained models. LLMs like GPT and LLaMa (Brown et al., 2020;
Touvron et al., 2023) are pretrained using the Causal Language Modelling (CLM) objective (Rad-
ford et al., 2019) which is more commonly understood as next-word prediction objective (Liu et al.,
2018). This process of pretraining elicits a family of models M depending primarily on the data
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distribution and characteristics of sequences, and additionally on the choice of architectures, initial-
izations, etc. Formally, we denote this model MΘ0

with pretrained weights Θ0, which is one model
sampled from a much larger space of low perplexity pretrained models: MΘ0

∼M.

2.2 STANDARD LEARNING SETUPS

We review the standard treatment of ICL and GD and introduce the relevant notation.

In-context learning (ICL). We follow the dominant definition of In-context Learning
(ICL) (Brown et al., 2020), which involves conditioning pretrained LLMs with a handful of exam-
ples of task f . Given these demonstrations, we want the LLM to perform f on new inputs. Formally,
given demonstrations Sf = {Sf

i }Ni=1 and a test input xt
i ∈ Xtest, the model MΘ0

generates a label
yt when presented as MΘ0(S

f
1 ◦S

f
2 ◦ ...S

f
N ◦xt

i) or MΘ0(x1 ◦f(x1)◦x2 ◦f(x2)...xN ◦f(xN )◦xt
i),

where ◦ is a delimiter like new-line which separates the instances. MΘ0 produces a confidence
distribution ∈ R|V | over the vocabulary set V .

Gradient Descent (GD). Gradient Descent is an iterative numerical optimization algorithm used
to minimize a given objective with respect to model parameters. Given a model with initial param-
eters Θ0 and a differentiable loss function J ∈ Y × Y → R, the algorithm updates the parameters
toward the negative gradient ∇Θ0

J . GD is a standard optimizer used to train neural networks in-
cluding LLMs. Although there are variants, like SGD and Adam, that work well in practice, we
focus our study on vanilla GD, which calculates the gradients and takes a step (learning rate η) of
fixed size. In the context of learning from a set of demonstrations, pretrained models MΘ0 ∼ M
are fine-tuned on a particular task f using GD by updating model parameters. Formally, parame-
ter updates on the model MΘ0 are performed for some epochs using the available demonstrations
Sf = {Sf

i = (xi, f(xi))}Ni=1 as follows:

Θ1 = Θ0 − η∇Θ

 1

N

∑
(xi,f(xi))∈Sf

J (MΘ0(xi), f(xi))

 . (1)

After this process, the model is expected to perform this task given a new test sample directly as
input: MΘ1

(xt
i).

3 THE LIMITING ASSUMPTIONS IN THE STUDY OF ICL≈GD HYPOTHESIS

emergent

whole model 
updates

sub-model 
updates

not emergent

Ⓐ Ⓑ Ⓒ

Figure 1: C is discussed
in §3. A , B in §4, §5;

We highlight how recent studies drift from these conventional defi-
nitions of ICL and GD (§2.2) to support another form of equivalence.
Specifically, they put restrictive assumptions on both the space of mod-
elsM and the space of tasksF when training Transformers. Addition-
ally, they impose impractical assumptions on model weights needed to
prove their notion of equivalence between ICL and GD. We discuss
why these deviations from real practice are non-trivial and offer little
support for the equivalence between ICL and GD in practical settings.
Fig.1 encapsulates the theme of our arguments discussed in detail next.

3.1 REAL LLMS ARE NOT PRETRAINED WITH ICL OBJECTIVE

The widely-known ability of ICL emerges in pre-trained models (M) that are obtained by training on
CLM objective with natural language text as described in §2.1. Sequences in the pretraining corpus
of natural language have a complicated relationship with the family of tasks F that they can perform
using ICL. Understanding this relationship is an active area of research (cf. §6). However, we know
that the pretraining corpus does not exclusively and explicitly contain sequences pertinent to F . We
refer to this training of Transformers with “natural” data (not necessarily natural language), which
does not explicitly train it to perform ICL, as training with the CLM objective.
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However, recent works use a different set of objectives. In (Akyürek et al., 2022; von Oswald et al.,
2023; Garg et al., 2022), the models are trained using the ICL objective:

argmin
Θ

E
f∼F̂
xi

f∼X

[
L
(
f (xi) ,MΘ (x1 ◦ f(x1) ◦ x2 ◦ f(x2) . . . ◦ xi)

)]
.

This deviates from the real settings in at least two aspects:

Changing the space of tasks. This objective is akin to training on the same restricted task distri-
bution that the model is tested on via ICL. We call this ÎCL, or the ability to perform ICL by training
on ICL objective (cf. Figure 1) and the corresponding family of tasks F̂ . For example, if the target
task to learn is linear regression, the model is trained on the sequence of linear regression instances.
Therefore, this setup does not necessarily capture the essence of how ICL emerges in LLMs, which
are not trained to perform ICL on a family of tasks.

Changing the space of models. Moreover, optimizing for this objective elicits a family of models
M̂ that is embedded with the inductive bias of expecting a constant structure in the sequence: a series
of (x, y) pairs followed with a query input. Combined with the training on sequences specifically
related to a restricted family of tasks F̂ , this space of models has different characteristics from the
space of modelsM defined in §2.1.

