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Abstract

Sparse Autoencoders (SAEs) have recently
been employed as a promising unsupervised
approach for understanding the representations
of layers of Large Language Models (LLMs).
However, with the growth in model size and
complexity, training SAEs is computationally
intensive, as typically one SAE is trained for
each model layer. To address such limitation,
we propose Group-SAE, a novel strategy to
train SAEs. Our method considers the sim-
ilarity of the residual stream representations
between contiguous layers to group similar lay-
ers and train a single SAE per group. To bal-
ance the trade-off between efficiency and per-
formance, we further introduce AMAD (Aver-
age Maximum Angular Distance), an empiri-
cal metric that guides the selection of an op-
timal number of groups based on representa-
tional similarity across layers. Experiments
on models from the Pythia family show that
our approach significantly accelerates training
with minimal impact on reconstruction quality
and comparable downstream task performance
and interpretability over baseline SAEs trained
layer by layer. This method provides an effi-
cient and scalable strategy for training SAEs in
modern LLMs.

1 Introduction

Sparse Autoencoders (SAEs) (Makhzani and Frey,
2014) have recently emerged (Huben et al., 2024;
Bricken et al., 2023) as a promising technique
to tackle the polysemanticity of neurons in the
activations of Large Language Models (LLMs)
(Olah et al., 2020). SAEs decompose models’
activations into a sparse combination of human-
interpretable directions, also called features. De-
spite the strengths in interpretability, SAEs face
challenges that hinder their large-scale adoption
(Sharkey et al., 2025). One of them is the high train-
ing and evaluation costs, which increase as model
sizes and parameter counts grow. Notably, a sepa-
rate SAE is typically trained for each component
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(e.g., the output of the attention, the MLP, or a full
transformer block) at every layer of an LLM, with
a number of features that is a multiple of the dimen-
sionality of the activation space of the model. For
instance, a single SAE trained on the activations of
a layer of Llama-3.1 8B (Grattafiori et al., 2024),
with an expansion factor of 32, involves approx-
imately 40962 x 32 x 2 = 1.073 billion parame-
ters. Such high computational demand increases



training time and requires substantial hardware re-
sources and energy consumption, making the ap-
proach increasingly impractical as models scale.
Moreover, often to make SAEs useful in practice,
all their features have to be manually annotated.
Even when using auto-interpretability techniques,
this process can become very costly (Paulo et al.,
2024b).

Facing such challenges, in this work we intro-
duce Group-SAE, a method to reduce the compu-
tational overhead of training, evaluating, and inter-
preting SAEs. Our method leverages the similarity
of the representations shared by close layers to re-
duce the total number of trained SAEs and uses a
single SAE to reconstruct activations from different
layers. The proposed technique follows primary
observations that nearby neural network layers tend
to learn similar levels of representations (Szegedy
et al., 2014; Zeiler and Fergus, 2014; Jawahar et al.,
2019). Shallow layers typically focus on capturing
low-level features, while deeper layers are believed
to learn high-level abstractions. In addition, Gro-
mov et al. (2024) empirically shows that adjacent
layers in LLMs could encode similar information.

Additionally, we introduce AMAD (Average
Maximum Angular Distance), a novel empirical
metric for selecting the optimal number of groups
to partition a model’s layers—an important choice
that balances performance and computational effi-
ciency: more groups tend to improve performance
but reduce computational savings, while fewer
groups offer greater efficiency at the cost of de-
creasing performance.

After thoroughly evaluating reconstruction,
downstream, and interpretability performance of
our methods on three models of varying sizes from
the Pythia family (Biderman et al., 2023)—Pythia-
160M, Pythia-410M, and Pythia-1B—we show that
our method has several advantages compared to
baselines. In particular, Group-SAE (with AMAD)
finds an optimal tradeoff between training costs
and performance of the SAE. It significantly re-
duces the number of trained SAEs reducing training
costs up to 50%. Moreover, such a novel approach
only incurs a slight decrease in reconstruction qual-
ity and achieves comparable downstream perfor-
mance. Finally, from an interpretability point of
view, Group-SAEs offers the same, or even slightly
better, level of interpretability when compared with
their baseline counterparts.

Our contributions can be summarized as fol-
lows:

* We propose a novel method named Group-
SAE, which partitions the layers of a model into
groups and trains a single SAE for each group,
thus significantly reducing the total number of
SAEs to train.

* We introduce AMAD (Average Maximum An-
gular Distance), a new empirical metric for se-
lecting the optimal number of groups, enabling
an effective trade-off between computational
efficiency and performance.

* To advance research on interpretability and
Sparse Autoencoders, we will openly release
all our trained SAEs and Group-SAEs.

2 Background and Related Work

2.1 Sparse Autoencoders

SAEs (Bricken et al., 2023) are a promising inter-
pretability technique that decomposes dense LLM
activations into a sparse combination of human-
interpretable features. SAEs are based on two key
intuitions. The first is the Linear Representation
Hypothesis (LRH), which, supported by substantial
empirical evidence (Mikolov et al., 2013; Nanda
et al., 2023; Park et al., 2023), posits that Neural
Networks (NNs) exhibit interpretable linear direc-
tions in their activation space. The second is the Su-
perposition Hypothesis (SH), which assumes that
observed NNs are dense compressions of a larger
sparse model where each neuron corresponds to a
specific feature (Elhage et al., 2022).

