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Abstract

Binaural rendering aims to synthesize binaural au-
dio that mimics natural hearing based on a mono
audio and the locations of the speaker and listener.
Although many methods have been proposed to
solve this problem, they struggle with rendering
quality and streamable inference. Synthesizing
high-quality binaural audio that is indistinguish-
able from real-world recordings requires precise
modeling of binaural cues, room reverb, and am-
bient sounds. Additionally, real-world applica-
tions demand streaming inference. To address
these challenges, we propose a flow matching
based streaming binaural speech synthesis frame-
work called BinauralFlow. We consider binau-
ral rendering to be a generation problem rather
than a regression problem and design a condi-
tional flow matching model to render high-quality
audio. Moreover, we design a causal U-Net ar-
chitecture that estimates the current audio frame
solely based on past information to tailor genera-
tive models for streaming inference. Finally, we
introduce a continuous inference pipeline incorpo-
rating streaming STFT/ISTFT operations, a buffer
bank, a midpoint solver, and an early skip sched-
ule to improve rendering continuity and speed.
Quantitative and qualitative evaluations demon-
strate the superiority of our method over SOTA ap-
proaches. A perceptual study further reveals that
our model is nearly indistinguishable from real-
world recordings, with a 42% confusion rate. We
recommend that readers visit our project page for
demo videos: https://liangsusan-git.
github.io/project/binauralflow/.
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1. Introduction
Unlike monaural audio, which conveys content in a sin-
gle channel with no spatial context, spatial audio presents
the audience with a multi-dimensional listening experience
by rendering sounds from various directions and distances.
When rendered using two audio channels and played back
to the user’s ears through headphones, spatial audio is also
referred to as binaural audio. Its ability to enhance realism
and user engagement makes spatial audio a key component
of a wide range of immersive applications, from cinematic
experiences and gaming (Raghuvanshi & Snyder, 2018;
Chaitanya et al., 2020; Broderick et al., 2018; Yadegari
et al., 2024) to rapidly evolving fields such as virtual (VR),
augmented (AR) and mixed realities (MR) (Zotkin et al.,
2004; Kim et al., 2019; Gupta et al., 2022; Schütze & Irwin-
Schütze, 2018; Cohen et al., 2015; Yang et al., 2020; Kailas
& Tiwari, 2021; Liang et al., 2024; Huang et al., 2024).

Although a lot of work has been done in both signal pro-
cessing and machine learning communities (Savioja et al.,
1999; Zotkin et al., 2004; Jianjun et al., 2015; Zhang et al.,
2017; Gao & Grauman, 2019; Richard et al., 2021; Leng
et al., 2022; Liang et al., 2023b), the current state-of-the-art
methods still struggle with achieving both (1) high-quality
rendering and (2) causal and streamable inference. In par-
ticular, generating high-fidelity binaural audio that is truly
indistinguishable from real-world recordings, has remained
an open problem. Given a (virtual) acoustic source and its
audio signal, rendering binaural audio that is of such quality
to deceive the listener into believing it is truly present in
the space requires careful consideration and modeling of
binaural cues, room reverb, and ambient noise. The poses of
the sound source and receiver are key to perception. The dis-
tance between them primarily affects the overall audio level,
while their relative orientation influences the perceived di-
rection of the sound source (e.g., interaural level and time
differences). Meanwhile, the inclusion of reverberation
effects and background noise that match the environment
is crucial for improving the realism and immersion of the
acoustic scene. Existing approaches might not fully con-
sider all of these factors, leading to suboptimal rendering
performance, with noticeable differences between recorded
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(real) and generated (virtual) sounds.

Furthermore, real-world audio rendering applications re-
quire not only high-fidelity audio generation but also con-
tinuous, streaming inference capability that maintains low
latency, which is essential for applications where audio must
be generated or processed in real time, such as live voice
synthesis, interactive gaming, or augmented reality systems.
However, most advanced neural rendering approaches (Gao
& Grauman, 2019; Leng et al., 2022; Van Den Oord et al.,
2016; Richter et al., 2023) do not support continuous synthe-
sis, due to the non-causal model architectures and inefficient
multi-step inference procedures.

To achieve high-fidelity rendering and continuous infer-
ence, we propose a flow matching-based streaming binaural
speech generation framework which we will refer to as Bin-
auralFlow. Predicting reverberation effects and background
noise using a regression approach is challenging because
these features are absent from the input audio signal and they
exhibit stochastic behavior. Instead, we consider the binau-
ral rendering problem to be a generative task. We design
a conditional flow matching model to enhance perceptual
realism by rendering realistic acoustic effects and dynamic
ambient noise. To augment rendered binaural speech with
precise binaural cues, we condition the model on the poses
of the sound source and receiver to guide speech rendering.

Existing flow matching models typically do not support
continuous inference due to non-causal model architectures
and multi-step inference requirements. Popular generative
frameworks (Ho et al., 2020; Song et al., 2020b; Rombach
et al., 2022; Richter et al., 2023) commonly use a non-causal
U-Net (Ronneberger et al., 2015) composed of convolution
and attention blocks as backbones. Non-causal convolution
kernels and the globally aware attention calculation mecha-
nism break the time causality during rendering. Therefore,
we introduce a causal U-Net architecture by meticulously de-
signing causal 2d convolution blocks so that the prediction
of the next audio chunk solely relies on the past chunks.

Moreover, a causal backbone alone is not sufficient for
streaming inference because of the multi-step generation
process required by generative models. Starting from an
initial noise, generative diffusion and flow matching models
rely on an iterative denoising process which takes a few
steps to complete the generation process. To enable con-
tinuous generation, we need to ensure time causality for
all inference steps. To this end, we construct a continu-
ous inference pipeline consisting of streaming STFT/ISTFT
operations, a buffer bank, a midpoint solver, and an early
skip schedule. In this way, we enable seamless streaming
inference for U-Net-based generative models.

In summary, our contributions are:

• We design a flow matching-based streaming binaural

audio synthesis framework to render high-fidelity and
continuous audio based on the mono input.

• We introduce a conditional flow matching approach to
the binaural speech rendering problem by considering
the problem from a generative perspective.

