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Abstract001

Sparse Autoencoders (SAEs) have recently002
been employed as a promising unsupervised003
approach for understanding the representations004
of layers of Large Language Models (LLMs).005
However, with the growth in model size and006
complexity, training SAEs is computationally007
intensive, as typically one SAE is trained for008
each model layer. To address such limitation,009
we propose Group-SAE, a novel strategy to010
train SAEs. Our method considers the sim-011
ilarity of the residual stream representations012
between contiguous layers to group similar lay-013
ers and train a single SAE per group. To bal-014
ance the trade-off between efficiency and per-015
formance, we further introduce AMAD (Aver-016
age Maximum Angular Distance), an empiri-017
cal metric that guides the selection of an op-018
timal number of groups based on representa-019
tional similarity across layers. Experiments020
on models from the Pythia family show that021
our approach significantly accelerates training022
with minimal impact on reconstruction quality023
and comparable downstream task performance024
and interpretability over baseline SAEs trained025
layer by layer. This method provides an effi-026
cient and scalable strategy for training SAEs in027
modern LLMs.028

1 Introduction029

Sparse Autoencoders (SAEs) (Makhzani and Frey,030

2014) have recently emerged (Huben et al., 2024;031

Bricken et al., 2023) as a promising technique032

to tackle the polysemanticity of neurons in the033

activations of Large Language Models (LLMs)034

(Olah et al., 2020). SAEs decompose models’035

activations into a sparse combination of human-036

interpretable directions, also called features. De-037

spite the strengths in interpretability, SAEs face038

challenges that hinder their large-scale adoption039

(Sharkey et al., 2025). One of them is the high train-040

ing and evaluation costs, which increase as model041

sizes and parameter counts grow. Notably, a sepa-042

rate SAE is typically trained for each component043
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(e.g., the output of the attention, the MLP, or a full 044

transformer block) at every layer of an LLM, with 045

a number of features that is a multiple of the dimen- 046

sionality of the activation space of the model. For 047

instance, a single SAE trained on the activations of 048

a layer of Llama-3.1 8B (Grattafiori et al., 2024), 049

with an expansion factor of 32, involves approx- 050

imately 40962 × 32× 2 ≈ 1.073 billion parame- 051

ters. Such high computational demand increases 052
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training time and requires substantial hardware re-053

sources and energy consumption, making the ap-054

proach increasingly impractical as models scale.055

Moreover, often to make SAEs useful in practice,056

all their features have to be manually annotated.057

Even when using auto-interpretability techniques,058

this process can become very costly (Paulo et al.,059

2024b).060

Facing such challenges, in this work we intro-061

duce Group-SAE, a method to reduce the compu-062

tational overhead of training, evaluating, and inter-063

preting SAEs. Our method leverages the similarity064

of the representations shared by close layers to re-065

duce the total number of trained SAEs and uses a066

single SAE to reconstruct activations from different067

layers. The proposed technique follows primary068

observations that nearby neural network layers tend069

to learn similar levels of representations (Szegedy070

et al., 2014; Zeiler and Fergus, 2014; Jawahar et al.,071

2019). Shallow layers typically focus on capturing072

low-level features, while deeper layers are believed073

to learn high-level abstractions. In addition, Gro-074

mov et al. (2024) empirically shows that adjacent075

layers in LLMs could encode similar information.076

Additionally, we introduce AMAD (Average077

Maximum Angular Distance), a novel empirical078

metric for selecting the optimal number of groups079

to partition a model’s layers–an important choice080

that balances performance and computational effi-081

ciency: more groups tend to improve performance082

but reduce computational savings, while fewer083

groups offer greater efficiency at the cost of de-084

creasing performance.085

After thoroughly evaluating reconstruction,086

downstream, and interpretability performance of087

our methods on three models of varying sizes from088

the Pythia family (Biderman et al., 2023)–Pythia-089

160M, Pythia-410M, and Pythia-1B–we show that090

our method has several advantages compared to091

baselines. In particular, Group-SAE (with AMAD)092

finds an optimal tradeoff between training costs093

and performance of the SAE. It significantly re-094

duces the number of trained SAEs reducing training095

costs up to 50%. Moreover, such a novel approach096

only incurs a slight decrease in reconstruction qual-097

ity and achieves comparable downstream perfor-098

mance. Finally, from an interpretability point of099

view, Group-SAEs offers the same, or even slightly100

better, level of interpretability when compared with101

their baseline counterparts.102

Our contributions can be summarized as fol-103

lows:104

• We propose a novel method named Group- 105

SAE, which partitions the layers of a model into 106

groups and trains a single SAE for each group, 107

thus significantly reducing the total number of 108

SAEs to train. 109

• We introduce AMAD (Average Maximum An- 110

gular Distance), a new empirical metric for se- 111

lecting the optimal number of groups, enabling 112

an effective trade-off between computational 113

efficiency and performance. 114

• To advance research on interpretability and 115

Sparse Autoencoders, we will openly release 116

all our trained SAEs and Group-SAEs. 117

2 Background and Related Work 118

2.1 Sparse Autoencoders 119

SAEs (Bricken et al., 2023) are a promising inter- 120

pretability technique that decomposes dense LLM 121

activations into a sparse combination of human- 122

interpretable features. SAEs are based on two key 123

intuitions. The first is the Linear Representation 124

Hypothesis (LRH), which, supported by substantial 125

empirical evidence (Mikolov et al., 2013; Nanda 126

et al., 2023; Park et al., 2023), posits that Neural 127

Networks (NNs) exhibit interpretable linear direc- 128

tions in their activation space. The second is the Su- 129

perposition Hypothesis (SH), which assumes that 130

observed NNs are dense compressions of a larger 131

sparse model where each neuron corresponds to a 132

specific feature (Elhage et al., 2022). 133

Within this framework, SAEs disentangle the 134

effects of superposition, enabling the learning of 135

interpretable linear directions in the model’s activa- 136

tions. Formally, given an activation x ∈ Rn, a SAE 137

reconstructs it through two steps. First, it encodes 138

the activation into the feature space as: 139

f(x) = σ
(
be +We (x− bd)