Within this framework, SAEs disentangle the
effects of superposition, enabling the learning of
interpretable linear directions in the model’s activa-
tions. Formally, given an activation x € R", a SAE
reconstructs it through two steps. First, it encodes
the activation into the feature space as:

f(x) =0 (be + We (x — by)) (D

where f(x) represents feature activations, b, by €
R™ are bias terms, W, € R™*"™ is the encoder
matrix, and o is an activation function. Typically,
m = c - n, with the expansion factor ¢ € {2F |
k € N1 }. ReLU was initially proposed (Bricken
et al., 2023), and then its limitations led to the de-
velopment of two notable alternatives: TopK (Gao
et al., 2024) and JumpReLU (Rajamanoharan et al.,
2024).

Then, the feature vector is projected back into
the model’s activation space using:

X = by + Wy f(x) )



where W, € R™ "™ is the decoder matrix, with
each column corresponding to a learned feature
vector.

SAE:s are trained to minimize the MSE between
original activations and SAE reconstruction. To
enforce feature sparsity, an additional penalty is
usually included in the loss function, either as the
L1 norm (Bricken et al., 2023) or the Ly norm (Ra-
jamanoharan et al., 2024) of f(x), scaled by a posi-
tive factor A, termed the sparsity coefficient. For-
mally, the loss function can be written as:

L(x) = |lx — X3 + AI£(x)]]s 3)

with s € {0,1}. On the other hand, when us-
ing TopK (Gao et al., 2024), no additional loss
components are needed, as the activation function
inherently enforces sparsity.

2.2 Shared SAEs

While SAEs were originally designed to recon-
struct activations from a single model component
(e.g., the output of a specific layer, MLP, or Atten-
tion), subsequent approaches have explored their
application to activations from multiple layers. For
instance, Yun et al. (2023) and Lawson et al. (2024)
employed a single SAE to reconstruct activations
from all residual stream layers of a model, aiming
to analyze how features evolve across layers. More
recently, Lindsey et al. (2024) extended this con-
cept by introducing Crosscoder, a modified SAE
architecture that creates a unified representation of
computations across multiple layers.

These methods are driven by empirical evi-
dence suggesting that information in LL.Ms is of-
ten shared and rather redundant across nearby lay-
ers (Phang et al., 2021; Gromov et al., 2024). In
this work, we leverage this principle to explore the
optimal balance between performance and compu-
tational efficiency when applying SAEs to multiple
layers.

2.3 Improving SAE efficiency

As highlighted by Sharkey et al. (2025), one of
the major challenges of SAEs is their high train-
ing and evaluation costs. As previously mentioned,
SAEs scale alongside model size, making them im-
practical for low-resource settings. Furthermore,
interpreting the meaning of SAE features presents
an additional challenge. Even with automated tech-
niques, interpretation costs can reach thousands of
dollars (Paulo et al., 2024b).

To mitigate training costs, Gao et al. (2024) in-
vestigated the scaling laws of SAEs to determine
the optimal balance between model size and spar-
sity. Recent work has also explored transfer learn-
ing as a means to enhance SAE training efficiency.
For instance, Kissane et al. (2024) and Lieberum
et al. (2024) demonstrated that SAE weights can
be transferred between base and instruction-tuned
versions of Gemma-1 (Team et al., 2024a) and
Gemma-2 (Team et al., 2024b), respectively. Addi-
tionally, Ghilardi et al. (2024) showed that transfer-
ability also occurs within different layers of a single
model, both in forward and backward directions.

3 Method

3.1 Group-SAEs

In our approach, a Group-SAE is defined as a
sparse autoencoder that is trained to reconstruct
the activations from multiple layers that have been
grouped together, rather than training an individual
SAE for each layer. This grouping leverages the
observation that nearby layers tend to exhibit simi-
lar activation patterns (cf. Figure 5, 6, and Figure 7
in Appendix C).

For a model with L layers, there are theoretically
G! - S(L,G) ways to partition the layers into G
groups—where S(L, G) denotes the Stirling num-
ber of the second kind. Because this number grows
rapidly with model depth, we instead employ an
agglomerative clustering strategy based on angular
distances between layers to efficiently determine a
suitable grouping.

Specifically, we compute the mean angular dis-
tance between the residual activations of each layer
using 10M tokens from our training set (see Ap-
pendix C for detailed measurements), following
the formulation in (Gromov et al., 2024). We then
apply a bottom-up hierarchical clustering method
with complete linkage (Nielsen and Nielsen, 2016).
At each step, the two groups with the smallest inter-
group distance'are merged. This merging contin-
ues until exactly G groups remain, ensuring that
within each group the maximum angular distance
is minimized.

3.2 Choice of G

The choice of G, the number of groups of layers,
is an important choice to make in our method as

'In complete linkage, the inter-group distance is defined
as D(X,Y) = maxxex, yey dangutar(X, y) for groups X and
Y



it influences both computational savings and SAE
performance. To select the optimal value of G for
a given model, we propose an empirical metric
called the Average Maximum Angular Distance
(AMAD), defined as:

G
1
AMAD,(G) = > Dy, 4)
g=1

where D, is the maximum angular distance be-
tween any pair of activations within group g.
AMAD quantifies, on average, the worst-case dis-
tance within each group. Tables 5, 6, and 7 in
Appendix C report the resulting groups and their
corresponding AMAD values for the tested models.

3.3 Computational Savings

The computational cost, in FLOPs, of training a
SAE can be divided into two main components:

* Activation caching (A): The computation re-
quired to generate the model’s activations,
which are used for training the SAE.

* SAE training (T'): The computation involved
in optimizing a SAE using the cached activa-
tions.

Thus, the total cost of training SAEs across all resid-
ual stream layers of a model is given by A + LT.
Since both baseline and Group-SAEs share the
same architecture and undergo the same training
process for a single SAE, the total cost of training
all Group-SAEs 2 is A + GT.

