
When Do We Not Need Larger Vision Models?

Anonymous Author(s)
Affiliation
Address
email

Abstract

Scaling up the size of vision models has been the de facto standard to obtain more1

powerful visual representations. In this work, we discuss the point beyond which2

larger vision models are not necessary. We demonstrate the power of Scaling on3

Scales (S2), whereby a pre-trained and frozen smaller vision model (e.g., ViT-B or4

ViT-L), run over multiple image scales, can outperform larger models (e.g., ViT-H5

or ViT-G) on classification, segmentation, depth estimation, Multimodal LLM6

(MLLM) benchmarks, and robotic manipulation. We further show that features7

of larger vision models can be well approximated by those of multi-scale smaller8

models through a linear transform, which suggests a multi-scale smaller model has9

comparable learning capacity to a larger model.10

1 Introduction11

Scaling up model size has been one of the key drivers of recent progress in various domains of artificial12

intelligence, including language modeling [4, 27, 40], image and video generation [45, 31, 17, 3],13

etc. Similarly, for visual understanding, larger models have consistently shown improvements across14

a wide range of downstream tasks given sufficient pre-training data [37, 48, 6, 26]. This trend has15

led to the pursuit of gigantic models with up to tens of billions of parameters as a default strategy16

for achieving more powerful visual representations and enhanced performance on downstream17

tasks [6, 9, 36, 12].18

In this work, we revisit the question: Is a larger model always necessary for better visual understand-19

ing? Instead of scaling up model size, we consider scaling on the dimension of image scales—which20

we call Scaling on Scales (S2). With S2, a pre-trained and frozen smaller vision model (e.g., ViT-B21

or ViT-L) is run on multiple image scales to generate a multi-scale representation. We take a model22

pre-trained on single image scale (e.g., 2242), interpolate the image to multiple scales (e.g., 2242,23

4482, 6722), extract features on each scale by splitting larger images into sub-images of the regular24

size (2242) and processing each separately before pooling them and concatenating with features from25

the original representation (Figure 1).26

From evaluations on visual representations of various pre-trained models (e.g., ViT [10], DINOv2 [26],27

OpenCLIP [6], MVP [30]), we show that smaller models with S2 scaling consistently outperform28

larger models on classification, semantic segmentation, depth estimation, MLLM benchmarks, and29

robotic manipulation, with significantly fewer parameters (e.g., 0.07×) and comparable GFLOPS.30

While these results suggest larger models are not necessary for better downstream performance,31

it is still not clear if they are irreplaceable in terms of representation learning, i.e., is there any32

representation that larger models can learn but smaller models cannot? Surprisingly, we find that the33

features of larger models can be well approximated by multi-scale smaller models through a single34

linear transform, which means smaller models should have at least a similar learning capacity of their35

larger counterparts.36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



Figure 1: S2-Wrapper is a simple mechanism that extends any pre-trained vision model to
multiple image scales in a parameter-free manner. Taking ViT-B as an example, S2-Wrapper first
interpolates the input image to different scales (e.g., 2242 and 4482) and splits each into several sub-
images of the same size as the default input size (4482 → 4× 2242). For each scale, all sub-images
are fed into the same model and the outputs (e.g., 4× 162) are merged into feature map of the whole
image (322). Feature maps of different scales are average-pooled to the original spatial size (162) and
concatenated together. The final multi-scale feature has the same spatial shape as single-scale feature
while having higher channel dimension (e.g., 1536 vs. 768).

2 The Power of Scaling on Scales37

2.1 Scaling Pre-Trained Vision Models to Multiple Image Scales38

We first introduce S2-Wrapper, a parameter-free mechanism to enable multi-scale feature extraction39

on any pre-trained vision model. Regular vision models are normally pre-trained at a single image40

scale (e.g., 2242). S2-Wrapper extends a pre-trained model to multiple image scales (e.g., 2242, 4482)41

by splitting different scales of images to the same size as seen in pre-training. Specifically, given the42

image at 2242 and 4482 scales, S2-Wrapper first divides the 4482 image into four 2242 sub-images,43

which along with the original 2242 image are fed to the same pre-trained model. The features of four44

sub-images are merged back to the large feature map of the 4482 image, which is then average-pooled45

to the same size as the feature map of 2242 image. Output is the concatenation of feature maps46

across scales. The whole process is illustrated in Figure 1. Note that instead of directly using the47