)
(1) 140

where f(x) represents feature activations, be,bd ∈ 141

Rm are bias terms, We ∈ Rm×n is the encoder 142

matrix, and σ is an activation function. Typically, 143

m = c · n, with the expansion factor c ∈ {2k | 144

k ∈ N+}. ReLU was initially proposed (Bricken 145

et al., 2023), and then its limitations led to the de- 146

velopment of two notable alternatives: TopK (Gao 147

et al., 2024) and JumpReLU (Rajamanoharan et al., 148

2024). 149

Then, the feature vector is projected back into 150

the model’s activation space using: 151

x̂ = bd +Wd f(x) (2) 152
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where Wd ∈ Rn×m is the decoder matrix, with153

each column corresponding to a learned feature154

vector.155

SAEs are trained to minimize the MSE between156

original activations and SAE reconstruction. To157

enforce feature sparsity, an additional penalty is158

usually included in the loss function, either as the159

L1 norm (Bricken et al., 2023) or the L0 norm (Ra-160

jamanoharan et al., 2024) of f(x), scaled by a posi-161

tive factor λ, termed the sparsity coefficient. For-162

mally, the loss function can be written as:163

L(x) = ∥x− x̂∥22 + λ ∥f(x)∥s (3)164

with s ∈ {0, 1}. On the other hand, when us-165

ing TopK (Gao et al., 2024), no additional loss166

components are needed, as the activation function167

inherently enforces sparsity.168

2.2 Shared SAEs169

While SAEs were originally designed to recon-170

struct activations from a single model component171

(e.g., the output of a specific layer, MLP, or Atten-172

tion), subsequent approaches have explored their173

application to activations from multiple layers. For174

instance, Yun et al. (2023) and Lawson et al. (2024)175

employed a single SAE to reconstruct activations176

from all residual stream layers of a model, aiming177

to analyze how features evolve across layers. More178

recently, Lindsey et al. (2024) extended this con-179

cept by introducing Crosscoder, a modified SAE180

architecture that creates a unified representation of181

computations across multiple layers.182

These methods are driven by empirical evi-183

dence suggesting that information in LLMs is of-184

ten shared and rather redundant across nearby lay-185

ers (Phang et al., 2021; Gromov et al., 2024). In186

this work, we leverage this principle to explore the187

optimal balance between performance and compu-188

tational efficiency when applying SAEs to multiple189

layers.190

2.3 Improving SAE efficiency191

As highlighted by Sharkey et al. (2025), one of192

the major challenges of SAEs is their high train-193

ing and evaluation costs. As previously mentioned,194

SAEs scale alongside model size, making them im-195

practical for low-resource settings. Furthermore,196

interpreting the meaning of SAE features presents197

an additional challenge. Even with automated tech-198

niques, interpretation costs can reach thousands of199

dollars (Paulo et al., 2024b).200

To mitigate training costs, Gao et al. (2024) in- 201

vestigated the scaling laws of SAEs to determine 202

the optimal balance between model size and spar- 203

sity. Recent work has also explored transfer learn- 204

ing as a means to enhance SAE training efficiency. 205

For instance, Kissane et al. (2024) and Lieberum 206

et al. (2024) demonstrated that SAE weights can 207

be transferred between base and instruction-tuned 208

versions of Gemma-1 (Team et al., 2024a) and 209

Gemma-2 (Team et al., 2024b), respectively. Addi- 210

tionally, Ghilardi et al. (2024) showed that transfer- 211

ability also occurs within different layers of a single 212

model, both in forward and backward directions. 213

3 Method 214

3.1 Group-SAEs 215

In our approach, a Group-SAE is defined as a 216

sparse autoencoder that is trained to reconstruct 217

the activations from multiple layers that have been 218

grouped together, rather than training an individual 219

SAE for each layer. This grouping leverages the 220

observation that nearby layers tend to exhibit simi- 221

lar activation patterns (cf. Figure 5, 6, and Figure 7 222

in Appendix C). 223

For a model with L layers, there are theoretically 224

G! · S(L,G) ways to partition the layers into G 225

groups—where S(L,G) denotes the Stirling num- 226

ber of the second kind. Because this number grows 227

rapidly with model depth, we instead employ an 228

agglomerative clustering strategy based on angular 229

distances between layers to efficiently determine a 230

suitable grouping. 231

Specifically, we compute the mean angular dis- 232

tance between the residual activations of each layer 233

using 10M tokens from our training set (see Ap- 234

pendix C for detailed measurements), following 235

the formulation in (Gromov et al., 2024). We then 236

apply a bottom-up hierarchical clustering method 237

with complete linkage (Nielsen and Nielsen, 2016). 238

At each step, the two groups with the smallest inter- 239

group distance1are merged. This merging contin- 240

ues until exactly G groups remain, ensuring that 241

within each group the maximum angular distance 242

is minimized. 243

3.2 Choice of G 244

The choice of G, the number of groups of layers, 245

is an important choice to make in our method as 246

1In complete linkage, the inter-group distance is defined
as D(X,Y ) = maxx∈X,y∈Y dangular(x,y) for groups X and
Y
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it influences both computational savings and SAE247

performance. To select the optimal value of G for248

a given model, we propose an empirical metric249

called the Average Maximum Angular Distance250

(AMAD), defined as:251

AMADθ(G) =
1

G

G∑
g=1

Dg, (4)252

where Dg is the maximum angular distance be-253

tween any pair of activations within group g.254

AMAD quantifies, on average, the worst-case dis-255

tance within each group. Tables 5, 6, and 7 in256

Appendix C report the resulting groups and their257

corresponding AMAD values for the tested models.258

3.3 Computational Savings259

The computational cost, in FLOPs, of training a260

SAE can be divided into two main components:261

• Activation caching (A): The computation re-262

quired to generate the model’s activations,263

which are used for training the SAE.264

• SAE training (T ): The computation involved265

in optimizing a SAE using the cached activa-266

tions.267

Thus, the total cost of training SAEs across all resid-268

ual stream layers of a model is given by A+ LT .269

Since both baseline and Group-SAEs share the270

same architecture and undergo the same training271

process for a single SAE, the total cost of training272

all Group-SAEs 2 is A+GT .273

The resulting compute savings, ∆(G), quanti-274

fying the relative change in total FLOPs when ap-275

plying Group-SAEs instead of per-layer SAEs, is276

defined as:277

∆(G) =
A+GT

A+ LT
− 1. (5)278

By definition, if G = L, then ∆(G) = 0,279

meaning no savings. Conversely, as G de-280

creases, savings increase, reaching a maximum of281

(T − LT )/(A+ LT ) when G = 1.282

Since our method does not alter either A or T ,283

the efficiency gains of Group-SAEs are primarily284

determined by the G/L ratio.285

2We do not account for the cost of computing angular dis-
tance when selecting groups, as we rely on activations already
sampled for training, making the additional computational
overhead negligible.

