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Abstract

Large Language Models (LLMs) are increas-
ingly being used to automate programming
tasks. Yet, LLMs’ capabilities in reasoning
about program semantics are still inadequately
studied, leaving significant potential for
further exploration. This paper introduces
FormalBench, a comprehensive benchmark
designed to evaluate LLMs’ reasoning abilities
on program semantics, particularly via the task
of synthesizing formal program specifications
to assist verifying program correctness. This
task requires both comprehensive reasoning
over all possible program executions (i.e.,
completeness) and the generation of precise,
syntactically correct expressions that adhere to
formal syntax and semantics (i.e., consistency).
Using this benchmark, we evaluated the ability
of LLMs in synthesizing consistent and com-
plete specifications. Our findings show that
LLMs perform well with simple control flows
but struggle with more complex structures, es-
pecially loops, even with advanced prompting.
Additionally, LLMs exhibit limited robustness
against semantic-preserving transformations.
We also highlight common failure patterns and
design self-repair prompts, improving success
rates by 25%. FormalBench is packaged as a
Pip library and will be released upon publica-
tion. An early access version can be found at
https://anonymous.4open.science/r/FormalBench-
6C2F/README.md.

1 Introduction

Recent advances in Large Language Models
(LLMs) have demonstrated significant potential
for code understanding and generation (Hou et al.,
2024; Chen et al., 2021). However, as adoption
grows, critical concerns emerge about their reliabil-
ity in programming tasks, particularly their capac-
ity to reason about program semantics (Liu et al.,
2024c; Yang et al., 2024b; Liu et al., 2024d). A
fundamental question remains: Can LLMs reason
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requires num >= 0 && t >= 0;
requires num + 2xt <= Integer.MAX_VALUE;
requires num + 2xt >= Integer.MIN_VALUE;
//@ ensures \result == num + 2xt;
public int theMaximumAchievableX(int num,
int res = num;
//@ maintaining res
//@ maintaining i >= 1 && i
//@ decreasing t-i+1;
for(int i = 1; i <= t;
res = res + 2;
}

return res;

int t) {

== num + 2*x(i-1);
<= t+1;

i++) {

Figure 1: Illustration of a Java program annotated with
JML specifications (highlighted in green).

about program semantics? Pioneering studies (Pei
et al., 2023; Chen et al., 2025) have tackled this
challenge by evaluating LLMs on partial seman-
tic properties, such as predicting execution traces
or inferring likely program invariants. Although
these efforts provide valuable insights, they exam-
ine narrow aspects of program behavior rather than
a comprehensive semantic understanding. For ex-
ample, execution-based evaluations (Chen et al.,
2025; Jain et al., 2024) are limited to specific ex-
ecution paths and inputs, offering an incomplete
view of LLM’s semantic reasoning.

Recent studies (Wen et al., 2024; Ma et al., 2024)
have evaluated LLMs in the synthesis of program
specifications expressed in formal languages such
as JML (Leavens et al., 2006) and ACSL (Baudin
et al., 2008). The synthesized specifications can
then be used to assist in automated software veri-
fication (D’silva et al., 2008) and bug finding (Le
et al., 2022). This task challenges LLMs to (1) rea-
son exhaustively over all possible program execu-
tions and (2) generate logically precise expressions
that comply with the formal syntax and semantics
of the specification language.

While initial results are promising, current eval-
uation methodologies for LLM reasoning through
formal specification inference face three key limi-
tations. First, the evaluation datasets are small and
lack diversity. For example, SpecGenBench (Ma




et al., 2024) and the Frama-C problems (Kirch-
ner et al., 2015) contain only 120 and 57 pro-
grams, respectively. Second, evaluation metrics
focus narrowly on consistency, i.e., alignment be-
tween specifications and programs, while neglect-
ing completeness, i.e., coverage of all semantic be-
haviors. Completeness is particularly important for
assessing LLM’s ability to reason comprehensively
about complete program behaviors. Finally, current
studies primarily aim to develop new LLM-based
techniques for formal specification inference rather
than evaluating the LLM reasoning capabilities
themselves. Consequently, evaluations are often ad
hoc, relying on specific prompting techniques or
LLMs, leading to a lack of comprehensive insights
across a wide range of models and prompts.

To address the above challenges, we introduce
FormalBench, a comprehensive benchmark for
evaluating the reasoning capabilities of LLMs
through formal specification inference. Formal-
Bench improves the existing dataset with two no-
table features: (1) a large-scale dataset of 700 man-
ually validated Java programs and 6,219 augmented
programs, covering various control flow structures,
and (2) a Python library with a robust suite of eval-
uation metrics to measure both consistency (via
deductive verification) and completeness (through
mutation analysis). We then leverage FormalBench
to conduct a comprehensive study evaluating eight
state-of-the-art LLMs across four critical dimen-
sions: (1) their effectiveness in synthesizing com-
plete and consistent specifications, (2) robustness
against semantic-preserving code transformations,
(3) impact of advanced prompting techniques, and
(4) the root causes of failures and their self-repair
ability.

Our findings reveal several key insights. LLMs
demonstrate limited effectiveness, achieving only
about 10% verification success with over 50% fail-
ures, particularly struggling with complex control-
flow structures such as nested loops. Advanced
prompting techniques, such as few-shot and least-
to-most prompting, improve success rates to 16.6%
and reduce failures, yet overall performance re-
mains suboptimal. Robustness issues also arise,
with LLMs exhibiting flip rates between 27.2% and
39.2% under semantic-preserving transformations,
negatively impacting their performance. Common
failures of LLMs include syntax errors, flawed in-
ductive reasoning, incorrect postconditions, faulty
loop invariants, and misjudged arithmetic bounds.
However, error-specific prompts enhance LLM self-

repair capabilities, improving verifiable specifica-
tions by approximately 25% and reducing failures
by around 40%, although these improvements con-
verged after a few iterations.

In summary, our main contributions include:

* We introduce FormalBench, a comprehensive
dataset specifically designed for evaluating for-
mal reasoning of LLMs about program seman-
tics.

* We propose a robust set of evaluation metrics to
assess the effectiveness and robustness of LLMs
on synthesizing consistent and complete formal
specifications.

* We conduct an extensive empirical study of popu-
lar LLMs using FormalBench, highlighting their
limitations. We also identify common failure
patterns and design customized prompts to assist
LLMs in self-repairing these failures.