The resulting compute savings, A(G), quanti-
fying the relative change in total FLOPs when ap-
plying Group-SAE:s instead of per-layer SAEs, is
defined as:

_A+GT

A(G)"AJFLT_

1. (5)
By definition, if G = L, then A(G) = 0,
meaning no savings. Conversely, as G de-
creases, savings increase, reaching a maximum of
(T —LT)/(A+ LT) when G = 1.

Since our method does not alter either A or T,
the efficiency gains of Group-SAEs are primarily
determined by the G/ L ratio.

2We do not account for the cost of computing angular dis-
tance when selecting groups, as we rely on activations already
sampled for training, making the additional computational
overhead negligible.

4 Experiments

Our work is primarily focused on addressing the
following research questions:

Q1 Do SAEs trained on groups of layers acti-
vations maintain reconstruction quality and
downstream performance?

Q2 Does selecting the number of groups G based
on the Average Maximum Angular Distance
(AMAD) ensure an optimal balance between
computational efficiency and model perfor-
mance?

Q3 How do Group-SAEs affect the interpretabil-
ity of the SAE latent representations?

To address these questions, we compare the perfor-
mance of standard SAEs and Group-SAEs across
a range of metrics and alternative grouping strate-
gies.

4.1 Experimental setting

We denote SAE; as the baseline SAE trained to
reconstruct the activations of layer [. For every
g=1,...,G,withG € {1,...,L — 1} and L
being the number of layers of a model, let [gg]
represent the set of layers belonging to the g-th
group within the partition of G groups. We then
define SAEgG as the SAE trained to reconstruct the
activations for all layers in [gg].

Models, Dataset and Hyperparameters Follow-
ing Lawson et al. (2024), we train both SAEs and
Group-SAEs with the Fraction of Variance Unex-
plained (FVU) as reconstruction loss. Defined as

I — |3

we prefer it to standard MSE loss as it accounts
for the different magnitudes of activations coming
from different layers of the model. We employ Top-
K activation® with K = 128 and expansion factor
of ¢ = 16 on the residual stream after the MLP
contribution of three models of varying sizes from
the Pythia family (Biderman et al., 2023): Pythia
160M, Pythia 410M, and Pythia 1B. To train all
the SAEs, we sample 1 billion tokens from the Pile
dataset (Gao et al., 2020) and process them with a
context size of 1024.

3The Top-K activation function is directly applied on the
features obtained with Equationl, where o = Top-K o ReLU.
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Figure 2: (Left) FVU and (Right) ACE(%) over AMAD(G) for every G € {1,...,L — 1}. The highlighted star
markers represent the baseline SAEs (i.e., with no grouping), while the other points correspond to Group-SAE:s,
ordered from left to right by increasing AMAD, which reflects a decrease in the number of groups. The shaded area

indicates one std

For each model, we compute all partitions
G € {1,...,L — 1} and train a Group-SAE for all
groups of layers in them. We exclude the last layer
from all partitions because it resides in the unem-
bedding space and, based on our empirical findings,
consistently exhibits a distinct reconstruction error
pattern. As a result, it requires a separate SAE.
Additionally, we compare our grouping strategy
with two baseline techniques aimed to reduce the
computational cost of training SAEs: (1) training
Group SAEs on evenly spaced groups, and (2) train-
ing smaller SAEs on all layers. Hyperparameters
for all the experiments and training details can be
found in Appendix A and B respectively.

Evaluation. We evaluate SAE performance
across three key areas: reconstruction, downstream,
and interpretability.

For both reconstruction and downstream evalua-
tions, we use a subset of the Pile dataset (distinct
from the training set) comprising 1 million tokens.

For reconstruction, we compare each SAE? with
its corresponding baseline SAE; for every layer
l € [gg]- We report the average Fraction of Vari-
ance Unexplained (FVU, Equation 6) as our recon-
struction metric.

To evaluate downstream performance, we mea-
sure the effect of replacing a layer’s activation with
its SAE reconstruction on the next-token predic-
tion. Specifically, we compute the average relative

change in next-token Cross-Entropy:
CEM(P | x! + x!)) — CE(M(P))
CE(M(P)) ’

(N

where M denotes the model, P is the input prompt,

and M(P | x! < X!) indicates the model output

when the true activation x' at layer [ is replaced

with the SAE reconstruction X'.

For interpretability, we adopt the automated
pipeline proposed by Paulo et al. (2024a). First,
an explainer language model (LM) generates nat-
ural language explanations of the SAE latent rep-
resentations. Then, a separate scorer LM evalu-
ates these explanations. In our experiments, both
the explainer and scorer are implemented using
gemini-2.0-flash-001*. Specifically, for each
SAE, we randomly sample 64 features and cache
their latent activations over a 10M token sample
from the Pile. For each latent, the explainer is
shown 20 distinct examples, 10 activating the la-
tent and 10 sampled randomly, each consisting of
32 tokens. Two binary scoring strategies are em-
ployed:

ACE =

* Detection: A language model determines
whether a given sequence activates an SAE
latent according to the provided explanation.

* Fuzzing: Activating tokens are marked within
each example, and a language model is

4https://deepmind.google/technologies/gemini/
flash/
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Table 1: FVU and ACE for different approaches across model sizes. Our proposed grouping strategy based on the
AMAD achieves lower FVU and ACE compared to the baselines: Group SAEs with evenly spaced groups and
smaller SAEs trained on all layers. Note that both the Evenly Spaced and Smaller SAEs strategies have the same
number of training FLOPs as our AMAD-based grouping strategy.