The relationship between these sets of models is neither clear nor discussed in these recent works.
Therefore, these works essentially equate ÎCL with ĜD ( C in Figure 1). Although restricted to a
stricter family of tasks like Linear Regression is reasonable for analysis, it is important to discuss
these distinctions between the setups. Using the term Transformers to refer to both these spaces of
models and using the term ICL for ÎCL are both misleading.

3.2 HAND-CONSTRUCTED WEIGHTS AND THEIR LIMITS

In this section, we analyze the weight matrices constructed by von Oswald et al. (2023) and Akyürek
et al. (2022). As no method is provided to arrive at these weights by training, we place these hand-
constructed weights under the umbrella of ÎCL. Next, we show how they are hard to justify for
real-world language models (e.g., LLaMa-7B).

We first re-write the weight matrices of Transformers constructed by von Oswald et al. (2023). Their
proposition states that given a reference linear model W , there exist key, query, value, and projec-
tion matrices (WK ,WQ,WV , P ) of a Transformer such that a forward pass in that Transformer is
identical to a gradient descent step on W , i.e., ej ← (xj , yj)+(0,−∆Wxj) = (xi, yi)+PV KT qj .

The weight update ∆W is calculated by the mean squared error loss on the in-context samples as
∆W = −η∇WL(W ) = − η

N

∑N
i=1(Wxi − yi)x

T
i .

They construct WK = WQ =

(
Ix 0
0 0

)
,WV =

(
0 0
W0 −Iy

)
and P = η

N I , where Ix, Iy and I are

identity matrices of size Nx, Ny and Nx +Ny respectively. Using these matrices, they achieve the
dynamics of a gradient step in the forward pass of a Linear Self Attention Layer (without softmax).
The construction by Akyürek et al. (2022) is more complex and requires multiple steps to simulate
one step of GD on one in-context sample. However, the construction is similar in that it is similarly
sparse (see section C.4 in Akyürek et al. (2022)’s appendix). These constructions raise multiple
concerns about their scaling to real-world models.

How does the model arrive at the correct P? In the construction by von Oswald et al. (2023),
P is trivially assigned the value η

N I which would change with the number of in-context samples.
There is no insight into how a Transformer model would arrive at this information and how this
formation behaves without any in-context samples. An edge case is N = 0 (no demonstrations),
which surprisingly makes terms in P go to infinity.

Are LLM weights this sparse? The weight construction by von Oswald et al. (2023) has a lot of
extremely sparse weight matrices. To be precise, WK and WQ would be matrices with Nx terms
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Figure 2: GPT-J’s ICL ability does not change much
over a time during training, while the parameters
change steadily. ‘Parameter difference’ refers to
the average parameter changes across WK ,WQ, and
WV over all layers. More results in Appendix B.
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Figure 3: We show that the sparsity ratio WV

in LLaMA is much less than previous works
required to implement GD. More results are
deferred to Appendix C.

equal to 1 in the top left of the diagonal with the rest of (Nx +Ny)
2 −Nx terms equal to zero. For

LLaMa, the embedding size of the token vector, Nx = Ny = 4096. This means that the sparsity

ratio (SR) in the weight matrices should be ((Nx+Ny)
2−Nx)

(Nx+Ny)2
> 99.99%. The sparsity ratio in WV

should be close to ≈ 75% if we assume each element in W0 to be non-zero. In practice, the sparsity
ratio is much lower for real-world models like LLaMa and GPT-J. As precisely 0 values for weights
are unlikely, we measured the sparsity ratio in WK ,WQ, and WV by measuring weights less than
a threshold (δ). Figure 3 shows the average sparsity value across layers for LLaMa. Overall, real-
world pretrained Transformers have a much lower sparsity ratio than the assumptions.

How does ICL evolve during training? From the given constructions, models need to arrive at
very specific weights to be able to perform gradient descent on in-context samples, but in practice,
we observe models develop, retain, and improve this ability over time in training when the param-
eters change significantly (A detailed experimental setup is deferred to Appendix B). In Figure 2,
we look at how the ability to perform ICL evolves compared with how the model parameters change
over time (for each check-pointed GPT-J model). We measure the average parameter changes across
all layers across WK ,WQ, and WV . This reveals that real Transformers do not settle on one set
of weights (as required by previous works for performing GD) but continue to evolve throughout
training. Although this result is an average over all the weights, certain groups of parameters (as
constructed in previous works) are unlikely to remain constant throughout training. Therefore, ICL
emerges in real LLMs, not just for a single choice of parameters but a family of parameters. Hence,
to prove the equivalence between GD and ICL, showing it for a single choice of parameters is
not enough.

4 ICL IS LIKELY NOT EQUIVALENT TO ORDER-STABLE ALGORITHMS

While we established some limiting assumptions in previous studies, it remains unclear whether
ICL≈GD hypothesis is actually invalid for real LLMs ( A or B in Figure 1). For two algorithms
to be equivalent, they must also have the same functional behavior. Namely, they should respond
identically to the changes in the ordering of the instances. In this section, we discuss the discrepant
sensitivity of ICL and GD to the order in which they process training instances (demonstrations).