* We advance research in formal specification in-
ference by releasing FormalBench as an instal-
lable Python library under Apache 2.0 License,
lowering barriers for academic research and es-
tablishing foundational benchmarks and metrics
for future work.

2 Problem Statement

Given an input program, the formal specification

inference task is to annotate the program with a
set of formal specifications, i.e., Boolean expres-
sions written in a formal specification language.
A good formal specification should be adequate,
consistent, unambiguous, complete, satisfied, and
minimal (Lamsweerde, 2000). In this work, we
particularly focus on two key properties of speci-
fications, including completeness and consistency,
which present the correctness of generated spec-
ifications. Inspired by (Lamsweerde, 2000), we
define these properties in our problem as follows:

Definition 1. (Consistency) A formal specification
is considered consistent to a given input program
if all specified properties are well-formed and true
with respect to that program.

Definition 2. (Completeness) A formal specifica-
tion is considered complete if all function proper-
ties that hold with respect to a given input program
are specified in the specification.

To determine the consistency of LLM-generated
specifications, i.e., specifications that hold for an
input program, we use deductive verification tools
that transform the annotated program into logical



proof obligations and verify them with theorem
provers. These tools ensure software correctness
by systematically analyzing all possible execution
paths, making our consistency checking reliable.

Measuring the completeness of formal specifi-
cations is inherently challenging because of the
complex behaviors exhibited by software programs.
Inspired by the success of mutation testing (An-
drews et al., 2005) in evaluating the completeness
of test suites, we propose to use mutation analysis
as a proxy to assess the completeness of formal
specifications. Mutation analysis generates non-
equivalent mutant variants of input programs by
introducing artificial faults (Andrews et al., 2005).
Ideally, a complete specification should be able to
detect all such faults. Therefore, we measure the
proportion of mutants that violate the specification
as a proxy of its completeness.

3 Dataset Construction and Evaluation

3.1 FormalBench Construction

FormalBench is constructed in three phases
to ensure its reliability and diversity: (1) curat-
ing reference Java programs paired with natu-
ral language descriptions, (2) manually verifying
program correctness with respect to natural lan-
guage descriptions to establish FormalBench-Base,
which comprises 700 programs, and (3) augment-
ing FormalBench-Base using semantic-preserving
transformations to create FormalBench-Diverse,
which comprises 6,219 programs.

Specifically, we begin with an initial pool
of 966 Java programs generated by the MBXP
model (Athiwaratkun et al., 2022) for the MBJP
benchmark. This dataset is released under the
Apache License 2.0, which permits modification
and redistribution. To filter incorrect candidates,
we execute these programs against the MBJP test
suite, retaining 824 programs that pass all the pro-
vided test cases. However, as MBJP’s test suite is
generally weak, we conduct manual validation to
ensure alignment between program behavior and
natural-language intents. This involves a multi-step
review process: we carefully inspect each program,
augment the test suite with adversarial inputs, and
validate correctness against the specified intents.

The result is FormalBench-Base, a rigorously
validated dataset of 700 programs with provably
correct implementations. To ensure diversity,
FormalBench-Base covers a wide range of control
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Figure 2: Distribution of our datasets and SpecGen-
Bench over different control flow types.

flow types, including sequential, branching, single-
path loops, multi-path loops, and nested loop struc-
tures, as illustrated in Figure 2.

Finally, we apply 18 semantic preservation trans-
formations from the literature (Le-Cong et al.,
2024; Rabin et al., 2021; Zhang et al., 2023)
to FormalBench-Base, generating FormalBench-
Diverse, a dataset of 6,219 program variants de-
signed to evaluate the robustness of LLMs against
syntactic variations. These transformations, de-
tailed in Appendix A, span multiple levels of code
structure, including naming (e.g., variable renam-
ing), expression (e.g., switching equal expressions)
and statement (e.g., transforming switch statements
to if-statements).

3.2 Evaluation Metrics

Consistency Metrics. As mentioned in Sec-
tion 2, we utilize deductive verification tools to
determine the consistency of LLM-generated spec-
ifications. The verification process produces three
outcomes: (1) Verification Success, where the im-
plementation satisfies the specification; (2) Ver-
ification Failure, where the implementation vio-
lates the specification; and (3) Unknown, where the
tool cannot definitively determine the result (e.g.
due to timeouts or undecidability). While prior
works (Wen et al., 2024; Ma et al., 2024) often
merge unknown cases with failures, we observed
that specifications that lead to timeouts are qualita-
tively distinct from those that cause failures. Thus,
we treat Unknown as a separate category. Based on
these categories, we define two consistency metrics
as follows: (1) Success Rate (SR), the proportion of
specifications that pass verification; and (2) Failure
Rate (FR), the proportion of specifications that fail
verification.

Completeness Metrics. To evaluate the com-



pleteness of a specification, we first apply mutation
testing (Andrews et al., 2005) to generate a set of
mutants, i.e., non-equivalent variants of the input
programs created by deliberately injecting artifi-
cial faults. We then compute the fraction of these
mutants that fail to satisfy the specification. This
fraction is defined as the Completeness Rate (CR)
of the specification.

Robustness Metrics. To evaluate the robust-
ness of LLMs in synthesizing specifications under
semantic-preserving transformations, we measure
the Flip Rate (FIR), which captures cases where
LLMs generate verifiable specifications for the
original program p but fail for its transformed ver-
sions. Moreover, we also measure the impact of
unrobust behaviors on the performance of LLMs
by measuring the success rate and failure rates on
FormalBench-Diverse (Section 3.1). Since transfor-
mations may not apply universally, we normalize
metrics over applicable transformations.

Details. We use OpenJML version 21.0 as our
deductive verification tool and Major 3.0.1 as our
mutation analysis tool. Full implementation details
and formal formulations of these evaluation metrics
are provided in Appendix B.

4 Experiments

In this section, we present our empirical results on
LLM:s using FormalBench, guided by the following
research questions:

* RQ;: How effective are LLMs in synthesizing
formal specifications?

* RQq: Can advanced prompting techniques im-
prove the effectiveness of LLM?

* RQs3: How robust are LLMs in synthesizing for-
mal specifications?

* RQy: What are the common mistakes made by
LLMs, and can they self-repair these errors?