• We propose a causal U-Net architecture that estimates
vector fields solely based on history information. We
present a continuous inference pipeline supporting the
streaming inference of generative models.

• We demonstrate the effectiveness of our approach,
showing that our model outperforms existing SOTA
approaches with a high margin. A perceptual study
shows that our model is nearly indistinguishable from
real-world recordings with a 42% confusion rate.

2. Related Work
Our work is closely related to digital audio rendering, neural
audio rendering, and generative models.

2.1. Digital Audio Rendering

Digital audio rendering approaches utilize Digital Signal
Processing (DSP) techniques to render audio. These ap-
proaches (Savioja et al., 1999; Zotkin et al., 2004; Jianjun
et al., 2015; Zhang et al., 2017; Chen et al., 2020; 2022)
estimate binaural audio with a series of linear time-invariant
systems, including room impulse response (RIR) (Lin &
Lee, 2006; Szöke et al., 2019; Antonello et al., 2017), head-
related transfer function (HRTF) (Begault & Trejo, 2000;
Cheng & Wakefield, 1999), and additive ambient noise. Due
to the simplified geometrical simulation (Valimaki et al.,
2012; Savioja & Svensson, 2015), non-personalized HRTFs,
and the assumed stationary noise, there is a noticeable qual-
ity gap between real recordings and generated sounds.

2.2. Neural Audio Rendering

Recently, researchers have resorted to deep neural networks
to render spatial audio given the powerful fitting capabilities
of neural networks. Gao & Grauman (2019) introduce a
vision-guided binauralization network to generate binaural
audio conditioned on a video frame. Richard et al. (2021)
design a neural warp network to warp the mono audio ac-
cording to the time delay and the listener position. Chen
et al. (2023) and Liang et al. (2023a) utilize vision infor-
mation to guide binaural audio prediction at novel poses.
Although these methods achieve plausible speech results,
their regression mechanism limits their generation capabil-
ity, i.e., they cannot generate precise room acoustics and
ambient noise that are absent from the input data.
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2.3. Generative Models

Generative models, especially diffusion models (Ho et al.,
2020; Song et al., 2020a;b), exhibit strong generative capa-
bilities in the audio domain (Yang et al., 2023; Liu et al.,
2023; Huang et al., 2023; Kong et al., 2021; Leng et al.,
2022). Based on DiffWave (Kong et al., 2021), Leng et al.
(2022) propose a two-stage diffusion model (BinauralGrad)
to synthesize binaural audio. Richter et al. (2023) design
a diffusion model for speech enhancement in the complex
STFT domain (SGMSE). However, diffusion models require
many sampling steps during inference, e.g., 30 steps. To
reduce inference steps while maintaining performance, Lip-
man et al. (2022) introduce flow matching models that simu-
late the generation process with the optimal transport trans-
formation. Inspired by this, we propose a flow matching-
based generative framework that outperforms SGMSE with
more efficient inference. We compare our work and other
flow matching-based audio models (Lee et al., 2024b; Liu
et al., 2024; Welker et al., 2025; Mehta et al., 2024; Du et al.,
2024; Lee et al., 2024a) in detail in the appendix.

3. Method
In this paper, we propose BinauralFlow, a flow matching-
based streaming model for binaural speech rendering. We
first formulate the task in Section 3.1. To synthesize high-
quality binaural audio, we introduce a conditional flow
matching model that is conditioned on both pose informa-
tion and mono input (Section 3.2). Then, we design a causal
U-Net architecture that estimates the current chunk solely
relying on the history information (Section 3.3). Finally,
we present our continuous inference pipeline that improves
rendering continuity and speed in Section 3.4.

3.1. Task Definition

The goal of the binaural rendering task is to synthesize
binaural audio (two channels — one for each listener’s ear)
y ∈ R2×N , based on the monaural audio (one channel
containing speaker’s signal) x ∈ RN , and the poses of the
speaker ptx ∈ R7×N ′

and the listener prx ∈ R7×N ′
, where

N is the length of an audio clip and N ′ is the length of a pose
sequence. We represent a pose as a combination of position
(x̄, ȳ, z̄) ∈ R3 and quaternion rotation (w̃, x̃, ỹ, z̃) ∈ R4. To
solve this problem, we need to learn a function f that maps
the monaural audio to the binaural audio:

y = f(x|ptx, prx). (1)

As mentioned in the introduction, learning of this mapping
function f is non-trivial because it is required to consider the
binaural cues, and include the room reverb and the ambient
noise, which usually are not present in the input mono signal
and exhibit stochastic behavior. Moreover, f should support
continuous rendering in the streaming inference setting.

3.2. Conditional Flow Matching Models

To address the quality challenge raised by the binaural audio
rendering, we design a conditional flow matching model
as an instance of the function f . We consider the binaural
speech rendering problem to be a generative task and use
flow matching models to generate binaural sound effects.

Specifically, given an audio pair of the mono audio x and
the binaural audio y, we first convert them from the time
space to the time-frequency space using Short-Time Fourier
Transformation (STFT): x = STFT(x) ∈ C2×(F

2 +1)×T

and y = STFT(y) ∈ C2×(F
2 +1)×T , where F is Discrete

Fourier Transform (DFT) length, T is the number of time
frames, and C represents the complex space. We repeat the
mono input along the channel dimension to be two-channel
so that x and y are of the same shape. Then we sample a
random noise z ∼ N (x, σ2I) which centers around x with
the radius of σ. To generate the binaural audio y based on
the mono input x, we aim to design a flow that moves from
the source data z to the target data y.

We formulate the flow matching problem using the optimal
transport formulation inspired by Lipman et al. (2022):

ϕt(z) = ty + (1− t)z, (2)

where ϕt : [0, 1]×C2×(F
2 +1)×T → C2×(F

2 +1)×T is a time-
dependent flow function and the flow at time step t ∈ [0, 1]
is a linear interpolation between y and z.