Pythia-160M Pythia-410M Pythia-1B
Approach

FVU ACEy, FVU ACEy FVU ACEg
Group SAEs (AMAD with G groups) 0.108 6.01 0.138 594 0.182 643
Group SAEs (Evenly spaced with G groups) 0.114 5.40 0.145 6.01 0.189 6.63
Smaller SAEs (All layers) 0.115 7.37 0.146 7.10 0.188 8.10

prompted to assess whether the marked sen-
tences are correctly identified.

Figure 8 shows a sentence example for each strat-
egy. For every metric (FVU, ACE and Detec-
tion/Fuzzing) and for each G € {1,...,L — 1},
we first compute all metrics at the layer level, then
aggregate the results for each partition g within G
by computing the mean and the standard deviation
weighted by the number of layers in that partition.

4.2 Results

In the following paragraphs, we aim to empirically
answer the research questions outlined in Section 4.

Q1: What is the impact of grouping layers
(Group-SAEs) on reconstruction quality and
downstream task performance? In Figure 2,
we plot the average FVU and the cross-entropy
difference (ACE) as functions of the AMAD for
different group configurations. The highlighted star
markers represent the baseline models (i.e., with
no grouping), while the other points correspond
to grouped models. The points are ordered from
left to right by increasing AMAD, which reflects a
decrease in the number of groups, with GG ranging
from L — 1 down to 1. From Figure 2, a notable
turning point emerges around AMAD(G) ~ 0.2:
increasing AMAD beyond this threshold leads to a
more rapid loss in performance. In particular, train-
ing a single SAE on all the model layers (G = 1),
although achieving the best computational saving,
also incurs the worst reconstruction and down-
stream performance.

To further validate our method, in Appendix E,
we further inspect the quality of features learned by
Group-SAEs by measuring their similarity to the
features learned by Baseline-SAEs. As expected,
for each baseline SAE;, we found average similar-
ity to peak with the Group-SAE trained on a group

containing [. Finally, in Appendix F we show how
features of a Group-SAE distribute across the acti-
vations of layers of their respective group, thus sup-
porting the rationale behind our proposed method.

Q2: Does selecting the number of groups G
based on the AMAD ensure an optimal balance
between computational efficiency and model
performance? Motivated by the insights from
the previous paragraph, the optimal G is cho-
sen as G = inf{G | AMAD(G) < 0.2}. In Fig-
ure 3 we show both FVU and ACE plotted
against the fraction of PFLOPs relative to the
baseline. Again, star markers denote baseline
SAEs, whereas circles represent Group-SAEs.
Here, moving from right to left indicates reduc-
ing PFLOPs (i.e., training fewer SAEs overall).
The points are ordered from right to left by de-
creasing PFLOPs, which reflects a decrease in the
number of groups, from L — 1 down to 1. The high-
lighted square markers correspond to Group-SAEs
with G groups; they substantially reduce training
costs up to more than 50% with only a moder-
ate performance penalty: FVU (% — l) ~ —0.01
and ACEy (% — W) ~ —0.6 for all three evalu-
ated models.

To ensure that our grouping strategy and the se-
lection of G based on AMAD offer an optimal
balance between computational efficiency and per-
formance, we compare them against two baselines:
1) Evenly Spaced Group SAEs: Group SAEs trained
such that each partition contains nearly equal num-
bers of layers; 2) Smaller SAEs: A separate, smaller
SAE is trained for each layer. All methods are ad-
justed to incur equal computational costs’. Results
in Table 1 shows that the proposed method outper-

SFor Evenly Spaced Group SAEs, we use the same number
of groups G; for Smaller SAEs, we set the expansion factor
as ¢ = c- G/T, matching the FLOPs of a Group-SAE with
G groups.



Unexplained Variance

0.275 4

0.250 1

0.225 4

0.200 1

FVU

0.175 4
0.150 1

0.125 4

0.100 1 *

02 03 04 05 06 07 08 09 1.0
PFLOPs (as fraction of baseline)

Pythia 160M ® Pythia 410M @ Pythia 1B

CE Increase using SAE

12 A

11 A

10 A

A CE (%)
©

02 03 04 05 06 07 08 09 1.0
PFLOPs (as fraction of baseline)

Pythia 160M ® Pythia 410M @® Pythia 1B

Figure 3: (Left) FVU and (Right) ACE(%) over the fraction of training PFLOPs with respect to the base-
line. The highlighted star markers represent the baseline SAEs (i.e., with no grouping), while the other points
correspond to Group-SAEs, ordered from right to left by decreasing PFLOPs, which reflects a decrease in
the number of groups. The highlighted square markers represent the Group-SAEs with a number of groups

G = inf{G | AMAD(G) < 0.2}

forms the two additional baselines across nearly all
models and evaluation metrics, with only a single
exception observed in the case of Pythia-160M.
Importantly, this exception does not arise from
the idea of grouping layers but from the chosen
grouping strategy. Indeed, our method consistently
outperforms the standard per-layer approach with
smaller Standard SAEs. We observe that these ad-
vantages are particularly noticeable for the ACE
metric, related to the downstream performance. Ad-
ditionally, Table 2 presents the computational costs
and savings, as defined in Section 3.3, of Group-
SAEs compared to the baselines when the optimal
number of groups G is selected as G.

Table 2: Comparison of FLOPs (10'®) required for
caching activations and training Baseline and Group
SAEs on 1B tokens, covering all layers with an expan-
sion factor of 16 and G = inf{G | AMAD(G) < 0.2}.