Let’s begin with the definition of algorithmic equivalence.
Definition 1 (Algorithmic equivalence to ICL). Consider an optimization algorithmA that modifies
a pretrained model MΘ0

∈ M, using demonstrations S = {(xi, f(xi)}Ni=1 of a well defined task
f ∼ F , i.e., ΘS ← A(S,MΘ0

). We call A “equivalent” to ICL if and only if the following holds:

MΘ0
(S1 ◦ S2 ◦ ...SN ◦ xt) = MΘS

(xt) ∀ xi, x
t f∼ X . (2)

The following theorem establishes the equivalence of order sensitivity between ICL and any algo-
rithm A equivalent to it:
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Theorem 1 (Algorithmic equivalence implies the same order sensitivity). Given a pretrained model
MΘ0

∈ M, an algorithm A equivalent to ICL, and demonstrations S = {(xi, f(xi)}Ni=1 of a well
defined task f ∼ F , let σA, σB denote two orders of elements in S, such that ΘσA

← A(σA,MΘ0
)

and ΘσB
← A(σB ,MΘ0

). Then,

MΘ0(σA ◦ xt)−MΘ0(σB ◦ xt)︸ ︷︷ ︸
The order sensitivity of ICL

= MΘσA
(xt)−MΘσB

(xt)︸ ︷︷ ︸
The order sensitivity of algorithm A

∀ xt f∼ X . (3)

Proof. The proof trivially follows from definition 1. We know that, ∀ xt f∼ X we have:

MΘ0
(σA ◦ xt) = MΘσA

(xt), MΘ0
(σB ◦ xt) = MΘσB

(xt).

Simply subtracting these two terms proves the theorem.

4.1 ICL IS LIKELY NOT GD BASED ON ORDER INCONSISTENCY

Let’s assume that GD is equivalent to ICL (arrow A in Figure 1). We show that this assumption
leads to a contradiction due to their inconsistent order sensitivity.
GD is order-stable. We know that GD is performed on a batch of samples from the training
distribution, as seen in Equation 1. It does not matter which order the samples are presented. GD
calculates the gradient using the average loss across all samples and is therefore agnostic of the
order in which they are calculated. With respect to theorem 1, if A = GD, MΘσA

= MΘσB
or

MΘσA
(xt)−MΘσB

(xt) = 0.
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Figure 4: Order Sensitivity (standard de-
viation in output probabilities over the vo-
cabulary) of ICL and GD (and its vari-
ants SGD and Adam) as measured on the
LLaMa-7B on AGNews. The std is taken
across 10 different orders of 8 ICL demos.
More results are deferred to appendix A.

ICL and GD show different order-sensitivity. For
ICL to be equivalent to any order-stable algorithm like
GD, it must also be order-stable. However, previous
research (Lu et al., 2022; Hahn & Goyal, 2023) has
demonstrated that ICL is highly sensitive to the order
of in-context samples. This is also easy to see be-
cause decoder-only Transformers exhibiting ICL only
predict a token based on what they have seen before in
the input. A different order of samples would change
the behavior of the model. Therefore, ICL can not be
equivalent to GD (arrow A in Figure 1) as claimed
by Dai et al. (2022). These conclusions may change
upon notable technological shifts (e.g., the architecture
of LLMs). We also empirically verify this phenomenon
by comparing the output distributions produced by ICL
and GD (Figure 4). (Details deferred to Appendix A.)

4.2 ICL IS LIKELY NOT ĜD BASED ON ORDER INCONSISTENCY

Gradient Descent on implicit sub-model (ĜD). Akyürek et al. (2022); von Oswald et al. (2023)
also hypothesize the existence of implicit sub-models inside the weights of Transformer models.
These sub-models (parameterized to perform linear regression) are constructed into the weights of
the Transformer. When the Transformer is presented with in-context samples, it can simulate steps
of gradient descent on the regression loss (using these samples) with respect to the sub-model pa-
rameters. Formally, for a sub-model with weights W0, the Transformer model MΘ0

= MΘ0\W0,W0

with fixed parameters (Θ0 \W0) would optimize the weights of the inbuilt implicit sub-model (W0)
when presented with in-context samples and make its final prediction using updated weights (W1).
We refer to this version of GD as ĜD.

We first define the equivalence of ICL to an algorithm that updates the implicit model only.
Definition 2. Consider an optimization algorithm A that modifies the implicit sub-model weights
W0 of a pretrained model MΘ0

∈ M, using demonstrations S = {(xi, f(xi)}Ni=1 of a well defined
task f ∼ F , i.e., WS ← A(S,W0). We call A “equivalent” to ICL if and only if the following
holds:

MΘ0\W0,W0
(S1 ◦ S2 ◦ ...SN ◦ xt) = MΘS\WS ,WS

(xt) ∀ xi, x
t f∼ X , (4)
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and Θ0 \W0 = ΘS \WS , i.e., the pretrained model only updates by the sub-models weights.