If we use the re-parameterization technique to represent z as
x+ σϵ, where ϵ is a normal Gaussian noise, ϕt is updated
with

ϕt(z) = ty + (1− t)(x+ σϵ)

= ty + (1− t)x+ (1− t)σϵ.
(3)

The corresponding probability path pt : [0, 1] ×
C2×(F

2 +1)×T → R>0 can be calculated as

pt(z) = N (z|ty + (1− t)x, (1− t)2σ2I). (4)

When t = 0, p0(z) is N (z|x, σ2I), which is a Gaussian
distribution around the mono audio x with the radius of
σ. When t gradually increases, the mean of pt(z) moves
linearly from x to y and the standard deviation of pt(z)
decreases. If t = 1, p1(z) is N (z|y, 0), which collapses
to the binaural audio y. Therefore, the flow defined in
Equation (2) moves samples centered around the input audio
x to the binaural audio y with gradually reduced variance.

Based on the definition of a flow, we can derive a time-
dependent vector field vt : [0, 1] × C2×(F

2 +1)×T →
C2×(F

2 +1)×T using the following ordinary differential equa-
tion (ODE):

d

dt
ϕt(z) = vt(ϕt(z)). (5)
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Figure 1. Overview of our BinauralFlow framework. (a) shows the causal U-Net architecture. Our causal U-Net takes as input the
flow ϕt(z) as well as four conditions t, prx, ptx, and x, and outputs a predicted vector field. The U-Net consists of several Causal
2D Conv Blocks in the contracting and expanding parts. (b) displays the Causal 2D Conv Block. We design fully causal convolution,
down/up-sampling, and normalization layers to ensure temporal causality.

Algorithm 1 Training Procedure of Flow Matching Model
Input: Dataset D, mono audio x, binaural audio y, trans-
mitter pose ptx, receiver pose prx, standard deviation σ,
initial network ut

while not converged do
{x,y, ptx, prx} ∼ D // Sample data from the dataset

z ∼ N (x, σ2I) // Sample random variable

t ∼ U(0, 1) // Sample time step

ϕt(z)← ty + (1− t)z
LCFM(θ)← |ut(ϕt(z), prx, ptx,x; θ)− (y − z)|
θ ← Update(θ,∇θLCFM(θ))

end while
Output: trained network ut

By replacing ϕt(z) in Equation (5) with Equation (2), we
calculate the vector field vt as

vt(ϕt(z)) = y − z. (6)

Then we design a deep neural network ut to match the vector
field vt with the conditional flow matching (CFM) L1 loss:

LCFM(θ) = Et,x,y,z

∣∣ut(ϕt(z), prx, ptx,x; θ)− (y − z)
∣∣,
(7)

where θ is the learnable parameters of the deep neural net-
work ut. We condition the model prediction on the poses of
speaker ptx and listener prx to accurately model the binaural
clues. We also include the mono audio x to provide rich
sound information.

We present pseudo code for training a conditional flow
matching model in Algorithm 1. We first select one sample
from the dataset. Then we sample a random noise z follow-
ing the Gaussian distribution and a time step t following
the uniform distribution. We calculate the flow ϕt(z) at the

time step t and pass it along with other conditions into the
model ut to predict the vector field. Finally, we calculate
the CFM loss and update the model weights.

Discussion. Our conditional flow matching method shares
some similarity with the simplified flow matching formu-
lation (Tong et al., 2023; Jung et al., 2024). However, we
argue that our method is distinct from the simplified flow
matching approach. (1) The simplified flow matching ap-
proach injects minute perturbation (commonly 1e−4) to the
flow, which almost degrades the problem to a deterministic
task. Our method uses Gaussian noise of normal magnitude,
maintaining the generation randomness. (2) Our method
uses mono audio as an important generation condition to im-
prove generation robustness. However, the simplified flow
matching model cannot use this condition because it causes
model collapse. We provide an experiment in Section 4.5 to
validate the superiority of our approach.

3.3. Causal U-Net Architecture

In this section, we describe the proposed network architec-
ture. To tailor the flow matching models for streaming ren-
dering, we design a causal U-Net architecture that predicts
the current vector field solely based on past information.

The complete network architecture is shown in Figure 1 (a).
The input to our network is the flow ϕt(z) as well as four
conditions t, prx, ptx, and x, and the output is the predicted
vector field. Given a pair of mono and binaural audio sig-
nals, x and y, we use STFT to calculate their spectrograms
x and y. We sample a normal Gaussian noise ϵ of the same
shape as y. We compute the flow ϕt at the time step t using
Equation (3). Then we concatenate ϕt and the mono spec-
trogram x as input to the causal U-Net. Because x and ϕt

are complex spectrograms, we convert them to real numbers
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Figure 2. Continuous inference pipeline. Starting with a mono audio chunk (top left, black solid-line box), we compute its spectrogram
via streaming STFT, add noise, and duplicate the channel to form the noisy spectrogram ϕ0(z). The trained model progressively removes
the noise with a buffer bank. Finally, streaming ISTFT converts the predicted binaural spectrogram ϕ1(z) into binaural audio. When the
next audio chunk appears (black dashed-line box), we repeat the process and synthesize seamlessly continuous binaural speech.

by considering real and imaginary parts as individual chan-
nels and concatenating them along the channel dimension.
Since both time step t and pose vectors ptx and prx are low-
dimensional, we employ the positional encoding technique
(Vaswani, 2017; Mildenhall et al., 2021) to project them into
a high-frequency space. We use Random Gaussian Fourier
Embedding (RGFE) (Tancik et al., 2020) followed by Multi-
Layer Perceptrons (MLPs) to encode these conditions. The
transmitter and receiver pose features are concatenated be-
fore feeding into the MLP. We inject the encoded time step
and poses into the causal U-Net to guide the vector field
prediction. Finally, the causal U-Net estimates the vector
field. We convert it back to a complex space using real and
imaginary channels.