~

Model G A+LT A+GT Ay (G)
Pythia 160M 6 1.34 0.77 —42.5%
Pythia410M 9 4.73 221 -53.3%
Pythia IB 6 12.48 5.77 —53.7%

Q3: How do Group-SAEs affect the inter-
pretability of the SAE latent representations?
To assess the interpretability of the learned SAE
latents we employ the auto-interpretability pipeline

proposed by (Paulo et al., 2024b). For each SAE la-
tent, first, an explainer Language Model is asked to
propose a natural language explanation of it given
both activating and non-activating examples. Then,
given the explanation, a scorer Language Model
is tasked with predicting the set of sentences that
should activate the target latent (detection) and the
sentences containing highlighted tokens that ac-
tivate the target latent (fuzzing). In Figure 4 we
plot both the detection and fuzzing scores for all
the evaluated models. In the figures, square mark-
ers denote Group-SAEs with G groups, while star
markers indicate the baseline SAEs. We observe a
similar trend as in reconstruction and downstream
evaluations: detection and fuzzing scores improve
more rapidly as AMAD(G) decreases—provided
it remains above the turning point—after which
the scores plateau at an approximately constant
level. This result further validates our selection
of G based on AMAD, suggesting that the inter-
pretability of features in the baseline and Group-
SAEs differs only marginally.

5 Conclusion

This work introduces a novel approach to efficiently
train SAEs for LLMs by clustering layers based on
their angular distance and training a single SAE for
each group. Through this method, we achieved up
to a 50% reduction in training costs without com-
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Figure 4: Auto-Interpretability scores following the automated pipeline defined by (Paulo et al., 2024b) over
AMAD(G) for every G € {1,...,L — 1}. The highlighted star markers represent the baseline SAEs (i.e., with
no grouping), while the other points correspond to Group-SAEs, ordered from left to right by increasing AMAD,
which reflects a decrease in the number of groups. The highlighted square markers represent the Group-SAEs with
a number of groups G = inf{G | AMAD(G) < 0.2}. (Left) Detection and (Right) Fuzzing scores, as defined in

the Evaluation paragraph of Section 4.

promising reconstruction quality or performance
on downstream tasks. The results demonstrate that
activations from adjacent layers in LLMs share
common features, enabling effective reconstruction
with fewer SAEs.

Our findings also show that the SAEs trained
on grouped layers perform comparably to layer-
specific SAEs in terms of reconstruction and down-
stream metrics. Furthermore, the automated inter-
pretability evaluations confirmed the interpretabil-
ity of the features learned by our SAEs, underscor-
ing their utility in disentangling neural activations.

The methodology proposed in this paper opens
avenues for more scalable interpretability tools, fa-
cilitating deeper analysis of LLMs as they grow
in size. Future work will focus on further opti-
mizing the number of layer groups and scaling the
approach to even larger models.

Limitations

Although we evaluated our approach across vari-
ous groups and model sizes, our primary focus here
is on experiments using a fixed expansion factor
of ¢ = 16 and TopK as activation function. Al-
though we don’t expect the choices of these hyper-
parameters to influence the results of this work,
we left investigations of this phenomenon for fu-
ture work. We also limit the scope of our study to

models from the Pythia family. Although we rec-
ognize that architectural and training differences
across model families may influence the behavior
of Group-SAEs, we defer a comprehensive cross-
model analysis to future research. Exploring the
generality of our findings across diverse architec-
tures, such as LLaMA, Qwen, or Mistral, is an
important next step. Finally, our interpretability
evaluation remains limited, primarily due to the
high economic cost of annotating large numbers of
features. While we observe promising patterns, a
more comprehensive and systematic interpretabil-
ity analysis is left for future work.

Reproducibility statement

To support the replication of our empirical findings
on training SAEs via layer groups and to enable
further research on understanding their inner works,
we plan to release all the code and SAEs used in
this study upon acceptance.
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A Hyperparameters

We train both SAEs and Group-SAEs using Top-K activation® with K = 128 and expansion factor of
¢ = 16 on the residual stream after the MLP contribution of three models of varying sizes from the Pythia
family (Biderman et al., 2023): Pythia 160M, Pythia 410M, and Pythia 1B. To train all the SAEs, we
sample 1 billion tokens from the Pile dataset (Gao et al., 2020) and process them with a context size of 1024.
We use Adam optimizer (Kingma and Ba, 2017) with default S parameters and set the learning rate equal
to 2e-4/+/(m/214) as specified in Gao et al. (2024). We use a batch size of 131072, 65536 and 32768
for the three models, respectively, to maximize computational usage. Following (Bricken et al., 2023) we
constrain the decoder columns (i.e. the feature directions) to have unit norm. Additionally, we normalize
the activations to have mean squared /o norm of 1 during SAE training, as specified in (Rajamanoharan
et al., 2024), by first estimating the norm scaling factor over 5 million tokens of our train set.

Table 3: Pythia model details.

Pythia model Non-Embedding Params Layers Model Dim Heads

160M 85,056,000 12 768 12
410M 302,311,424 24 1024 16
1.0B 805,736,448 16 2048 8

Table 4: Training and fine-tuning hyperparameters

Hyperparameter Value

c 16

Top-K K 128

Qlaux 1/32

Hook name resid-post
131°072 (Pythia-160M)

Batch size 65’536 (Pythia-410M)
32’768 (Pythia-1B)

Adam (B4, f2) (0.9,0.999)

Context size 1024

Ir 2e-4/+/(m/2)

Ir scheduler constant

Dead latents threshold 10M

# tokens (Train) 1B

Checkpoint freq 100K

Decoder column normalization  Yes

Activation normalization Mean squared ¢2 norm equal to 1 during SAE training

FP precision 32

Prepend BOS token No

The experiments were carried out on a cluster of 8§ AMD MI250X. The longest experimental run took
approximately 24 hours. Our experiments were carried out using PyTorch (Paszke et al., 2019) and the
sparsify library.” We performed our data analysis using NumPy (Harris et al., 2020) and Pandas (Wes
McKinney, 2010). Our figures were made using Matplotlib (Hunter, 2007) and Seaborn (Waskom,
2021).

