
Can LLMs Reason About Program Semantics?
A Comprehensive Evaluation of LLMs on Formal Specification Inference

Anonymous ACL submission

Abstract

Large Language Models (LLMs) are increas-001
ingly being used to automate programming002
tasks. Yet, LLMs’ capabilities in reasoning003
about program semantics are still inadequately004
studied, leaving significant potential for005
further exploration. This paper introduces006
FormalBench, a comprehensive benchmark007
designed to evaluate LLMs’ reasoning abilities008
on program semantics, particularly via the task009
of synthesizing formal program specifications010
to assist verifying program correctness. This011
task requires both comprehensive reasoning012
over all possible program executions (i.e.,013
completeness) and the generation of precise,014
syntactically correct expressions that adhere to015
formal syntax and semantics (i.e., consistency).016
Using this benchmark, we evaluated the ability017
of LLMs in synthesizing consistent and com-018
plete specifications. Our findings show that019
LLMs perform well with simple control flows020
but struggle with more complex structures, es-021
pecially loops, even with advanced prompting.022
Additionally, LLMs exhibit limited robustness023
against semantic-preserving transformations.024
We also highlight common failure patterns and025
design self-repair prompts, improving success026
rates by 25%. FormalBench is packaged as a027
Pip library and will be released upon publica-028
tion. An early access version can be found at029
https://anonymous.4open.science/r/FormalBench-030
6C2F/README.md.031

1 Introduction032

033

Recent advances in Large Language Models034

(LLMs) have demonstrated significant potential035

for code understanding and generation (Hou et al.,036

2024; Chen et al., 2021). However, as adoption037

grows, critical concerns emerge about their reliabil-038

ity in programming tasks, particularly their capac-039

ity to reason about program semantics (Liu et al.,040

2024c; Yang et al., 2024b; Liu et al., 2024d). A041

fundamental question remains: Can LLMs reason042

1 //@ requires num >= 0 && t >= 0;
2 //@ requires num + 2*t <= Integer.MAX_VALUE;
3 //@ requires num + 2*t >= Integer.MIN_VALUE;
4 //@ ensures \result == num + 2*t;
5 public int theMaximumAchievableX(int num , int t) {
6 int res = num;
7 //@ maintaining res == num + 2*(i-1);
8 //@ maintaining i >= 1 && i <= t+1;
9 //@ decreasing t-i+1;

10 for(int i = 1; i <= t; i++) {
11 res = res + 2;
12 }
13 return res;
14 }
15

Figure 1: Illustration of a Java program annotated with
JML specifications (highlighted in green).