When the model with implicit sub-model weights W0 is provided with in-context examples, it arrives
at updated weights WS using A without changing any other weights. This is equivalent to when the
model starts with sub-model weights WS and is provided no in-context examples, so no update
happens on the weights via A. Now, based on Definition 2 and Theorem 1, the following corollary
about the equivalence of order sensitivity between ICL and an equivalent algorithm A also holds:

Corollary 1. For a pretrained model MΘ0 ∈ M, an algorithm A equivalent to ICL (according to

definition 2) and two orders σA, σB of elements in the demonstration set S, ∀ xt f∼ X ,

MΘ0\W0,W0
(σA ◦ xt)−MΘ0\W0,W0

(σB ◦ xt) = MΘσA
\WσA

,WσA
(xt)−MΘσB

\WσB
,WσB

(xt) (5)

ICL and ĜD show different order-sensitivity. Let’s assume that ĜD is equivalent to ICL (arrow
B in Figure 1) according to definition 2. According to the same argument as in §4.1, WσA

= WσB

or ΘσA
\WσA

,WσA
= ΘσB

\WσB
,WσB

or MΘσA
\WσA

,WσA
(xt) −MΘσB

\WσB
,WσB

(xt) = 0.

This again implies that for ICL to be equivalent to ĜD, it must be order-stable. As shown previously,
empirical evidence shows that ICL is not order-stable and hence not equivalent to ĜD (arrow B in
Figure 1), assuming today’s LLM technology. These conclusions may change in future.

What about variants of GD? We note that the construction of Akyürek et al. (2022) allows for
order sensitivity in GD as the update is performed on samples one by one instead of the batch update
performed by von Oswald et al. (2023). Although it is unclear which order is used to perform this
update, we compared the order-sensitivity of ICL with SGD and Adam (Figure 4) and found that ICL
is still significantly more sensitive to order than SGD/Adam. Therefore, we believe it is unlikely that
ICL is equivalent to even variants of GD. We provide more order-sensitivity results in Appendix A.

5 EMPIRICAL EVALUTATION OF ICL VS. GD/ĜD IN LLMS

This section provides an empirical evaluation of ICL≈GD equivalence in realistic settings. Specif-
ically, we take a language model pretrained on natural data and use it with ICL demos to get ICL
outputs. Then, we use the same demos to fine-tune the model using GD and ĜD, and get their
respective output (without ICL demos). Next, we compare these outputs on various metrics to see
how well ICL and GD/ĜD align in practice.

5.1 EXPERIMENTAL SETTINGS

Model and benchmarks. We choose LLaMa (7B) (Touvron et al., 2023) as our primary model
for evaluation. Our model-size comparative studies use the GPT family of models (as discussed
later §5.2). For benchmarking, we select the following datasets: AGNews (Zhang et al., 2015), CB
(De Marneffe et al., 2019), SST-2 (Socher et al., 2013), RTE (Dagan et al., 2005). In the main text,
we show results on AGNews and defer other corresponding results to Appendix E.

Experimental setup. We evaluate ICL with varying demonstration sizes N ∈ {1, 2, 4, 8} and for
GD, we fine-tune the models with the same corresponding ICL demonstrations, experimenting with
a variety of learning rates {1e-4, 5e-4, 1e-5, 5e-5} over 200 epochs, which ensures the convergence
of model. Specifically, the objective function of GD is J =

∑
(x,y)∈S Lclm(y;x), where Lclm(y;x)

is the CLM loss of y, given x as the prefix. For ĜD, it is not trivial to identify the implicit sub-
model as described in §4.2. Moreover, it is computationally infeasible to experiment on all possible
subsets of parameters to identify the sub-model. Therefore, we use the hypotheses in (Akyürek
et al., 2022; von Oswald et al., 2023), to experiment with intuitive subsets. In particular, according
to von Oswald et al. (2023) the implicit model lies in WV of the Transformer while the probing
experiments in Akyürek et al. (2022) suggest that this iterative optimization happens in top layers of
the Transformers. Therefore, we provide experiments with three intuitive subsets to simulate ĜD:
finetuning (1) all weights of multiple layers while keeping others fixed, (2) WV of a single deep
layer, and (3) WV of a single intermediate layer. Details are deferred to Appendix F.
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Evaluation metrics. Here are the metrics used for our analysis (further details in Appendix D).

Performance: We compute the accuracy against the token with the highest mass from the whole
vocabulary V (rather than the label set Y).

Token Overlap: This is a relative metric comparing two distributions over vocabulary V . We sort the
tokens based on their probability mass for each distribution and select the top-K tokens (denoted by
T 1
K and T 2

K). The token overlap is calculated as 1
K |T

1
K ∩ T 2

K |. We use K = 10 in our experiments.

Overlap Cosine Similarity (OCS): Similar to Token Overlap, this is a relative metric between two dis-
tributions p1, p2 over vocabulary V . However, this metric differs because it accounts for confidences

assigned to each token. Specifcially. It is defined as follows:
∑

t∈O p1(t)·p2(t)√
(
∑

t∈O p1(t)2)·(
∑

t∈O p2(t)2)·(K−|O|)
,

where O = T 1
K ∩T 2

K . Intuitively, this quantifies the cosine distance between the overlapping tokens
and assumes all the other tokens have zero overlap, therefore normalizing by

√
(K − |O|) (when

K = |O|, we divide by
√
1).