4 Experiments 286

Our work is primarily focused on addressing the 287

following research questions: 288

Q1 Do SAEs trained on groups of layers acti- 289

vations maintain reconstruction quality and 290

downstream performance? 291

Q2 Does selecting the number of groups G based 292

on the Average Maximum Angular Distance 293

(AMAD) ensure an optimal balance between 294

computational efficiency and model perfor- 295

mance? 296

Q3 How do Group-SAEs affect the interpretabil- 297

ity of the SAE latent representations? 298

To address these questions, we compare the perfor- 299

mance of standard SAEs and Group-SAEs across 300

a range of metrics and alternative grouping strate- 301

gies. 302

4.1 Experimental setting 303

We denote SAEl as the baseline SAE trained to 304

reconstruct the activations of layer l. For every 305

g = 1, . . . , G, with G ∈ {1, . . . , L − 1} and L 306

being the number of layers of a model, let [gG] 307

represent the set of layers belonging to the g-th 308

group within the partition of G groups. We then 309

define SAEG
g as the SAE trained to reconstruct the 310

activations for all layers in [gG]. 311

Models, Dataset and Hyperparameters Follow- 312

ing Lawson et al. (2024), we train both SAEs and 313

Group-SAEs with the Fraction of Variance Unex- 314

plained (FVU) as reconstruction loss. Defined as 315

FVU(x) =
∥x− x̂∥22

Var(x)
, (6) 316

we prefer it to standard MSE loss as it accounts 317

for the different magnitudes of activations coming 318

from different layers of the model. We employ Top- 319

K activation3 with K = 128 and expansion factor 320

of c = 16 on the residual stream after the MLP 321

contribution of three models of varying sizes from 322

the Pythia family (Biderman et al., 2023): Pythia 323

160M, Pythia 410M, and Pythia 1B. To train all 324

the SAEs, we sample 1 billion tokens from the Pile 325

dataset (Gao et al., 2020) and process them with a 326

context size of 1024. 327

3The Top-K activation function is directly applied on the
features obtained with Equation1, where σ = Top-K ◦ReLU.
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Figure 2: (Left) FVU and (Right) ∆CE(%) over AMAD(G) for every G ∈ {1, . . . , L− 1}. The highlighted star
markers represent the baseline SAEs (i.e., with no grouping), while the other points correspond to Group-SAEs,
ordered from left to right by increasing AMAD, which reflects a decrease in the number of groups. The shaded area
indicates one std

For each model, we compute all partitions328

G ∈ {1, . . . , L− 1} and train a Group-SAE for all329

groups of layers in them. We exclude the last layer330

from all partitions because it resides in the unem-331

bedding space and, based on our empirical findings,332

consistently exhibits a distinct reconstruction error333

pattern. As a result, it requires a separate SAE.334

Additionally, we compare our grouping strategy335

with two baseline techniques aimed to reduce the336

computational cost of training SAEs: (1) training337

Group SAEs on evenly spaced groups, and (2) train-338

ing smaller SAEs on all layers. Hyperparameters339

for all the experiments and training details can be340

found in Appendix A and B respectively.341

Evaluation. We evaluate SAE performance342

across three key areas: reconstruction, downstream,343

and interpretability.344

For both reconstruction and downstream evalua-345

tions, we use a subset of the Pile dataset (distinct346

from the training set) comprising 1 million tokens.347

For reconstruction, we compare each SAEG
g with348

its corresponding baseline SAEl for every layer349

l ∈ [gG]. We report the average Fraction of Vari-350

ance Unexplained (FVU, Equation 6) as our recon-351

struction metric.352

To evaluate downstream performance, we mea-353

sure the effect of replacing a layer’s activation with354

its SAE reconstruction on the next-token predic-355

tion. Specifically, we compute the average relative356

change in next-token Cross-Entropy: 357

∆CE =
CE(M(P | xl ← x̂l))− CE(M(P ))

CE(M(P ))
,

(7) 358

where M denotes the model, P is the input prompt, 359

and M(P | xl ← x̂l) indicates the model output 360

when the true activation xl at layer l is replaced 361

with the SAE reconstruction x̂l. 362

For interpretability, we adopt the automated 363

pipeline proposed by Paulo et al. (2024a). First, 364

an explainer language model (LM) generates nat- 365

ural language explanations of the SAE latent rep- 366

resentations. Then, a separate scorer LM evalu- 367

ates these explanations. In our experiments, both 368

the explainer and scorer are implemented using 369

gemini-2.0-flash-0014. Specifically, for each 370

SAE, we randomly sample 64 features and cache 371

their latent activations over a 10M token sample 372

from the Pile. For each latent, the explainer is 373

shown 20 distinct examples, 10 activating the la- 374

tent and 10 sampled randomly, each consisting of 375

32 tokens. Two binary scoring strategies are em- 376

ployed: 377

• Detection: A language model determines 378

whether a given sequence activates an SAE 379

latent according to the provided explanation. 380

• Fuzzing: Activating tokens are marked within 381

each example, and a language model is 382

4https://deepmind.google/technologies/gemini/
flash/
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Table 1: FVU and ∆CE for different approaches across model sizes. Our proposed grouping strategy based on the
AMAD achieves lower FVU and ∆CE compared to the baselines: Group SAEs with evenly spaced groups and
smaller SAEs trained on all layers. Note that both the Evenly Spaced and Smaller SAEs strategies have the same
number of training FLOPs as our AMAD-based grouping strategy.