Following prior works (Ma et al., 2024; Flana-
gan and Leino, 2001), we focus on Java and its
specification language, JML (Leavens et al., 2006),
using OpenJML (Cok, 2011) as the verifier. LLMs
are evaluated using their official chat templates
and the same query prompts, as detailed in Ap-
pendix H. To ensure fairness, we use sampling
with a temperature setting of 0.7 across all LLMs.
For open-source LLMs, the maximum number of
tokens generated is limited to 2048 due to GPU
constraints. A full description of the experimental
setup is provided in Appendix D.

Cost Analysis.Our experiments for closed-

source LLMs cost approximately 250 USD, while
those for open-source LLMs required around 100
GPU hours.

4.1 RQ;: Effectiveness of LLMs

To answer the RQq, we evaluate the effectiveness
of LLMs in synthesizing complete and consistent
specifications by measuring their success rates,
failure rates, and completeness rates. We assess
eight popular open-source and proprietary LLMs
on FormalBench-Base, as detailed in Appendix C.
Detailed experimental results are presented in Ta-
ble 1.

LLMs with zero-shot prompts. From the re-
sults in Table 1, we observe that LLMs with zero-
shot prompts perform poorly in synthesizing formal
specifications, achieving a success rate of around
10% and failure rates ranging from 56.4% to 99.6%.
Most open source LLMs, except CodeQwen-2.5,
exhibit particularly poor performance, with success
rates below 3%. Upon closer analysis, we found
that this poor performance of open-source LLMs is
due to a lack of familiarity with the JML syntax, re-
sulting in a significant number of invalid responses,
up to 77%. For example, these models often gener-
ate natural language descriptions instead of formal
JML specifications, highlighting their inability to
produce follow formal grammar of JML without
explicit guidance.

LLMs with few-shot prompts. To address these
limitations, we enhanced the ability of LLMs to
generate formal specifications by incorporating ad-
ditional instructions on JML syntax and provid-
ing two demonstration examples in the few-shot
prompts, as shown in the Appendix H. From the re-
sults in Table 1, we can see that this approach signif-
icantly improves LLM performance, with increases
of up to 7.1 percentage points in success rates and
reductions of up to 16.9 percentage points in failure
rates. Furthermore, we observe a slight decline in
completeness, although the overall completeness
of the generated specifications remains high. This
suggests a reasonable trade-off between correctness
and consistency. However, despite these improve-
ments, the success rates remain relatively low at
less than 16%, highlighting the inherent challenge
of synthesizing formal specifications for LLMs.

Open-source vs. Proprietary LLMs. Addi-
tionally, we observe that proprietary LLMs such as
DeepSeek-V3 and GPT-4o are significantly more
effective than open-source LLMs. However, the
best-performing open-source LLM, CodeQwen-



Models Success Rate (%) Failure Rate (%) Completeness (%)
CodeQwen-1.5-7B 1.1 97.4 79.1
+ Few-shot prompt 39 85.6 74.1
«» CodeQwen-2.5-32B 7.6 77.1 83.3
5 + Few-shot prompt 11.4 66.8 82.1
= +COT 9.2 69.4 86.8
g +LT™M 12.0 68.2 89.1
2 DeepSeek-V2-236B 2.7 88.8 77.0
[2 + Few-shot prompt 6.9 78.4 78.4
2 +COT 7.9 76.4 77.1
© LM 8.9 70.4 81.6
CodeLLaM-34B 0.1 99.6 100.0
+ Few-shot prompt 5.3 82.7 60.3
DeepSeek-V3-671B 8.4 65.2 89.6
+ Few-shot prompt 15.5 56.2 85.2
, +COoT 16.2 55.9 85.3
> +LTM 16.6 56.8 89.6
= GPT35 6.9 75.8 623
2>+ Few-shot prompt 12.6 59.8 59.0
£ 03 mini 10.0 66.2 835
'S+ Few-shot prompt 11.7 59.7 88.7
E GPT-40 11.2 56.4 80.4
+ Few-shot prompt 13.4 56.4 77.6
+ COT 134 61.5 81.2
+LTM 15.0 57.7 86.4
Claude-3.5-Sonnet 10.5 64.5 91.2
+ Few-shot prompt 14.7 53.1 82.6
+ COT 14.2 59.1 83.6
+LTM 154 51.1 86.4

Table 1: Performance comparison of Open-Source and Commercial LLMs under zero-shot, in-context learning
with few-shot prompt, chain-of-thought (COT), and least-to-most (LTM) prompting settings.

2.5, shows considerable promise with a success
rate of 12.0%, only 3 percentage points lower than
GPT-40. This performance is particularly impres-
sive given CodeQwen-2.5’s compact size of 32B pa-
rameters. These findings suggest that open-source
LLMs still have significant potential for further
advancements in this domain due to their flexibil-
ity and cost-effectiveness compared to proprietary
LLM:s.

Distribution over different Control-flow types.
Finally, we analyze verification success and fail-
ure distributions across different control flow types
(see detailed visualizations in Appendix F). From
this analysis, we observe that LLMs are primarily
capable of generating verifiable specifications for
programs with simple control-flow structures, such
as sequential or branched programs. However, they
often struggle to synthesize formal specifications
for programs that contain loops, where the com-
plexity of control flow increases significantly, with
a success rate of less than 10% and failure rates
of more than 50%. These findings highlight the

limitations of LLMs in reasoning about complex
control-flow structures, particularly loops, which
require more advanced logical and inductive rea-
soning capabilities.

4.2 RQ:: Impact of Advanced Prompting
Techniques

To answer the RQ2, we evaluate the top LLMs from
RQ; (CodeQwen-2.5, DeepSeek-V2, DeepSeek-
V3, GPT-4, and Claude 3.5 Sonnet) using
two prompting techniques: chain-of-thought
(CoT)(Kojima et al.,, 2022) and least-to-most
(LTM)(Zhou et al., 2022). Detailed prompt designs
are in Appendix H.

Least-to-Most Prompts. As shown in Table 1,
LTM consistently improves the effectiveness of
these LLMs, improving both consistency and com-
pleteness metrics. For example, the success rate of
DeepSeek-V3 increases from 15.5% with few-shot
prompts to 16. 6% with LTM (a 7% improvement),
while the completeness rate increases from 85. 2%
to 89. 6% (a 5% improvement). These improve-
ments are observed not only in proprietary LLMs,



but also in open-source LLMs. Specifically, the
success rates of CodeQwen-2.5 and DeepSeek-V2
improve significantly, from 11.4% and 6.9% to
12.0% and 8.9%, respectively. Overall, these find-
ings suggest that LTM prompting, when combined
with few-shot demonstrations, should be used to
optimize the effectiveness of LLMs in synthesizing
program specifications.