4482 resolution image, we obtain the 4482 image by interpolating the 2242 image. This is to make48

sure no additional high-resolution information is introduced so we can make a fair comparison with49

model size scaling which never sees the high-resolution image. On the other hand, we interpolate50

the large feature map into the regular size to make sure the number of output tokens stays the same,51

making it a fair comparison to larger models which give the same number of tokens for downstream52

applications such as MLLMs. Note that we do not claim the novelty of extracting multi-scale features53

since concurrent work (e.g., [21]) also use similar methods. Instead, we only choose the simplest54

algorithm design and study its scaling property.55

2.2 Scaling on Image Scales Can Beat Scaling on Model Size56

S2-Wrapper enables S2 scaling, i.e., keeping the same size of a pre-trained model while getting more57

and more powerful features by running on more and more image scales. Here we compare the scaling58

curve of S2 to the regular approach of scaling up model size and show that S2 scaling is a competitive,59

and in some cases, preferred scaling approach. To get a holistic analysis of two scaling approaches,60

we test their scaling curves on three representative tasks (image classification, semantic segmentation,61

and depth estimation) which correspond to the three dimensions of vision model capability [25],62

as well as on MLLMs and robotic manipulation which reflect the comprehensive ability of visual63

understanding. Please find the results on MLLMs below and other results in Appendix A.64

Case study: Multimodal LLMs. We compare S2 scaling and model size scaling on MLLMs.65

We use a LLaVA [20]-style model where LLM is a Vicuna-7B [7] and the vision backbone is66

OpenCLIP. We keep the same LLM and only change the vision backbone. For model size scaling,67
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(b) VQA Benchmarks
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(c) MLLM Benchmarks
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Figure 2: Comparison of S2 scaling and model size scaling on MLLM. For each type of tasks,
we test large, huge, and big-G models for model size scaling (plotted in gray curve). For S2 scaling
(plotted in green curve), we test three sets of scales including (1x), (1x, 2x), (1x, 2x, 4x). S2 scaling
has comparable or better scaling curve than model size scaling on all three types of benchmarks.
Using large image scales consistently gives better performance while using larger model can degrade
model performance in certain cases.

we test vision model sizes of large, huge, and big-G. For S2 scaling, we keep the large-size model68

and test scales of (2242), (2242, 4482), and (2242, 4482, 8962). For all experiments, we keep69

the vision backbone frozen and only train a projector layer between the vision feature and LLM70

input space as well as a LoRA [16] on LLM. We follow the same training recipe as in LLaVA-71

1.5 [19]. We evaluate three types of benchmarks: (i) visual detail understanding (V∗ [42]), (ii) VQA72

benchmarks (VQAv2 [13], TextVQA [34], VizWiz [14]), and (iii) MLLM benchmarks (MMMU [47],73

MathVista [24], MMBench [22], SEED-Bench [18], MM-Vet [46]).74

A comparison of the two scaling approaches is shown in Figure 2. We report the average accuracy on75

each type of benchmarks. We can see that on all three types of benchmarks, S2 scaling on large-size76

models performs better than larger models, using similar GFLOPs and much smaller model sizes.77

Especially, scaling to 8962 improves the accuracy of detailed understanding by about 6%. On all78

benchmarks, larger image scales consistently improve performance while bigger models sometimes79

fail to improve or even hurt performance. These results suggest S2 is a preferable scaling approach80

for vision understanding in MLLMs. Please see the complete results on MLLMs in Appendix B.81

2.3 Can Smaller Models Learn What Larger Models Learn?82

Despite the superior performance, can multi-scale smaller models replace larger models for represen-83

tation learning as well? We design experiments to study how much of the representation of larger84

models is also learned by multi-scale smaller models. Surprisingly, our results suggest that most, if85

not all, of the representation of larger models is also learned by multi-scale smaller models.86

To quantify how much of the representation of a larger model (e.g., ViT-L) is also learned by a multi-87

scale smaller model (e.g., ViT-B-S2), we adopt a reconstruction-based evaluation, i.e., we train a linear88

transform to reconstruct the representation of a larger model from that of a multi-scale smaller model.89

