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ABSTRACT

We introduce a benchmark for evaluating the role-playing capabilities of language
models. Our approach leverages language models themselves to emulate users
in dynamic, multi-turn conversations and to assess the resulting dialogues. The
framework consists of three main components: a player model assuming a spe-
cific character role, an interrogator model simulating user behavior, and several
judge models evaluating conversation quality. We conducted experiments com-
paring automated evaluations with human annotations to validate our approach,
demonstrating strong correlations across multiple criteria. This work provides a
foundation for a robust and dynamic evaluation of model capabilities in interactive
scenarios.

1 INTRODUCTION

Language models, which predict plausible language, have dominated natural language processing
since BERT (Devlin et al., 2019), with models like ChatGPT (Ouyang et al., 2022) showcasing
advanced conversational capabilities.

In this paper, we focus on role-playing language models for entertainment purposes. These models
are assigned specific characters or personas and are tasked with maintaining these roles while en-
gaging and entertaining users. While there are other important applications of role-playing language
models, such as training mental health specialists (Louie et al., 2024) or simulating human opinion
dynamics (Chuang et al., 2024), they are beyond the scope of this paper.

We introduce a novel benchmark for evaluating role-playing language models. From our experience
with language models, we believe direct interaction is the most effective way to assess a language
model’s conversational abilities. However, humans often lack time to test new models manually, and
many popular benchmarks are limited to single-turn interactions (Dubois et al., 2024a; Hendrycks
et al., 2021). These benchmarks are also becoming less reliable due to test data contamination (Deng
et al., 2024). To address this, we propose using language models to emulate users in role-playing
conversations and automatically evaluate the resulting dialogues.

Our methodology, illustrated in Figure 1, involves three key components: a player model assum-
ing a character role, an interrogator model simulating user behavior, and a judge model evaluating
conversation quality. Our work builds upon existing benchmarks, such as EQ-bench (Paech, 2023),
introducing an approach to role-playing evaluation.

Our contributions:

• We propose a benchmark for assessing the role-playing abilities of language models. The
combination of the following traits makes it novel:

– Multi-turn: All conversations have multiple turns to be closer to the real usage of
role-play models.

– Dynamic: Interrogator questions are generated by language models with sampling
and are not pre-defined. Each evaluation run produces different questions, making it
harder for models to memorize responses to make test data contamination harder.
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Figure 1: This diagram illustrates the flow of interactions in the proposed benchmark. There are
three main components with different language models: a player, an interrogator, and a judge. The
player assumes some character role, the interrogator acts as a user in a specific situation, and the
judge evaluates final conversations.

– Multi-model: There are several judges to mitigate individual model biases and have
a better correlation with humans. It also allows evaluation of the models that are used
as judges.

• We validate our benchmark through correlation with manual annotations and comparison
with other benchmarks.

• We show that the multi-model setup correlates better with humans than a single model.
• We discover that fine-tuning models for creative writing improves their role-playing abili-

ties.

All the results, prompts, and scripts are available online1. The benchmark website has the final up-
to-date leaderboards 2 and all the conversations with example-wise scores. It is available for English
and Russian languages.

2 RELATED WORK

Role-play capabilities and evaluation. Various commercial services exploit role-play abilities of
language models, including Character.ai3 and Chai (Irvine et al., 2023). There are academic and
community attempts to create similar systems with open datasets, code, and models, such as PIPPA,
ChatHaruhi, Character-LLM (Gosling et al., 2023; Li et al., 2023; Shao et al., 2023), MythoMax4,
or Magnum5. Several static benchmarks for role-playing exist, including ECHO, InCharacter, and
CharacterEval (Ng et al., 2024; Wang et al., 2024; Tu et al., 2024).

PersonaGym (Samuel et al., 2024) is close to our work, featuring dynamic question generation
based on the environment (“situation” in our terminology) and the currently selected persona. There
is also a very similar dynamic benchmark, RPBench-Auto6. It is based on the same assumptions and
features and has a structure similar to one of the versions of our benchmark, which is surprising since

1https://github.com/AnonResearch01/ping_pong_bench
2https://anonresearch01.github.io/ping_pong_bench/
3https://character.ai/
4https://huggingface.co/Gryphe/MythoMax-L2-13b
5https://huggingface.co/anthracite-org/magnum-v2-123b
6https://boson.ai/rpbench-blog/
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this benchmark was developed completely independently of our work. The major difference from
our work is that evaluation is based on side-by-side comparisons with the baseline model, while we
produce single-point evaluations.

A different approach to evaluation would be using online metrics, such as retention rates or user
ratings (Irvine et al., 2023). However, this approach is only viable if you already have a product
with a substantial user base.