We evaluate each metric across three random seeds and compute the average and variance. Each
random seed is used to sample demos and their order for use in ICL experiments. Each seed uses
the same demos in ICL and GD/ĜD for consistency.
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(a) y-axis shows ‘performance’ comparison of ICL with GD variants.
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(b) y-axis shows ‘Token Overlap‘ of ICL in comparison with GD variants.
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(c) y-axis shows ‘Overlap Cosine Similarity’ of ICL in comparison with GD variants.

Figure 5: Comparison of ICL and GD/ĜD on our three metrics for the AGNews dataset (results
with 4 ICL demos). Note that the ICL plots for each metric is substantially different from the
corresponding GD plot, showing the substantial gap between ICL and GD (highlighted by the gray
diagonal lines).

5.2 RESULTS

With the experimental setup defined in §5.1, we investigate the gap between ICL and GD/ĜD with
our three evaluation metrics. The results, as seen in Figure 5, highlight a notably consistent gap
between ICL and GD/ĜD across all three metrics. For some set of experimental parameters, the
performance metrics might be similar (as also shown in Dai et al. (2022)), but the other nuanced
metrics (token and confidence overlap) between the two are significantly different, which must result
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from a different functional dynamic. This is true for both GD and ĜD, implying that the dynamics of
fine-tuning any or all sets of weights on in-context samples results differs greatly from the mysterious
ICL. Results on other datasets, and with different numbers of ICL demos are similar and are deferred
to Appendix E (GD) and Appendix F (ĜD). More results about impact of model size can be seen in
Appendix G.

6 RELATED WORK

We review the relevant literature on the functional interpretation of in-context learning via GD. We
delegate other explanations of ICL to Appendix H as the are tangential to our focus.

Many works offer functional explanations of ICL (Liu et al., 2022; Olsson et al., 2022; Schlag
et al., 2021). Among these, explanations via GD Garg et al. (2022); Zhang et al. (2023); Ahn et al.
(2023) are most pertinent to our work. Notably, Akyürek et al. (2022) showed that Transformers can
implement learning algorithms (gradient descent or closed-form OLS) for linear regression problems
and empirically showed that the optimality of algorithms implemented experience a phase shift with
increasing model size. Raventós et al. (2023) discover similar results about algorithm discovery
and phase shifts with increasing task diversity. Dai et al. (2022) similarly show a dual between
attention layers and linear layers optimized using gradient descent. Li et al. (2023) show such
an equivalence on softmax regression tasks. Finally, von Oswald et al. (2023) showed a similar
construction with a simpler Linear Self-Attention Transformer, claiming that Transformers learn in-
context using gradient descent on linear regression problems. Notably, Akyürek et al. (2022) found
this GD behavior applicable only in small models, with bigger models exhibiting Bayes optimal
learning behavior (like Ordinary Least Squares for linear regression). In contrast, von Oswald et al.
(2023) claim that bigger Transformers also implement GD with added data transformations.

Most of this line of work shows how Transformers have the ability to implement such algorithms
resulting from training on ICL objectives (hypothesis 2) and not that real-world models pretrained
on natural data develop this ability (hypothesis 1).

7 DISCUSSION AND CONCLUSION

This work intends to clarify the distinction between naturally emergent ICL (commonly seen in
LLMs pretrained on natural text data); hypothesis 1) vs. task-specific ICL as a result of training
Transformers for ICL (hypothesis 2). While recent work has shown that Transformers have the ex-
pressive capacity to simulate gradient-descent in their forward pass, this does not immediately imply
that real-world models actually do simulate it. We hope this work motivates alternative approaches
that reveal the true nature of in-context learning in pretrained LLMs.

We recognize that hypothesis 1 establishing a universal equivalence between ICL and GD may be
too strong. A more reasonable hypothesis might involve certain restrictions, such as the target task’s
distributional properties or the number of demonstrations. However, the specifics of such conditions
are unclear, so we have opted for a general statement.

Besides using in-context demonstrations, recent work has also discovered other ways in which in-
context prompts enhance the performance of LLMs. For example, appending prompts like “Think
step by step” (Kojima et al., 2022) or “Take a deep breath and think” (Yang et al., 2023) before
asking a task-specific question has been shown to improve zero-shot performance of LLMs. Such
evidence may suggest that an optimization algorithm like GD cannot fully describe the ability of
ICL. Understanding ICL dynamics requires a more holistic theory, considering the various nuances
of this remarkable learning paradigm.

LIMITATIONS AND FUTURE OPPORTUNITIES

Because of its computationally infeasible nature, we were not able to do an exhaustive search over
all sub-models and pinpoint which subset of parameters could correspond to sub-models that could
get updated in ĜD. This could be an interesting avenue of research. Moreover, we do not provide
alternate explanations of how ICL works functionally, which we aim to do in the future.
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SUPPLEMENTARY MATERIAL

A ORDER SENSITIVITY OF ICL AND GD-BASED ALGORITHMS
(EXPERIMENTAL SETUP)

We present empirical evidence highlighting the distinct sensitivities of GD-based algorithms and
ICL with respect to data order. Specifically, we assess the variation in confidence assigned to vocab-
ulary V by the model across different data orderings.