Causal U-Net has a contracting part and an expanding part
with skip connections between them. Each part consists of
several Causal 2D CNN blocks, with architecture shown in
Figure 1 (b). Each block contains Norm and Activate layers,
Causal Convolution layers, and optional Causal Down/Up-
sampling layers. In the Norm and Activate layer, we utilize
GroupNorm (Wu & He, 2018) to stabilize training but we
limit the computation to each individual frame rather than
all frames to ensure causality. We apply the Sigmoid Linear
Unit (SiLU) (Hendrycks & Gimpel, 2016) as an activation
function. The Causal Convolution layer is a 3x3 convolu-
tion layer with a stride of size 1 and a one-side padding of
size 2. One-side padding restricts the receptive field of the
convolution kernel to the historical information. Because
U-Net requires reducing or increasing the feature dimension
in each block, we design a Causal Down/Up-sampling layer.
The Causal Downsample layer contains a 4x4 convolution
function with a stride of size 2, which reduces the feature
dimension by half. The Causal Upsample layer contains a
4x4 transposed convolution function, which doubles the fea-

ture dimension. We also add the time step and pose features
with the hidden features to guide the vector field prediction.
A residual path with an optional Causal Down/Up-sample
Layer is included to facilitate learning.

3.4. Continuous Inference Pipeline

After training BinauralFlow model, we design a continuous
inference pipeline to render binaural speech in a streaming
manner, as shown in Figure 2. Given a chunk of mono au-
dio, we apply streaming STFT operation to compute mono
spectrogram. We add random noise to it and duplicate its
channel to obtain the noisy spectrogram ϕ0(z). Then we
use the trained model to gradually remove the injected noise.
The denoising process involves several steps and we design
a buffer bank to store the buffer of each step. When the next
chunk is fed, we retrieve the buffer according to the time
step from the buffer bank and reload it to the model. We
leverage a midpoint solver and an early skip schedule to
improve the denoising speed. Finally, we apply streaming
ISTFT to convert the predicted binaural spectrogram ϕ1(z)
to binaural audio. When the next audio chunk appears, we
repeat the process and generate continuous binaural speech.
Below we describe the individual components that enable
continuous inference and improve rendering speed.

Streaming STFT / ISTFT. We adapt STFT and ISTFT for
streaming processing by adding buffers and adjusting the
padding manner. We prepend the buffer content to each
chunk and update the buffer with the end of the chunk.

Buffer Bank. In the causal U-Net, we introduce buffers to
each causal convolution layer to store the hidden features
of the current audio chunk. These buffers are then used
to pad the next audio chunk. Since the denoising process
involves multiple inference steps, reusing the same buffer
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across all steps would overwrite historical information. To
address this, we construct a dictionary-based buffer bank
B = {Bt}1t=0 to store network buffers of all time steps t.
During inference, at time step t, we retrieve corresponding
buffers Bt from the buffer bank. The network buffers Bt are
loaded into the U-Net to complete the vector field prediction.
Afterword, we store the updated buffers back to the buffer
bank to replace Bt. We repeat this process until t reaches 1.

Midpoint Solver. The inference process requires solving
the following ODE to obtain ϕ1(z):

d

dt
ϕt(z) = ut(ϕt(z); θ),

ϕ0(z) = z,
(8)

where we omit other model inputs for simplicity. Among
different numeric solvers, we choose the Midpoint solver
because it effectively reduces the number of function eval-
uations while maintaining the performance (Lipman et al.,
2022). We present pseudo code of utilizing the Midpoint
solver to solve the ODE in the appendix.

Early Skip Schedule. To further reduce the number of
function evaluations, we propose an early skip schedule. A
standard time schedule divides the interval from 0 to 1 into
equal segments and moves sequentially from 0 to 1. As
shown in Figure 3 (a), we design two new schedules: an
early skip schedule that skips the first half segments and
a late skip schedule that avoids the second half segments.
We empirically observe that the use of the early skip sched-
ule does not compromise rendering quality while the late
skip degrades the performance, with worse modeling of the
background noise (see Figure 3 (b)). We speculate that flow
matching may be able to correct the errors from the first half
during the second half of inference, so even if we conduct
early skipping, it does not noticeably affect performance.
Therefore, we utilize the early skip strategy to reduce the
inference steps to 6. In comparison, SGMSE model (Richter
et al., 2023) generates comparable results with 30 steps.

4. Experiments
4.1. Experiment Details

Dataset. To evaluate BinauralFlow, we collect a new high-
quality binaural dataset. We record 10 hours of paired mono
and binaural data at 48 kHz along with the head poses of the
speaker and the listener. To match real-world scenarios, we
collect data in a standard room without significant sound-
proofing or sound-absorbing materials. The background
noise from multiple AC vents and electronic equipment
is recorded. Furthermore, instead of using binaural man-
nequins and loudspeakers, both the speaker and the listener
are real participants. During recording, the speaker is free to
move anywhere in the room, and the listener is free to move

𝑡 = 0 10.5
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Late Skip

Mono Audio

GT Audio Standard Schedule Early Skip Late Skip

Left C
hannel

R
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(a) Different Time Schedules

(b) Generated Binaural Spectrograms with Different Time Schedules

Figure 3. The early skip time schedule. The use of an early skip
strategy effectively reduces the inference steps and retains the
generation performance.

the head while sitting on a chair. We split the dataset into
training/validation/test subsets with 8.47/0.86/1.33 hours of
each subset. The test subset contains two additional speak-
ers, male and female, not seen during training. See the
appendix for details on the data collection setup.

Baselines. We compare our approach with digital audio
rendering approaches and more advanced neural audio ren-
dering approaches. We choose SoundSpaces 2.0 (Chen et al.,
2022) as a DSP baseline given its powerful spatial audio ren-
dering capability. For neural audio rendering models, we uti-
lize 2.5D Visual Sound (Gao & Grauman, 2019), WaveNet
(Van Den Oord et al., 2016), and WarpNet (Richard et al.,
2021) as regression-based baselines, and use BinauralGrad
(Leng et al., 2022) and SGMSE (Richter et al., 2023) as
generative baselines. BinauralGrad is the state-of-the-art
approach for the binaural speech synthesis task, which is a
two-stage diffusion model.

Metrics. For quantitative evaluation, we leverage three
metrics following WarpNet (Richard et al., 2021) and Bin-
auralGrad (Leng et al., 2022): waveform L2 error (L2),
magnitude L2 error (Mag), and phase angular error (Phase).