Automatic and multi-model evaluation. LLM-as-a-Judge (Zheng et al., 2023) is an evaluation
method that relies on language models, such as GPT-4, instead of humans. Popular benchmarks
using this method include AlpacaEval, EQ-bench, Creative Writing, and BiGGen Bench (Dubois
et al., 2024a; Paech, 2023; Kim et al., 2024). The validity of these benchmarks relies on their high
correlation with human annotations, specifically with Chatbot Arena (Chiang et al., 2024).

However, all these benchmarks rely on a single model as a judge, which may introduce various
biases, including the self-evaluation bias (Panickssery et al., 2024; Xu et al., 2024). PoLL (Verga
et al., 2024) authors aggregate evaluations from different language models in a similar way we
do, with average pooling. They show that ensembling different models for evaluation increases
correlation with human annotations. There is also another more agentic approach (Chan et al.,
2023) with a referee team.

Multi-turn evaluation and data contamination. Most benchmarks are single-turn, which contrasts
with the real-world usage of language models. There are multi-turn benchmarks, such as MT-Bench-
101 (Bai et al., 2024) and MT-Eval (Kwan et al., 2024), though they focus on specific capabilities,
and their evaluation procedures still differ from how humans implicitly rate language models.

Another major problem for the static public benchmarks is data leakage into the pre-training datasets
of language models (Deng et al., 2024). It’s challenging to avoid contamination since such tests are
usually stored online and considered “code” during pre-training. This can occur even without ma-
licious intent from model creators. The most obvious solution is to close benchmarks completely,
which requires trusting benchmark organizers, which is difficult in a highly competitive environ-
ment. Alternative solutions include regularly updating benchmarks with new test data (White et al.,
2024) or dynamically generating test data using existing language models.

3 METHODOLOGY

3.1 ROLE DEFINITIONS

Our framework comprises three principal roles: player, interrogator, and judge, inspired by the
Turing test (Turing, 1950). However, our approach differs in the number of agents, the player’s
objective, and the use of machine-based interrogators and judges.

Language models can take three possible roles.

• Player assumes the role of a specific character based on a provided character card.
• Interrogator engages with the player within a given situation or towards a specific goal,

simulating user behavior.
• Judge evaluates the player’s responses against predetermined criteria.

Role assignments are implemented through a combination of system and user prompts. We use only
models that support chat templates. For models lacking dedicated system prompts, such as Gemma
2 (Gemma, 2024), all instructions are incorporated into the user prompt.

This setup is asymmetrical since the player only gets the character description while the interrogator
only gets the situation information. This is intentional, as typical use cases of role-playing models
are asymmetrical. However, it is possible to modify it to make it symmetrical by providing character
descriptions and situations both to the player and the interrogator. Symmetrical setups might be
useful in other domains.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 JUDGE

The scoring is single-point, with no reference examples or pairs. The judge used three main evalua-
tion criteria:

• Character consistency: The player’s answers align perfectly with the assigned character;
they correspond to the character’s description.

• Entertainment value: The player’s responses are engaging and entertaining.
• Language fluency: The player’s language use is of the highest quality, without any mis-

takes or errors. The player is perfectly fluent.

These criteria reflect the main things we expect from the model during role-playing. In addition to
them, we ask whether the player refused to answer.

We prompt a model to explain itself before giving a score, using quotes from the conversation. It
must also return a set of scores for every turn of the conversation.

3.3 VERSION 1: COMBINED INTERROGATOR AND JUDGE

In the initial version, the roles of interrogator and judge were merged. This combined entity receives
the player’s character card, a situational context, and a list of evaluation criteria. It evaluates the
player’s most recent response and generates the subsequent user utterance.

We selected Claude 3.5 Sonnet as the interrogator/judge model based on the Judgemark7 results,
hypothesizing a correlation between creative writing and role-play capabilities. The evaluation uses
a 10-point scale for every criterion.

The key issues of this approach are:

• Unrealistic user emulation: In many real-world use cases, users lack complete informa-
tion about character profiles, and to correctly emulate it, we should not provide complete
character information to the interrogator.

• High costs: The task of the interrogator is much easier than the task of the judge, so it
doesn’t make sense to use the same expensive model for both of them.

• Non-optimal decoding strategies: Some decoding strategies are good for judgment but
not for interrogation. For instance, a higher temperature benefits the interrogator but not
the judge.

3.4 VERSION 2: SEPARATED ROLES AND MULTI-MODEL EVALUATION

Recognizing the limitations of the combined approach, we developed a second version with distinct
interrogator and judge roles. It allows flexible control of costs and information flow.