Experimental setup We evaluate the order sensitivity of GD-based algorithms using the GD,
SGD, and Adam optimizers. The chosen learning rates are 1e-4, 1e-5, 5e-4, and 5e-5. Our exper-
iments are conducted on the AGNews dataset using the LLaMa-7B model. We set the number of
demonstrations to 8, and for SGD and Adam, the mini-batch size is fixed at 2. GD training continues
for 200 epochs to guarantee convergence. The number N of orders {σi}Ni=1 is set as 10.

Evaluation metric (Sen) As for the evaluation metric of sensitivity (Sen), it is defined as follows:
Given a set of confidence vectors {pi}Ni=1 resulting from distinct data orders {σi}Ni=1, we calculate
the standard deviation for each dimensionality within V using the samples {pi}Ni=1. Subsequently,
the variances for individual tokens are aggregated.

Results In Figure 4, we present the results highlighting several key observations. First, ICL ex-
hibits a much more pronounced data order sensitivity than the three GD-based algorithms. Second,
as GD training progresses, its sensitivity diminishes, widening the divergence towards ICL. Overall,
these findings underscore distinct behaviors of ICL and GD-based algorithms with respect to data
order. This suggests a disparity between ICL and GD, as shown in Theorem 1.

Additional results on order sensitivity of ICL and GD-based algorithm In this part, we provide
extra evidence showing the order sensitivity of ICL and GD. Specifically, we consider both GD and
ĜD (the same implementation as in Appendix F) and then vary the batch size of each version.
Following the experimental setup in §4, we show the results in Figure 6 and Figure 7. We can
observe that both GD and ĜD have substantially different order sensitivity towards ICL.
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(a) Order sensitivity of ICL and GD when batchsize = 1
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(b) Order sensitivity of ICL and ĜD when batchsize = 4

Figure 6: The order sensitivity (y-axis represents Sen (appendix A)) of ICL and GD (SGD and
Adam) as the batchsize changes.
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Figure 7: The order sensitivity (y-axis represents Sen (appendix A)) of ICL and ĜD (SGD and
Adam) as the batchsize changes. From left to right, three figures refer to cases bs=1, 2, 4.
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B HOW DOES ICL EVOLVE DURING TRAINING (EXPERIMENTAL SETUP)

Experimental setup. We chose intermediate checkpoints from GPT-J, ranging from 310k to 380k
pretraining steps. Using these varied pretraining steps, our approach simulates the fine-tuning pro-
cess. Specifically, we focus on two metrics to quantify the magnitude of fine-tuning: (1) Step Gap:
This represents the difference in pretraining steps between selected checkpoints. (2) Parameter
Gap: In line with the assumptions made by Oswald et al. (von Oswald et al., 2023), we compute
the average differences for each parameter within the WK , WQ, and WV matrices across different
checkpoints. To evaluate the ICL capacity of the models, we conducted tests on AGNews, SST-2,
CB, and RTE using eight demonstrations.

Results. The results are shown in Figure 8, from where we can observe that there is no significant
gap between ICL capacity of different checkpoints, indicating that continued fine-tuning (pretrain-
ing) will not substantially hurt the ICL performance.
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Figure 8: The ability of GPT-J to perform ICL does not change much over a time cross-section of
training while the parameters change steadily.
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C LAYER-WISE SPARSITY RATE OF LLMS

We show the sparsity ratio of each layer of LLMs. Specifically, in our paper, we have used LLaMa-
7B and GPT-J are main experiments, so we show their sparsity rate of WK , WQ, and WV in each
layer. The results are shown in Figure 9. It is interesting that although WK and WQ have almost
constant sparsity in all layers, WV has slightly decaying sparsity.
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Figure 9: The sparse ratio of LLaMa-7B and GPT-J in each layer. From left to right, three figures
represent the cases of WK , WQ, and WV .
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D EVALUATION METRICS IN OUR EXPERIMENTS

Previous works often use performance metrics (accuracy and loss) based on the token with the
maximum probability from label set Y , when comparing different algorithms (Srivastava et al.,
2023; Wei et al., 2021). We argue that these metrics do not paint the whole picture. Even if two
sorting algorithms reach the same result, their dynamics may differ. In particular, we argue that the
relative uplifting of tokens in the output distribution sheds light on the dynamics of the algorithm.
For this purpose, we propose two more metrics that help evaluate the equivalence between ICL and
GD dynamics and change the matching criteria.

• Performance: As all of our datasets have classification tasks, we compute the accuracy by picking
the top token from the whole vocabulary V instead of just the label set Y . Checking whether the
correct token made it to the top evaluates the precision of the optimization algorithm. It is defined
as 1

|Stest|
∑

(xt
i,y

t
i)∈Stest

1{yti = argmaxM(C ◦ xt
i)}, where M is the model, C is the context and

Stest is the test set. Notice that this is an algorithm-specific metric, i.e., we can calculate it using a
single output distribution produced by the model M .