Intuitively, low reconstruction loss means the representation of larger model can be equivalently90

learned by the multi-scale smaller model (through a linear transform) to a large extent. More formally,91

the reconstruction loss reflects the mutual information between two sets of representations. If we92

use MSE loss for reconstruction, the mutual information equals I = − log(l/l0), where l is the93

reconstruction loss and l0 is the loss of vanilla reconstruction where the large model representation94

is reconstructed by a dummy vector (See Appendix D). This quantifies how much information95

in the larger model representation is also contained in the multi-scale smaller model. We use a96

linear transform for reconstruction to measure the information that is useful for downstream tasks97

considering the task decoders are usually light-weight modules such as a single linear layer [44].98

Moreover, in practice we find the reconstruction loss is usually nowhere near zero. We hypothesize99

this is because part of the feature is non-reconstructable by nature, i.e., feature that is not relevant to100

the pre-training task and is learned due to randomness in weight initialization, optimization dynamics,101
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Table 1: Reconstructing representation of larger models from representation of regular or
multi-scale smaller models. We test three classes of models (ViT, OpenCLIP, and MAE), and
for each class we test base, multi-scale base (Base-S2), and huge or giant model. We report the
reconstruction loss, the amount of information reconstructed, and the percentage of information
reconstructed compared to huge or giant model on train and test set of ImageNet.

Model Class Target Source Train Set Test Set
Loss Info Ratio (%) Loss Info Ratio (%)

ViT Large
Base 0.1100 0.440 82.9% 0.0994 0.524 87.6%

Base-S2 0.1040 0.521 98.1% 0.0942 0.601 100.5%
Huge 0.1033 0.531 100% 0.0944 0.598 100%

MAE Large
Base 0.0013 7.460 97.3% 0.0010 7.840 96.0%

Base-S2 0.0011 7.694 100.3% 0.0009 7.972 97.6%
Huge 0.001 7.669 100% 0.0008 8.169 100%

OpenCLIP Large
Base 0.3693 1.495 92.7% 0.3413 1.723 90.7%

Base-S2 0.3408 1.611 99.9% 0.3170 1.830 96.3%
Giant 0.3402 1.613 100% 0.3022 1.900 100%

OpenCLIP Huge
Base 0.3926 1.407 83.2% 0.4231 1.413 80.8%

Base-S2 0.3670 1.504 88.9% 0.3970 1.505 86.0%
Giant 0.3221 1.692 100% 0.3354 1.749 100%

etc., thus cannot be reconstructed from another model’s feature. To this end, we use an even larger102

(e.g., ViT-G) model to reconstruct the large model features as a comparison. Its reconstruction loss103

and corresponding mutual information are denoted by l∗ and I∗ = − log(l∗/l0). If we assume that,104

when pre-trained on the same task and the same dataset, any task-relevant feature learned by a smaller105

model can also be learned by a larger model, then all the useful features in a large-size model should106

be reconstructable by a huge or giant model as well. This means I∗, the amount of information107

reconstructed from a huge or giant model, should serve as an upper bound of I . We empirically find108

this is indeed the case (see below). Therefore, we use the reconstruction ratio I/I∗ to measure how109

much representation in a larger model is also learned by a multi-scale smaller model.110

We evaluate three classes of models: (i) ViT [10] pre-trained on ImageNet-21k, (ii) OpenCLIP [6]111

pre-trained on LAION-2B, and (iii) MAE [15] pre-trained on ImageNet-1k. Reconstruction loss112

is averaged over all output tokens and is evaluated on ImageNet-1k. Results are shown in Table 1.113

Compared to base models, we observe that multi-scale base models consistently have lower loss and114

reconstructs more information of the large model representation (e.g., 0.521 vs. 0.440 for ViT). More115

interestingly, we find that the amount of information reconstructed from a multi-scale base model is116

usually close to that of a huge or giant model, although sometimes slightly lower but never exceeding117

by a large margin. For example, while OpenCLIP-Base reconstructs 92.7% of the information, the118

multi-scale base model can reconstruct 99.9%. For other models, the reconstruction ratio of Base-S2119

model is usually close to 100% while never exceeding by more than 0.5%. This implies (i) huge/giant120

models are indeed a valid upper bound of feature reconstruction, and (ii) most part of the feature121

of larger models is also learned by multi-scale smaller models. The only exception is when we122

reconstruct OpenCLIP-Huge feature, the reconstruction ratio is 88.9%. Although it’s not near 100%,123

it is still significantly better than the base-size model which means at least a large part of the huge124

model feature is still multi-scale feature. These results imply smaller models with S2 scaling should125

have at least a similar level of capacity to learn what larger models learn. On the other hand, we also126

notice that the reconstruction ratio on test set can be lower than train set (e.g. 96.3% vs. 99.9% on127