The Top-K activation function is directly applied on the features obtained with Equation1, where ¢ = Top-K o ReLU.
"https://github.com/EleutherAl/sparsify
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B SAEs Training Details

Following Lawson et al. (2024), given X, X € RBxn being the input activation batch and its SAE
reconstruction, respectively, we train our SAEs with the following loss:

L(X) = FVU(X, X) + aaux - AuxK(X, X) (8)

The first term of the loss is the Fraction of Variance Unexplained, or:

o XX
FVU(X,X) = IX=Xlr 9)
X = X]|[r
where || - || is the Frobenius norm and X = 4151 ;X is a matrix where each row corresponds to the

mean of X along the batch dimension. The second term of the loss is an auxiliary loss to prevent the
formation of dead latents during training and is defined as:

- E-E
AuxK(X, X) = H (10)
- F

Here, E = X — X is the reconstruction error of the main model, and E is its reconstruction using the
top-Kaux dead latents. A dead latent f;(x) is a latent that didn’t fire, i.e. f;(x) = 0, for a predefined
number of tokens (10M in our experiments). Following Gao et al. (2024), we choose K,;x as the minimum
between the number of dead latents and m /2, and o = 1/32.

To ensure a fair comparison with baselines, we allocate 1 billion training tokens for each SAE; and
SAE?. For baseline SAEs, activations are always taken from a single fixed layer. In contrast, for Group-
SAEs, activations are drawn from a randomly selected layer within the set [g¢]. In this way, we ensure
that each Group- and baseline SAEs process exactly 1 billion tokens and activations.
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C Additional Angular Distances and Layers Groups
We use the same angular distance formulation of Gromov et al. (2024):
o 1 v, 5
dy (x",x]) = — arccos <Z(X) an
7T [Pyt
forevery i, j € {1,..., L}, where x are the I-th residual stream activations after the MLP’s contribution.

Average Distance Between Layers

Layer
7 6 5 4 3 2 1 0
|
Hi
N

8

9

11 10

3 4 5 6 7 8
Layer

Figure 5: Average angular distance between all layers of the Pythia-160M model, as defined in Equation 11. The
angular distances are computed over 10M tokens from the training dataset. The angular distances are bounded in
[0, 1], where an angular distance equal to 0 means equal activations, 0.5 means activations are perpendicular and an
angular distance of 1 means that the activations point in opposite directions.

Average Distance Between Layers

] [ [=][=] [=]
Lo

Figure 6: Average angular distance between all layers of the Pythia-410M model, as defined in Equation 11. The
angular distances are computed over 10M tokens from the training dataset. The angular distances are bounded in
[0, 1], where an angular distance equal to 0 means equal activations, 0.5 means activations are perpendicular and an

angular distance of 1 means that the activations point in opposite directions.
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Average Distance Between Layers

Layer

15 14 13 12 11 10

10 11 12 13 14 15

Figure 7: Average angular distance between all layers of the Pythia-1B model, as defined in Equation 11. The
angular distances are computed over 10M tokens from the training dataset and are bounded in [0, 1]. An angular
distance equal to 0 means equal activations, 0.5 means activations are perpendicular and an angular distance of 1

means that the activations point in opposite directions.

Groups

AMAD

0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1,1, 1, 1
2,2,2,1,1,1,1,0,0,0,0
2,2,2,0,0,0,0,1,1,3,3
0,0,0,4,4,2,2,1,1,3,3
3,3,5,4,4,2,2,0,0,1, 1
3,3,5,1,1,2,2,6,4,0,0
3,3,5,1,1,0,0,6,4,7,2
1,1,5,0,0,8,7,6,4,3,2
0,0,5,9,7,8,3,6,4,1,2

\DOO\]O\UI-PUJ[\)MO

—_
(=]

0.450
0.372
0.314
0.267
0.231
0.179
0.118
0.075
0.044
0.019

Table 5: Layer groups for every G up to L — 1 for Pythia-160M
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G Groups AMAD
1 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0.479
2 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1, 1,1, 1, 1 0.394
3 2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1, 1 0.353
4 2,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,0,0,0,0,0,0,0 0.303
5 0,0,0,0,0,0,0,3,3,3,3,1,1,1,1,1,4,4,4,2,2,2,2 0.270
6 5,5,51,1,1,1,3,3,3,3,0,0,0,0,0,4,4,4,2,2,2,2 0.248
7 5,5,5,0,0,0,0,1,1,1,1,6,6,3,3,3,4,4,4,2,2,2,2 0.224
8 2,2,2,5,57,7,1,1,1,1,6,6,3,3,3,4,4,4,0,0,0,0 0.202
9 2,2,2,5,5,7,7,0,0,0,0,6,6,3,3,3,1,1,1,8,8,4,4 0.187
10 2,2,2,5,57,7,8,8,9,9,6,6,1,1,1,0,0,0,3,3,4,4 0.176
11 2,2,2,5,5,7,7,8,8,9,9,6,6,0,0,0,10,4,4,3,3, 1, 1 0.156
12 0,0,0,2,2,7,7,8,8,9,9,6,6,11,5,5,10,4,4,3,3,1,1 0.141
13 12,9,9,2,2,7,7,8,8,4,4,6,6,11,5,5,10,1, 1, 3,3,0,0 0.125
14 12,9,9,0,0,7,7,8,8,4,4,6,6,11,2,2,10,1,1,3,3,13,5 0.104
15 12,9,9,14,8,7,7,3,3,4,4,6,6,11,2,2,10,0,0, 1, 1, 13,5 0.085
16 12,9,9,14,8,3,3,1,1,4,4,6,6,11,2,2,10,15,7,0,0, 13,5 0.069
17 12,9,9,14,8,1,1,0,0,4,4,6,6,11,2,2, 10,15, 16,7, 3, 13,5 0.055
18 12,4,4,14,17,0,0,8,9,1,1,6,6, 11,2,2, 10, 15, 16,7, 3, 13, 5 0.043
19 12,4,4,14,17,18,13,8,9,1,1,2,2,11,0,0, 10, 15, 16,7, 3,6, 5 0.032
20 12,1,1,14,17,18,13,8,19,0,0,2,2, 11,9, 10,4, 15,16,7,3,6,5  0.022
21 12,1,1,14,17,18,13,8, 19,20, 11,0,0,5,9, 10,4, 15,16,7,3,6,2  0.014
22 12,0,0,14,17,18,13,8, 19,20, 11,21, 16,5,9, 10,4,15,7,3,1,6,2  0.007