• Token Overlap: This is a relative metric computed based on two output distributions. These
distributions could be either produced by the same model on different inputs (in case of ICL:
different number of demos, order of demos, etc.) or different models on the same inputs (ICL
(with context) vs GD (fine-tuned, without context)). We compute the top-K tokens (denoted by
T 1
K and T 2

K) from each output distribution and find the overlap between these sets. This illustrates
how differently the two models (or inputs) change the probability weights of tokens, evaluating
the difference between their dynamics. The token overlap metric is calculated as 1

K |T
1
K ∩ T 2

K |.
We use K = 10 as it fairly represents most of the probability mass of the output distribution.

• Overlap Cosine Similarity (OCS): Token overlap evaluates each of the top-K tokens with the
same weight. With confidence overlap, we measure the agreement at a finer level, looking at
how well the tokens agree individually. This metric is computed on the confidence distribution
on top-K tokens. This is done because the vocabulary set is large, and most tokens have low
probabilities, so the overall cosine similarity is always close to 1. As the top-K tokens may not
be the same in the two distributions being compared, we denote the intersection of the two sets

T 1
K , T 2

K by O = T 1
K∩T 2

K and use the following formula:
∑

ti∈O p1(ti)·p2(ti)√
(
∑

ti∈O p1(ti)2)·(
∑

ti∈O p2(ti)2)·(K−|O|) .

It measures the cosine distance between the overlapping tokens and assumes all the other tokens
have zero overlap, therefore normalizing by

√
(K − |O|) (when K = |O|, we divide by

√
1).

We evaluate every metric across three random seeds and compute the average and variance. Each
random seed is used to sample demos for use in ICL experiments. The same demos are used to fine-
tune models for GD. For the relative metrics (Token Overlap and Confidence Overlap), the values
for ICL are calculated between predictions made for the same set of demos but in a different order,
also underlining the high-order sensitivity of ICL.

E ADDITIONAL RESULTS ON ICL VS GD COMPARISONS

Here are the extra results on ICL vs GD on other benchmarks beyond AGNews in §5.
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(a) y-axis shows performance comparison between ICL and GD as number of demonstrations increase
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Figure 10: Comparison of ICL and GD on our three evaluation metrics for the AGNews dataset.
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Figure 11: Comparison of ICL and GD on our three evaluation metrics for the SST dataset.
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Figure 12: Comparison of ICL and GD on our three evaluation metrics for the CB dataset.
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Figure 13: Comparison of ICL and GD on our three evaluation metrics for the RTE dataset.
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F EMPIRICAL RESULTS ON ICL VS ĜD

In this section, we present empirical results on ICL vs ĜD.

How are sub-models selected for optimization? Since ĜD conducts updates only on the subset
of the model and enumerating all the possible subsets of model parameters is infeasible, we select
intuitive subsets of parameters to simulate ĜD.

We use the hypotheses in (Akyürek et al., 2022; von Oswald et al., 2023), to experiment with intuitive
subsets. In particular, according to von Oswald et al. (2023) the implicit model lies in WV of
the Transformer while the probing experiments in Akyürek et al. (2022) suggest that this iterative
optimization happens in top layers of the Transformers. Therefore, we provide experiments with
three intuitive subsets to simulate ĜD: finetuning (1) all weights of multiple layers while keeping
others fixed, (2) WV of a single deep layer, and (3) WV of a single intermediate layer.

Results of ICL vs. ĜD (Deep layers) Following a similar experimental setup in §5, we compare
the differences between ICL and ĜD. Here are the results for randomly selecting one layer from the
last four layers from LLaMa (29-32); we repeat the experiments four times and plot the mean and
std. The results are shown in Figure 14 - Figure 17, and we can observe the gaps between ICL and
ĜD.

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1 ICL demonstrations
GD(lr=1e-3)
GD(lr=1e-4)
GD(lr=5e-3)
GD(lr=5e-4)
ICL

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0 2 ICL demonstrations

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0 GD (1-deep-layer training)

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0 8 ICL demonstrations

(a) Performance comparison between ICL and ĜD as number of demonstrations increase
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Figure 14: Comparison of ICL and ĜD on our three evaluation metrics for the AGNews dataset. ĜD
is simulated by optimizing on one random deep layer of LLaMa.
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Figure 15: Comparison of ICL and ĜD on our three evaluation metrics for the SST dataset. ĜD is
simulated by optimizing on one random deep layer of LLaMa.
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Figure 16: Comparison of ICL and ĜD on our three evaluation metrics for the CB dataset. ĜD is
simulated by optimizing on one random deep layer of LLaMa.
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Figure 17: Comparison of ICL and ĜD on our three evaluation metrics for the RTE dataset. ĜD is
simulated by optimizing on one random deep layer of LLaMa.