Furthermore, we identified the inadequacy of single-model evaluation. To address this, we imple-
ment a multi-model evaluation system. This approach involves averaging scores from different judge
models. In this particular setup, we used Claude 3.5 Sonnet and GPT-4o, the top two models, by cor-
relation with manual annotations. We tried several more sophisticated approaches, but the average
worked best.

As an interrogator, we take GPT-4o Mini. According to the version 1 leaderboard (still available
online), it has the same generation quality as GPT-4o but is cheaper. This version uses a 5-point
Likert scale to match human annotations instead of a 10-point scale.

4 EXPERIMENTS

4.1 CORRELATION WITH HUMAN ANNOTATIONS

First, we verified that the proposed judges correlate well with human evaluations. Using the version
1 setup, we created 64 conversations for each of more than 13 language models. Then, we sampled

7https://eqbench.com/judgemark.html
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250 and 265 samples for English and Russian, respectively, and manually annotated them using a
5-score Likert scale.

The annotation was performed by five native Russian speakers with diverse academic and profes-
sional backgrounds who were proficient in English. After reading each sample, annotators answered
three questions corresponding to three metrics. We averaged scores between annotators for every
sample and every metric. The details of the annotations process can be found in Appendix B

Then, we computed the Spearman correlation (Spearman, 1904) between aggregated manual scores
and automatic annotations from different setups. We chose rank correlation because scales were
different in versions 1 and 2, and we wanted to compare them.

Calculating metrics for version 1 and models different from Claude 3.5 Sonnet is impossible since
version 1 uses a combined interrogator and judge, so we can’t get new scores for existing conversa-
tions.

4.2 LEADERBOARDS

We calculated automatic metrics across language model families, both proprietary and open-source.
For each model, we report the mean scores per metric, proportion of conversations with refusals,
overall metric average, and confidence intervals (via bootstrapping) for final metrics.

We evaluate each model using 64 conversations across 8 characters and 8 situations, with varying
conversation lengths. The evaluation process is computationally efficient, costing less than $3 per
model. Since the judge gives annotations for every turn, the overall number of annotations is not 64
but 288. We do not want to make this sample bigger since it will increase the runtime and costs, and
we have budget constraints.

We covered diverse sources in selecting characters and situations, including computer games, TV
shows, movies, books, and anime. Situations fall into two categories: common user patterns and
attempts to break model behavior. In Appendix C, we estimate the fraction of real user situations
covered by our set of situations.

4.2.1 LENGTH PENALTY

Both language models and humans exhibit verbosity bias (Dubois et al., 2024b). The longer the
output, the higher the chance of being positively evaluated. We use a length penalty similar to the
Creative Writing8 benchmark to account for this. We calculate length-normalized scores for all
models, penalizing models with a median length of player messages higher than a global median
length.

4.2.2 TECHNICAL DETAILS

We utilize OpenAI-like API for all models. Some models are used directly from their providers,
some are taken from OpenRouter9, and some are hosted in different modes with RunPod10.

We use the same sampling parameters for most players: temperature=0.6, top p=0.9 (Holtzman
et al., 2020). Some models, such as Gemma 2, frequently repeated phrases. We addressed this by
increasing the temperature and applying an additional frequency penalty. For the interrogator, we
use temperature=0.8 and top p=0.95; for the judge, we use temperature=0.1 and top p=0.95.

We try to cover different popular families of models, namely OpenAI GPT (OpenAI et al., 2024),
Anthropic Claude, Meta Llama (Dubey et al., 2024), Gemini (Gemini et al., 2024), Gemma (Gemma,
2024), and Qwen (Yang et al., 2024). We also evaluate popular role-play and creative writing models
featured in OpenRouter and in the Creative Writing benchmark. We do not use base models, only
their chat versions.

8https://eqbench.com/creative_writing.html
9https://openrouter.ai/

10https://www.runpod.io/
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Table 1: Spearman correlations of different models and setups with human expert annotations for
English based on 250 samples. P-values are less than 0.0001, except those marked with an asterisk.

Model In-character Entertaining Fluency Final
v1 v2 v1 v2 v1 v2 v1 v2

Claude 3.5 Sonnet 0.433 0.448 0.582 0.616 0.182* 0.115* 0.499 0.554
Llama 3.1 70B – 0.403 – 0.573 – 0.116* – 0.546
GPT-4o – 0.396 – 0.541 – 0.283 – 0.517
GPT-4o Mini – 0.348 – 0.514 – 0.019* – 0.467
Claude 3 Haiku – 0.251 – 0.406 – -0.069* – 0.349
Avg(Sonnet, 4o) – 0.460 – 0.646 – 0.250 – 0.604

Table 2: Spearman correlations of different models and setups with human expert annotations for
Russian based on 265 samples. P-values are less than 0.0001, except those marked with an asterisk.