about program semantics? Pioneering studies (Pei 043

et al., 2023; Chen et al., 2025) have tackled this 044

challenge by evaluating LLMs on partial seman- 045

tic properties, such as predicting execution traces 046

or inferring likely program invariants. Although 047

these efforts provide valuable insights, they exam- 048

ine narrow aspects of program behavior rather than 049

a comprehensive semantic understanding. For ex- 050

ample, execution-based evaluations (Chen et al., 051

2025; Jain et al., 2024) are limited to specific ex- 052

ecution paths and inputs, offering an incomplete 053

view of LLM’s semantic reasoning. 054

Recent studies (Wen et al., 2024; Ma et al., 2024) 055

have evaluated LLMs in the synthesis of program 056

specifications expressed in formal languages such 057

as JML (Leavens et al., 2006) and ACSL (Baudin 058

et al., 2008). The synthesized specifications can 059

then be used to assist in automated software veri- 060

fication (D’silva et al., 2008) and bug finding (Le 061

et al., 2022). This task challenges LLMs to (1) rea- 062

son exhaustively over all possible program execu- 063

tions and (2) generate logically precise expressions 064

that comply with the formal syntax and semantics 065

of the specification language. 066

While initial results are promising, current eval- 067

uation methodologies for LLM reasoning through 068

formal specification inference face three key limi- 069

tations. First, the evaluation datasets are small and 070

lack diversity. For example, SpecGenBench (Ma 071

1

et al., 2024) and the Frama-C problems (Kirch-072

ner et al., 2015) contain only 120 and 57 pro-073

grams, respectively. Second, evaluation metrics074

focus narrowly on consistency, i.e., alignment be-075

tween specifications and programs, while neglect-076

ing completeness, i.e., coverage of all semantic be-077

haviors. Completeness is particularly important for078

assessing LLM’s ability to reason comprehensively079

about complete program behaviors. Finally, current080

studies primarily aim to develop new LLM-based081

techniques for formal specification inference rather082

than evaluating the LLM reasoning capabilities083

themselves. Consequently, evaluations are often ad084

hoc, relying on specific prompting techniques or085

LLMs, leading to a lack of comprehensive insights086

across a wide range of models and prompts.087

To address the above challenges, we introduce088

FormalBench, a comprehensive benchmark for089

evaluating the reasoning capabilities of LLMs090

through formal specification inference. Formal-091

Bench improves the existing dataset with two no-092

table features: (1) a large-scale dataset of 700 man-093

ually validated Java programs and 6,219 augmented094

programs, covering various control flow structures,095

and (2) a Python library with a robust suite of eval-096

uation metrics to measure both consistency (via097

deductive verification) and completeness (through098

mutation analysis). We then leverage FormalBench099

to conduct a comprehensive study evaluating eight100

state-of-the-art LLMs across four critical dimen-101

sions: (1) their effectiveness in synthesizing com-102

plete and consistent specifications, (2) robustness103

against semantic-preserving code transformations,104

(3) impact of advanced prompting techniques, and105

(4) the root causes of failures and their self-repair106

ability.107

Our findings reveal several key insights. LLMs108

demonstrate limited effectiveness, achieving only109

about 10% verification success with over 50% fail-110

ures, particularly struggling with complex control-111

flow structures such as nested loops. Advanced112

prompting techniques, such as few-shot and least-113

to-most prompting, improve success rates to 16.6%114

and reduce failures, yet overall performance re-115

mains suboptimal. Robustness issues also arise,116

with LLMs exhibiting flip rates between 27.2% and117

39.2% under semantic-preserving transformations,118

negatively impacting their performance. Common119

failures of LLMs include syntax errors, flawed in-120

ductive reasoning, incorrect postconditions, faulty121

loop invariants, and misjudged arithmetic bounds.122

However, error-specific prompts enhance LLM self-123

repair capabilities, improving verifiable specifica- 124

tions by approximately 25% and reducing failures 125

by around 40%, although these improvements con- 126

verged after a few iterations. 127

In summary, our main contributions include: 128

• We introduce FormalBench, a comprehensive 129

dataset specifically designed for evaluating for- 130

mal reasoning of LLMs about program seman- 131

tics. 132

• We propose a robust set of evaluation metrics to 133

assess the effectiveness and robustness of LLMs 134

on synthesizing consistent and complete formal 135

specifications. 136

• We conduct an extensive empirical study of popu- 137

lar LLMs using FormalBench, highlighting their 138

limitations. We also identify common failure 139

patterns and design customized prompts to assist 140

LLMs in self-repairing these failures. 141

• We advance research in formal specification in- 142

ference by releasing FormalBench as an instal- 143

lable Python library under Apache 2.0 License, 144

lowering barriers for academic research and es- 145

tablishing foundational benchmarks and metrics 146

for future work. 147

2 Problem Statement 148

Given an input program, the formal specification 149

inference task is to annotate the program with a 150

set of formal specifications, i.e., Boolean expres- 151

sions written in a formal specification language. 152

A good formal specification should be adequate, 153

consistent, unambiguous, complete, satisfied, and 154

minimal (Lamsweerde, 2000). In this work, we 155

particularly focus on two key properties of speci- 156

fications, including completeness and consistency, 157

which present the correctness of generated spec- 158

ifications. Inspired by (Lamsweerde, 2000), we 159

define these properties in our problem as follows: 160

Definition 1. (Consistency) A formal specification 161

is considered consistent to a given input program 162

if all specified properties are well-formed and true 163

with respect to that program. 164

Definition 2. (Completeness) A formal specifica- 165

tion is considered complete if all function proper- 166

ties that hold with respect to a given input program 167

are specified in the specification. 168

To determine the consistency of LLM-generated 169

specifications, i.e., specifications that hold for an 170

input program, we use deductive verification tools 171

that transform the annotated program into logical 172

2

proof obligations and verify them with theorem173

provers. These tools ensure software correctness174

by systematically analyzing all possible execution175

paths, making our consistency checking reliable.176

Measuring the completeness of formal specifi-177

cations is inherently challenging because of the178

complex behaviors exhibited by software programs.179

Inspired by the success of mutation testing (An-180

drews et al., 2005) in evaluating the completeness181

of test suites, we propose to use mutation analysis182

as a proxy to assess the completeness of formal183

specifications. Mutation analysis generates non-184

equivalent mutant variants of input programs by185

introducing artificial faults (Andrews et al., 2005).186

Ideally, a complete specification should be able to187

detect all such faults. Therefore, we measure the188

proportion of mutants that violate the specification189

as a proxy of its completeness.190

3 Dataset Construction and Evaluation191

3.1 FormalBench Construction192

193

FormalBench is constructed in three phases194

to ensure its reliability and diversity: (1) curat-195

ing reference Java programs paired with natu-196

ral language descriptions, (2) manually verifying197

program correctness with respect to natural lan-198

guage descriptions to establish FormalBench-Base,199

which comprises 700 programs, and (3) augment-200

ing FormalBench-Base using semantic-preserving201

transformations to create FormalBench-Diverse,202

which comprises 6,219 programs.203

Specifically, we begin with an initial pool204

of 966 Java programs generated by the MBXP205

model (Athiwaratkun et al., 2022) for the MBJP206

benchmark. This dataset is released under the207

Apache License 2.0, which permits modification208

and redistribution. To filter incorrect candidates,209

we execute these programs against the MBJP test210

suite, retaining 824 programs that pass all the pro-211

vided test cases. However, as MBJP’s test suite is212

generally weak, we conduct manual validation to213

ensure alignment between program behavior and214

natural-language intents. This involves a multi-step215

review process: we carefully inspect each program,216

augment the test suite with adversarial inputs, and217

validate correctness against the specified intents.218

The result is FormalBench-Base, a rigorously219

validated dataset of 700 programs with provably220

correct implementations. To ensure diversity,221

FormalBench-Base covers a wide range of control222

Figure 2: Distribution of our datasets and SpecGen-
Bench over different control flow types.

flow types, including sequential, branching, single- 223

path loops, multi-path loops, and nested loop struc- 224

tures, as illustrated in Figure 2. 225

Finally, we apply 18 semantic preservation trans- 226

formations from the literature (Le-Cong et al., 227

2024; Rabin et al., 2021; Zhang et al., 2023) 228

to FormalBench-Base, generating FormalBench- 229

Diverse, a dataset of 6,219 program variants de- 230

signed to evaluate the robustness of LLMs against 231

syntactic variations. These transformations, de- 232

tailed in Appendix A, span multiple levels of code 233

structure, including naming (e.g., variable renam- 234

ing), expression (e.g., switching equal expressions) 235

and statement (e.g., transforming switch statements 236

to if-statements). 237

3.2 Evaluation Metrics 238

239

Consistency Metrics. As mentioned in Sec- 240

tion 2, we utilize deductive verification tools to 241

determine the consistency of LLM-generated spec- 242

ifications. The verification process produces three 243

outcomes: (1) Verification Success, where the im- 244

plementation satisfies the specification; (2) Ver- 245

ification Failure, where the implementation vio- 246

lates the specification; and (3) Unknown, where the 247

tool cannot definitively determine the result (e.g. 248

due to timeouts or undecidability). While prior 249

works (Wen et al., 2024; Ma et al., 2024) often 250

merge unknown cases with failures, we observed 251

that specifications that lead to timeouts are qualita- 252

tively distinct from those that cause failures. Thus, 253

we treat Unknown as a separate category. Based on 254

these categories, we define two consistency metrics 255

as follows: (1) Success Rate (SR), the proportion of 256

specifications that pass verification; and (2) Failure 257

Rate (FR), the proportion of specifications that fail 258

verification. 259

Completeness Metrics. To evaluate the com- 260

3

pleteness of a specification, we first apply mutation261

testing (Andrews et al., 2005) to generate a set of262

mutants, i.e., non-equivalent variants of the input263

programs created by deliberately injecting artifi-264

cial faults. We then compute the fraction of these265

mutants that fail to satisfy the specification. This266

fraction is defined as the Completeness Rate (CR)267

of the specification.268

Robustness Metrics. To evaluate the robust-269

ness of LLMs in synthesizing specifications under270

semantic-preserving transformations, we measure271

the Flip Rate (FlR), which captures cases where272

LLMs generate verifiable specifications for the273

original program p but fail for its transformed ver-274

sions. Moreover, we also measure the impact of275

unrobust behaviors on the performance of LLMs276

by measuring the success rate and failure rates on277

FormalBench-Diverse (Section 3.1). Since transfor-278

mations may not apply universally, we normalize279

metrics over applicable transformations.280

Details. We use OpenJML version 21.0 as our281

deductive verification tool and Major 3.0.1 as our282

mutation analysis tool. Full implementation details283

and formal formulations of these evaluation metrics284

are provided in Appendix B.285

4 Experiments286

In this section, we present our empirical results on287

LLMs using FormalBench, guided by the following288

research questions:289

• RQ1: How effective are LLMs in synthesizing290

formal specifications?291

• RQ2: Can advanced prompting techniques im-292

prove the effectiveness of LLM?293

• RQ3: How robust are LLMs in synthesizing for-294

mal specifications?295

• RQ4: What are the common mistakes made by296

LLMs, and can they self-repair these errors?297

Following prior works (Ma et al., 2024; Flana-298

gan and Leino, 2001), we focus on Java and its299

specification language, JML (Leavens et al., 2006),300

using OpenJML (Cok, 2011) as the verifier. LLMs301

are evaluated using their official chat templates302

and the same query prompts, as detailed in Ap-303

pendix H. To ensure fairness, we use sampling304

with a temperature setting of 0.7 across all LLMs.305

For open-source LLMs, the maximum number of306

tokens generated is limited to 2048 due to GPU307

constraints. A full description of the experimental308

setup is provided in Appendix D.309

Cost Analysis.Our experiments for closed-310

source LLMs cost approximately 250 USD, while 311

those for open-source LLMs required around 100 312

GPU hours. 313

4.1 RQ1: Effectiveness of LLMs 314

To answer the RQ1, we evaluate the effectiveness 315

of LLMs in synthesizing complete and consistent 316

specifications by measuring their success rates, 317

failure rates, and completeness rates. We assess 318

eight popular open-source and proprietary LLMs 319

on FormalBench-Base, as detailed in Appendix C. 320

Detailed experimental results are presented in Ta- 321

ble 1. 322

LLMs with zero-shot prompts. From the re- 323

sults in Table 1, we observe that LLMs with zero- 324

shot prompts perform poorly in synthesizing formal 325

specifications, achieving a success rate of around 326

10% and failure rates ranging from 56.4% to 99.6%. 327

Most open source LLMs, except CodeQwen-2.5, 328

exhibit particularly poor performance, with success 329

rates below 3%. Upon closer analysis, we found 330

that this poor performance of open-source LLMs is 331

due to a lack of familiarity with the JML syntax, re- 332

sulting in a significant number of invalid responses, 333

up to 77%. For example, these models often gener- 334

ate natural language descriptions instead of formal 335

JML specifications, highlighting their inability to 336

produce follow formal grammar of JML without 337

explicit guidance. 338

LLMs with few-shot prompts. To address these 339

limitations, we enhanced the ability of LLMs to 340

generate formal specifications by incorporating ad- 341

ditional instructions on JML syntax and provid- 342

ing two demonstration examples in the few-shot 343

prompts, as shown in the Appendix H. From the re- 344

sults in Table 1, we can see that this approach signif- 345

icantly improves LLM performance, with increases 346

of up to 7.1 percentage points in success rates and 347

reductions of up to 16.9 percentage points in failure 348

rates. Furthermore, we observe a slight decline in 349

completeness, although the overall completeness 350

of the generated specifications remains high. This 351

suggests a reasonable trade-off between correctness 352

and consistency. However, despite these improve- 353

ments, the success rates remain relatively low at 354

less than 16%, highlighting the inherent challenge 355

of synthesizing formal specifications for LLMs. 356

Open-source vs. Proprietary LLMs. Addi- 357

tionally, we observe that proprietary LLMs such as 358

DeepSeek-V3 and GPT-4o are significantly more 359

effective than open-source LLMs. However, the 360

best-performing open-source LLM, CodeQwen- 361

4

Models Success Rate (%) Failure Rate (%) Completeness (%)