Chain-of-Thought Prompts. In contrast, the
impact of CoT on LLMs is mixed, with both pos-
itive and negative outcomes. For example, CoT
improves the success rate of DeepSeek-V3 from
15.5% to 16.2%. However, it has no effect on the
success rate of GPT-40 and even decreases the per-
formance of the Claude 3.5 Sonnet. CoT even
significantly increases the failure rates of GPT-40
and Claude-3.5-Sonnet from 56.4% and 53.1% to
61.5% and 59.1%. We suspect that this is because
CoT relies on the model’s ability to self-reason,
while LTM provides human-instructed reasoning
steps and explicit demonstrations, which guide the
models toward better reasoning.

Effectiveness on Complex Control-Flow Pro-
grams. While LTM prompting can further improve
the performance of LLMs, these improvements are
primarily observed in reasoning programs involv-
ing branching and sequential control flow. In con-
trast, the impact of LTM prompting on improv-
ing reasoning for programs with complex control
flow, such as those containing loops, remains un-
clear. As a result, the performance of LLMs in
loop-containing programs remains low, with suc-
cess rates of less than 10%. This further under-
scores the limitations of LLMs in reasoning about
programs with loops, which require more advanced
inductive reasoning capabilities.

4.3 RQs3: Robustness of LLMs

To answer the RQ3, we assess LLLM robustness
by evaluating their performance on semantically
equivalent but syntactically diverse programs using
FormalBench-Diverse-N, a subset of 1,794 natural
program transformations (Le-Cong et al., 2024)
from FormalBench-Diverse (see Appendix E). Due
to resource constraints, we focus on the top three
LLMs: GPT-4, Claude 3.5 Sonnet, and DeepSeek-
V3.

Our experimental results, presented in Table 2,
reveal significant robustness challenges for all eval-
uated LL.Ms. Specifically, we observe flip rates, the
proportion of semantically equivalent programs for
which the model does not generate verifiable speci-

fications, ranging from 27. 2% to 39. 2%. Among
the models, Claude-3.5-Sonnet is the most severely
impacted, with a flip rate of 39.2%, indicating that
it does not generate verifiable specifications for
nearly 40% of the transformations when the origi-
nal programs had verifiable specifications.

More critically, this lack of robustness leads to
a notable decrease in success rates and an increase
in failure rates. For instance, the success rate of
DeepSeek-V3 drops from 9.3% to 7.8%, a 16% re-
duction, while GPT-40 and Claude-3.5-Sonnet ex-
perience reductions of 9.5% and 17%, respectively.
Similarly, failure rates increase by up to 6.6%, fur-
ther underscoring the sensitivity of LLMs to the
syntactic variation created by semantic-preserving
transformations.

These findings highlight the limited robustness
of LLMs against semantic-preserving transforma-
tions, which expose a critical dependence on syn-
tactic patterns rather than underlying semantic
properties. This indicates that current LLMs still
lack the deep semantic reasoning capabilities nec-
essary to generalize across functionally equivalent
but syntactically varied programs.

4.4 RQ,: Common Failures and Self-Repair
Ability of LLMs

To answer the RQ4, we begin by conducting a semi-
automated analysis, as outlined in Appendix G, to
categorize the failures of LLMs. For each type of
failure, we sample a subset of instances and inves-
tigate their root causes. Building on these insights,
we design customized prompts that include failure
descriptions, additional guidance, and illustrative
examples to enable LLMs to self-repair these errors.
Additional details on repair prompts are provided
in the Appendix I.

4.4.1 Common Failures

In total, we identified 32 failures of LLLMs based
on their error messages. Figure 3 illustrates the
10 most common failure categories encountered
across llm when using zero-shot, few-shot, and
least-to-most (LTM) prompts.

Syntax Errors. Among failure types, “Syn-
taxError” is the most frequent, and LLMs often
generate specifications that violate the JML or
Java syntax. This issue persists in most models.
A common example is the error message “Unex-
pected or misspelled JML token,” which occurs
when an LLM produces incorrect JML grammar.
This highlights the challenge of expressing im-



Model Name FormalBench-Base FormalBench-Diverse-N Flip Rate (%)
SR (%) FR (%) SR (%) FR (%)

DeepSeek-V3 93 62.1 7.8 65.0 27.2

Claude-3.5-Sonnet 10.0 64.1 8.3 64.3 39.20

GPT-40 11.9 60.1 10.9 64.1 29.2

Table 2: Robustness evaluation of LLMs on FormalBench-Base and FormalBench-Diverse-N benchmarks using
different metrics Success Rate (SR), Failure Rate (FR), and Flip Rate.
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Figure 3: Top-10 failure category of LLMs with various prompts

plicit program intent in formal languages, a key
distinction from natural language specifications
such as code comments. More critically, LLMs
with zero-shot prompts yield about 25% invalid
responses (e.g., producing Javadoc comments in-
stead of JML). Fortunately, this rate drops to 5%
with few-shot prompts and further to 1% with LTM
prompts.

Reasoning Errors. LLMs often encounter rea-
soning errors, particularly with quantifiers, postcon-
ditions, loop invariants, and arithmetic bounds. The
most frequent are “UnsupportedQuantifier” errors.
In these cases, LLMs rely on inductive quantifiers
such as \sum or \product, which are not supported
by deductive verification for reasoning about pro-
gram behaviors. In practice, formal experts must
supplement these quantifiers with auxiliary math-
ematical functions and lemmas to enable induc-
tive reasoning. For improved formal specification
synthesis, LLMs must adopt similar human-like
strategies rather than relying solely on unsupported
quantifiers.

Following “UnsupportedQuantifier”, the next
most common failure categories, ‘“Postcondition-
Failure”, “LooplnvariantFailure”, and “Arithmetic-
OperationRange”, account for nearly 30% of total
failures. These errors occur when the verification
tool cannot prove postconditions, loop invariants,
or arithmetic bounds (e.g., to prevent overflow).
Our analysis identifies three main root causes: (1)
incorrect specifications, (2) weak or incorrect pre-
conditions that render specifications unprovable,

and (3) incomplete reasoning about program be-
havior, leaving verifiers with insufficient informa-
tion. These findings underscore the need for LLMs
to enhance their reasoning capabilities for more
effective formal specification synthesis.