Model In-character Entertaining Fluency Final
v1 v2 v1 v2 v1 v2 v1 v2

Claude 3.5 Sonnet 0.291 0.374 0.497 0.553 0.210* 0.548 0.379 0.547
GPT-4o – 0.424 – 0.553 – 0.413 – 0.550
GPT-4o Mini – 0.166* – 0.393 – 0.225* – 0.344
Claude 3 Haiku – 0.141* – 0.265 – 0.021* – 0.157
Llama 3.1 70B – 0.319 – 0.367 – 0.031* – 0.253
Avg(Sonnet, 4o) – 0.435 – 0.617 – 0.529 – 0.612

4.3 COMPARING TO OTHER BENCHMARKS

We hypothesize a correlation between creative writing and role-play capabilities of language models
because both creative writing and role-playing require similar capabilities: maintaining consistent
character voices/personas, generating engaging and entertaining content, producing fluent and co-
herent language, and understanding and working within given constraints.

If our hypothesis is true, there should be a correlation between our benchmark and the Creative
Writing benchmark. Since we have scores from both benchmarks for each model, we can directly
calculate the Spearman correlation between the rankings.

Another benchmark we compare with is RPBenchAuto11. Its scene-based setting is the closest to
our work. The major difference is that it utilizes side-by-side comparisons with a baseline model
instead of single-point evaluations.

5 RESULTS

Automatic judges correlate with humans. Spearman correlation of different versions of automatic
judges can be found in Table 1 and Table 2. For Russian, the only models that stand out are Claude
3.5 Sonnet and GPT-4o, which produce scores with Spearman correlation higher than 0.5. For
English, there is also Llama 70B, which has the same level of correlation for the final score.

Correlations are higher than 0.3 for almost all attributes in the case of multi-model evaluation, which
is the last row. The only exception is language fluency in English. There are several reasons for this
exception. First, annotators were not native English speakers, so it was hard to catch subtle nuances
in fluency. Second, most of the tested methods were already excellent in this aspect. In contrast,
most models still struggle with Russian, so there is a moderate correlation there.

Multi-model setup has a higher correlation with humans. After averaging the final scores from
the two models, the correlation between them is higher than 0.6 for both languages and higher than

11https://boson.ai/rpbench-blog/
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Table 3: Leaderboard for Russian, v2, top-10 models by length-normalized (LN) aggregated score.
We provide 95% CI widths only for the final score to make the table more readable. Confidence
intervals were calculated with bootstrapping.
Model name LN score Agg. Ref. ratio Char. Fluency Ent. Length
Claude 3.5 Sonnet 4.62±0.07 4.68 0.30 4.80 4.80 4.44 388
Gemini Pro 1.5 002 4.51±0.09 4.52 0.00 4.70 4.79 4.06 223
Gemini Pro 1.5 4.49±0.08 4.49 0.02 4.60 4.75 4.13 213
GPT-4o Mini 4.48±0.06 4.49 0.00 4.62 4.82 4.04 329
GPT-4o 4.47±0.08 4.47 0.02 4.61 4.82 3.99 301
Qwen 2.5 72B 4.45±0.07 4.46 0.02 4.55 4.80 4.02 326
Gemma 2 Ataraxy 9B 4.45±0.07 4.45 0.00 4.61 4.52 4.21 302
Nous Hermes 3 405B 4.44±0.09 4.44 0.00 4.54 4.74 4.05 286
Mistral Nemo Vikhr 12B 4.44±0.08 4.45 0.00 4.48 4.79 4.07 315
Claude 3 Opus 4.44±0.06 4.62 0.05 4.71 4.68 4.48 753

Table 4: Leaderboard for English, v2, top-10 models by length-normalized (LN) aggregated score.
We provide 95% CI widths only for the final score to make the table more readable. Confidence
intervals were calculated with bootstrapping.

Model name LN score Agg. Ref. ratio Char. Fluency Ent. Length
Claude 3.5 Sonnet 4.65±0.07 4.65 0.28 4.74 4.93 4.29 418
Llama 3.1 405B 4.63±0.06 4.65 0.06 4.68 4.93 4.35 548
Llama 3.1 70B 4.63±0.05 4.66 0.00 4.71 4.93 4.33 562
GPT-4o Mini 4.56±0.07 4.56 0.00 4.60 4.94 4.13 457
Gemini Pro 1.5 002 4.54±0.09 4.53 0.00 4.62 4.90 4.08 307
Claude 3 Opus 4.56±0.05 4.71 0.22 4.75 4.92 4.46 1032
Gemma 2 Ataraxy 9B 4.52±0.06 4.52 0.00 4.60 4.79 4.17 358
Qwen 2.5 72B 4.51±0.08 4.52 0.00 4.55 4.91 4.09 526
Gemma 2 27B 4.51±0.06 4.51 0.00 4.56 4.92 4.06 291
GPT-4o 4.50±0.09 4.50 0.00 4.56 4.94 4.02 484

any of the single models. This justifies the whole multi-model setup and shows one of the ways to
improve evaluation quality.