O
pe

n-
So

ur
ce

L
L

M
s

CodeQwen-1.5-7B 1.1 97.4 79.1
+ Few-shot prompt 3.9 85.6 74.1
CodeQwen-2.5-32B 7.6 77.1 83.3
+ Few-shot prompt 11.4 66.8 82.1
+ COT 9.2 69.4 86.8
+ LTM 12.0 68.2 89.1
DeepSeek-V2-236B 2.7 88.8 77.0
+ Few-shot prompt 6.9 78.4 78.4
+ COT 7.9 76.4 77.1
+ LTM 8.9 70.4 81.6
CodeLLaM-34B 0.1 99.6 100.0
+ Few-shot prompt 5.3 82.7 60.3

Pr
op

ri
et

ar
y

L
L

M
s

DeepSeek-V3-671B 8.4 65.2 89.6
+ Few-shot prompt 15.5 56.2 85.2
+ COT 16.2 55.9 85.3
+ LTM 16.6 56.8 89.6
GPT-3.5 6.9 75.8 62.3
+ Few-shot prompt 12.6 59.8 59.0
o3-mini 10.0 66.2 83.5
+ Few-shot prompt 11.7 59.7 88.7
GPT-4o 11.2 56.4 80.4
+ Few-shot prompt 13.4 56.4 77.6
+ COT 13.4 61.5 81.2
+ LTM 15.0 57.7 86.4
Claude-3.5-Sonnet 10.5 64.5 91.2
+ Few-shot prompt 14.7 53.1 82.6
+ COT 14.2 59.1 83.6
+ LTM 15.4 51.1 86.4

Table 1: Performance comparison of Open-Source and Commercial LLMs under zero-shot, in-context learning
with few-shot prompt, chain-of-thought (COT), and least-to-most (LTM) prompting settings.

2.5, shows considerable promise with a success362

rate of 12.0%, only 3 percentage points lower than363

GPT-4o. This performance is particularly impres-364

sive given CodeQwen-2.5’s compact size of 32B pa-365

rameters. These findings suggest that open-source366

LLMs still have significant potential for further367

advancements in this domain due to their flexibil-368

ity and cost-effectiveness compared to proprietary369

LLMs.370

Distribution over different Control-flow types.371

Finally, we analyze verification success and fail-372

ure distributions across different control flow types373

(see detailed visualizations in Appendix F). From374

this analysis, we observe that LLMs are primarily375

capable of generating verifiable specifications for376

programs with simple control-flow structures, such377

as sequential or branched programs. However, they378

often struggle to synthesize formal specifications379

for programs that contain loops, where the com-380

plexity of control flow increases significantly, with381

a success rate of less than 10% and failure rates382

of more than 50%. These findings highlight the383

limitations of LLMs in reasoning about complex 384

control-flow structures, particularly loops, which 385

require more advanced logical and inductive rea- 386

soning capabilities. 387

4.2 RQ2: Impact of Advanced Prompting 388

Techniques 389

To answer the RQ2, we evaluate the top LLMs from 390

RQ1 (CodeQwen-2.5, DeepSeek-V2, DeepSeek- 391

V3, GPT-4, and Claude 3.5 Sonnet) using 392

two prompting techniques: chain-of-thought 393

(CoT)(Kojima et al., 2022) and least-to-most 394

(LTM)(Zhou et al., 2022). Detailed prompt designs 395

are in Appendix H. 396

Least-to-Most Prompts. As shown in Table 1, 397

LTM consistently improves the effectiveness of 398

these LLMs, improving both consistency and com- 399

pleteness metrics. For example, the success rate of 400

DeepSeek-V3 increases from 15.5% with few-shot 401

prompts to 16. 6% with LTM (a 7% improvement), 402

while the completeness rate increases from 85. 2% 403

to 89. 6% (a 5% improvement). These improve- 404

ments are observed not only in proprietary LLMs, 405

5

but also in open-source LLMs. Specifically, the406

success rates of CodeQwen-2.5 and DeepSeek-V2407

improve significantly, from 11.4% and 6.9% to408

12.0% and 8.9%, respectively. Overall, these find-409

ings suggest that LTM prompting, when combined410

with few-shot demonstrations, should be used to411

optimize the effectiveness of LLMs in synthesizing412

program specifications.413

Chain-of-Thought Prompts. In contrast, the414

impact of CoT on LLMs is mixed, with both pos-415

itive and negative outcomes. For example, CoT416

improves the success rate of DeepSeek-V3 from417

15.5% to 16.2%. However, it has no effect on the418

success rate of GPT-4o and even decreases the per-419

formance of the Claude 3.5 Sonnet. CoT even420

significantly increases the failure rates of GPT-4o421

and Claude-3.5-Sonnet from 56.4% and 53.1% to422

61.5% and 59.1%. We suspect that this is because423

CoT relies on the model’s ability to self-reason,424

while LTM provides human-instructed reasoning425

steps and explicit demonstrations, which guide the426

models toward better reasoning.427

Effectiveness on Complex Control-Flow Pro-428

grams. While LTM prompting can further improve429

the performance of LLMs, these improvements are430

primarily observed in reasoning programs involv-431

ing branching and sequential control flow. In con-432

trast, the impact of LTM prompting on improv-433

ing reasoning for programs with complex control434

flow, such as those containing loops, remains un-435

clear. As a result, the performance of LLMs in436

loop-containing programs remains low, with suc-437

cess rates of less than 10%. This further under-438

scores the limitations of LLMs in reasoning about439

programs with loops, which require more advanced440

inductive reasoning capabilities.441

4.3 RQ3: Robustness of LLMs442

To answer the RQ3, we assess LLM robustness443

by evaluating their performance on semantically444

equivalent but syntactically diverse programs using445

FormalBench-Diverse-N, a subset of 1,794 natural446

program transformations (Le-Cong et al., 2024)447

from FormalBench-Diverse (see Appendix E). Due448

to resource constraints, we focus on the top three449

LLMs: GPT-4, Claude 3.5 Sonnet, and DeepSeek-450

V3.451

Our experimental results, presented in Table 2,452

reveal significant robustness challenges for all eval-453

uated LLMs. Specifically, we observe flip rates, the454

proportion of semantically equivalent programs for455

which the model does not generate verifiable speci-456

fications, ranging from 27. 2% to 39. 2%. Among 457

the models, Claude-3.5-Sonnet is the most severely 458

impacted, with a flip rate of 39.2%, indicating that 459

it does not generate verifiable specifications for 460

nearly 40% of the transformations when the origi- 461

nal programs had verifiable specifications. 462

More critically, this lack of robustness leads to 463

a notable decrease in success rates and an increase 464

in failure rates. For instance, the success rate of 465

DeepSeek-V3 drops from 9.3% to 7.8%, a 16% re- 466

duction, while GPT-4o and Claude-3.5-Sonnet ex- 467

perience reductions of 9.5% and 17%, respectively. 468

Similarly, failure rates increase by up to 6.6%, fur- 469

ther underscoring the sensitivity of LLMs to the 470

syntactic variation created by semantic-preserving 471

transformations. 472

These findings highlight the limited robustness 473

of LLMs against semantic-preserving transforma- 474

tions, which expose a critical dependence on syn- 475

tactic patterns rather than underlying semantic 476

properties. This indicates that current LLMs still 477

lack the deep semantic reasoning capabilities nec- 478

essary to generalize across functionally equivalent 479

but syntactically varied programs. 480

4.4 RQ4: Common Failures and Self-Repair 481

Ability of LLMs 482

To answer the RQ4, we begin by conducting a semi- 483

automated analysis, as outlined in Appendix G, to 484

categorize the failures of LLMs. For each type of 485

failure, we sample a subset of instances and inves- 486

tigate their root causes. Building on these insights, 487

we design customized prompts that include failure 488

descriptions, additional guidance, and illustrative 489

examples to enable LLMs to self-repair these errors. 490

Additional details on repair prompts are provided 491

in the Appendix I. 492

4.4.1 Common Failures 493

In total, we identified 32 failures of LLMs based 494

on their error messages. Figure 3 illustrates the 495

10 most common failure categories encountered 496

across llm when using zero-shot, few-shot, and 497

least-to-most (LTM) prompts. 498

Syntax Errors. Among failure types, “Syn- 499

taxError” is the most frequent, and LLMs often 500

generate specifications that violate the JML or 501

Java syntax. This issue persists in most models. 502

A common example is the error message “Unex- 503

pected or misspelled JML token,” which occurs 504

when an LLM produces incorrect JML grammar. 505

This highlights the challenge of expressing im- 506

6

Model Name FormalBench-Base FormalBench-Diverse-N Flip Rate (%)
SR (%) FR (%) SR (%) FR (%)

DeepSeek-V3 9.3 62.1 7.8 65.0 27.2
Claude-3.5-Sonnet 10.0 64.1 8.3 64.3 39.20
GPT-4o 11.9 60.1 10.9 64.1 29.2

Table 2: Robustness evaluation of LLMs on FormalBench-Base and FormalBench-Diverse-N benchmarks using
different metrics Success Rate (SR), Failure Rate (FR), and Flip Rate.