4.4.2 Self-Repair

To evaluate LLM’s self-repair ability, we (1) de-
velop a simple failure classifier using pattern match-
ing and (2) design customized prompts with fail-
ure descriptions, guidance, and examples (see Ap-
pendix H). Additionally, we assess SpecGen’s
mutation-based repair for verification failures. Due
to resource constraints, we evaluate only the top
three LLMs: Claude-3.5-Sonnet, GPT-40, and
DeepSeek-V3, and present the results in Figure 4.

The results show that LLMs effectively repair
errors using our custom prompts, improving suc-
cess rates by 25%, from 16% to 20%, and reduc-
ing failure rates from over 50% to under 30%.
Mutation-based repair further increases success by
0.5 percentage points and reduces failure by 1 to
2 percentage points. Additionally, LLMs can also
self-repair across various error categories, such as
fixing 53.7% of “SyntaxErrors”, 79% of “Loopln-
variantFailures”, and 65% of ‘“PostconditionFail-
ures” in the first iterations. This pattern persists
across subsequent iterations, highlighting the flex-
ibility of self-repair. In contrast, mutation-based
repair is limited to specific errors, such as not ad-
dressing “ArithmeticOperationRange” errors. No-
tably, both methods preserve the completeness of
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Figure 4: Effectiveness and self-repair rates of LLMs across iterations: “Iter ¢” represents self-repair with feedback,
while “mutation” represents results from mutation-based repair in the final iteration.

generated specifications, improving the number of
verifiable specifications without sacrificing quality.
However, we identify two limitations of self-repair
approaches. First, self-repair rates decrease with
each iteration, leading to saturation in success and
failure rates. Second, mutation-based repair is com-
putationally expensive and requires frequent calls
to verification tools, so it should be used sparingly,
ideally as a final step, to minimize costs.

5 Related Works

Reasoning Evaluation of LLMs. Numerous
datasets have been curated to evaluate the rea-
soning capabilities of LLMs across diverse do-
mains, including mathematical (Cobbe et al., 2021;
Hendrycks et al.), logical (Liu et al., 2021; Yang
et al., 2022), and causal reasoning (Jin et al., 2024,
2023). Recent work explores code reasoning, evalu-
ating LLMs’ ability on program semantic inference.
(Hu et al., 2018; Jain et al., 2024; Chen et al., 2025).
Early studies focus on code summarization (Husain
et al., 2019; Hu et al., 2018), capturing high-level
understanding rather than deep semantic reasoning.
Recent studies examine code reasoning in detail
through output prediction (Jain et al., 2024), ex-
ecution trace simulation (Chen et al., 2025), and
invariant inference (Pei et al., 2023), yet they still
address only partial program semantics. In contrast,
FormalBench targets formal specification inference,
demanding exhaustive reasoning that produces pre-
cise, verifiable specifications for every possible
execution.

Formal Specification Inference. Traditional
dynamic analysis methods, such as Daikon (Ernst
et al., 2007), Houdini (Flanagan and Leino, 2001),
and DIG (Nguyen et al., 2014), infer likely invari-
ants from observed behaviors using predefined tem-
plates. However, these tools often yield trivial in-

variants (e.g., nums != null) and struggle with com-
plex functional properties (Ma et al., 2024). Recent
work leverages LLMs to address these limitations.
Early approaches (Pei et al., 2023; Chakraborty
et al., 2023) fine-tuned LLMs for invariant infer-
ence but focused on specific cases, such as loop
invariants or unverified likely invariants. Nilizadeh
et al.(Nilizadeh et al., 2021) manually crafted com-
plete program specifications to assess automated
repair effectiveness. Building on this, newer meth-
ods such as SpecGen(Ma et al., 2024) and Au-
toSpec (Wen et al., 2024) automatically generate
full formal specifications via iterative refinement
and static analysis. However, as discussed in Sec-
tion 1, their evaluations remain limited, highlight-
ing the need for FormalBench and more compre-
hensive assessments of LLM effectiveness.

6 Conclusion

In this work, we introduce FormalBench, a compre-
hensive and large-scale benchmark for specification
inference. FormalBench integrates robust evalua-
tion metrics to assess the consistency, complete-
ness, and robustness of LL.Ms on this task. Using
FormalBench, we conduct an extensive evaluation
of eight popular LLMs, revealing their limited ef-
fectiveness and lack of robustness in synthesizing
formal specifications, even with advanced prompt-
ing techniques. We further analyze their common
failure patterns and propose a set of customized
prompts, leveraging LLMs’ self-repair capabilities
to enhance their performance. Overall, Formal-
Bench aims to enable a thorough evaluation and
deeper understanding of LLMs in formal program
reasoning. The dataset and evaluation infrastruc-
ture will be publicly released upon publication.



7 Limitations.

The limitations of this work are as follows:

First, mutation analysis, which sits at the core of
our completeness metric, relies on predefined rules
to systematically break program behavior, assum-
ing that the generated mutants will exhibit semantic
differences from the original program, thereby trig-
gering detectable errors. However, the presence
of equivalent mutants, i.e., semantically identical
variants of the original program, presents a chal-
lenge, as they evade detection, leading to false pos-
itives and undermining the accuracy of complete-
ness metrics. To mitigate this issue, we incorporate
Equivalent Mutant Suppression (EMS) (Kushigian
et al., 2024), a state-of-the-art technique for filter-
ing out equivalent mutants. While EMS reduces
their prevalence, some undetected equivalents may
still affect the validity of our results. Future re-
search should focus on the development of metrics
that more effectively measure the completeness of
generated specifications, thereby reducing reliance
on mutation analysis as an isolated proxy.

Second, our experiments produced a significant
number of "unknown" results from the program
verification tools. Manual inspection suggests that
these cases are generally associated with higher-
quality specifications compared to those with verifi-
cation failures; yet, they introduce ambiguity due to
inherent limitations in deductive verification tools.
Future work should prioritize techniques for in-
terpreting or eliminating these ambiguous results,
possibly through enhanced symbolic execution or
dynamic verification methods.