Approach Pythia-160M Pythia-410M Pythia-1B

FVU ∆CE% FVU ∆CE% FVU ∆CE%

Group SAEs (AMAD with Ĝ groups) 0.108 6.01 0.138 5.94 0.182 6.43
Group SAEs (Evenly spaced with Ĝ groups) 0.114 5.40 0.145 6.01 0.189 6.63
Smaller SAEs (All layers) 0.115 7.37 0.146 7.10 0.188 8.10

prompted to assess whether the marked sen-383

tences are correctly identified.384

Figure 8 shows a sentence example for each strat-385

egy. For every metric (FVU, ∆CE and Detec-386

tion/Fuzzing) and for each G ∈ {1, . . . , L − 1},387

we first compute all metrics at the layer level, then388

aggregate the results for each partition g within G389

by computing the mean and the standard deviation390

weighted by the number of layers in that partition.391

4.2 Results392

In the following paragraphs, we aim to empirically393

answer the research questions outlined in Section 4.394

Q1: What is the impact of grouping layers395

(Group-SAEs) on reconstruction quality and396

downstream task performance? In Figure 2,397

we plot the average FVU and the cross-entropy398

difference (∆CE) as functions of the AMAD for399

different group configurations. The highlighted star400

markers represent the baseline models (i.e., with401

no grouping), while the other points correspond402

to grouped models. The points are ordered from403

left to right by increasing AMAD, which reflects a404

decrease in the number of groups, with G ranging405

from L − 1 down to 1. From Figure 2, a notable406

turning point emerges around AMAD(G) ≈ 0.2:407

increasing AMAD beyond this threshold leads to a408

more rapid loss in performance. In particular, train-409

ing a single SAE on all the model layers (G = 1),410

although achieving the best computational saving,411

also incurs the worst reconstruction and down-412

stream performance.413

To further validate our method, in Appendix E,414

we further inspect the quality of features learned by415

Group-SAEs by measuring their similarity to the416

features learned by Baseline-SAEs. As expected,417

for each baseline SAEl, we found average similar-418

ity to peak with the Group-SAE trained on a group419

containing l. Finally, in Appendix F we show how 420

features of a Group-SAE distribute across the acti- 421

vations of layers of their respective group, thus sup- 422

porting the rationale behind our proposed method. 423

Q2: Does selecting the number of groups G 424

based on the AMAD ensure an optimal balance 425

between computational efficiency and model 426

performance? Motivated by the insights from 427

the previous paragraph, the optimal G is cho- 428

sen as Ĝ = inf{G | AMAD(G) < 0.2}. In Fig- 429

ure 3 we show both FVU and ∆CE plotted 430

against the fraction of PFLOPs relative to the 431

baseline. Again, star markers denote baseline 432

SAEs, whereas circles represent Group-SAEs. 433

Here, moving from right to left indicates reduc- 434

ing PFLOPs (i.e., training fewer SAEs overall). 435

The points are ordered from right to left by de- 436

creasing PFLOPs, which reflects a decrease in the 437

number of groups, from L−1 down to 1. The high- 438

lighted square markers correspond to Group-SAEs 439

with Ĝ groups; they substantially reduce training 440

costs up to more than 50% with only a moder- 441

ate performance penalty: FVU(⋆−■) ≈ −0.01 442

and ∆CE%(⋆−■) ≈ −0.6 for all three evalu- 443

ated models. 444

To ensure that our grouping strategy and the se- 445

lection of Ĝ based on AMAD offer an optimal 446

balance between computational efficiency and per- 447

formance, we compare them against two baselines: 448

1) Evenly Spaced Group SAEs: Group SAEs trained 449

such that each partition contains nearly equal num- 450

bers of layers; 2) Smaller SAEs: A separate, smaller 451

SAE is trained for each layer. All methods are ad- 452

justed to incur equal computational costs5. Results 453

in Table 1 shows that the proposed method outper- 454

5For Evenly Spaced Group SAEs, we use the same number
of groups Ĝ; for Smaller SAEs, we set the expansion factor
as c′ = c · Ĝ/T , matching the FLOPs of a Group-SAE with
Ĝ groups.
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Figure 3: (Left) FVU and (Right) ∆CE(%) over the fraction of training PFLOPs with respect to the base-
line. The highlighted star markers represent the baseline SAEs (i.e., with no grouping), while the other points
correspond to Group-SAEs, ordered from right to left by decreasing PFLOPs, which reflects a decrease in
the number of groups. The highlighted square markers represent the Group-SAEs with a number of groups
Ĝ = inf{G | AMAD(G) < 0.2}
.

forms the two additional baselines across nearly all455

models and evaluation metrics, with only a single456

exception observed in the case of Pythia-160M.457

Importantly, this exception does not arise from458

the idea of grouping layers but from the chosen459

grouping strategy. Indeed, our method consistently460

outperforms the standard per-layer approach with461

smaller Standard SAEs. We observe that these ad-462

vantages are particularly noticeable for the ∆CE463

metric, related to the downstream performance. Ad-464

ditionally, Table 2 presents the computational costs465

and savings, as defined in Section 3.3, of Group-466

SAEs compared to the baselines when the optimal467

number of groups G is selected as Ĝ.468

Table 2: Comparison of FLOPs (1018) required for
caching activations and training Baseline and Group
SAEs on 1B tokens, covering all layers with an expan-
sion factor of 16 and Ĝ = inf{G | AMAD(G) < 0.2}.

Model Ĝ A+LT A+ĜT ∆%(Ĝ)

Pythia 160M 6 1.34 0.77 −42.5%
Pythia 410M 9 4.73 2.21 −53.3%
Pythia 1B 6 12.48 5.77 −53.7%

Q3: How do Group-SAEs affect the inter-469

pretability of the SAE latent representations?470

To assess the interpretability of the learned SAE471

latents we employ the auto-interpretability pipeline472

proposed by (Paulo et al., 2024b). For each SAE la- 473

tent, first, an explainer Language Model is asked to 474

propose a natural language explanation of it given 475

both activating and non-activating examples. Then, 476

given the explanation, a scorer Language Model 477

is tasked with predicting the set of sentences that 478

should activate the target latent (detection) and the 479

sentences containing highlighted tokens that ac- 480

tivate the target latent (fuzzing). In Figure 4 we 481

plot both the detection and fuzzing scores for all 482

the evaluated models. In the figures, square mark- 483

ers denote Group-SAEs with Ĝ groups, while star 484

markers indicate the baseline SAEs. We observe a 485

similar trend as in reconstruction and downstream 486

evaluations: detection and fuzzing scores improve 487

more rapidly as AMAD(G) decreases—provided 488

it remains above the turning point—after which 489

the scores plateau at an approximately constant 490

level. This result further validates our selection 491

of Ĝ based on AMAD, suggesting that the inter- 492

pretability of features in the baseline and Group- 493

SAEs differs only marginally. 494

5 Conclusion 495

This work introduces a novel approach to efficiently 496

train SAEs for LLMs by clustering layers based on 497

their angular distance and training a single SAE for 498

each group. Through this method, we achieved up 499

to a 50% reduction in training costs without com- 500
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Figure 4: Auto-Interpretability scores following the automated pipeline defined by (Paulo et al., 2024b) over
AMAD(G) for every G ∈ {1, . . . , L − 1}. The highlighted star markers represent the baseline SAEs (i.e., with
no grouping), while the other points correspond to Group-SAEs, ordered from left to right by increasing AMAD,
which reflects a decrease in the number of groups. The highlighted square markers represent the Group-SAEs with
a number of groups Ĝ = inf{G | AMAD(G) < 0.2}. (Left) Detection and (Right) Fuzzing scores, as defined in
the Evaluation paragraph of Section 4.