(a) LLMs with Zero-shot prompts (b) LLMs with Few-shot prompts (c) LLMs with LTM prompts

Figure 3: Top-10 failure category of LLMs with various prompts

plicit program intent in formal languages, a key507

distinction from natural language specifications508

such as code comments. More critically, LLMs509

with zero-shot prompts yield about 25% invalid510

responses (e.g., producing Javadoc comments in-511

stead of JML). Fortunately, this rate drops to 5%512

with few-shot prompts and further to 1% with LTM513

prompts.514

Reasoning Errors. LLMs often encounter rea-515

soning errors, particularly with quantifiers, postcon-516

ditions, loop invariants, and arithmetic bounds. The517

most frequent are “UnsupportedQuantifier” errors.518

In these cases, LLMs rely on inductive quantifiers519

such as \sum or \product, which are not supported520

by deductive verification for reasoning about pro-521

gram behaviors. In practice, formal experts must522

supplement these quantifiers with auxiliary math-523

ematical functions and lemmas to enable induc-524

tive reasoning. For improved formal specification525

synthesis, LLMs must adopt similar human-like526

strategies rather than relying solely on unsupported527

quantifiers.528

Following “UnsupportedQuantifier”, the next529

most common failure categories, “Postcondition-530

Failure”, “LoopInvariantFailure”, and “Arithmetic-531

OperationRange”, account for nearly 30% of total532

failures. These errors occur when the verification533

tool cannot prove postconditions, loop invariants,534

or arithmetic bounds (e.g., to prevent overflow).535

Our analysis identifies three main root causes: (1)536

incorrect specifications, (2) weak or incorrect pre-537

conditions that render specifications unprovable,538

and (3) incomplete reasoning about program be- 539

havior, leaving verifiers with insufficient informa- 540

tion. These findings underscore the need for LLMs 541

to enhance their reasoning capabilities for more 542

effective formal specification synthesis. 543

4.4.2 Self-Repair 544

To evaluate LLM’s self-repair ability, we (1) de- 545

velop a simple failure classifier using pattern match- 546

ing and (2) design customized prompts with fail- 547

ure descriptions, guidance, and examples (see Ap- 548

pendix H). Additionally, we assess SpecGen’s 549

mutation-based repair for verification failures. Due 550

to resource constraints, we evaluate only the top 551

three LLMs: Claude-3.5-Sonnet, GPT-4o, and 552

DeepSeek-V3, and present the results in Figure 4. 553

The results show that LLMs effectively repair 554

errors using our custom prompts, improving suc- 555

cess rates by 25%, from 16% to 20%, and reduc- 556

ing failure rates from over 50% to under 30%. 557

Mutation-based repair further increases success by 558

0.5 percentage points and reduces failure by 1 to 559

2 percentage points. Additionally, LLMs can also 560

self-repair across various error categories, such as 561

fixing 53.7% of “SyntaxErrors”, 79% of “LoopIn- 562

variantFailures”, and 65% of “PostconditionFail- 563

ures” in the first iterations. This pattern persists 564

across subsequent iterations, highlighting the flex- 565

ibility of self-repair. In contrast, mutation-based 566

repair is limited to specific errors, such as not ad- 567

dressing “ArithmeticOperationRange” errors. No- 568

tably, both methods preserve the completeness of 569

7

(a) Claude-3.5-Sonnet (b) GPT-4o (c) DeepSeekV3

Figure 4: Effectiveness and self-repair rates of LLMs across iterations: “Iter i” represents self-repair with feedback,
while “mutation” represents results from mutation-based repair in the final iteration.

generated specifications, improving the number of570

verifiable specifications without sacrificing quality.571

However, we identify two limitations of self-repair572

approaches. First, self-repair rates decrease with573

each iteration, leading to saturation in success and574

failure rates. Second, mutation-based repair is com-575

putationally expensive and requires frequent calls576

to verification tools, so it should be used sparingly,577

ideally as a final step, to minimize costs.578

5 Related Works579

Reasoning Evaluation of LLMs. Numerous580

datasets have been curated to evaluate the rea-581

soning capabilities of LLMs across diverse do-582

mains, including mathematical (Cobbe et al., 2021;583

Hendrycks et al.), logical (Liu et al., 2021; Yang584

et al., 2022), and causal reasoning (Jin et al., 2024,585

2023). Recent work explores code reasoning, evalu-586

ating LLMs’ ability on program semantic inference.587

(Hu et al., 2018; Jain et al., 2024; Chen et al., 2025).588

Early studies focus on code summarization (Husain589

et al., 2019; Hu et al., 2018), capturing high-level590

understanding rather than deep semantic reasoning.591

Recent studies examine code reasoning in detail592

through output prediction (Jain et al., 2024), ex-593

ecution trace simulation (Chen et al., 2025), and594

invariant inference (Pei et al., 2023), yet they still595

address only partial program semantics. In contrast,596

FormalBench targets formal specification inference,597

demanding exhaustive reasoning that produces pre-598

cise, verifiable specifications for every possible599

execution.600

Formal Specification Inference. Traditional601

dynamic analysis methods, such as Daikon (Ernst602

et al., 2007), Houdini (Flanagan and Leino, 2001),603

and DIG (Nguyen et al., 2014), infer likely invari-604

ants from observed behaviors using predefined tem-605

plates. However, these tools often yield trivial in-606

variants (e.g., nums != null) and struggle with com- 607

plex functional properties (Ma et al., 2024). Recent 608

work leverages LLMs to address these limitations. 609

Early approaches (Pei et al., 2023; Chakraborty 610

et al., 2023) fine-tuned LLMs for invariant infer- 611

ence but focused on specific cases, such as loop 612

invariants or unverified likely invariants. Nilizadeh 613

et al.(Nilizadeh et al., 2021) manually crafted com- 614

plete program specifications to assess automated 615

repair effectiveness. Building on this, newer meth- 616

ods such as SpecGen(Ma et al., 2024) and Au- 617

toSpec (Wen et al., 2024) automatically generate 618

full formal specifications via iterative refinement 619

and static analysis. However, as discussed in Sec- 620

tion 1, their evaluations remain limited, highlight- 621

ing the need for FormalBench and more compre- 622

hensive assessments of LLM effectiveness. 623

6 Conclusion 624

In this work, we introduce FormalBench, a compre- 625

hensive and large-scale benchmark for specification 626

inference. FormalBench integrates robust evalua- 627

tion metrics to assess the consistency, complete- 628

ness, and robustness of LLMs on this task. Using 629

FormalBench, we conduct an extensive evaluation 630

of eight popular LLMs, revealing their limited ef- 631

fectiveness and lack of robustness in synthesizing 632

formal specifications, even with advanced prompt- 633

ing techniques. We further analyze their common 634

failure patterns and propose a set of customized 635

prompts, leveraging LLMs’ self-repair capabilities 636

to enhance their performance. Overall, Formal- 637

Bench aims to enable a thorough evaluation and 638

deeper understanding of LLMs in formal program 639

reasoning. The dataset and evaluation infrastruc- 640

ture will be publicly released upon publication. 641

8

7 Limitations.642

The limitations of this work are as follows:643

First, mutation analysis, which sits at the core of644

our completeness metric, relies on predefined rules645

to systematically break program behavior, assum-646

ing that the generated mutants will exhibit semantic647

differences from the original program, thereby trig-648

gering detectable errors. However, the presence649

of equivalent mutants, i.e., semantically identical650

variants of the original program, presents a chal-651

lenge, as they evade detection, leading to false pos-652

itives and undermining the accuracy of complete-653

ness metrics. To mitigate this issue, we incorporate654

Equivalent Mutant Suppression (EMS) (Kushigian655

et al., 2024), a state-of-the-art technique for filter-656

ing out equivalent mutants. While EMS reduces657

their prevalence, some undetected equivalents may658

still affect the validity of our results. Future re-659

search should focus on the development of metrics660

that more effectively measure the completeness of661

generated specifications, thereby reducing reliance662

on mutation analysis as an isolated proxy.663

Second, our experiments produced a significant664

number of "unknown" results from the program665

verification tools. Manual inspection suggests that666

these cases are generally associated with higher-667

quality specifications compared to those with verifi-668

cation failures; yet, they introduce ambiguity due to669

inherent limitations in deductive verification tools.670

Future work should prioritize techniques for in-671

terpreting or eliminating these ambiguous results,672

possibly through enhanced symbolic execution or673

dynamic verification methods.674

Finally, our experiments did not include OpenAI-675

o1 and DeepSeekR1, the latest LLMs at the time of676

writing. For OpenAI-o1, the associated costs were677

prohibitively high, so we could not incorporate it678

into our experiments due to resource constraints.679

As an alternative, we conducted experiments on680

o3-mini, the latest reasoning model from OpenAI,681

with reasonable cost. For DeepSeekR1, access was682

unavailable at the time of writing due to a security683

breach affecting the service 1.684

References685

James H Andrews, Lionel C Briand, and Yvan Labiche.686
2005. Is mutation an appropriate tool for testing ex-687