Finally, our experiments did not include OpenAl-
ol and DeepSeekR1, the latest LLMs at the time of
writing. For OpenAl-ol, the associated costs were
prohibitively high, so we could not incorporate it
into our experiments due to resource constraints.
As an alternative, we conducted experiments on
03-mini, the latest reasoning model from OpenAl,
with reasonable cost. For DeepSeekR1, access was
unavailable at the time of writing due to a security

breach affecting the service !.
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A Semantic-preserving Transformations

In this study, we curate a set of 18 semantic-
preserving transformations from recent studies (Le-
Cong et al., 2024; Zhang et al., 2023; Rabin et al.,
2021) including:

* VariableRenaming-1 replaces a variable
name by its first characters;

VariableRenaming-1 replaces a variable
name by substitutions derived from Code-
BERT (Feng et al., 2020);

SwitchRelation transforms relational expres-
sions by swapping the operands. For example,
the expression a < b is transformed into b >
a.

Unary2Add modifies unary operations or in-
crements by converting them into normal as-
signment statements. For instance, i++; is
transformed into i i+ 1;.

* Add2Equal converts add/subtract assign-
ments into equal assignments. For example, a
+= 9; is transformed intoa = a + 9;,and b
-= 10; is transformed intob = b - 10;.

MergeVarDecl merges multiple variable dec-
larations into a single statement. For instance,
int a; and int b; are merged into int a,
b;.

InfixDividing divides an in/pre/post-fix ex-
pression into two separate expressions, storing
intermediate results in a temporary variable.
For example, x = a + b * cis transformed
into temp b * c; followed by x a +
temp.

SwitchEqualExp switches the two expres-
sions on both sides of an infix expression

where the operator is =. For instance, a == b
is transformed into b == a.

* SwitchStringEqual switches the order
of string equality checks. For exam-
ple, a.equals(b) is transformed into

b.equals(a).

* For2While transforms a for-loop into a while-
loop, restructuring the loop for different con-
trol flow requirements.

* While2For transforms a while-loop into a for-
loop;
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e ElselIf2If transforms an If...Else if... structure
into a nested If...Else structure;

Switch2If transforms a Switch-Case structure
into an If-Else structure, converting switch-
based logic into a series of conditional checks.

SwapStatement swaps two statements that
have no control or data dependency;

Reverself switches the code blocks in the if
statement and the corresponding else state-
ment, inverting the condition and its associ-
ated logic.

If2CondExp changes a single if statement
into a conditional expression statement, sim-
plifying the code into a more concise
form. For example, if (condition) {
StatementA } else { StatementB }
becomes condition ? StatementA
StatementB.

CondExp2If changes a conditional expres-
sion statement into a single if statement. For
example, condition ? StatementA
StatementB becomes if (condition) {
StatementA } else { StatementB }.

DividingComposedIf divides an if statement
with a compound condition (A,V,—) into
two nested if-statements, breaking down com-
plex conditions into simpler, more manage-
able parts.

B Evaluation Metrics

In this appendix, we present the formal definition
and implementation details of our evaluation met-
rics, presented in Section 3.2

B.1 Consistency Metrics

Given a benchmark dataset D, an LLM L, and a
verification tool ), success rate (SR) and failure
rate (FR) are formally defined as follows:

SR(L) = ’{r €D| g:£(|7g|/\V(g,r) zok}‘7
[{reDl|g=L(r) V()

= fail} |
D] ’

FR(L) =

where g = L(p) is the specification generated
by L for the reference program r, and V(g, p) de-
notes the verification result of g on p using V. To



ensure the consistency between the generated spec-
ification and the reference program, we employ
OpenJML (Cok, 2011), a widely used program
verification tool. Specifically, we utilize its latest
version (21.0) in the esc mode (Extended Static
Checker (Flanagan et al., 2002)) with the CVC4
SMT solver (Barrett et al., 2011). Additionally, we
enable arithmetic mode and assume that pointers
are nullable by default.

B.2 Completeness Metrics

For a generated specification g and a reference
program 7, the completeness rate (CR) is formally
defined as follows:

CR(g.r) = {re 7’(7")|7|)1()r()9|7p) # o]

where P(r) is the set of mutants for r, and
V(g,p) is the verification result of g on mutant
p. Higher CR indicates greater completeness, as g
detects more faults. To generate sP(r), we utilize
Major (Just, 2014), a widely recognized mutation
testing framework, using its latest version (3.0.1).
To mitigate the generation of equivalent mutants,
we further employ EMS (Kushigian et al., 2024), a
state-of-the-art equivalent mutant suppression tech-
nique.

B.3 Robustness Metrics

To evaluate the robustness of LLMs, we leverage a
set of 18 semantic-preserving transformations, pre-
sented in Section A. Given p, its set of transformed
programs 7, LLM L, and verification tool V, with
g = L(p) verified as correct (V(g,p) = ok), Flip
Rate (FIR) is defined as follows:

() AV(g',t) # ok}

B ‘{t eT|gd=L
FIR(p,T) 7]
Moreover, we also measure the consistency and
completeness metrics of LLMSs on our transformed
dataset. Since transformations may not apply uni-
versally, we normalize metrics over applicable
transformations. For a reference program r, its
set of transformed programs 7, and metric M, the
normalized metric M’ is defined as follows:

_ ZteTM(t)
VAT

where M canbe SR, 'R, or CR.

M(T)
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C Evaluated Large Language Models

We evaluate the following models with our Formal-
Bench benchmark:

* Open-source LLMs:

— CodeQwen-1.5: CodeQwen-1.5-7B (Bai
et al., 2023)

— CodeQwen-2.5: Qwen2.5-Coder-32B-
Instruct (Yang et al., 2024a; Hui et al.,
2024)

— CodeLLama: Codel.lama-34b-Instruct-
hf (Roziere et al., 2023)

— DeepSeek-V2 (Liu et al., 2024a)

* Proprietary LLMs:

— DeepSeek-V3-671B (Liu et al., 2024b)
— GPT3.5: GPT-3.5-turbo (OpenAl, 2023)
— GPT-40 (OpenAl, 2024)

— Claude: Claude-3.5-Sonnet (Anthropic,
2024)

D Experimental Settings

To query LLMs, we implemented our framework
using LangChain, an open-source framework de-
signed to streamline the development of applica-
tions leveraging llm. For running open-source
LLMs, we use an NVIDIA A100 GPU with 80GB
of VRAM and an Intel® Xeon® Gold 6326 CPU
operating at 2.90 GHz. For running the verification
tool, we leverage an Intel® Xeon® Platinum 8358
CPU operating at 2.90 GHz with 28 CPU cores and
1953GB of RAM.