Table 6: Layer groups for every G up to L — 1 for Pythia-410M

Groups AMAD

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 0.459
0,0,0,0,0,0,0,0,0,1,1,1,1, 1,1 0.364
1,1,1,1,1,2,2,2,2,0,0,0,0,0,0 0.309
0,0,0,0,0,2,2,2,2,1,1,1,1,3,3 0.250
4,4,1,1,1,2,2,2,2,0,0,0,0,3,3 0.225
4,4,1,1,1,0,0,0,0,2,2,5,5,3,3 0.191
1,1,0,0,0,4,4,2,2,6,6,5,5,3,3 0.174
0,0,7,3,3,4,4,2,2,6,6,5,5,1, 1 0.139
8,4,7,3,3,1,1,2,2,6,6,5,5,0,0 0.100
10 8,9,7,1,1,0,0,2,2,6,6,5,5,4,3 0.075
11 8,9,7,0,0,10,3,2,2,6,6,5,5,4,1 0.053
12 8,9,7,11,6,10,3,0,0,2,2,5,5,4, 1 0.036
13 8,9,7,11,6,10,3,12,5,0,0,2,2,4,1  0.022
14 8,9,7,11,13,10,3,12,5,6,2,0,0,4,1  0.010

@OO\]O\U\-PW[\)»—*Q
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D Auto Interpretability

To evaluate the interpretability of features of baseline and Group SAEs, we adopt automated pipeline from
(Paulo et al., 2024b), focusing on detection and fuzzing scores. First, an explainer language model (LM)
generates natural language explanations of the SAE latent representations. Then, a separate scorer LM
evaluates these explanations.

Then, detection scoring assesses whether a language model can identify entire sequences that activate a
specific latent, given its interpretation. This method evaluates the model’s ability to distinguish between
activating and non-activating contexts, offering insights into the precision and recall of the interpretation.
Fuzzing scoring, on the other hand, operates at the token level, prompting the model to pinpoint specific
tokens within sequences that trigger latent activations. This approach closely mirrors simulation scoring
and is particularly effective in evaluating the model’s token-level understanding of latent activations.

In our experiments, we use gemini-2.0-flash-001 as the base model for both the explainer and the
scorer. For each SAE, we randomly select 64 features and cache their latent activations across 10M
tokens from the Pile (Gao et al., 2020). To generate annotations, we present the explainer with 20 distinct
examples per feature—10 that activate the latent and 10 randomly sampled—each comprising 32 tokens.

Detection

Explanation: “Words related to football positions, specifically the striker position”

Sentences:
"Atalanta’s striker Ademola Lookman has scored twice”
“names of the months used in The Lord of The Rings”

“shown, is not generally eligible for ads. For example”

Correct output: [1, 0, 0]

Fuzzing

Explanation: “Words related to football positions, specifically the striker position”
Sentences:

"Atalanta’s <striker> Ademola Lookman has scored twice"

“You should know this about <advertising>"

“<Dribbled> past the defenders and <shot> a perfect <strike> into the net.”

Correct output: [1,0, 1]
L J

Figure 8: Examples of each of the auto-interpretability techniques: Detection and Fuzzing. In detection, the
objective is to find the sentences in which the feature is active. In fuzzing, the objective is to spot the highlighted
tokens referring to the target feature.
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E Feature Similarity Analysis

In this section, we perform a novel study to understand how features of Group SAEs are distributed with
respect to baseline ones. The question we want to answer is the following: "Given a feature i of a baseline
SAE trained at layer 1, does a feature j similar to it also appear in a Group SAE trained on the group that
contains that layer?".

We investigate feature similarity using two complementary metrics: Mean Maximum Concordance
(MMCO) and Mean Maximum Cosine Similarity (MMCS). MMCO measures similarity based on feature
activations, while MMCS captures alignment in feature directions.

E.1 Mean Maximum Concordance (MMCO)

Let [k] = {1,...,k}. Let N denote the number of tokens and m the total number of SAE fea-
tures. For a particular pair of layers l1,lo € {1,...,L — 1}, for each token ¢ € {1,...,N}, let
F’tBag’ehne’l1 , FtGmup’l2 C {1,...,m} denote the set of features activated® in the Baseline SAE at layer
[ and in the Group SAE at layer Iy respectively. For each feature 7, j € {1,...,m} we define the
per-feature occurrence sets as .