promising reconstruction quality or performance501

on downstream tasks. The results demonstrate that502

activations from adjacent layers in LLMs share503

common features, enabling effective reconstruction504

with fewer SAEs.505

Our findings also show that the SAEs trained506

on grouped layers perform comparably to layer-507

specific SAEs in terms of reconstruction and down-508

stream metrics. Furthermore, the automated inter-509

pretability evaluations confirmed the interpretabil-510

ity of the features learned by our SAEs, underscor-511

ing their utility in disentangling neural activations.512

The methodology proposed in this paper opens513

avenues for more scalable interpretability tools, fa-514

cilitating deeper analysis of LLMs as they grow515

in size. Future work will focus on further opti-516

mizing the number of layer groups and scaling the517

approach to even larger models.518

Limitations519

Although we evaluated our approach across vari-520

ous groups and model sizes, our primary focus here521

is on experiments using a fixed expansion factor522

of c = 16 and TopK as activation function. Al-523

though we don’t expect the choices of these hyper-524

parameters to influence the results of this work,525

we left investigations of this phenomenon for fu-526

ture work. We also limit the scope of our study to527

models from the Pythia family. Although we rec- 528

ognize that architectural and training differences 529

across model families may influence the behavior 530

of Group-SAEs, we defer a comprehensive cross- 531

model analysis to future research. Exploring the 532

generality of our findings across diverse architec- 533

tures, such as LLaMA, Qwen, or Mistral, is an 534

important next step. Finally, our interpretability 535

evaluation remains limited, primarily due to the 536

high economic cost of annotating large numbers of 537

features. While we observe promising patterns, a 538

more comprehensive and systematic interpretabil- 539

ity analysis is left for future work. 540

Reproducibility statement 541

To support the replication of our empirical findings 542

on training SAEs via layer groups and to enable 543

further research on understanding their inner works, 544

we plan to release all the code and SAEs used in 545

this study upon acceptance. 546
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A Hyperparameters 749

We train both SAEs and Group-SAEs using Top-K activation6 with K = 128 and expansion factor of 750

c = 16 on the residual stream after the MLP contribution of three models of varying sizes from the Pythia 751

family (Biderman et al., 2023): Pythia 160M, Pythia 410M, and Pythia 1B. To train all the SAEs, we 752

sample 1 billion tokens from the Pile dataset (Gao et al., 2020) and process them with a context size of 1024. 753

We use Adam optimizer (Kingma and Ba, 2017) with default β parameters and set the learning rate equal 754

to 2e-4/
√
(m/214) as specified in Gao et al. (2024). We use a batch size of 131072, 65536 and 32768 755

for the three models, respectively, to maximize computational usage. Following (Bricken et al., 2023) we 756

constrain the decoder columns (i.e. the feature directions) to have unit norm. Additionally, we normalize 757

the activations to have mean squared ℓ2 norm of 1 during SAE training, as specified in (Rajamanoharan 758

et al., 2024), by first estimating the norm scaling factor over 5 million tokens of our train set. 759

Table 3: Pythia model details.

Pythia model Non-Embedding Params Layers Model Dim Heads

160M 85,056,000 12 768 12
410M 302,311,424 24 1024 16
1.0B 805,736,448 16 2048 8

Table 4: Training and fine-tuning hyperparameters

Hyperparameter Value

c 16
Top-K K 128
αaux 1/32
Hook name resid-post

Batch size
131’072 (Pythia-160M)
65’536 (Pythia-410M)
32’768 (Pythia-1B)

Adam (β1, β2) (0.9, 0.999)
Context size 1024
lr 2e-4/

√
(m/214)

lr scheduler constant
Dead latents threshold 10M
# tokens (Train) 1B
Checkpoint freq 100K
Decoder column normalization Yes
Activation normalization Mean squared ℓ2 norm equal to 1 during SAE training
FP precision 32
Prepend BOS token No

The experiments were carried out on a cluster of 8 AMD MI250X. The longest experimental run took 760

approximately 24 hours. Our experiments were carried out using PyTorch (Paszke et al., 2019) and the 761

sparsify library.7 We performed our data analysis using NumPy (Harris et al., 2020) and Pandas (Wes 762

McKinney, 2010). Our figures were made using Matplotlib (Hunter, 2007) and Seaborn (Waskom, 763

2021). 764

6The Top-K activation function is directly applied on the features obtained with Equation1, where σ = Top-K ◦ ReLU.
7https://github.com/EleutherAI/sparsify
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B SAEs Training Details765

Following Lawson et al. (2024), given X, X̂ ∈ RB×n being the input activation batch and its SAE766

reconstruction, respectively, we train our SAEs with the following loss:767

L(X) = FVU(X, X̂) + αaux · AuxK(X, X̂) (8)768

The first term of the loss is the Fraction of Variance Unexplained, or:769

FVU(X, X̂) =
∥X− X̂∥F
∥X−X∥F

(9)770

where ∥ · ∥F is the Frobenius norm and X = 1
B1B1

⊤
BX is a matrix where each row corresponds to the771

mean of X along the batch dimension. The second term of the loss is an auxiliary loss to prevent the772

formation of dead latents during training and is defined as:773

AuxK(X, X̂) =
∥E− Ê∥F
∥X−X∥F

(10)774

Here, E = X − X̂ is the reconstruction error of the main model, and Ê is its reconstruction using the775

top-Kaux dead latents. A dead latent fi(x) is a latent that didn’t fire, i.e. fi(x) = 0, for a predefined776

number of tokens (10M in our experiments). Following Gao et al. (2024), we choose Kaux as the minimum777

between the number of dead latents and m/2, and α = 1/32.778

To ensure a fair comparison with baselines, we allocate 1 billion training tokens for each SAEl and779

SAEG
g . For baseline SAEs, activations are always taken from a single fixed layer. In contrast, for Group-780

SAEs, activations are drawn from a randomly selected layer within the set [gG]. In this way, we ensure781

that each Group- and baseline SAEs process exactly 1 billion tokens and activations.782
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C Additional Angular Distances and Layers Groups 783