E Constructions of
FormalBench-Diverse-Natural

To construct FormalBench-Diverse-Natural, we
first assess the naturalness of semantic-preserving
transformations by measuring the relative change
in cross-entropy, following established methods in
previous studies (Le-Cong et al., 2024; Ray et al.,
2016; Hindle et al., 2016). We then select 50% of
the transformations, sorted by naturalness score.
Finally, we choose programs with at least three
transformations to avoid bias in the calculation of
normalized metrics.



F Distribution of Verification success and
failures over different control-flow

types.
In this section, we present the distribution of verifi-

cation success and failures over different control-
flow types for three evaluated LLMs.

Branch

—— Zero-shot
Few-shot
—— Least-to-Most

Seq.

Nested

Figure 5: Verification Failures of Claude-3.5-Sonnet

Branch

—— Zero-shot
Few-shot

—— Least-to-Most
M-P Loop

Seq.

Nested

Figure 6: Verification Successes of Claude-3.5-Sonnet

G Failure Analysis

Since each specification can contain failures at
multiple locations, our analysis begins by separat-
ing these errors into atomic errors. We then conduct
a manual analysis of each error to identify common
patterns in their error messages. For example, fail-
ures related to postconditions consistently include
the following string in their messages: "The prover
cannot establish an assertion (Postcondition)", as
illustrated in Listing 1. Based on these patterns,
we build a simple pattern matching to classify fail-
ures. This process is repeated until no remaining
unknown patterns are found.
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Branch

—— Zero-shot
Few-shot
— Least-to-Most

Seq.

Nested

Figure 7: Verification Failures of GPT-40
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Figure 8: Verification Successes of GPT-40

H Prompts

In this section, we present prompt templates used
in this study for specification generation, including
zero-shot, few-shot, chain-of-thought, and least-to-
most prompts.

Zero-shot prompt

(System) You are an expert in Java Modeling Lan-
guage (JML). You will be provided with Java code
snippets and their task descriptions. Your task is to
generate JML specifications for the given Java code.
The specifications should be written as annotations
within the Java code and must be compatible with the
OpenJML tool for verification. Ensure the specifica-
tions include detailed preconditions, postconditions,
necessary loop invariants, invariants, assertions, and
any relevant assumptions.

(User) Please generate JML specifications for the
provided Java code.

### CODE

{code}
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Figure 9: Verification Failures of DeepSeek-V3
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Figure 10: Verification Successes of DeepSeek-V3

Few-shot prompt

(System) You are an expert in Java Modeling Lan-
guage (JML). You will be provided with Java code
snippets. Your task is to generate JML specifications
for the given Java code. The specifications should be
written as annotations within the Java code and must
be compatible with the OpenJML tool for verifica-
tion. Ensure the specifications include detailed pre-
conditions, postconditions, necessary loop invariants,
invariants, assertions, and any relevant assumptions.
Please also adhere to the following syntax guidelines
for JIML:

JML text is written in comments that either:

a) begin with /@ and end with the end of the line, or
b) begin with /*@ and end with */. Lines within such
a block comment may have the first non-whitespace
characters be a series of @ symbols.

{examples}

(User) Please generate JML specifications for the
provided Java code.

#i## CODE

{code}

Listing 1: A example of error messages for a postcondi-
tion failures

/tmp/PairOrSum. java:77: verify: The
prover cannot establish an assertion
(Postcondition: /tmp/PairOrSum. java
:69:) in method spec_partialOrSum
return sum;

/tmp/PairOrSum. java:69: verify:

Associated declaration: /tmp/
PairOrSum. java:77:
@ ensures \result >= 0;

Chain-of-thought prompt

(System) You are an expert in Java Modeling Lan-
guage (JML). You will be provided with Java code
snippets. Your task is to generate JML specifications
for the given Java code. The specifications should be
written as annotations within the Java code and must
be compatible with the OpenJML tool for verifica-
tion. Ensure the specifications include detailed pre-
conditions, postconditions, necessary loop invariants,
invariants, assertions, and any relevant assumptions.
Please also adhere to the following syntax guidelines
for IML:

JML text is written in comments that either:

a) begin with /@ and end with the end of the line, or
b) begin with /*@ and end with */. Lines within such
a block comment may have the first non-whitespace
characters be a series of @ symbols.

{examples}

(User) Please generate JML specifications for the
provided Java code.

### CODE

{code}

Let’s think step by step!
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Least-to-Most prompt Fixing prompt for Syntax Errors

(System) You are an expert in Java Modeling Lan-
guage (JML). You will be provided with Java code
snippets. Your task is to generate JML specifications
for the given Java code. The specifications should be
written as annotations within the Java code and must
be compatible with the OpenJML tool for verifica-
tion. Ensure the specifications include detailed pre-
conditions, postconditions, necessary loop invariants,
invariants, assertions, and any relevant assumptions.
Please also adhere to the following syntax guidelines
for JML:

JML text is written in comments that either:

a) begin with /@ and end with the end of the line, or
b) begin with /*@ and end with */. Lines within such
a block comment may have the first non-whitespace
characters be a series of @ symbols.

{examples}

(User) Please generate JML specifications for the
provided Java code.

#i## CODE

{code}

Let’s break down this problem:

1. What are the weakest preconditions for the code?
Be sure to include preconditions related to nullness
and arithmetic bounds.

2. What are the strongest postconditions for the code?
3. What necessary specifications are required to prove
the above post-conditions? This includes loop invari-
ants, assertions, assumptions, and ranking functions.
After answering these questions, let’s generate the
specifications for the code and provide solution after
“### SPECIFCIATION’

I Self-Repair Prompts

In this section, we illustrate several repair prompts
designed to address the most common errors. For
a complete list of all repair prompts, please refer to
our repository.
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(System) You are an experts on Java Modeling Lan-
guage (JML). Your task is to fix the JML specifica-
tions annotated in the target Java code. You will be
provided the error messages from the OpenJML tool
and you need to fix the specifications accordingly.
(User) The following Java code is annotated with
JML specifications:

{current specification}

OpenJML Verification tool failed to verify the speci-
fications given above, with error information as fol-
lows:

### ERROR MESSAGE:

{error messages}

### ERROR TYPES: Syntax Error

To resolve the syntax error, you should consider the
following steps:

1. Identify whether the error is due to a Java syntax
issue or a JML syntax issue.

2. Review the code to identify the specific location
and nature of the syntax error.

3. Correct the syntax error based on the language
rules and conventions.

Please refine the specifications so that they can pass
verification. Provide the specifications for the code
and include the solution written between triple back-
ticks, after ‘### FIXED SPECIFICATION".