Results of ICL vs. ĜD (Middle layers) Following a similar experimental setup in §5, we compare
the differences between ICL and ĜD. We randomly select one layer from the middle layers of
LLaMa (16-20). Here are the results for randomly selecting one layer from LLaMa; we repeat the
experiments four times and plot the mean and std. The results are shown in Figure 18 - Figure 21,
we can observe the gaps between ICL and ĜD.
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(c) Confidence overlap between ICL and ĜD

Figure 18: Comparison of ICL and ĜD on our three evaluation metrics for the AGNews dataset. ĜD
is simulated by optimizing on one random middle layer of LLaMa.
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Figure 19: Comparison of ICL and ĜD on our three evaluation metrics for the SST dataset. ĜD is
simulated by optimizing on one random middle layer of LLaMa.
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Figure 20: Comparison of ICL and ĜD on our three evaluation metrics for the CB dataset. ĜD is
simulated by optimizing on one random middle layer of LLaMa.
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(a) Performance comparison between ICL and ĜD as number of demonstration increases

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ov
er

la
p 

ra
te

1 ICL demonstrations
GD(lr=1e-3)
GD(lr=1e-4)
GD(lr=5e-3)
GD(lr=5e-4)
ICL

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
2 ICL demonstrations

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
4 ICL demonstrations

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
8 ICL demonstrations
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Figure 21: Comparison of ICL and ĜD on our three evaluation metrics for the RTE dataset. ĜD is
simulated by optimizing on one random middle layer of LLaMa.
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Results of ICL vs. ĜD (Multiple layers) Here are the results for randomly selecting eight layers
from LLaMa; we repeat the experiments five times and plot the mean and std. The results are shown
in Figure 22 - Figure 25; we can still observe the huge gaps between ICL and ĜD. Specifically, com-
pared to the 1-layer case, 8-layer simulated ĜD achieves higher similarity towards ICL. Moreover,
both have lower similarities towards ICL than GD (full-model fine-tuning), which indicates that GD
with more parameters brings a higher similarity towards ICL.
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(a) Performance comparison between ICL and ĜD as number of demonstrations increase

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ov
er

la
p 

ra
te

1 ICL demonstrations

GD(lr=1e-3)
GD(lr=1e-4)
GD(lr=5e-3)
GD(lr=5e-4)
ICL

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
2 ICL demonstrations

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
GD (8-layer training)

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
8 ICL demonstrations

(b) Token overlap between ICL and ĜD
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(c) Confidence overlap between ICL and ĜD

Figure 22: Comparison of ICL and ĜD on our three evaluation metrics for the AGNews dataset. ĜD
is simulated by optimizing on 8 layers of LLaMa.
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(a) Performance comparison between ICL and ĜD as number of demonstrations increase
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Figure 23: Comparison of ICL and ĜD on our three evaluation metrics for the SST dataset. ĜD is
simulated by optimizing on eight random layers of LLaMa.
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Figure 24: Comparison of ICL and ĜD on our three evaluation metrics for the CB dataset. ĜD is
simulated by optimizing on eight random layers of LLaMa.
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Figure 25: Comparison of ICL and ĜD on our three evaluation metrics for the RTE dataset. ĜD is
simulated by optimizing on eight random layers of LLaMa.
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G IMPACT OF MODEL CAPACITY ON THE ICL VS GD.

Next, we investigate the influence of model size on the gap between ICL and GD. Specifically, we
fix the number of demonstration size as 8, and select GPT2-XL (Radford et al., 2019), GPT-NEO
(Black et al., 2021), GPT-J (Wang & Komatsuzaki, 2021) as models of choice to conduct ICL vs
GD experiments. Please note that the model capacity is ranked as follows: LLAMA (7B) >GPT-J
(6B)>GPT-NEO (2.7B)>GPT2-XL (1.5B). The results are shown in Figure 26, from where we
can see the gap basically does not change significantly as the model changes from GPT2-XL to
LLAMA.
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Figure 26: Comparison of ICL and GD for the AGNews dataset as model size varies. The substantial
gap between ICL and GD (the gray slanted lines) does not change with model size.

H RELATED WORK: DISTRIBUTIONAL AND EMPIRICAL EXPLANATIONS OF
ICL

Distributional explanations. This body of work explains ICL via distributional frameworks and
the relevant properties of LLMs (Xie et al., 2021; Wies et al., 2023). Xie et al. (2021) explain ICL as
implicit Bayesian inference, which implicitly maps a given set of demonstrations to an appropriate
latent concept (task) learned via pretraining on a massive unsupervised corpus. Similarly, Hahn
& Goyal (2023) theorize that natural language pretraining data consists of compositional structure,
which leads to the emergent ability of in-context learning, while Chan et al. (2022) show that this
might be because of distributional properties of the training distribution (like burstiness). These are
all reasonable explanations of how ICL works, although they are somewhat tangential to the focus
of this study.

Empirical explanations. Various empirical works study ICL under various settings (Brown et al.,
2020; Zhao et al., 2021; Min et al., 2022; Mishra et al., 2022; Han et al., 2023). To note a few,
Srivastava et al. (2023) famously benchmarked ICL for many tasks and models. Perez et al. (2021);
Lu et al. (2022) showed the sensitivity of ICL to the choice of demonstrations and their orderings.
Shin et al. (2022); Razeghi et al. (2022) show the sensitivity of ICL performance to the frequency
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and size of the relevant pretraining corpus. Pan et al. (2023) disentangle task recognition and task
learning in ICL. These works highlight numerous ways the ability of models to perform ICL changes
under different conditions but do not explain how it functions.
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