We use the same angular distance formulation of Gromov et al. (2024): 784

dθ
(
xi,xj

)
=

1

π
arccos

(
xi · xj

∥xi∥2∥xj∥2

)
(11) 785

for every i, j ∈ {1, ..., L}, where xl are the l-th residual stream activations after the MLP’s contribution. 786
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Figure 5: Average angular distance between all layers of the Pythia-160M model, as defined in Equation 11. The
angular distances are computed over 10M tokens from the training dataset. The angular distances are bounded in
[0, 1], where an angular distance equal to 0 means equal activations, 0.5 means activations are perpendicular and an
angular distance of 1 means that the activations point in opposite directions.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Layer

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

La
ye

r

0.00

0.16 0.00

0.22 0.15 0.00

0.27 0.23 0.19 0.00

0.31 0.28 0.25 0.18 0.00

0.35 0.33 0.31 0.26 0.21 0.00

0.37 0.35 0.34 0.29 0.26 0.16 0.00

0.39 0.37 0.36 0.32 0.29 0.22 0.17 0.00

0.40 0.38 0.37 0.34 0.31 0.25 0.21 0.16 0.00

0.40 0.39 0.38 0.35 0.33 0.27 0.24 0.21 0.15 0.00

0.41 0.40 0.39 0.36 0.34 0.29 0.26 0.24 0.20 0.15 0.00

0.42 0.41 0.40 0.37 0.36 0.31 0.29 0.27 0.24 0.20 0.16 0.00

0.43 0.42 0.41 0.38 0.37 0.32 0.31 0.29 0.26 0.24 0.20 0.15 0.00

0.43 0.43 0.42 0.40 0.38 0.35 0.33 0.31 0.29 0.27 0.24 0.20 0.15 0.00

0.44 0.44 0.43 0.41 0.40 0.36 0.35 0.34 0.32 0.31 0.28 0.25 0.21 0.16 0.00

0.44 0.44 0.43 0.41 0.40 0.37 0.36 0.35 0.33 0.31 0.29 0.26 0.23 0.19 0.16 0.00

0.46 0.45 0.45 0.43 0.43 0.40 0.39 0.38 0.37 0.36 0.34 0.32 0.30 0.27 0.24 0.20 0.00

0.46 0.46 0.46 0.44 0.44 0.42 0.41 0.41 0.40 0.39 0.38 0.36 0.34 0.32 0.29 0.27 0.16 0.00

0.47 0.47 0.46 0.45 0.45 0.43 0.42 0.41 0.41 0.40 0.39 0.37 0.36 0.34 0.33 0.30 0.21 0.18 0.00

0.47 0.47 0.47 0.46 0.45 0.43 0.43 0.42 0.41 0.41 0.40 0.38 0.37 0.35 0.34 0.31 0.26 0.23 0.18 0.00

0.48 0.47 0.47 0.46 0.46 0.44 0.44 0.43 0.42 0.42 0.41 0.39 0.38 0.36 0.36 0.33 0.28 0.26 0.22 0.17 0.00

0.48 0.48 0.48 0.47 0.46 0.45 0.44 0.44 0.43 0.43 0.42 0.40 0.39 0.38 0.38 0.36 0.31 0.29 0.26 0.21 0.18 0.00

0.48 0.48 0.47 0.47 0.46 0.45 0.44 0.44 0.44 0.43 0.42 0.41 0.40 0.39 0.39 0.37 0.34 0.33 0.31 0.27 0.25 0.17 0.00

0.48 0.48 0.47 0.46 0.46 0.45 0.45 0.45 0.44 0.44 0.43 0.42 0.41 0.40 0.40 0.38 0.39 0.39 0.38 0.36 0.35 0.34 0.28 0.00

Average Distance Between Layers

Figure 6: Average angular distance between all layers of the Pythia-410M model, as defined in Equation 11. The
angular distances are computed over 10M tokens from the training dataset. The angular distances are bounded in
[0, 1], where an angular distance equal to 0 means equal activations, 0.5 means activations are perpendicular and an
angular distance of 1 means that the activations point in opposite directions.
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Figure 7: Average angular distance between all layers of the Pythia-1B model, as defined in Equation 11. The
angular distances are computed over 10M tokens from the training dataset and are bounded in [0, 1]. An angular
distance equal to 0 means equal activations, 0.5 means activations are perpendicular and an angular distance of 1
means that the activations point in opposite directions.

G Groups AMAD

1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0.450
2 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 0.372
3 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0 0.314
4 2, 2, 2, 0, 0, 0, 0, 1, 1, 3, 3 0.267
5 0, 0, 0, 4, 4, 2, 2, 1, 1, 3, 3 0.231
6 3, 3, 5, 4, 4, 2, 2, 0, 0, 1, 1 0.179
7 3, 3, 5, 1, 1, 2, 2, 6, 4, 0, 0 0.118
8 3, 3, 5, 1, 1, 0, 0, 6, 4, 7, 2 0.075
9 1, 1, 5, 0, 0, 8, 7, 6, 4, 3, 2 0.044
10 0, 0, 5, 9, 7, 8, 3, 6, 4, 1, 2 0.019

Table 5: Layer groups for every G up to L− 1 for Pythia-160M
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G Groups AMAD