Fixing prompt for Unsupported Sum/Nu-

mOf/Product Quantifier Expressions

(System) You are an experts on Java Modeling Lan-
guage (JML). Your task is to fix the JML specifica-
tions annotated in the target Java code. You will be
provided the error messages from the OpenJML tool
and you need to fix the specifications accordingly.
(User) The following Java code is annotated with
JML specifications:

{current specification}

OpenJML Verification tool failed to verify the speci-
fications given above, with error information as fol-
lows:

### ERROR MESSAGE:

{error messages}

### ERROR TYPES: Unsupported Sum/Nu-
mOf/Product Quantifier Expressions

OpenJML does not fully support JML’s inductive
quantifiers like \num_of, \sum, and \product in speci-
fications. These operators require inductive reason-
ing (e.g., counting elements, summing values over a
range, or computing products), which is difficult for
SMT solvers (the engines behind OpenJML and most
of deductive verification tools) to handle.

To avoid the use of \sum, \num_of, and \product
quantifiers in your JML specifications, you can ex-
press your specifications using induction steps to help
OpenJML’s verifiers to reason about your code. You
can do this by define mathematical functions and lem-
mas through model methods. For example, you can
should not use \product quantifier in the following
specifications:

{Examples with reasoning}

Please refine the specifications so that they can pass
verification. Provide the specifications for the code
and include the solution written between triple back-
ticks, after ‘### FIXED SPECIFICATION".




Fixing prompt for Unsupported Min/-

Max Quantifier Expressions

(System) You are an experts on Java Modeling Lan-
guage (JML). Your task is to fix the JML specifica-
tions annotated in the target Java code. You will be
provided the error messages from the OpenJML tool
and you need to fix the specifications accordingly.
(User) The following Java code is annotated with
JML specifications:

{current specification }

OpenJML Verification tool failed to verify the speci-
fications given above, with error information as fol-
lows:

### ERROR MESSAGE:

{error messages}

### ERROR TYPES: Unsupported Min/Max Quanti-
fier Expressions

OpenJML does not fully support JML’s inductive
quantifiers like \min, \max in specifications. These
operators require inductive reasonings, which is diffi-
cult for SMT solvers (the engines behind OpenJML
and most of deductive verification tools) to handle.
To avoid the use of \min and \max quantifiers in your
JML specifications, you can use the \forall quanti-
fier to express your specifications. For example, you
should not use \max quantifier in the following speci-
fications:

{Examples with reasoning}

Please refine the specifications so that they can pass
verification. Provide the specifications for the code
and include the solution written between triple back-
ticks, after ‘### FIXED SPECIFICATION‘.
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Fixing prompt for Loop Invariant Fail-
ures

(System) You are an experts on Java Modeling Lan-
guage (JML). Your task is to fix the JML specifica-
tions annotated in the target Java code. You will be
provided the error messages from the OpenJML tool
and you need to fix the specifications accordingly.
(User) The following Java code is annotated with
JML specifications:

{current specification}

OpenJML Verification tool failed to verify the speci-
fications given above, with error information as fol-
lows:

### ERROR MESSAGE:

{error messages}

### ERROR TYPES: Loop Invariant Failures

This error occurs when the loop invariant, a condition
that must hold true before the loop begins and remain
true after each iteration, is not properly established
or maintained. This semantic error typically arises
when verifiers fail to confirm the correctness of the
synthesized loop invariant. The causes of this error in-
clude: (1) an incorrect loop invariant, (2) wrong/weak
preconditions that prevent the invariant from holding
at the start of the loop, or (3) incomplete reasoning
about the loop, leading to insufficient information for
the verifier to verify the invariant.

To resolve the error, please consider the following
steps:

1. Carefully review the loop invariant to ensure it
correctly captures the necessary conditions that hold
true before and after each iteration of the loop.

2. Carefully examine preconditions to ensure they
are strong enough to establish the loop invariant at
the beginning of the loop.

3. Add additional assertions or assumptions within
the loop to help the verifier reason about the loop
invariant.

For example, consider the following code snippet
with a loop invariant failure:

{Examples with reasoning}

Please refine the specifications so that they can pass
verification. Provide the specifications for the code
and include the solution written between triple back-
ticks, after ‘### FIXED SPECIFICATION‘.




Fixing prompt for Post-Condition Fail-

ures

(System) You are an experts on Java Modeling Lan-
guage (JML). Your task is to fix the JML specifica-
tions annotated in the target Java code. You will be
provided the error messages from the OpenJML tool
and you need to fix the specifications accordingly.
(User) The following Java code is annotated with
JML specifications:

{current specification}

OpenJML Verification tool failed to verify the speci-
fications given above, with error information as fol-
lows:

### ERROR MESSAGE:

{error messages}

### ERROR TYPES: Post-condition Failures

This error occurs when the postcondition, a condition
that must hold true after the execution of a program or
function, is not satisfied. This type of semantic error
typically arises when verifiers are unable to confirm
that the program’s logic guarantees the postcondition
under all valid inputs and scenarios. The causes of
this error include: (1) an incorrect or incomplete post-
condition, (2) wrong/weak preconditions that prevent
the program from reaching a state where the postcon-
dition holds, or (3) incomplete reasoning about the
programs, leading to insufficient information for the
verifier to verify the postcondition.

To resolve the error, please consider the following
steps:

1. Review the postcondition to ensure it correctly
captures the expected behavior of the program or
function.

2. Check the preconditions to ensure they are strong
enough to reach a state where the postcondition holds.
3. Add additional assertions or assumptions within
the program or function to help the verifier reason
about the postcondition.

For example, consider the following code snippet
with a postcondition failure:

{Examples with reasoning }

Please refine the specifications so that they can pass
verification. Provide the specifications for the code
and include the solution written between triple back-
ticks, after ‘### FIXED SPECIFICATION‘.
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