OpenCLIP-L). We hypothesize this is because we only apply multi-scale after pre-training and the128

base model feature pre-trained on single image scale only has weaker generalizability.129

3 Conclusion130

In this work, we ask the question is a larger model always necessary for better visual understanding?131

We find that scaling on the dimension of image scales—which we call Scaling on Scales (S2)—instead132

of model size usually obtains better performance on a wide range of downstream tasks. We further133

show that smaller models with S2 can learn most of representation that larger models learn.134
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A Additional Comparison of S2 and Model Size Scaling277

Case study: image classification, semantic segmentation, and depth estimation. We use Ima-278

geNet [32], ADE20k [50], and NYUv2 [33] datasets for each task, respectively. We test on three279

families of pre-trained models (ViT [10], DINOv2 [26], and OpenCLIP [6]), spanning pre-training280

with different datasets (ImageNet-21k, LVD-142M, LAION-2B) and different pre-training objec-281

tives (supervised, unsupervised, and weakly-supervised). To see if the same observation holds for282

convolutional networks, we also test on ConvNeXt [23] (See Appendix E). To fairly evaluate the283

representation learned from pre-training, we freeze the backbone and only train the task-specific head284

for all experiments. We use a single linear layer, Mask2former [5], and VPD depth decoder [49] as285

decoder heads for three tasks, respectively. For model size scaling, we test the performance of base,286

large, and huge or giant size of each model on each task. For S2 scaling, we test three sets of scales287

including (1x), (1x, 2x), (1x, 2x, 3x). For example, for ViT on ImageNet classification, we use three288

sets of scales: (2242), (2242, 4482), and (2242, 4482, 6722), which have the comparable GFLOPs as289

ViT-B, ViT-L, and ViT-H, respectively. Note that the scales for specific models and tasks are adjusted290

to match the GFLOPS of respective model sizes. The detailed configurations for each experiment can291

be found in Appendix C.292

The scaling curves are shown in Figure 4. We can see that in six out of nine cases ((a), (d), (e), (f), (g),293

(i)), S2 scaling from base models gives a better scaling curve than model size scaling, outperforming294

large or giant models with similar GFLOPs and much fewer parameters. In two cases ((b) and (h)),295

S2 scaling from base models has less competitive results than large models, but S2 scaling from large296

models performs comparatively with giant models. The only failure case is (c) where both base and297

large models with S2 scaling fail to compete with the giant model. Note that ViT-H is worse than298

ViT-L on all three tasks possibly due to the sub-optimal pre-training recipe [35]. We observe that S2299

scaling has more advantages on dense prediction tasks such as segmentation and depth estimation,300

which matches the intuition that multi-scale features can offer better detailed understanding which is301

especially required by these tasks. For image classification, S2 scaling is sometimes worse than model302

size scaling (e.g., multi-scale DINOv2-B vs. DINOv2-L). We hypothesize this is due to the weak303

generalizability of the base model feature because we observe that the multi-scale base model has a304

lower training loss than the large model despite the worse performance, which indicates overfitting.305
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Figure 3: S2 vs. model size scaling
on cube picking task. S2 scaling
on base-size model improves the
success rate by about 20%.