1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0.479
2 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 0.394
3 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 0.353
4 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 0.303
5 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 1, 1, 1, 1, 1, 4, 4, 4, 2, 2, 2, 2 0.270
6 5, 5, 5, 1, 1, 1, 1, 3, 3, 3, 3, 0, 0, 0, 0, 0, 4, 4, 4, 2, 2, 2, 2 0.248
7 5, 5, 5, 0, 0, 0, 0, 1, 1, 1, 1, 6, 6, 3, 3, 3, 4, 4, 4, 2, 2, 2, 2 0.224
8 2, 2, 2, 5, 5, 7, 7, 1, 1, 1, 1, 6, 6, 3, 3, 3, 4, 4, 4, 0, 0, 0, 0 0.202
9 2, 2, 2, 5, 5, 7, 7, 0, 0, 0, 0, 6, 6, 3, 3, 3, 1, 1, 1, 8, 8, 4, 4 0.187
10 2, 2, 2, 5, 5, 7, 7, 8, 8, 9, 9, 6, 6, 1, 1, 1, 0, 0, 0, 3, 3, 4, 4 0.176
11 2, 2, 2, 5, 5, 7, 7, 8, 8, 9, 9, 6, 6, 0, 0, 0, 10, 4, 4, 3, 3, 1, 1 0.156
12 0, 0, 0, 2, 2, 7, 7, 8, 8, 9, 9, 6, 6, 11, 5, 5, 10, 4, 4, 3, 3, 1, 1 0.141
13 12, 9, 9, 2, 2, 7, 7, 8, 8, 4, 4, 6, 6, 11, 5, 5, 10, 1, 1, 3, 3, 0, 0 0.125
14 12, 9, 9, 0, 0, 7, 7, 8, 8, 4, 4, 6, 6, 11, 2, 2, 10, 1, 1, 3, 3, 13, 5 0.104
15 12, 9, 9, 14, 8, 7, 7, 3, 3, 4, 4, 6, 6, 11, 2, 2, 10, 0, 0, 1, 1, 13, 5 0.085
16 12, 9, 9, 14, 8, 3, 3, 1, 1, 4, 4, 6, 6, 11, 2, 2, 10, 15, 7, 0, 0, 13, 5 0.069
17 12, 9, 9, 14, 8, 1, 1, 0, 0, 4, 4, 6, 6, 11, 2, 2, 10, 15, 16, 7, 3, 13, 5 0.055
18 12, 4, 4, 14, 17, 0, 0, 8, 9, 1, 1, 6, 6, 11, 2, 2, 10, 15, 16, 7, 3, 13, 5 0.043
19 12, 4, 4, 14, 17, 18, 13, 8, 9, 1, 1, 2, 2, 11, 0, 0, 10, 15, 16, 7, 3, 6, 5 0.032
20 12, 1, 1, 14, 17, 18, 13, 8, 19, 0, 0, 2, 2, 11, 9, 10, 4, 15, 16, 7, 3, 6, 5 0.022
21 12, 1, 1, 14, 17, 18, 13, 8, 19, 20, 11, 0, 0, 5, 9, 10, 4, 15, 16, 7, 3, 6, 2 0.014
22 12, 0, 0, 14, 17, 18, 13, 8, 19, 20, 11, 21, 16, 5, 9, 10, 4, 15, 7, 3, 1, 6, 2 0.007

Table 6: Layer groups for every G up to L− 1 for Pythia-410M

G Groups AMAD

1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0.459
2 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 0.364
3 1, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0 0.309
4 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 1, 1, 3, 3 0.250
5 4, 4, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 3, 3 0.225
6 4, 4, 1, 1, 1, 0, 0, 0, 0, 2, 2, 5, 5, 3, 3 0.191
7 1, 1, 0, 0, 0, 4, 4, 2, 2, 6, 6, 5, 5, 3, 3 0.174
8 0, 0, 7, 3, 3, 4, 4, 2, 2, 6, 6, 5, 5, 1, 1 0.139
9 8, 4, 7, 3, 3, 1, 1, 2, 2, 6, 6, 5, 5, 0, 0 0.100
10 8, 9, 7, 1, 1, 0, 0, 2, 2, 6, 6, 5, 5, 4, 3 0.075
11 8, 9, 7, 0, 0, 10, 3, 2, 2, 6, 6, 5, 5, 4, 1 0.053
12 8, 9, 7, 11, 6, 10, 3, 0, 0, 2, 2, 5, 5, 4, 1 0.036
13 8, 9, 7, 11, 6, 10, 3, 12, 5, 0, 0, 2, 2, 4, 1 0.022
14 8, 9, 7, 11, 13, 10, 3, 12, 5, 6, 2, 0, 0, 4, 1 0.010

Table 7: Layer groups for every G up to L− 1 for Pythia-1b
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D Auto Interpretability787

To evaluate the interpretability of features of baseline and Group SAEs, we adopt automated pipeline from788

(Paulo et al., 2024b), focusing on detection and fuzzing scores. First, an explainer language model (LM)789

generates natural language explanations of the SAE latent representations. Then, a separate scorer LM790

evaluates these explanations.791

Then, detection scoring assesses whether a language model can identify entire sequences that activate a792

specific latent, given its interpretation. This method evaluates the model’s ability to distinguish between793

activating and non-activating contexts, offering insights into the precision and recall of the interpretation.794

Fuzzing scoring, on the other hand, operates at the token level, prompting the model to pinpoint specific795

tokens within sequences that trigger latent activations. This approach closely mirrors simulation scoring796

and is particularly effective in evaluating the model’s token-level understanding of latent activations.797

In our experiments, we use gemini-2.0-flash-001 as the base model for both the explainer and the798

scorer. For each SAE, we randomly select 64 features and cache their latent activations across 10M799

tokens from the Pile (Gao et al., 2020). To generate annotations, we present the explainer with 20 distinct800

examples per feature—10 that activate the latent and 10 randomly sampled—each comprising 32 tokens.801

Detection

Fuzzing

Explanation: “Words related to football positions, specifically the striker position”

Explanation: “Words related to football positions, specifically the striker position”

Sentences: 

Sentences: 

Correct output: [1, 0, 0]

Correct output: [1, 0, 1]

“Atalanta’s striker Ademola Lookman has scored twice”

“Atalanta’s <striker> Ademola Lookman has scored twice”

“names of the months used in The Lord of The Rings”

“You should know this about <advertising>”

“shown, is not generally eligible for ads. For example”

“<Dribbled> past the defenders and <shot> a perfect <strike> into the net.”

Figure 8: Examples of each of the auto-interpretability techniques: Detection and Fuzzing. In detection, the
objective is to find the sentences in which the feature is active. In fuzzing, the objective is to spot the highlighted
tokens referring to the target feature.
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E Feature Similarity Analysis 802

In this section, we perform a novel study to understand how features of Group SAEs are distributed with 803

respect to baseline ones. The question we want to answer is the following: "Given a feature i of a baseline 804

SAE trained at layer l, does a feature j similar to it also appear in a Group SAE trained on the group that 805

contains that layer?". 806

We investigate feature similarity using two complementary metrics: Mean Maximum Concordance 807

(MMCO) and Mean Maximum Cosine Similarity (MMCS). MMCO measures similarity based on feature 808

activations, while MMCS captures alignment in feature directions. 809

E.1 Mean Maximum Concordance (MMCO) 810

Let [k] = {1, ..., k}. Let N denote the number of tokens and m the total number of SAE fea- 811

tures. For a particular pair of layers l1, l2 ∈ {1, ..., L − 1}, for each token t ∈ {1, . . . , N}, let 812