Bll'l _ {t | ie FtBasehne,ll }, (12)

G ={t|jeFwhty (13)

From Bll-1 and Gé?, we compute the co-occurrence matrix AND'2 € R"™*™ where the (i, j)-th entry
captures the precise co-occurrence count of feature ¢ (in the Baseline SAE) with feature j (in the Group
SAE). That is,

AND(}"2 = [B 0 G?|. (14)

Moreover, we compute the OR*2 € R"™*™ matrix, where the (i, j)-th entry represents the number of
tokens in which at least one of the two features is active. By the inclusion—exclusion principle, we have

ORI = | Bl'| + |G?| — AND[L". (15)

A common similarity measure, the Jaccard index, is then defined as

l,l2 _

AND;l',ZZ
Jaccard;: Y

; PR P (16)
“ OR%’Z2 +e

where € is a small constant introduced to avoid division by zero. Finally, the Mean Maximum Concordance
(MMCO) is given by:

m

1
MMCO! 2 = = max Jaccard%’b. a7
m = j€lm]

Computing the MMCO across layers between Baseline and Group SAEs allows us to visualize their
concordance with a heatmap. We plot the MMCO across layers for Pythia-160M, Pythia-410M and
Pythia-1B in Figures 9, 10 and 11 respectively.

8A feature i is activated on the representation x; of the token ¢ if f; (x;) > 0.
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MMCO for Pythia-160M

G=2

Baseline layer
Baseline layer
Baseline layer

Group layer Group layer Group layer
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Figure 9: Heatmaps of Pythia-160M Mean Maximum Concordance (MMCO) for each group G € {1,..., G } over
1 million test tokens. Darker regions indicate higher MMCO; the black squares highlight single groups in each
G-group partition.

MMCO for Pythia-410M
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Figure 10: Heatmaps of Pythia-410M Mean Maximum Concordance (MMCO) for each group G € {1, ..., @}
over 1 million test tokens. Darker regions indicate higher MMCO; the black squares highlight single groups in each
G-group partition.
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MMCO for Pythia-1B

G=2

Baseline layer
Baseline layer
Baseline layer
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Figure 11: Heatmaps of Pythia-1B Mean Maximum Concordance (MMCO) for each group G € {1, ..., @} over
1 million test tokens. Darker regions indicate higher MMCO; the black squares highlight single groups in each
G-group partition.
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E.2 Mean Maximum Cosine Similarity

Following (Ghilardi et al., 2024), we adopt Mean Maximum Cosine Similarity (MMCS) to assess the
extent to which Baseline and Group SAEs learn similar feature directions. For any two SAEs, SAE;
and SAE;, we compute the MMCS between their decoder matrices W7, Wé € R™ ™ as these matrices
encode the directions of the learned features:

m
MMCS(W, W) = % lef{{?.},(m} (cos (VT/';C, VV{)) (18)
k=1
where VA\}Z and vNVf are the k-th and [-th columns of the normalized decoder matrices Wé and Wfl,
respectively. The directionality of the maximum operation is important for interpretation: we first
find, for each feature in SAE;, the most similar feature in SAE; (by cosine similarity), and then aver-
age these maximum similarities across all features of SAE;. In our analysis, we specifically compute
MMCS (WdBaseh“e, ngup), meaning that the resulting value represents the average highest similarity
that each Baseline SAE feature has with any feature in the Group SAE.

Pythia-160M - MMCS Baselines vs Groups
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8 0.3 1 y 037 4]
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(2] wn
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o 2 a4 & 8 10 o 2 a4 & 8 10 o 2 a4 & 8 10
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Figure 12: Mean Maximum Cosine Similarity (MMCS) between all the learned features of baseline and group SAEs
for each group G € {1,..., G} of Pythia-160M. Colors represent the different Group SAEs of a given partition.
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Pythia-410M - MMCS Baselines vs Groups
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Figure 13: Mean Maximum Cosine Similarity (MMCS) between all the learned features of baseline and Group
SAE:s for each group G € {1,...,G} of Pythia-410M. Colors represent the different Group SAEs of a given
partition.

Pythia-1B - MMCS Baselines vs Groups
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Figure 14: Mean Maximum Cosine Similarity (MMCS) between all the learned features of baseline and Group
SAEs for each group G € {1, .. G } of Pythia-1B. Colors represent the different Group SAEs of a given partition.
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F Feature Distribution Analysis

Following (Lawson et al., 2024), we perform a study to understand how features distribute across layers
of a given group. Previous work from (Lindsey et al., 2024) showed that activations of a given feature
usually peak at a specific layer. To measure this phenomenon, for each Group SAE of a given partition in
G groups, we sample 1 million tokens from the test set and compute feature distributions across the layers
of its group.

Feature distribution for Pythia-160M
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Figure 15: Pythia-160M feature activations distribution for every group G € {1, ..., G } over 1 million tokens from
the test set. Darker regions indicate higher feature activation density.

Heatmaps in Figure 15, 16, and 17 show distributions of features activations for all the models and
Group SAEs of partitions from 1 to G. In the images, we sort the features by the average layer they
activate the most. Darker regions indicate higher feature activation density. Looking at the charts several
considerations can be drawn:

* Features activating for the first and last layers of a given group tend to be more specific for that layers
(i.e. their activation frequencies peak at those layers).

* Features at early layers of a model are more spread across their respective group.

* Bigger models tend to have features more spread across the layers of a given group with respect to
smaller models.

In summary, while feature distributions tend to peak at a specific layer (with this being more evident
in smaller models and later layers), they also spread across close ones. This result agrees with findings
from (Lindsey et al., 2024) while still leaving the potential for Group SAEs to make SAE training more
efficient.
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Feature distribution for Pythia-410M
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Figure 16: Pythia-410M feature activations distribution for every group G € {1, ..., G } over 1 million tokens from
the test set. Darker regions indicate higher feature activation density.

Feature distribution for Pythia-1B
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Figure 17: Pythia-1b feature activations distribution for every group G € {1, ..., @} over 1 million tokens from the
test set. Darker regions indicate higher feature activation density.
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