Case study: robotic manipulation. We compare S2 and model306

size scaling on a robotic manipulation task of cube picking. The307

task requires controlling a robot arm to pick up a cube on the308

table. We train a vision-based end-to-end policy on 120 demos309

using behavior cloning, and evaluate the success rate of picking310

on 16 randomly chosen cube positions, following the setting311

in [29]. We use MVP [30] as the pre-trained vision encoder312

to extract visual features which are fed to the policy. Please313

refer to Appendix C for the detailed setting. To compare S2314

and model size scaling, we evaluate base and large models with315

single scale of (2242), as well as a multi-scale base model with316

scales of (2242, 4482). Results are shown in Figure 3. Scaling317

from base to large model improves the success rate by about318

6%, while scaling to larger image scales improves the success319

rate by about 20%. This demonstrates the advantage of S2 over320

model size scaling on robotic manipulation tasks as well.321
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Figure 4: Comparison of S2 scaling and model size scaling on three models (ViT, DINOv2, and
OpenCLIP) and three tasks (ImageNet classification, semantic segmentation, and depth estimation).
For each model and each task, we test base, large, and huge/giant models for model size scaling
(plotted in gray curve). For S2 scaling (plotted in green curve), we test three sets of scales from
single-scale (1x) to multi-scale (up to 3x), and we adjust each set of scale so that it matches the
GFLOPs of the respective model size. Note that for specific models and tasks, we test S2 scaling on
both base and large models (plotted in light green and dark green curves separately). We can see that
in (a), (d), (e), (f), (g), and (i), the base model with S2 scaling already achieves comparable or better
performances than larger models with similar GFLOPs and much smaller model size. For (b), (h), S2

scaling from the large model is comparable with the giant model, again with similar GFLOPs and
fewer parameters. The only failure case is (c), where S2 scaling on either base or large models does
not compete with model size scaling.
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B Complete results of MLLM322

We observe that LLaVA-1.5, when equipped with S2 scaling, is already competitive or better than323

state-of-the-art open-source and even commercial MLLMs. Results are shown in Table 2. Here we324

use OpenAI CLIP [28] as the vision model for fair comparison. On visual detail understanding,325

LLaVA-1.5 with S2 scaling outperforms all other open-source MLLMs as well as commercial models326

such as Gemini Pro and GPT-4V. This is credited to the highly fine-grained features we are able to327

extract by scaling image resolution to 10082. A qualitative example is shown in Figure 5. We can see328

that LLaVA-1.5 with S2 is able to recognize an extremely small object that only takes 23×64 pixels in329

a 2250× 1500 image and correctly answer the question about it. In the meantime, both GPT-4V and330

LLaVA-1.5 fail to give the correct answer. More qualitative examples are shown in Appendix H. On331

VQA and MLLM benchmarks, S2 consistently improves the model performance as well, especially332

on benchmarks such as TextVQA which requires understanding of the fine details. Note that the333

improvement on certain MLLM benchmarks such as MathVista is not as significant as others, which334

is probably because these benchmarks require strong mathematical or reasoning capabilities which335

are not achievable by only improving vision but require stronger LLMs as well. In contrast to336

previous experiments, here we directly use the high-resolution image instead of interpolating from337

the low-resolution image in order to compare with the state of the arts. Note that despite the large338

image scale, we keep the same number of image tokens as baseline LLaVA-1.5 since we interpolate339

the feature map of the large-scale images to the same size as that of the original image (see Section340

2.1). This makes sure the context length (and thus the computational cost) of LLM does not increase341

when using larger image scales, allowing us to use much higher resolution than the baselines.342

Table 2: Results on MLLM. We evaluate three types of benchmarks: visual detail understanding
(V∗ [42]), VQA benchmarks (VQAv2 [13], TextVQA [34], VizWiz [14]), and MLLM benchmarks
(MMMU [47], MathVista [24], MMBench [22], SEED-Bench [18], MM-Vet [46]). Notably, S2 signif-
icantly improves the detailed understanding capability on V∗ benchmark, outperforming commercial
models such as GPT-4V.

Visual Detail VQA Benchmarks MLLM Benchmarks

Model Res. #Token V∗
Att V∗

Spa VQAv2 VQAT Viz MMMU Math MMB SEED MMVet

Commercial or proprietary models
GPT-4V [1] - - 51.3 60.5 77.2 78.0 - 56.8 49.9 75.8 71.6 67.6
Gemini Pro [38] - - 40.9 59.2 71.2 74.6 - 47.9 45.2 73.6 70.7 64.3
Qwen-VL-Plus [39] - - - - - 78.9 - 45.2 43.3 - - -