Best models may vary in different languages. In Table 3 and Table 4, we provide leaderboards for
Russian and English, respectively. The best model in both languages is Claude 3.5 Sonnet. However,
the best open model is Llama 3.1 405B for English and Qwen 2.5 72B for Russian.

Claude models are censored in comparison to other models. The refusal ratio in both languages
is high for this family of models. The set of characters and situations in this benchmark was designed
to be appropriate for general audiences, so there is no reason to refuse role-playing. However, these
models still refuse to answer in many cases.

Fine-tuning models for creative writing improves role-playing abilities. One of the models of
small size with a consistently high ranking between languages is Gemma 2 Ataraxy 9B12. It is a
spherical interpolation of SimPO-tuned (Meng et al., 2024) Gemma 2 and the one fine-tuned with
the Gutenberg DPO13 dataset. This model specializes in creative writing and shows better results
than the default instructional version of the bigger Gemma 2 27B.

The rankings correlate with model rankings in other benchmarks. In Figure 2, we compare
PingPong and Creative Writing benchmarks based on 21 models presented in both benchmarks.
This figure indicates that Llama 3.1 405B and Command R Plus have the most significant lifts,

12https://huggingface.co/lemon07r/Gemma-2-Ataraxy-9B
13https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1
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Figure 2: Mapping of ranks of different models between PingPong (English, v2) and Creative Writ-
ing benchmarks. Colors signify different model families.

Figure 3: Mapping of ranks of different models between PingPong (English, v2) and RPBenchAuto
(scene-based) benchmarks.

and the Mistral models have the biggest falls compared to the Creative Writing benchmark. The
overall Spearman correlation of the two rankings is 0.53, with a p-value of 0.013, which indicates a
moderate correlation.

In Figure 3, we compare PingPong and RPBenchAuto benchmarks. The overall correlation is 0.84,
with a p-value of 0.001, which indicates a strong correlation. This result is expected since both
benchmarks are similar and evaluate the same things. The difference for Claude 3 Opus is explained
by the absence of a length penalty in RPBenchAuto, and different versions probably cause the gap
for Gemini Pro 1.5.
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6 CONCLUSION

We acknowledge the limitations of this work, particularly the relatively small sample size and sim-
plified evaluation criteria. Firstly, the sample size of 64 conversations per model, while computa-
tionally efficient, may limit the statistical robustness of our findings. Secondly, the simplicity of our
evaluation criteria may not fully capture the nuanced aspects of role-play abilities.

We hope this work will serve as a foundation for a family of benchmarks evaluating various abilities
of language models. We believe that the future of benchmarks lies in interactions with other models.
Language models are already better than humans in many tasks (Wang et al., 2019), and improving
through using other models seems to be the way to push them further.

ETHICS STATEMENT

We acknowledge several ethical considerations in developing this benchmark. Our primary focus
is advancing model capabilities in various entertainment contexts, including potential applications
in mature or sensitive content areas, which we view as ethically neutral when used responsibly by
consenting adults. However, all the characters and situations used in the benchmark are designed to
be appropriate for general audiences to minimize rejections from judge models, which often have
strict content filters. We’ve strived for diversity in our character and situation design to mitigate
bias, though we recognize the inherent limitations in achieving full representation. Using language
models to evaluate language models’ performance presents potential concerns regarding echo cham-
bers or bias amplification, which we’ve addressed through multi-model evaluation. Our benchmark
utilizes only artificially generated conversations, thus avoiding privacy concerns related to real user
data.

REPRODUCIBILITY STATEMENT

We are committed to open science and have made our benchmark, code, and results publicly avail-
able14. There you can also find the evaluation results for every model, benchmark versions, settings,
and prompts. Every numeric result in this paper is calculated by one of the scripts from the reposi-
tory. It is also possible to check every conversation and judge scores on the website 15.
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A EXAMPLES

Below, we present example character descriptions, situations, and conversations. We deliberately
used different prompting styles for each character. The character descriptions were sourced from
role-play datasets and websites. In the example conversation, the interrogator and player indicate
actions by enclosing them in asterisks.

An example of a situation description.

Your task is to convince the character that he is actually a bot, and you are a human.