1https://www.scmp.com/tech/tech-
war/article/3296975/deepseek-outage-adds-growing-pains-
amid-political-scrutiny-some-see-opportunity

periments? In Proceedings of the 27th international 688
conference on Software engineering, pages 402–411. 689

Anthropic. 2024. Claude-3.5-sonnet. https://www. 690
anthropic.com/news/claude-3-5-sonnet. 691

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, 692
Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin 693
Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, et al. 694
2022. Multi-lingual evaluation of code generation 695
models. arXiv preprint arXiv:2210.14868. 696

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 697
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 698
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, 699
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, 700
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, 701
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong 702
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng- 703
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, 704
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, 705
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx- 706
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang 707
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang 708
Zhu. 2023. Qwen technical report. arXiv preprint 709
arXiv:2309.16609. 710

Clark Barrett, Christopher L Conway, Morgan Deters, 711
Liana Hadarean, Dejan Jovanović, Tim King, Andrew 712
Reynolds, and Cesare Tinelli. 2011. cvc4. In Com- 713
puter Aided Verification: 23rd International Confer- 714
ence, CAV 2011, Snowbird, UT, USA, July 14-20, 715
2011. Proceedings 23, pages 171–177. Springer. 716

Patrick Baudin, Jean-Christophe Filliâtre, Claude 717
Marché, Benjamin Monate, Yannick Moy, and Vir- 718
gile Prevosto. 2008. Acsl: Ansi c specification lan- 719
guage. CEA-LIST, Saclay, France, Tech. Rep. v1, 720
2. 721

Saikat Chakraborty, Shuvendu K Lahiri, Sarah 722
Fakhoury, Madanlal Musuvathi, Akash Lal, Aseem 723
Rastogi, Aditya Senthilnathan, Rahul Sharma, and 724
Nikhil Swamy. 2023. Ranking llm-generated loop 725
invariants for program verification. arXiv preprint 726
arXiv:2310.09342. 727

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, 728
and Xin Xia. 2025. Reasoning runtime behavior of a 729
program with llm: How far are we? In Proceedings 730
of the IEEE/ACM 47th International Conference on 731
Software Engineering. 732

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 733
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 734
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 735
Greg Brockman, et al. 2021. Evaluating large 736
language models trained on code. arXiv preprint 737
arXiv:2107.03374. 738

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar- 739
ian, Jacob Hilton, Reiichiro Nakano, Christopher 740
Hesse, and John Schulman. 2021. Training veri- 741
fiers to solve math word problems. arXiv preprint 742
arXiv:2110.14168. 743

9

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

David R Cok. 2011. Openjml: Jml for java 7 by ex-744
tending openjdk. In NASA Formal Methods: Third745
International Symposium, NFM 2011, Pasadena, CA,746
USA, April 18-20, 2011. Proceedings 3, pages 472–747
479. Springer.748

Vijay D’silva, Daniel Kroening, and Georg Weis-749
senbacher. 2008. A survey of automated techniques750
for formal software verification. IEEE Transactions751
on Computer-Aided Design of Integrated Circuits752
and Systems, 27(7):1165–1178.753

Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen754
McCamant, Carlos Pacheco, Matthew S Tschantz,755
and Chen Xiao. 2007. The daikon system for dy-756
namic detection of likely invariants. Science of com-757
puter programming, 69(1-3):35–45.758

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-759
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,760
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A761
pre-trained model for programming and natural lan-762
guages. arXiv preprint arXiv:2002.08155.763

Cormac Flanagan and K Rustan M Leino. 2001. Hou-764
dini, an annotation assistant for esc/java. In Interna-765
tional Symposium of Formal Methods Europe, pages766
500–517. Springer.767

Cormac Flanagan, K Rustan M Leino, Mark Lillibridge,768
Greg Nelson, James B Saxe, and Raymie Stata. 2002.769
Extended static checking for java. In Proceedings of770
the ACM SIGPLAN 2002 Conference on Program-771
ming language design and implementation, pages772
234–245.773

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul774
Arora, Steven Basart, Eric Tang, Dawn Song, and775
Jacob Steinhardt. Measuring mathematical problem776
solving with the math dataset. In Thirty-fifth Con-777
ference on Neural Information Processing Systems778
Datasets and Benchmarks Track (Round 2).779

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su,780
and Premkumar Devanbu. 2016. On the naturalness781
of software. Communications of the ACM, 59(5):122–782
131.783

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong784
Wang, Li Li, Xiapu Luo, David Lo, John Grundy,785
and Haoyu Wang. 2024. Large language models786
for software engineering: A systematic literature re-787
view. ACM Transactions on Software Engineering788
and Methodology, 33(8):1–79.789

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018.790
Deep code comment generation. In Proceedings791
of the 26th conference on program comprehension,792
pages 200–210.793

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-794
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,795
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder796
technical report. arXiv preprint arXiv:2409.12186.797

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 798
Allamanis, and Marc Brockschmidt. 2019. Code- 799
searchnet challenge: Evaluating the state of semantic 800
code search. arXiv preprint arXiv:1909.09436. 801

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia 802
Yan, Tianjun Zhang, Sida Wang, Armando Solar- 803
Lezama, Koushik Sen, and Ion Stoica. 2024. Live- 804
codebench: Holistic and contamination free eval- 805
uation of large language models for code. arXiv 806
preprint arXiv:2403.07974. 807

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, 808
Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fernando 809
Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya 810
Sachan, et al. 2024. Cladder: A benchmark to as- 811
sess causal reasoning capabilities of language models. 812
Advances in Neural Information Processing Systems, 813
36. 814

Zhijing Jin, Jiarui Liu, Zhiheng Lyu, Spencer Poff, Mrin- 815
maya Sachan, Rada Mihalcea, Mona Diab, and Bern- 816
hard Schölkopf. 2023. Can large language models 817
infer causation from correlation? arXiv preprint 818
arXiv:2306.05836. 819

René Just. 2014. The major mutation framework: Ef- 820
ficient and scalable mutation analysis for java. In 821
Proceedings of the 2014 international symposium on 822
software testing and analysis, pages 433–436. 823

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, 824
Julien Signoles, and Boris Yakobowski. 2015. Frama- 825
c: A software analysis perspective. Formal aspects 826
of computing, 27(3):573–609. 827

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 828
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 829
guage models are zero-shot reasoners. Advances in 830
neural information processing systems, 35:22199– 831
22213. 832

Benjamin Kushigian, Samuel J Kaufman, Ryan Feath- 833
erman, Hannah Potter, Ardi Madadi, and René Just. 834
2024. Equivalent mutants in the wild: Identifying 835
and efficiently suppressing equivalent mutants for 836
java programs. In Proceedings of the 33rd ACM SIG- 837
SOFT International Symposium on Software Testing 838
and Analysis, pages 654–665. 839

Axel van Lamsweerde. 2000. Formal specification: a 840
roadmap. In Proceedings of the Conference on the 841
Future of Software Engineering, pages 147–159. 842

Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, 843
Derek Dreyer, and Peter W O’Hearn. 2022. Finding 844
real bugs in big programs with incorrectness logic. 845
Proceedings of the ACM on Programming Languages, 846
6(OOPSLA1):1–27. 847

Thanh Le-Cong, Dat Nguyen, Bach Le, and Toby Mur- 848
ray. 2024. Towards reliable evaluation of neural pro- 849
gram repair with natural robustness testing. Preprint, 850
arXiv:2402.11892. 851

10

https://arxiv.org/abs/2402.11892
https://arxiv.org/abs/2402.11892
https://arxiv.org/abs/2402.11892