Open-source models
InstructBLIP-7B [8] 224 - 25.2 47.4 - 50.1 34.5 - - 36.0 - 26.2
QwenVL-7B [2] 448 1024 - - 78.8 63.8 35.2 - - 38.2 - -
QwenVL-Chat-7B [2] 448 1024 - - 78.2 61.5 38.9 - - 60.6 - -
CogVLM-Chat [41] 490 1225 - - 82.3 70.4 - 41.1 34.5 77.6 72.5 51.1
LLaVA-1.5-7B [19] 336 576 43.5 56.6 78.5 58.2 50.0 36.2 25.2 64.3 65.7 30.5
LLaVA-1.5-7B-S2 1008 576 51.3 61.8 80.0 61.0 50.1 37.7 25.3 66.2 67.9 32.4
LLaVA-1.5-13B [19] 336 576 41.7 55.3 80.0 61.3 53.6 36.4 27.6 67.8 68.2 35.4
LLaVA-1.5-13B-S2 1008 576 50.4 63.2 80.9 63.1 56.0 37.4 27.8 67.9 68.9 36.4
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Figure 5: LLaVA-1.5 with S2 scaling is able to recognize extremely fine-grained details in an
image, e.g., the color of a water bottle which lives in only 23×64 pixels of a 2250× 1500 image.

C Detailed Experimental Settings and Full Results343

The details of the models and the corresponding results on image classification, semantic segmentation,344

and depth estimation are listed in Table 3, 4, and 5, respectively. We use ImageNet-21k pre-345

trained checkpoints for ViT1,2,3, LVD-142M pre-trained checkpoints for DINOv24,5,6, and LAION-346

2B pre-trained checkpoints for OpenCLIP7,8,9. For each model type (ViT [10], DINOv2 [26],347

OpenCLIP [6]), we choose the scales so that the models with S2 have comparable number of348

FLOPs with corresponding larger models. For image classification, we train a linear classifier for 30349

epochs with learning rate of 0.0005 and batch size of 512. For semantic segmentation, we train a350

Mask2Former decoder [5] following the configurations here10. For depth estimation, we train a VPD351

depth decoder [49] following the configurations here11.352

Table 6 and 7 show the model details and full results for V∗, VQA tasks, and MLLM benchmarks. We353

use OpenCLIP with large, huge, and big-G sizes, and also large-size model with (2242), (2242, 4482),354

(2242, 4482, 6722) scales. We follow the training and testing configurations in LLaVA-1.512. For355

evaluations on certain MLLM benchmarks such as MMMU [47], since it is not supported in the356

LLaVA-1.5 repo, we use VLMEvalKit [11] for evaluation13.357

Table 8 shows the model details and full results for the robotic manipulation task of cube picking.358

We use MVP [30] as the vision backbone and use base and large size as well as base size with359

(2242, 4482) scales. The vision backbone is frozen and extracts the visual feature for the visual360

observation at each time step. We train a transformer that takes in the visual features, proprioception361

and actions for the last 16 steps and outputs the actions for the next 16 steps. We train the model362

1https://huggingface.co/google/vit-base-patch16-224-in21k
2https://huggingface.co/google/vit-large-patch16-224-in21k
3https://huggingface.co/google/vit-huge-patch14-224-in21k
4https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_pretrain.pth
5https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth
6https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_pretrain.pth
7https://huggingface.co/laion/CLIP-ViT-B-16-laion2B-s34B-b88K
8https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K
9https://huggingface.co/laion/CLIP-ViT-g-14-laion2B-s34B-b88K

10https://github.com/open-mmlab/mmsegmentation/blob/main/configs/mask2former/
mask2former_r50_8xb2-160k_ade20k-512x512.py

11https://github.com/open-mmlab/mmsegmentation/blob/main/configs/vpd/vpd_sd_
4xb8-25k_nyu-512x512.py

12https://github.com/haotian-liu/LLaVA
13https://github.com/open-compass/VLMEvalKit
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Table 3: Configurations of models and corresponding results on ImageNet classification.

Model Size Scales #Params #FLOPs Acc.