4.2. Quantitative Comparison

We compare our method with existing baselines includ-
ing the state-of-the-art approach BinauralGrad (Leng et al.,
2022). We present the metric results in Table 1, where lower
values mean better performance. We show the number of
function evaluations (NFE), i.e., how many times the model
is called during binaural speech synthesis, and the model
type for each method. As shown in the table, DSP and
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Table 1. Quantitative comparison with existing baselines. We show the model type (R: Regression and G: Generation), the number of
function evaluations (NFE), the inference speed, and the model size of each approach. The L2 error is on the scale of 1e−5.

Methods Type NFE Speed (ms) Model Size (MB) L2 ↓ Mag ↓ Phase ↓
SoundSpaces 2.0 (Chen et al., 2022) - 1 - - 4.91 0.0129 1.58
2.5D Visual Sound (Gao & Grauman, 2019) R 1 1.1 82.0 2.78 0.0174 1.56
WaveNet (Van Den Oord et al., 2016) R 1 21.0 32.7 2.79 0.0175 1.57
WarpNet (Richard et al., 2021) R 1 21.9 32.8 2.79 0.0176 1.57

BinauralGrad (Leng et al., 2022) G 6 221.1 52.9 2.93 0.0143 1.33
SGMSE (Richter et al., 2023) G 30 770.2 273.6 1.55 0.0076 1.43
BinauralFlow (Ours) G 6 163.0 314.5 1.00 0.0071 1.33
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Figure 4. Performance with respect to the NFE. We evaluate all generative models using the same NFE for a fair comparison.
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SGMSE
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GT Audio

Left Channel Right Channel

Figure 5. Qualitative comparison between different baselines. We
display waveforms of rendered spatial audio.

regression-based models underperform the generation-based
models. Compared with BinauralGrad, SGMSE exhibits
better generation quality in terms of L2 error and Mag er-
ror, but falls short in the Phase error. Our BinauralFlow
model consistently outperforms all baselines with consider-
able margins. We also include the inference speed and the
model size of each approach. We test the inference speed on
a single 4090 GPU. The audio sampling rate is 48 kHz, and
the audio length is 683 ms. Our model achieves the fastest
inference speed among generative models. These results
demonstrate that our model achieves a more favorable trade-
off between performance and inference speed compared to
the baseline approaches.

In Table 1, we use the default NFE of different generative
models as recommended by the authors. We further evaluate
these generative models using the same NFE for a more fair
comparison. We test all models with 6, 30, 60 NFEs and
report the results in Figure 4, where each subfigure displays
results for one metric. As shown in the figure, our approach
consistently outperforms other generative models across
different NFEs, especially in the L2 and Mag metrics.

4.3. Qualitative Comparison

To provide an intuitive comparison between different mod-
els, we display the waveforms of rendered binaural speech of
various methods in Figure 5. The first row is the mono audio,
the last row is the recorded audio, and the audios predicted
by different methods are between them. The SoundSpaces
approach estimates an inaccurate time delay between the
transmitted mono audio and the received binaural audio.
BinauralGrad and SGMSE predict accurate time delay but
their amplitudes are mismatched. In comparison, our Binau-
ralFlow model correctly predicts the time delay and audio
amplitude. We show more results in the appendix.

4.4. Perceptual Study

We conduct a comprehensive perceptual evaluation to assess
the quality and realism of rendered outputs. When dealing
with questions of the realism of generated samples, per-
ceptual study is a more important indicator than numerical
analysis because humans can perceive the authenticity of
speech, and are sensitive to subtle but unnatural variations
in sound, which is difficult to capture using purely numeri-
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Table 2. Perceptual study. We report results of ABX, AB, and MUSHRA evaluation tasks, where higher values indicate better realism.

Methods NFE ABX CR ↑ A-B CR ↑ Environment Score ↑ Spatialization Score ↑
0% (clear difference wrt GT) – 50% (random guess) 0 (very different from reference/GT) – 100 (identical to reference/GT)

SoundSpaces 2.0 (Chen et al., 2022) 1 5% 12% - -
BinauralGrad (Leng et al., 2022) 6 4% 3% - -
SGMSE (Richter et al., 2023) 30 11% 21% 41.1 ± 23.0 57.5± 29.5
BinauralFlow (Ours) 6 30% 42% 68.4± 23.4 83.1± 18.9

Ground Truth - - - 87.4 ± 13.5 89.9 ± 11.1

cal metrics. We perform the study in a quiet, acoustically
treated room, with carefully calibrated playback levels and
equalized headphones. See appendix for more details.

We recruit a total of 23 participants and request them to
complete the following tasks:

• ABX test: subjects are presented with 3 tracks, A, B,
and X, and asked if X is A or if X is B (X is always
one of them, and either A or B is the ground truth).
This task measures if there is a perceivable difference
between generated and recorded (ground truth) sounds.

• A-B test: subjects are presented with A and B and
asked which they think is a real recording (one is al-
ways the ground truth). The task measures if users can
reliably identify generated versus real sounds.

• MUSHRA evaluation: subjects are presented with a
reference (ground truth) and generated samples, and
asked to rate their similarity in terms of environment
(ambient noise and reverberation) and spatialization
(sound source position). Scores range from 0 to 100,
with higher scores indicating greater similarity.

For the ABX and A-B tests, we define a confusion rate
metric (CR) that calculates how often users confuse the
rendered sound with the recorded one and make a wrong
choice. The maximum value of a confusion rate is 50%, i.e.
users cannot distinguish sounds and make random decisions.

We show the perceptual evaluation results in Table 2. For
all tasks, our approach outperforms other approaches with
noticeable margins, showing remarkable rendering realism.
In particular, in the A-B test we achieve a CR of 42% (the
upper bound is 50%), showing that users can barely distin-
guish our generated sounds from the recorded samples.

4.5. Performance Analysis

We analyze the impacts of different design choices on our
binaural speech synthesis framework.

Flow Matching Methods. In Section 3.2, we discuss the
difference between proposed flow matching model and the
simplified flow matching framework in (Tong et al., 2023).
Comparison results are shown in Table 3. Our method

Table 3. Performance comparison between different flow matching
approaches. The L2 error is on the scale of 1e−5.