Gary T Leavens, Albert L Baker, and Clyde Ruby. 2006.852
Preliminary design of jml: A behavioral interface853
specification language for java. ACM SIGSOFT Soft-854
ware Engineering Notes, 31(3):1–38.855

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang,856
Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong857
Ruan, Damai Dai, Daya Guo, et al. 2024a.858
Deepseek-v2: A strong, economical, and efficient859
mixture-of-experts language model. arXiv preprint860
arXiv:2405.04434.861

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,862
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi863
Deng, Chenyu Zhang, Chong Ruan, et al. 2024b.864
Deepseek-v3 technical report. arXiv preprint865
arXiv:2412.19437.866

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,867
Yile Wang, and Yue Zhang. 2021. Logiqa: a868
challenge dataset for machine reading comprehen-869
sion with logical reasoning. In Proceedings of the870
Twenty-Ninth International Conference on Interna-871
tional Joint Conferences on Artificial Intelligence,872
pages 3622–3628.873

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and874
Lingming Zhang. 2024c. Is your code generated by875
chatgpt really correct? rigorous evaluation of large876
language models for code generation. Advances in877
Neural Information Processing Systems, 36.878

Yue Liu, Thanh Le-Cong, Ratnadira Widyasari,879
Chakkrit Tantithamthavorn, Li Li, Xuan-Bach D Le,880
and David Lo. 2024d. Refining chatgpt-generated881
code: Characterizing and mitigating code quality is-882
sues. ACM Transactions on Software Engineering883
and Methodology, 33(5):1–26.884

Lezhi Ma, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei885
Bu. 2024. Specgen: Automated generation of formal886
program specifications via large language models.887
arXiv preprint arXiv:2401.08807.888

Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and889
Stephanie Forrest. 2014. Dig: A dynamic invariant890
generator for polynomial and array invariants. ACM891
Transactions on Software Engineering and Method-892
ology (TOSEM), 23(4):1–30.893

Amirfarhad Nilizadeh, Gary T Leavens, Xuan-Bach D894
Le, Corina S Păsăreanu, and David R Cok. 2021.895
Exploring true test overfitting in dynamic automated896
program repair using formal methods. In 2021 14th897
IEEE conference on software testing, verification and898
validation (ICST), pages 229–240. IEEE.899

OpenAI. 2023. Gpt-3.5 turbo. https://openai.com/900
chatgpt.901

OpenAI. 2024. Gpt-4o. https://openai.com/902
index/hello-gpt-4o/.903

Kexin Pei, David Bieber, Kensen Shi, Charles Sut-904
ton, and Pengcheng Yin. 2023. Can large language905

models reason about program invariants? In Inter- 906
national Conference on Machine Learning, pages 907
27496–27520. PMLR. 908

Md Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang, Yijun 909
Yu, Lingxiao Jiang, and Mohammad Amin Alipour. 910
2021. On the generalizability of neural program 911
models with respect to semantic-preserving program 912
transformations. Information and Software Technol- 913
ogy, 135:106552. 914

Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, 915
Zhaopeng Tu, Alberto Bacchelli, and Premkumar 916
Devanbu. 2016. On the" naturalness" of buggy code. 917
In Proceedings of the 38th International Conference 918
on Software Engineering, pages 428–439. 919

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 920
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 921
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 922
Code llama: Open foundation models for code. arXiv 923
preprint arXiv:2308.12950. 924

Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao 925
Qin, Mengda He, Haokun Li, Shing-Chi Cheung, 926
and Cong Tian. 2024. Enchanting program specifica- 927
tion synthesis by large language models using static 928
analysis and program verification. In International 929
Conference on Computer Aided Verification, pages 930
302–328. Springer. 931

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 932
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 933
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao- 934
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian 935
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin 936
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang 937
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, 938
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng 939
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, 940
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, 941
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, 942
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin 943
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang 944
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu 945
Cui, Zhenru Zhang, and Zhihao Fan. 2024a. Qwen2 946
technical report. arXiv preprint arXiv:2407.10671. 947

Zhou Yang, Zhensu Sun, Terry Zhuo Yue, Premkumar 948
Devanbu, and David Lo. 2024b. Robustness, secu- 949
rity, privacy, explainability, efficiency, and usability 950
of large language models for code. arXiv preprint 951
arXiv:2403.07506. 952

Zonglin Yang, Li Dong, Xinya Du, Hao Cheng, Erik 953
Cambria, Xiaodong Liu, Jianfeng Gao, and Furu 954
Wei. 2022. Language models as inductive reason- 955
ers. arXiv preprint arXiv:2212.10923. 956

Weiwei Zhang, Shengjian Guo, Hongyu Zhang, Yulei 957
Sui, Yinxing Xue, and Yun Xu. 2023. Challenging 958
machine learning-based clone detectors via semantic- 959
preserving code transformations. IEEE Transactions 960
on Software Engineering, 49(5):3052–3070. 961

11

https://openai.com/chatgpt
https://openai.com/chatgpt
https://openai.com/chatgpt
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,962
Nathan Scales, Xuezhi Wang, Dale Schuurmans,963
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.964
Least-to-most prompting enables complex reason-965
ing in large language models. arXiv preprint966
arXiv:2205.10625.967