FBaseline,l1
t , F

Group,l2
t ⊂ {1, . . . ,m} denote the set of features activated8 in the Baseline SAE at layer 813

l1 and in the Group SAE at layer l2 respectively. For each feature i, j ∈ {1, . . . ,m} we define the 814

per-feature occurrence sets as 815

Bl1
i = { t | i ∈ FBaseline,l1

t }, (12) 816
817

Gl2
j = { t | j ∈ F

Group,l2
t }. (13) 818

From Bl1
i and Gl2

j , we compute the co-occurrence matrix ANDl1,l2 ∈ Rm×m, where the (i, j)-th entry 819

captures the precise co-occurrence count of feature i (in the Baseline SAE) with feature j (in the Group 820

SAE). That is, 821

ANDl1,l2
ij = |Bl1

i ∩Gl2
j |. (14) 822

Moreover, we compute the ORl1,l2 ∈ Rm×m matrix, where the (i, j)-th entry represents the number of 823

tokens in which at least one of the two features is active. By the inclusion–exclusion principle, we have 824

ORl1,l2
ij = |Bl1

i |+ |G
l2
j | − ANDl1,l2

ij . (15) 825

A common similarity measure, the Jaccard index, is then defined as 826

Jaccardl1,l2ij =
ANDl1,l2

ij

ORl1,l2
ij + ε

, (16) 827

where ε is a small constant introduced to avoid division by zero. Finally, the Mean Maximum Concordance 828

(MMCO) is given by: 829

MMCOl1,l2 =
1

m

m∑
i=1

max
j∈[m]

Jaccardl1,l2ij . (17) 830

Computing the MMCO across layers between Baseline and Group SAEs allows us to visualize their 831

concordance with a heatmap. We plot the MMCO across layers for Pythia-160M, Pythia-410M and 832

Pythia-1B in Figures 9, 10 and 11 respectively. 833

8A feature i is activated on the representation xt of the token t if fi(xt) > 0.
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Figure 9: Heatmaps of Pythia-160M Mean Maximum Concordance (MMCO) for each group G ∈ {1, . . . , Ĝ} over
1 million test tokens. Darker regions indicate higher MMCO; the black squares highlight single groups in each
G-group partition.

Figure 10: Heatmaps of Pythia-410M Mean Maximum Concordance (MMCO) for each group G ∈ {1, . . . , Ĝ}
over 1 million test tokens. Darker regions indicate higher MMCO; the black squares highlight single groups in each
G-group partition.
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Figure 11: Heatmaps of Pythia-1B Mean Maximum Concordance (MMCO) for each group G ∈ {1, . . . , Ĝ} over
1 million test tokens. Darker regions indicate higher MMCO; the black squares highlight single groups in each
G-group partition.
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E.2 Mean Maximum Cosine Similarity834

Following (Ghilardi et al., 2024), we adopt Mean Maximum Cosine Similarity (MMCS) to assess the835

extent to which Baseline and Group SAEs learn similar feature directions. For any two SAEs, SAEi836

and SAEj , we compute the MMCS between their decoder matrices Wi
d,W

j
d ∈ Rn×m as these matrices837

encode the directions of the learned features:838

MMCS(Wi
d,W

j
d) =

1

m

m∑
k=1

max
l∈{1,...,m}

(
cos

(
w̃i

k, w̃
j
l

))
(18)839

where w̃i
k and w̃j

l are the k-th and l-th columns of the normalized decoder matrices W̃i
d and W̃j

d,840

respectively. The directionality of the maximum operation is important for interpretation: we first841

find, for each feature in SAEi, the most similar feature in SAEj (by cosine similarity), and then aver-842

age these maximum similarities across all features of SAEi. In our analysis, we specifically compute843

MMCS(WBaseline
d ,W

Group
d ), meaning that the resulting value represents the average highest similarity844

that each Baseline SAE feature has with any feature in the Group SAE.845

Figure 12: Mean Maximum Cosine Similarity (MMCS) between all the learned features of baseline and group SAEs
for each group G ∈ {1, . . . , Ĝ} of Pythia-160M. Colors represent the different Group SAEs of a given partition.
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Figure 13: Mean Maximum Cosine Similarity (MMCS) between all the learned features of baseline and Group
SAEs for each group G ∈ {1, . . . , Ĝ} of Pythia-410M. Colors represent the different Group SAEs of a given
partition.

Figure 14: Mean Maximum Cosine Similarity (MMCS) between all the learned features of baseline and Group
SAEs for each group G ∈ {1, . . . , Ĝ} of Pythia-1B. Colors represent the different Group SAEs of a given partition.
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F Feature Distribution Analysis846

Following (Lawson et al., 2024), we perform a study to understand how features distribute across layers847

of a given group. Previous work from (Lindsey et al., 2024) showed that activations of a given feature848

usually peak at a specific layer. To measure this phenomenon, for each Group SAE of a given partition in849

G groups, we sample 1 million tokens from the test set and compute feature distributions across the layers850

of its group.851

Figure 15: Pythia-160M feature activations distribution for every group G ∈ {1, ..., Ĝ} over 1 million tokens from
the test set. Darker regions indicate higher feature activation density.

Heatmaps in Figure 15, 16, and 17 show distributions of features activations for all the models and852

Group SAEs of partitions from 1 to Ĝ. In the images, we sort the features by the average layer they853

activate the most. Darker regions indicate higher feature activation density. Looking at the charts several854

considerations can be drawn:855

• Features activating for the first and last layers of a given group tend to be more specific for that layers856

(i.e. their activation frequencies peak at those layers).857

• Features at early layers of a model are more spread across their respective group.858

• Bigger models tend to have features more spread across the layers of a given group with respect to859

smaller models.860

In summary, while feature distributions tend to peak at a specific layer (with this being more evident861

in smaller models and later layers), they also spread across close ones. This result agrees with findings862

from (Lindsey et al., 2024) while still leaving the potential for Group SAEs to make SAE training more863

efficient.864
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Figure 16: Pythia-410M feature activations distribution for every group G ∈ {1, ..., Ĝ} over 1 million tokens from
the test set. Darker regions indicate higher feature activation density.

Figure 17: Pythia-1b feature activations distribution for every group G ∈ {1, ..., Ĝ} over 1 million tokens from the
test set. Darker regions indicate higher feature activation density.
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