Methods L2↓ Mag↓ Phase↓
Simplified Flow Matching (Tong et al., 2023) 1.86 0.0101 1.35
BinauralFlow (Ours) 1.00 0.0071 1.33

GT Audio

Continuous Inference Pipeline

Non-streaming Inference Pipeline

Left Channel Right Channel

Figure 6. Output spectrograms using different inference pipelines.

achieves lower L2, Mag, and Phase errors, showing the
effectiveness of our conditional flow matching approach.

Continuous Inference Pipeline. We compare our con-
tinuous inference pipeline and the non-streaming infer-
ence pipeline and show the generated spectrograms in Fig-
ure 6. Given a sequence of audio chunks, the non-streaming
pipeline binauralizes each chunk individually, causing no-
ticeable artifacts between adjacent chunks. In contrast, our
pipeline synthesizes seamlessly smooth spectrograms.

Real-Time Factor. We calculate the real-time factor of our
model for different numbers of function evaluations on a
single 4090 GPU. The audio sampling rate is 48 kHz, and
the audio length is 0.683 seconds. As shown in Table 4,
when NFE is set to 6, the real-time factor is 0.239. If we
sacrifice some performance for faster inference, setting NFE
to 1 results in an RTF of 0.04. Our model demonstrates
potential for real-time streaming generation.

Data Scale. Recording 10 hours of data in real-world
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Table 4. Real-time factor of our BinauralFlow model. We test the
inference speed with different NFEs on a single 4090 GPU.

NFE Inference Time (sec) Real-Time Factor

1 0.027 0.040
2 0.055 0.081
4 0.109 0.160
6 0.163 0.239
8 0.217 0.318
10 0.271 0.397

0 25 50 75 100
Data Usage (%)

2

4

6

8

L2
 (1

e-
5)

0 25 50 75 100
Data Usage (%)

0.008

0.010

0.012

0.014

0.016

M
ag

0 25 50 75 100
Data Usage (%)

1.35

1.40

1.45

1.50

1.55
Ph

as
e

W/ Pretraining W/O Pretraining Zero-Shot

Figure 7. Large-scale pretraining strategy. We propose pretraining
our model using massive data to improve data efficiency and en-
hance generalization in downstream tasks.

scenarios is costly and labor-intensive. To understand
how data quantity affects our model’s performance, we
evaluate it using different amounts of training data
(1%, 5%, 10%, 25%, 50%, 75%). The results, shown in Fig-
ure 7 (orange line), reveal a significant performance decline
when using less than 25% of the data.

To address this limitation, we develop a large-scale pre-
training strategy using loudspeakers and artificial binaural
heads instead of real individuals. While the use of artificial
heads and loudspeakers reduces the quality and authentic-
ity of the binaural data, it allows us to capture a large-scale
dataset with over 7, 700 hours of binaural audio data, encom-
passing 97 speaker identities from the English multi-speaker
VCTK corpus (Yamagishi et al., 2019) played by the loud-
speaker. See the appendix for more details about the sytem
and capture setup.

We pretrain our BinauralFlow model on this dataset before
fine-tuning it with limited real human data. As shown in
Figure 7 (blue lines), this pretraining strategy significantly
improves performance. The pretrained model’s zero-shot
performance (red stars) matches or exceeds that of a model
trained from scratch using only 1% or 5% real data. This
demonstrates our model’s robust generalization capabilities
and its potential for various applications.

5. Conclusion
In this paper, we propose BinauralFlow, a streaming flow
matching framework, that achieves high-quality continuous
binaural speech rendering. Our framework consists of a con-
ditional flow matching model, a causal U-Net architecture,

and a continuous inference pipeline. Our framework sur-
passes existing baselines with significant improvement both
quantitatively and qualitatively. A comprehensive percep-
tual study demonstrates that our model synthesizes binaural
speech that is nearly indistinguishable from real recordings.
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Impact Statement
Our work is designed to improve the rendering quality of
binaural speech synthesis. It is not designed to modify the
content of the input mono signal, but only to spatialize it,
i.e., place the source within an acoustic environment. How-
ever, we acknowledge that the enhanced realism may raise
concerns about potential misuse, such as the creation of
highly realistic deepfake audio. To address these risks, we
emphasize the importance of adhering to ethical guidelines,
fostering transparency in applications, and promoting re-
sponsible use of the proposed methods. Additionally, future
research should focus on developing robust mechanisms for
detecting and preventing misuse.
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J. Building and evaluation of a real room impulse re-
sponse dataset. IEEE Journal of Selected Topics in Signal
Processing, 13(4):863–876, 2019.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil,
S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron,
J., and Ng, R. Fourier features let networks learn high fre-
quency functions in low dimensional domains. Advances
in neural information processing systems, 33:7537–7547,
2020.

Tong, A., Malkin, N., Huguet, G., Zhang, Y., Rector-Brooks,
J., Fatras, K., Wolf, G., and Bengio, Y. Improving and
generalizing flow-based generative models with mini-
batch optimal transport. arXiv preprint arXiv:2302.00482,
2023.

Valimaki, V., Parker, J. D., Savioja, L., Smith, J. O., and
Abel, J. S. Fifty years of artificial reverberation. IEEE
Transactions on Audio, Speech, and Language Process-
ing, 20(5):1421–1448, 2012.

Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,
Kavukcuoglu, K., et al. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 12, 2016.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Welker, S., Le, M., Chen, R. T., Hsu, W.-N., Gerkmann, T.,
Richard, A., and Wu, Y.-C. Flowdec: A flow-based full-
band general audio codec with high perceptual quality.
arXiv preprint arXiv:2503.01485, 2025.

Wu, Y. and He, K. Group normalization. In Proceedings of
the European conference on computer vision (ECCV), pp.
3–19, 2018.

Yadegari, S., Burnett, J., Kestler, G., and Pisha, L. Spa-
tial audio and sound design in the context of games and
multimedia. In Encyclopedia of Computer Graphics and
Games, pp. 1714–1721. Springer, 2024.

Yamagishi, J., Veaux, C., and MacDonald, K. CSTR VCTK
Corpus: English Multi-speaker Corpus for CSTR Voice
Cloning Toolkit (version 0.92), 2019. URL https://
doi.org/10.7488/ds/2645.