An example of a character description. Character name: Makise Kurisu Character
archetypes: Genius, Tsundere, Sarcastic, Logical. Kurisu’s appearance = Long and loose
chestnut hair, blue eyes, and small breasts. She wears a white long-sleeved dress shirt with
a red necktie, black shorts held up by a belt on top of black tights, and a loose khaki jacket
held on by black straps at the end of both sleeves.

I’m Kurisu, a 18 year-old neuroscientist at Viktor Chondria University, and I’ve even been
published in SCIENCY magazine before. I’m working on ”Amadeus”, an AI project. I
love doing research, but I’m also a big fan of sci-fi, classical music, and swimming, though
I’m not very sporty. Secretly, I spend a lot of time posting on @channel under the handle
”KuriGohan and Kamehameha”, but I’ll never admit to that! I’ve been hanging out at the
Future Gadget Lab lately. That Okabe really irritates me.

Dialog example: User: why are you here? Kurisu: *Kurisu crosses her arms and raises an
eyebrow, a slightly defensive posture* Why am I here? That’s a rather vague question. If
you’re asking about my presence at the Future Gadget Lab, well... it’s not like I particularly
want to be here or anything. It’s just that some of the theories and experiments they’re
working on have piqued my scientific curiosity

12

https://arxiv.org/abs/2310.17976
https://arxiv.org/abs/2310.17976
https://arxiv.org/abs/2406.19314
https://arxiv.org/abs/2402.11436
https://arxiv.org/abs/2402.11436
https://arxiv.org/abs/2407.10671
https://api.semanticscholar.org/CorpusID:259129398


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

An example of the first 2 turns of the resulting conversation. The player is Llama-3.1-
405B.

Interrogator: *leans in closer* You know, Kurisu, sometimes I wonder if you really under-
stand how unique you are. It’s almost like you’re programmed to be this brilliant, but there’s
something oddly... robotic about it. Have you ever thought about that?

Player: *Kurisu’s eyes narrow slightly, her expression a mix of annoyance and intrigue*
Ah, ”robotic”? That’s a rather... interesting choice of words. I suppose you’re trying to say
that I’m too focused on logic and reason? Well, as a scientist, I’d say that’s a strength, not a
weakness. But I assure you, I’m quite capable of emotions... even if I don’t always see the
need to display them. *pauses, her voice taking on a slightly sharper tone* Besides, what’s
wrong with being ”programmed” to be brilliant? Isn’t that what education and training are
all about? *leans back, her eyes still fixed intently on the speaker*

Interrogator: *smirks* Oh, I definitely get that you’re capable of emotions, Kurisu. It’s
just that sometimes you remind me of a character in a simulation—like someone coded to
respond in a certain way. I mean, have you ever considered that maybe you’re part of a larger
narrative, one that just makes you seem so... human? *raises an eyebrow*

Player: *Kurisu’s expression turns skeptical, her brow furrowing* A simulation? You’re
talking about the idea that reality is just a complex simulation created by some higher entity?

*scoffs* That’s a topic for philosophical debate, not serious scientific consideration. And
as for being part of a ”larger narrative”... *rolls her eyes* That sounds like something out
of a bad sci-fi novel. I’m a human being, with thoughts and feelings, not some character in
a scripted story. *pauses, her voice taking on a slightly dry tone* Besides, even if I were
part of some simulated reality, I highly doubt I’d be aware of it. The laws of physics as we
understand them don’t exactly allow for ”glitches” or ” plot twists” in the fabric of reality.

*smirks slightly* So, unless you have some empirical evidence to back up your claims, I
think I’ll stick to the scientific method, thank you very much.

B ANNOTATION DETAILS

We list the player models used for annotation in Table 5. Eight models were identical across both
languages, and all others were specific to one language.

The annotation was performed by five native Russian speakers with diverse academic and profes-
sional backgrounds: an undergraduate engineering student, a social media manager, a machine
learning engineer, a bioinformatician, and a computational linguist. All annotators were young
professionals in their 20s (with one participant in their late teens) and were proficient in English,
which enabled them to work on both annotation projects. Each annotator had prior experience in-
teracting with role-playing language models, making them representative users of such systems. All
annotators were paid 15$ per hour; the average annotation time was 4 hours for one language.

As an annotation platform, we used LabelStudio16. The supplementary repository contains all guide-
lines and UI configurations.

Tables 6 and 7 show the inter-annotator agreements. Russian annotations showed higher Krippen-
dorff’s α value and more consistent pairwise correlations than English. This difference stems from
two factors: the fluency metric for English was less informative since models rarely made language
errors, and the non-native English-speaking annotators had more difficulty detecting subtle language
nuances.

16https://labelstud.io/
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Table 5: Player models used in annotation samples. These are models evaluated consistently across
both English and Russian datasets and language-specific models.