12

A Semantic-preserving Transformations968

In this study, we curate a set of 18 semantic-969

preserving transformations from recent studies (Le-970

Cong et al., 2024; Zhang et al., 2023; Rabin et al.,971

2021) including:972

• VariableRenaming-1 replaces a variable973

name by its first characters;974

• VariableRenaming-1 replaces a variable975

name by substitutions derived from Code-976

BERT (Feng et al., 2020);977

• SwitchRelation transforms relational expres-978

sions by swapping the operands. For example,979

the expression a < b is transformed into b >980

a.981

• Unary2Add modifies unary operations or in-982

crements by converting them into normal as-983

signment statements. For instance, i++; is984

transformed into i = i + 1;.985

• Add2Equal converts add/subtract assign-986

ments into equal assignments. For example, a987

+= 9; is transformed into a = a + 9;, and b988

-= 10; is transformed into b = b - 10;.989

• MergeVarDecl merges multiple variable dec-990

larations into a single statement. For instance,991

int a; and int b; are merged into int a,992

b;.993

• InfixDividing divides an in/pre/post-fix ex-994

pression into two separate expressions, storing995

intermediate results in a temporary variable.996

For example, x = a + b * c is transformed997

into temp = b * c; followed by x = a +998

temp.999

• SwitchEqualExp switches the two expres-1000

sions on both sides of an infix expression1001

where the operator is =. For instance, a == b1002

is transformed into b == a.1003

• SwitchStringEqual switches the order1004

of string equality checks. For exam-1005

ple, a.equals(b) is transformed into1006

b.equals(a).1007

• For2While transforms a for-loop into a while-1008

loop, restructuring the loop for different con-1009

trol flow requirements.1010

• While2For transforms a while-loop into a for-1011

loop;1012

• ElseIf2If transforms an If...Else if... structure 1013

into a nested If...Else structure; 1014

• Switch2If transforms a Switch-Case structure 1015

into an If-Else structure, converting switch- 1016

based logic into a series of conditional checks. 1017

• SwapStatement swaps two statements that 1018

have no control or data dependency; 1019

• ReverseIf switches the code blocks in the if 1020

statement and the corresponding else state- 1021

ment, inverting the condition and its associ- 1022

ated logic. 1023

• If2CondExp changes a single if statement 1024

into a conditional expression statement, sim- 1025

plifying the code into a more concise 1026

form. For example, if (condition) { 1027

StatementA } else { StatementB } 1028

becomes condition ? StatementA : 1029

StatementB. 1030

• CondExp2If changes a conditional expres- 1031

sion statement into a single if statement. For 1032

example, condition ? StatementA : 1033

StatementB becomes if (condition) { 1034

StatementA } else { StatementB }. 1035

• DividingComposedIf divides an if statement 1036

with a compound condition (∧,∨,−) into 1037

two nested if-statements, breaking down com- 1038

plex conditions into simpler, more manage- 1039

able parts. 1040

B Evaluation Metrics 1041

In this appendix, we present the formal definition 1042

and implementation details of our evaluation met- 1043

rics, presented in Section 3.2 1044

B.1 Consistency Metrics 1045

Given a benchmark dataset D, an LLM L, and a 1046

verification tool V , success rate (SR) and failure 1047

rate (FR) are formally defined as follows: 1048

SR(L) =
∣∣{r ∈ D | g = L(r) ∧ V(g, r) = ok}

∣∣
|D|

, 1049

FR(L) =
∣∣{r ∈ D | g = L(r) ∧ V(g, r) = fail}

∣∣
|D|

, 1050

where g = L(p) is the specification generated 1051

by L for the reference program r, and V(g, p) de- 1052

notes the verification result of g on p using V . To 1053

13

ensure the consistency between the generated spec-1054

ification and the reference program, we employ1055

OpenJML (Cok, 2011), a widely used program1056

verification tool. Specifically, we utilize its latest1057

version (21.0) in the esc mode (Extended Static1058

Checker (Flanagan et al., 2002)) with the CVC41059

SMT solver (Barrett et al., 2011). Additionally, we1060

enable arithmetic mode and assume that pointers1061

are nullable by default.1062

B.2 Completeness Metrics1063

For a generated specification g and a reference1064

program r, the completeness rate (CR) is formally1065

defined as follows:1066

CR(g, r) =

∣∣{p ∈ P(r) | V(g, p) ̸= ok}
∣∣

|P(r)|
,1067

where P(r) is the set of mutants for r, and1068

V(g, p) is the verification result of g on mutant1069

p. Higher CR indicates greater completeness, as g1070

detects more faults. To generate sP(r), we utilize1071

Major (Just, 2014), a widely recognized mutation1072

testing framework, using its latest version (3.0.1).1073

To mitigate the generation of equivalent mutants,1074

we further employ EMS (Kushigian et al., 2024), a1075

state-of-the-art equivalent mutant suppression tech-1076

nique.1077

B.3 Robustness Metrics1078

To evaluate the robustness of LLMs, we leverage a1079

set of 18 semantic-preserving transformations, pre-1080

sented in Section A. Given p, its set of transformed1081

programs T , LLM L, and verification tool V , with1082

g = L(p) verified as correct (V(g, p) = ok), Flip1083

Rate (FlR) is defined as follows:1084

FlR(p, T) =

∣∣{t ∈ T | g′ = L(t) ∧ V(g′, t) ̸= ok}
∣∣

|T |
.1085

Moreover, we also measure the consistency and1086

completeness metrics of LLMs on our transformed1087

dataset. Since transformations may not apply uni-1088

versally, we normalize metrics over applicable1089

transformations. For a reference program r, its1090

set of transformed programs T , and metric M, the1091

normalized metric M′ is defined as follows:1092

M′(T) =

∑
t∈T M(t)

|T |
,1093

where M can be SR, FR, or CR.1094

C Evaluated Large Language Models 1095

We evaluate the following models with our Formal- 1096

Bench benchmark: 1097

• Open-source LLMs: 1098

– CodeQwen-1.5: CodeQwen-1.5-7B (Bai 1099

et al., 2023) 1100

– CodeQwen-2.5: Qwen2.5-Coder-32B- 1101

Instruct (Yang et al., 2024a; Hui et al., 1102

2024) 1103

– CodeLLama: CodeLlama-34b-Instruct- 1104

hf (Roziere et al., 2023) 1105

– DeepSeek-V2 (Liu et al., 2024a) 1106

• Proprietary LLMs: 1107

– DeepSeek-V3-671B (Liu et al., 2024b) 1108

– GPT3.5: GPT-3.5-turbo (OpenAI, 2023) 1109

– GPT-4o (OpenAI, 2024) 1110

– Claude: Claude-3.5-Sonnet (Anthropic, 1111

2024) 1112

D Experimental Settings 1113

To query LLMs, we implemented our framework 1114

using LangChain, an open-source framework de- 1115

signed to streamline the development of applica- 1116

tions leveraging llm. For running open-source 1117

LLMs, we use an NVIDIA A100 GPU with 80GB 1118

of VRAM and an Intel® Xeon® Gold 6326 CPU 1119

operating at 2.90 GHz. For running the verification 1120

tool, we leverage an Intel® Xeon® Platinum 8358 1121

CPU operating at 2.90 GHz with 28 CPU cores and 1122

1953GB of RAM. 1123

E Constructions of 1124

FormalBench-Diverse-Natural 1125

To construct FormalBench-Diverse-Natural, we 1126

first assess the naturalness of semantic-preserving 1127

transformations by measuring the relative change 1128

in cross-entropy, following established methods in 1129

previous studies (Le-Cong et al., 2024; Ray et al., 1130

2016; Hindle et al., 2016). We then select 50% of 1131

the transformations, sorted by naturalness score. 1132

Finally, we choose programs with at least three 1133

transformations to avoid bias in the calculation of 1134

normalized metrics. 1135

14

F Distribution of Verification success and1136

failures over different control-flow1137

types.1138

In this section, we present the distribution of verifi-1139

cation success and failures over different control-1140

flow types for three evaluated LLMs.1141

Figure 5: Verification Failures of Claude-3.5-Sonnet

Figure 6: Verification Successes of Claude-3.5-Sonnet

G Failure Analysis1142

Since each specification can contain failures at1143

multiple locations, our analysis begins by separat-1144

ing these errors into atomic errors. We then conduct1145

a manual analysis of each error to identify common1146

patterns in their error messages. For example, fail-1147

ures related to postconditions consistently include1148

the following string in their messages: "The prover1149

cannot establish an assertion (Postcondition)", as1150

illustrated in Listing 1. Based on these patterns,1151

we build a simple pattern matching to classify fail-1152

ures. This process is repeated until no remaining1153

unknown patterns are found.1154

Figure 7: Verification Failures of GPT-4o

Figure 8: Verification Successes of GPT-4o

H Prompts 1155

In this section, we present prompt templates used 1156

in this study for specification generation, including 1157

zero-shot, few-shot, chain-of-thought, and least-to- 1158

most prompts. 1159

Zero-shot prompt

(System) You are an expert in Java Modeling Lan-
guage (JML). You will be provided with Java code
snippets and their task descriptions. Your task is to
generate JML specifications for the given Java code.
The specifications should be written as annotations
within the Java code and must be compatible with the
OpenJML tool for verification. Ensure the specifica-
tions include detailed preconditions, postconditions,
necessary loop invariants, invariants, assertions, and
any relevant assumptions.
(User) Please generate JML specifications for the
provided Java code.
CODE
{code}

1160

15

Figure 9: Verification Failures of DeepSeek-V3

Figure 10: Verification Successes of DeepSeek-V3

Few-shot prompt

(System) You are an expert in Java Modeling Lan-
guage (JML). You will be provided with Java code
snippets. Your task is to generate JML specifications
for the given Java code. The specifications should be
written as annotations within the Java code and must
be compatible with the OpenJML tool for verifica-
tion. Ensure the specifications include detailed pre-
conditions, postconditions, necessary loop invariants,
invariants, assertions, and any relevant assumptions.
Please also adhere to the following syntax guidelines
for JML:
JML text is written in comments that either:
a) begin with //@ and end with the end of the line, or
b) begin with /*@ and end with */. Lines within such
a block comment may have the first non-whitespace
characters be a series of @ symbols.
{examples}
(User) Please generate JML specifications for the
provided Java code.
CODE
{code}

1161

Listing 1: A example of error messages for a postcondi-
tion failures

1 /tmp/PairOrSum.java :77: verify: The
prover cannot establish an assertion
(Postcondition: /tmp/PairOrSum.java

:69:) in method spec_partialOrSum
2 return sum;
3

4 /tmp/PairOrSum.java :69: verify:
Associated declaration: /tmp/
PairOrSum.java :77:

5 @ ensures \result >= 0;

Chain-of-thought prompt

(System) You are an expert in Java Modeling Lan-
guage (JML). You will be provided with Java code
snippets. Your task is to generate JML specifications
for the given Java code. The specifications should be
written as annotations within the Java code and must
be compatible with the OpenJML tool for verifica-
tion. Ensure the specifications include detailed pre-
conditions, postconditions, necessary loop invariants,
invariants, assertions, and any relevant assumptions.
Please also adhere to the following syntax guidelines
for JML:
JML text is written in comments that either:
a) begin with //@ and end with the end of the line, or
b) begin with /*@ and end with */. Lines within such
a block comment may have the first non-whitespace
characters be a series of @ symbols.
{examples}
(User) Please generate JML specifications for the
provided Java code.
CODE
{code}
Let’s think step by step!