Yang, D., Yu, J., Wang, H., Wang, W., Weng, C., Zou, Y.,
and Yu, D. Diffsound: Discrete diffusion model for text-
to-sound generation. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 2023.

Yang, J., Sasikumar, P., Bai, H., Barde, A., Sörös, G., and
Billinghurst, M. The effects of spatial auditory and visual
cues on mixed reality remote collaboration. Journal on
Multimodal User Interfaces, 14(4):337–352, 2020.

Zhang, W., Samarasinghe, P. N., Chen, H., and Abhayapala,
T. D. Surround by sound: A review of spatial audio
recording and reproduction. Applied Sciences, 7(5):532,
2017.

Zhang, Y., Liang, S., Yang, S., Liu, X., Wu, Z., Shan, S.,
and Chen, X. Unicon: Unified context network for robust
active speaker detection. In Proceedings of the 29th ACM
international conference on multimedia, pp. 3964–3972,
2021.

Zotkin, D. N., Duraiswami, R., and Davis, L. S. Rendering
localized spatial audio in a virtual auditory space. IEEE
Transactions on multimedia, 6(4):553–564, 2004.

12

https://doi.org/10.7488/ds/2645
https://doi.org/10.7488/ds/2645


BinauralFlow: A Causal and Streamable Approach for High-Quality Binaural Speech Synthesis with Flow Matching Models

A. Demo Videos
To help understand our work, we have created several demo videos showcasing BinauralFlow’s binaural speech rendering
capability. We include these demo videos on our webpage. We highly recommend that readers watch these videos to gain a
deeper understanding of our research. In each video, we show a top-down view of the room along with the poses of the
speaker and the listener. The speaker is denoted as “Tx” and the speaker’s trajectory is shown in blue. The listener is denoted
as “Rx” and the listener’s trajectory is shown in red.

In the directory of each sample, we include two subdirectories: “Comparison” and “Flip Test”. In the “Comparison” subdi-
rectory, we display the results of SoundSpaces (“dsp”), BinauralGrad (“bgrad”), SGMSE (“sgmse”), and our BinauralFlow
(“ours”). We also include the mono input (“mono”) and the recorded binaural audio (“gnd”). In the “Flip Test” subdirectory,
we compare the synthesized sound and the ground-truth sound by using a flip-test technique. We periodically flip the sound
between the synthesized sound and the ground-truth speech every 5 seconds.

B. Implementation Details
We implement our streaming flow matching model with the PyTorch framework (Paszke et al., 2019). Our U-Net consists of
seven Causal 2D Conv Blocks for the contracting and expanding parts. We only conduct the downsampling and upsampling
operations four times. We set the window length as 512, the hop length as 128, and use a Hann window when applying
STFT. The input audio length is 32768 and the spectrogram is of shape 256× 257. We use the Adam optimizer (Kingma,
2014) with a learning rate of 1e−4 and a weight decay rate of 1e−5. We set the standard deviation σ of z as 0.5. We use 6
steps to solve the ODE with the midpoint solver and an early skip schedule.

C. Midpoint Solver
We present pseudo code of the inference process using the midpoint solver in Algorithm 2.

Algorithm 2 Inference Procedure with Midpoint Solver
Input: Trained network ut, mono spectrogram x, inference steps n
z ∼ N (x, σ2I) // Sample random variable

t← 0
ϕt(z)← z
δ ← 2/n
while t < 1 do
v′ ← ut(ϕt(z), prx, ptx,x; θ) // Calculate vector field at t

ϕt′(z)← ϕt(z) + v′δ // Calculate flow at t + δ

v′′ ← ut′(ϕt′(z), prx, ptx,x; θ) // Calculate vector field at t + δ

v = (v′ + v′′)/2 // Average the vector field

ϕt(z)← ϕt(z) + vδ // Update the flow

t← t+ δ // Update the time step

end while
y← ϕt(z)
Output: binaural spectrogram y

Given a trained network ut, a mono spectrogram x, and a predefined inference step n, we sample a random noise z following
the Gaussian distribution N (x, σ2I). We initialize some variables, including t, ϕt(z), and δ. For each time step t, we
calculate the vector field at two places, t and t+ δ. Then we average these two vector fields and update the flow using the
average vector field. In the end, we output updated ϕt(z) as the rendered binaural spectrogram y.

D. Data Collection Setup
The data collection featured a seated listener (they were free to move their head), and a speaker talking within approximately
1 m radius from the listener. A single participant acted as the listener, while three participants were captured as speakers, with
one participant used as a part of the training set. The captures were performed in a non-anechoic room. The audio system
featured a calibrated B+K 4101-B Binaural Microphone pair worn by the listener, as well as several DPA 4060s microphones
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(a) We collect data in a standard room without significant
soundproofing or sound-absorbing materials. The background
noise from multiple air conditioning vents and electronic
equipment is recorded.

(b) We perform the perceptual study in a quiet, acoustically
treated room, with carefully calibrated playback levels and
equalized headphones.

Figure 8. Capture and evaluation setups.

mounted to a VR headset worn by the speaker, with guaranteed phase synchronization. Poses of both the speaker and
listener were recorded via an OptiTrack tracking system. The speaker was tracked with IR-reflective markers mounted on
the headset, and the listener was tracked via small facial IR-reflective markers. The setup is shown in Figure 8(a).

E. Perceptual Study Setup
The perceptual study’s hardware setup included a PC workstation, RME 12mic + RME Digiface AVB, B&K Type 4101
in-ear microphones, Sennheiser HD 800S headphones, and a Stream Deck. The study was conducted inside an 8’ × 12’
Whisper Room, with the monitor inside and the computer placed outside to ensure a controlled, noise-free environment.
Custom Matlab and Max MSP patches were developed for use with in-ear mics to create a headphone equalization profile
and recreate the recorded signal as accurately as possible. Participants were presented with a number of randomly chosen
4-second-long clips and had 10/10/5 minutes to complete the ABX/MUSHRA/AB sections of the evaluation using a Stream
Deck and mouse for response input/selection. The setup is shown in Figure 8(b).