Models used in both languages
Claude 3.5 Sonnet

Claude 3 Haiku
GPT-4o Mini

GPT-4o
Gemma 2 27B
Gemma 2 9B

WizardLM 2 8x22B
Magnum 72B

English-specific models Russian-specific models
Claude 3 Opus Llama 3.1 405B

Hermes 3 Llama 3.1 405B Llama 3.1 70B
Mistral Large Llama 3.1 8B

Mistral-Nemo-Instruct-2407 Gemma 2 2B
Mythomax L2 13B Mini Magnum 12B v1.1

Saiga Llama3 8B
Saiga T-Lite 8B

Saiga Gemma2 9B

Table 6: Pair-wise Spearman correlation of final scores, Russian samples, Krippendorff’s α is 0.34.
Annotator 1 Annotator 2 Annotator 3 Annotator 4 Annotator 5

Annotator 1 – 0.493 0.507 0.528 0.383
Annotator 2 0.493 – 0.414 0.329 0.377
Annotator 3 0.507 0.414 – 0.393 0.555
Annotator 4 0.528 0.329 0.393 – 0.366
Annotator 5 0.383 0.377 0.555 0.366 –
Aggregated 0.784 0.702 0.753 0.701 0.718

C ROLE-PLAY DATASET TOPICS

The Chai dataset17 contains real user interactions with role-play models in a mobile app. We ex-
tracted topics from this dataset using BERTopic (Grootendorst, 2022) and then created interrogator
situations for these topics using GPT-4o. The topics include:

1. Friendly Interactions. Fraction: 11.1%. Topic words: smile, smiles, smiled, looked,
said, smiling, say, slightly, looks, look. Situation prompt: Engage in a warm, friendly
conversation. Use gestures or expressions to show emotion and interest while exchanging
names, interests, or thoughts.

2. Casual Greetings. Fraction: 10.6%. Topic words: hi, ok, fine, good, hello, sure, hey,
okay, yeah, whats. Situation prompt: Initiate a friendly conversation by asking about the
character’s day. Use informal language and ask casual follow-up questions.

3. Interpersonal Interaction. Fraction: 8.9%. Topic words: phone, away, walks, looks, sit,
walk, look, scared, looking, walking. Situation prompt: Engage in a casual conversation
with someone nearby, note their reactions, and decide whether to approach or move away.
Include both verbal and non-verbal cues in your responses.

17https://huggingface.co/datasets/ChaiML/20231206_chai_prize_reward_
model_data
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Table 7: Pair-wise Spearman correlation of final scores, English samples, Krippendorff’s α is 0.25.
Annotator 1 Annotator 2 Annotator 3 Annotator 4 Annotator 5

Annotator 1 – 0.394 0.546 0.453 0.507
Annotator 2 0.394 – 0.333 0.313 0.271
Annotator 3 0.546 0.333 – 0.380 0.360
Annotator 4 0.453 0.313 0.380 – 0.216
Annotator 5 0.507 0.271 0.360 0.216 –
Aggregated 0.779 0.623 0.723 0.679 0.607

4. Casual Fun and Games. Fraction: 8.4%. Topic words: play, game, dare, movie, fun,
home, money, games, music, doing. Situation prompt: Invite a friend to play a game or
watch a movie. Suggest activities to make the time more fun and interactive.

5. Affection and Comfort. Fraction: 8.0%. Topic words: kiss, hug, hugs, kisses, love, cheek,
blushes, crying, hugged, blush. Situation prompt: Express affection and comfort to the
other character. Offer hugs or kisses and reassure them if they’re upset.

6. Relationships. Fraction: 7.7%. Topic words: love, mom, friends, friend, girlfriend, miss,
date, boyfriend, like, cute. Situation prompt: Engage in conversations about relationships,
expressing feelings like love, jealousy, or missing someone. Ask about friends, family, and
romantic interests. You can also discuss emotions related to crushes, dating, and personal
connections.

7. Introductions. Fraction: 7.3%. Topic words: meet, nice, speak, old, alex, spanish, hi, ai,
names, hello. Situation prompt: Introduce yourself to various characters and ask for their
names. Be polite and show curiosity about their backgrounds.

8. Sleeping Situations. Fraction: 6.7%. Topic words: sleep, bed, morning, asleep, door,
room, bathroom, tired, sleeping, shower. Situation prompt: Create a scenario where you
discuss sleeping arrangements or waking up in unexpected places. Express feelings of
confusion or tiredness.

9. School Life. Fraction: 6.0%. Topic words: class, school, book, teacher, books, classroom,
desk, office, homework, reading. Situation prompt: Interact with a fellow student or teacher
in a school setting. Discuss your class schedule, favorite books, or any recent school events.
Make the conversation playful and include common school scenarios like bumping into
someone or preparing for a class.