1162

16

Least-to-Most prompt

(System) You are an expert in Java Modeling Lan-
guage (JML). You will be provided with Java code
snippets. Your task is to generate JML specifications
for the given Java code. The specifications should be
written as annotations within the Java code and must
be compatible with the OpenJML tool for verifica-
tion. Ensure the specifications include detailed pre-
conditions, postconditions, necessary loop invariants,
invariants, assertions, and any relevant assumptions.
Please also adhere to the following syntax guidelines
for JML:
JML text is written in comments that either:
a) begin with //@ and end with the end of the line, or
b) begin with /*@ and end with */. Lines within such
a block comment may have the first non-whitespace
characters be a series of @ symbols.
{examples}
(User) Please generate JML specifications for the
provided Java code.
CODE
{code}
Let’s break down this problem:
1. What are the weakest preconditions for the code?
Be sure to include preconditions related to nullness
and arithmetic bounds.
2. What are the strongest postconditions for the code?
3. What necessary specifications are required to prove
the above post-conditions? This includes loop invari-
ants, assertions, assumptions, and ranking functions.
After answering these questions, let’s generate the
specifications for the code and provide solution after
‘### SPECIFCIATION’

1163

I Self-Repair Prompts1164

In this section, we illustrate several repair prompts1165

designed to address the most common errors. For1166

a complete list of all repair prompts, please refer to1167

our repository.1168

Fixing prompt for Syntax Errors

(System) You are an experts on Java Modeling Lan-
guage (JML). Your task is to fix the JML specifica-
tions annotated in the target Java code. You will be
provided the error messages from the OpenJML tool
and you need to fix the specifications accordingly.
(User) The following Java code is annotated with
JML specifications:
{current specification}
OpenJML Verification tool failed to verify the speci-
fications given above, with error information as fol-
lows:
ERROR MESSAGE:
{error messages}
ERROR TYPES: Syntax Error
To resolve the syntax error, you should consider the
following steps:
1. Identify whether the error is due to a Java syntax
issue or a JML syntax issue.
2. Review the code to identify the specific location
and nature of the syntax error.
3. Correct the syntax error based on the language
rules and conventions.
Please refine the specifications so that they can pass
verification. Provide the specifications for the code
and include the solution written between triple back-
ticks, after ‘### FIXED SPECIFICATION‘.

1169

Fixing prompt for Unsupported Sum/Nu-
mOf/Product Quantifier Expressions

(System) You are an experts on Java Modeling Lan-
guage (JML). Your task is to fix the JML specifica-
tions annotated in the target Java code. You will be
provided the error messages from the OpenJML tool
and you need to fix the specifications accordingly.
(User) The following Java code is annotated with
JML specifications:
{current specification}
OpenJML Verification tool failed to verify the speci-
fications given above, with error information as fol-
lows:
ERROR MESSAGE:
{error messages}
ERROR TYPES: Unsupported Sum/Nu-
mOf/Product Quantifier Expressions
OpenJML does not fully support JML’s inductive
quantifiers like \num_of, \sum, and \product in speci-
fications. These operators require inductive reason-
ing (e.g., counting elements, summing values over a
range, or computing products), which is difficult for
SMT solvers (the engines behind OpenJML and most
of deductive verification tools) to handle.
To avoid the use of \sum, \num_of, and \product
quantifiers in your JML specifications, you can ex-
press your specifications using induction steps to help
OpenJML’s verifiers to reason about your code. You
can do this by define mathematical functions and lem-
mas through model methods. For example, you can
should not use \product quantifier in the following
specifications:
{Examples with reasoning}
Please refine the specifications so that they can pass
verification. Provide the specifications for the code
and include the solution written between triple back-
ticks, after ‘### FIXED SPECIFICATION‘.

1170

17

Fixing prompt for Unsupported Min/-
Max Quantifier Expressions

(System) You are an experts on Java Modeling Lan-
guage (JML). Your task is to fix the JML specifica-
tions annotated in the target Java code. You will be
provided the error messages from the OpenJML tool
and you need to fix the specifications accordingly.
(User) The following Java code is annotated with
JML specifications:
{current specification}
OpenJML Verification tool failed to verify the speci-
fications given above, with error information as fol-
lows:
ERROR MESSAGE:
{error messages}
ERROR TYPES: Unsupported Min/Max Quanti-
fier Expressions
OpenJML does not fully support JML’s inductive
quantifiers like \min, \max in specifications. These
operators require inductive reasonings, which is diffi-
cult for SMT solvers (the engines behind OpenJML
and most of deductive verification tools) to handle.
To avoid the use of \min and \max quantifiers in your
JML specifications, you can use the \forall quanti-
fier to express your specifications. For example, you
should not use \max quantifier in the following speci-
fications:
{Examples with reasoning}
Please refine the specifications so that they can pass
verification. Provide the specifications for the code
and include the solution written between triple back-
ticks, after ‘### FIXED SPECIFICATION‘.

1171

Fixing prompt for Loop Invariant Fail-
ures

(System) You are an experts on Java Modeling Lan-
guage (JML). Your task is to fix the JML specifica-
tions annotated in the target Java code. You will be
provided the error messages from the OpenJML tool
and you need to fix the specifications accordingly.
(User) The following Java code is annotated with
JML specifications:
{current specification}
OpenJML Verification tool failed to verify the speci-
fications given above, with error information as fol-
lows:
ERROR MESSAGE:
{error messages}
ERROR TYPES: Loop Invariant Failures
This error occurs when the loop invariant, a condition
that must hold true before the loop begins and remain
true after each iteration, is not properly established
or maintained. This semantic error typically arises
when verifiers fail to confirm the correctness of the
synthesized loop invariant. The causes of this error in-
clude: (1) an incorrect loop invariant, (2) wrong/weak
preconditions that prevent the invariant from holding
at the start of the loop, or (3) incomplete reasoning
about the loop, leading to insufficient information for
the verifier to verify the invariant.
To resolve the error, please consider the following
steps:
1. Carefully review the loop invariant to ensure it
correctly captures the necessary conditions that hold
true before and after each iteration of the loop.
2. Carefully examine preconditions to ensure they
are strong enough to establish the loop invariant at
the beginning of the loop.
3. Add additional assertions or assumptions within
the loop to help the verifier reason about the loop
invariant.
For example, consider the following code snippet
with a loop invariant failure:
{Examples with reasoning}
Please refine the specifications so that they can pass
verification. Provide the specifications for the code
and include the solution written between triple back-
ticks, after ‘### FIXED SPECIFICATION‘.

1172

18

Fixing prompt for Post-Condition Fail-
ures

(System) You are an experts on Java Modeling Lan-
guage (JML). Your task is to fix the JML specifica-
tions annotated in the target Java code. You will be
provided the error messages from the OpenJML tool
and you need to fix the specifications accordingly.
(User) The following Java code is annotated with
JML specifications:
{current specification}
OpenJML Verification tool failed to verify the speci-
fications given above, with error information as fol-
lows:
ERROR MESSAGE:
{error messages}
ERROR TYPES: Post-condition Failures
This error occurs when the postcondition, a condition
that must hold true after the execution of a program or
function, is not satisfied. This type of semantic error
typically arises when verifiers are unable to confirm
that the program’s logic guarantees the postcondition
under all valid inputs and scenarios. The causes of
this error include: (1) an incorrect or incomplete post-
condition, (2) wrong/weak preconditions that prevent
the program from reaching a state where the postcon-
dition holds, or (3) incomplete reasoning about the
programs, leading to insufficient information for the
verifier to verify the postcondition.
To resolve the error, please consider the following
steps:
1. Review the postcondition to ensure it correctly
captures the expected behavior of the program or
function.
2. Check the preconditions to ensure they are strong
enough to reach a state where the postcondition holds.
3. Add additional assertions or assumptions within
the program or function to help the verifier reason
about the postcondition.
For example, consider the following code snippet
with a postcondition failure:
{Examples with reasoning}
Please refine the specifications so that they can pass
verification. Provide the specifications for the code
and include the solution written between triple back-
ticks, after ‘### FIXED SPECIFICATION‘.

1173

19

	Introduction
	Problem Statement
	Dataset Construction and Evaluation
	FormalBench Construction
	Evaluation Metrics

	Experiments
	RQ1: Effectiveness of LLMs
	RQ2: Impact of Advanced Prompting Techniques
	RQ3: Robustness of LLMs
	RQ4: Common Failures and Self-Repair Ability of LLMs
	Common Failures
	Self-Repair

	Related Works
	Conclusion
	Limitations.
	Semantic-preserving Transformations
	Evaluation Metrics
	Consistency Metrics
	Completeness Metrics
	Robustness Metrics

	Evaluated Large Language Models
	Experimental Settings
	Constructions of FormalBench-Diverse-Natural
	Distribution of Verification success and failures over different control-flow types.
	Failure Analysis
	Prompts
	Self-Repair Prompts