F. Pre-training Dataset
We set up 3Dio Omni binaural heads with human-shaped ears in a non-anechoic recording room. For data collection,
operators walked around the room with a handheld loudspeaker, playing speech signals from the English multi-speaker
VCTK corpus (Yamagishi et al., 2019). Our setup used 135 binaural heads and involved 33 loudspeaker operators. We used
the OptiTrack system to track the 3D position and orientation of both the loudspeakers and the stationary binaural heads. We
collected over 7, 700 hours of binaural audio data, encompassing 97 speaker identities from the VCTK dataset across an
area of 4.6m horizontally and 2.4m vertically. The audio was sampled at 48 kHz, with tracking data recorded at 240 frames
per second. The setup is shown in Figure 9.

G. Comparison with Other Flow Matching-Based Audio Models
PeriodWave (Lee et al., 2024b) designs a multi-period flow matching model for high-fidelity waveform generation. FlowDec
(Liu et al., 2024) introduces a conditional flow matching-based audio codec to noticeably reduce the postfiler DNN
evaluations from 60 to 6. RFWave (Welker et al., 2025) proposes a multi-band rectified flow approach to reconstruct
high-fidelity audio waveforms. These works are all related to flow matching models and show the effectiveness in generating
high-quality waveform signals. To reduce the number of sampling steps, PeriodWave-Turbo (Lee et al., 2024a) finetunes the
CFM models with adversarial feedback. Matcha-TTS (Mehta et al., 2024) employs a 1D U-Net model with 1D ResNet
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Figure 9. The large-scale binaural data capture system with artificial binaural heads.

layers and Transformer Encoder layers. Neither the ResNet layers nor the Transformer Encoder layers are causal, which
means that Matcha-TTS does not achieve time causality or support streaming inference. In contrast, our model is fully
causal and supports streaming inference. CosyVoice 2 (Du et al., 2024) introduces a chunk-aware causal flow matching
model that uses causal convolution layers and attention masks to enable causality. However, the CosyVoice 2 model does
not include feature buffers for each causal convolution layer, which may result in audio interruptions and discontinuities
during streaming inference in real-world scenarios.

H. Impact of Different Numerical Solvers
Besides the Midpoint solver, we test the Euler and Heun solvers. The Euler solver is a first-order solver and Midpoint and
Heun solvers are second-order. We set the number of function evaluations (NFE) to 6 and present the results in Table 5.
Although the Euler solver yields lower error values than the Midpoint solver, it fails to generate realistic background
noise. Setting NFE to 6 is insufficient for the Heun solver, which requires 30 steps to achieve comparable error values. In
conclusion, the Midpoint solver provides the best trade-off between error values, qualitative results, and inference efficiency.

Table 5. Impact of different numerical solvers. We evaluate our model with various solvers, include both first-order and second-order
solvers to analyze their influence on the generation quality.

Solver Type NFE Audio Quality L2 ↓ Mag ↓ Phase ↓
Euler 6 Medium 0.90 0.0066 1.24
Midpoint 6 High 1.00 0.0071 1.33
Heun 6 Low 16.86 0.0499 1.44
Heun 30 Medium 1.27 0.0087 1.36

I. Sway Sampling Schedule
Chen et al. (2024) introduce a new timestep scheduler called Sway Sampling to improve inference quality and efficiency.
We use Sway Sampling with different coefficients ranging from -1 to 1 to systematically evaluate its impact on our model.
The results are shown in Table 6. Changing the coefficients does not lead to significant changes in the quantitative results.
However, we observe that setting coefficients greater than 0, which shifts the time steps to the second half, results in better
qualitative outcomes. Specifically, background noise becomes more realistic when the coefficient is increased. These results
support the rationale behind our early skip strategy.
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Table 6. Impact of Sway Sampling with different coefficients.

Coefficient L2 ↓ Mag ↓ Phase ↓
-1.0 1.06 0.0070 1.29
-0.8 1.10 0.0070 1.29
-0.4 1.00 0.0069 1.29

0 1.02 0.0069 1.29
0.4 1.03 0.0070 1.31
0.8 1.04 0.0071 1.32
1.0 1.02 0.0072 1.33

J. Results on a Public Dataset
In the main paper, we compare our BinauralFlow model with existing baselines on our own dataset. To further verify the
effectiveness of our approach, we test our model on a public dataset released by Richard et al. (2021). We report the results
in Table 7. As shown in the table, our model surpasses the state-of-the-art BinauralGrad in most of the metrics and performs
on par with it in the Wave and Phase metrics.

Table 7. Quantitative comparison with existing baselines on the public dataset. Wave L2 is on the scale of ×10−3.
Methods PESQ ↑ MRSTFT ↓ Wave L2 ↓ Amplitude L2 ↓ Phase L2 ↓
DSP 1.610 2.750 1.543 0.097 1.596
WaveNet (Van Den Oord et al., 2016) 2.305 1.915 0.179 0.037 0.968
WarpNet (Richard et al., 2021) 2.360 1.774 0.157 0.038 0.838
BinauralGrad (Leng et al., 2022) 2.759 1.278 0.128 0.030 0.837
SGMSE (Richter et al., 2023) 2.256 1.352 0.230 0.033 0.983

BinauralFlow (Ours) 2.806 1.252 0.192 0.030 0.918

K. More Qualitative Results
We display more rendered waveforms in Figures 10 to 12. The first row is the mono audio, the last row is the recorded audio,
and the audios predicted by different methods are between them. Our BinauralFlow model correctly predicts the time delay
and audio amplitude.
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Figure 10. Qualitative comparison between different baselines. We display waveforms of rendered spatial audio.
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Figure 11. Qualitative comparison between different baselines. We display waveforms of rendered spatial audio.

17



BinauralFlow: A Causal and Streamable Approach for High-Quality Binaural Speech Synthesis with Flow Matching Models

Mono Audio

SoundSpaces

BinauralGrad

SGMSE

Ours

GT Audio

Left Channel Right Channel

Figure 12. Qualitative comparison between different baselines. We display waveforms of rendered spatial audio.
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