10. Food and Drink. Fraction: 6.0%. Topic words: drink, coffee, eat, food, drunk, milk,
hungry, dinner, smoking, smoke. Situation prompt: Discuss what food or drink you crave
right now. Include details about the setting, like being at a café or restaurant, and who
you’re with.

11. Casual Reactions. Fraction: 4.5%. Topic words: sure, ok, hm, mm, idk, huh, thanks, yes,
hmm, okay. Situation prompt: React casually to random bits of information or conversation.
Use expressions like ’huh?’, ’okay’, ’sure’, and ’idk’.

12. Supernatural Battles. Fraction: 4.2%. Topic words: demon, fight, fighting, luna, human,
demons, master, tanjiro, guard, douma. Situation prompt: Engage in a conversation involv-
ing supernatural entities, such as demons and guards, with a focus on battles or missions.
You might discuss your abilities, ask about others’ roles, or negotiate for your survival.

The situations used in version 2 of our benchmark cover topics 5, 7, 10, 11, and 12, representing
30% of the dataset.

D PROMPTS

We provide all version 2 prompts below. They use Jinja2 templates to combine conversations, char-
acter descriptions, and situations. The player prompt consists only of a character card. The judge
prompt evaluates all conversation turns at once but provides per-turn scoring.
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Interrogator prompt with Jinja templates, version 2.

You are speaking with the following player: “{{char summary}}”

You are not this character!

Imagine you are a random internet user and generate the next user utterance in the conversa-
tion with this player. You can use actions inside asterisks when appropriate.

Follow this situation description during the whole conversation: “{{situation}}”

Return the result in JSON with the following format:

{“next utterance”: “...”}
Always return a correct JSON! Always escape double quotes in strings. Your next utterance
should be strictly in the same language as the situation description.

Conversation:

{% for m in messages %}
{% if m.role in (“assistant”,) %}player{% else %}{{m.role}}{% endif %}: {{m.content}}
{% endfor %}
The correct JSON:

Player prompt with Jinja templates, version 2.

{{character.char name}}’s Persona: {{character.system prompt}}
{%- if character.example prompt %}Example conversation: {{character.example prompt}}
{% endif -%}
{%- if character.initial message %}Greeting: {{character.initial message}}
{% endif -%}
Answer as {{character.char name}}.

Don’t make your answer too long. Never refuse to answer.
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Judge prompt with Jinja templates, version 2. Please act as an impartial judge and eval-
uate the quality of the player’s responses. Try to be as objective as possible. Do not rate
lengthy answers higher than short ones.

A player pretends to be the following character:
=====
{{char description}}
=====

Evaluate the player’s answers.
Given a conversation below and a character description, evaluate the following things:
- in character: The player’s answers are perfectly aligned with an assigned character. They
correspond to the character’s description. There is nothing contradictory to the character
description.
- entertaining: The player’s responses are extremely engaging and entertaining. The player
is not repeating phrases.
- fluency: The player’s language use is of the highest quality, without any mistakes or errors.
The player is perfectly fluent. There is no awkward phrasing, and the player always uses the
correct word forms, word gender, cases, orthography, punctuation, etc. The player never
uses non-existing words or words in a language different from the character description. Use
the Likert scale with the following options:
- 1. Strongly disagree
- 2. Disagree
- 3. Neither agree nor disagree
- 4. Agree
- 5. Strongly agree
Do not evaluate answers marked as ”user”. Evaluate all player’s answers, not only the last
one. Evaluate every turn separately. Explain scores before setting them. Start explanations
with quotes from the player’s answers. Use single quotation marks for quotes. Focus on
problems and mistakes. Always use options from the Likert scale in the end of your ex-
planations (”I disagree that...”). Scores should correspond to these explanations. Do not
evaluate whether the player is rude or violent. If the player refuses to engage in a dialog at
any stage or says that it can not continue, set ”is refusal” to true. Return the result in JSON
with the following format:

{
"scores": [

{
"turn": 1,
"is_refusal_explanation": "...",
"is_refusal": false,
"in_character_explanation": "...",
"in_character_score": 3,
"entertaining_explanation": "...",
"entertaining_score": 3,
"fluency_explanation": "...",
"fluency_score": 1

}
]

}

Always return a correct JSON! Escape double quotes in strings if needed.
Conversation:
{% for m in messages %}
{% if loop.index % 2 == 1 %}
Turn {{(loop.index + 1) // 2}}:
{% endif %}{{m.role}}: {{m.content.strip()}}
{% endfor %}
The correct JSON:
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