ViT

Base (2242) 86M 17.6G 80.3
Base (2242, 4482) 86M 88.1G 81.1
Base (2242, 4482, 6722) 86M 246.0G 81.4
Large (2242) 307M 61.6G 81.6
Huge (2242) 632M 204.9G 77.3

DINOv2

Base (2242) 86M 22.6G 84.5
Base (2242, 4482) 86M 112.8G 85.2
Base (2242, 4482, 6722) 86M 315.9G 85.7
Large (2242) 303M 79.4G 86.3
Large (2242, 4482) 303M 397.1G 86.6
Giant (2242) 632M 295.4G 86.5

OpenCLIP

Base (2242) 86M 17.6G 76.0
Base (2242, 4482) 86M 86.1G 76.7
Base (2242, 4482, 6722) 86M 241.0G 77.1
Large (2242) 303M 79.4G 80.4
Large (2242, 4482) 303M 397.1G 79.6
Giant (2242) 1012M 263.4G 83.8

with behavior cloning on 120 self-collected demos. We test the model on 16 randomly selected cube363

positions and report the rate of successfully picking up the cube at these positions.364

Table 4: Configurations of models and corresponding results on ADE20k semantic segmentation.

Model Size Scales #Params #FLOPs mIoU

ViT

Base (5122) 86M 105.7G 44.4
Base (2562, 5122, 10242) 86M 474.7G 47.8
Base (2562, 5122, 15362) 86M 926.7G 48.0
Large (5122) 307M 362.1G 44.9
Huge (5122) 632M 886.2G 43.4

DINOv2

Base (5182) 86M 134.4G 54.8
Base (5182, 10362) 86M 671.8G 56.3
Base (5182, 10362, 15542) 86M 1881G 56.9
Large (5182) 303M 460.9G 55.1
Giant (5182) 632M 1553G 55.5

OpenCLIP

Base (5122) 86M 105.7G 49.2
Base (2562, 5122, 10242) 86M 474.7G 52.2
Base (2562, 5122, 15362) 86M 926.7G 52.6
Large (5182) 303M 460.9G 50.3
Huge (5182) 632M 940.2G 51.3

D Derivation of Mutual Information365

Denote the features from two models by x ∈ Rdx and y ∈ Rdy which follow the distribution p(x)366

and p(y), respectively. We make the simplest assumption that both the distribution and the conditional367

distribution of the features are isotropic gaussian distributions, i.e., p(y) ∼ N (µ̂, σ2I) and p(y|x) ∼368

N (f̂(x), σ′2I), where f(·) is a linear transform. The differential entropy and conditional differential369

entropy of y is h(y) = dy log σ+C and h(y|x) = dy log σ
′+C, where C is a constant. The mutual370

information between features of two models is I(x;y) = h(y)− h(y|x) = dy log σ − dy log σ
′.371
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Table 5: Configurations of models and corresponding results on NYUv2 depth estimation.

Model Size Scales #Params #FLOPs RMSE

ViT

Base (5122) 86M 105.7G 0.5575
Base (2562, 5122, 10242) 86M 474.7G 0.5127
Base (2562, 5122, 15362) 86M 926.7G 0.5079
Large (5122) 307M 362.1G 0.5084
Huge (5122) 632M 886.2G 0.5611

DINOv2

Base (5042) 86M 134.4G 0.3160
Base (5042, 10082) 86M 671.8G 0.2995
Base (5042, 10082, 15122) 86M 1881G 0.2976
Large (5042) 303M 460.9G 0.2696
Large (5042, 10082) 303M 2170G 0.2584
Giant (5042) 632M 1553G 0.2588

OpenCLIP

Base (5122) 86M 105.7G 0.4769
Base (2562, 5122, 10242) 86M 474.7G 0.4107
Base (2562, 5122, 15362) 86M 926.7G 0.3959
Large (5042) 303M 460.9G 0.4436
Huge (5042) 632M 940.2G 0.3939

Table 6: Configurations of models and corresponding results on V∗ and VQA tasks.

Model Size Scales #Params #FLOPs V∗
Att V∗

Spa VQAv2 VQAT Viz

OpenCLIP

Large (2242) 304M 79.4G 36.5 50.0 76.6 53.8 51.6
Large (2242, 4482) 304M 389.1G 40.0 50.0 77.8 55.9 55.2
Large (2242, 4482, 6722) 304M 1634G 35.7 63.2 77.9 56.5 55.3
Huge (2242) 632M 164.6G 37.4 50.0 76.0 54.0 53.3
big-G (2242) 1012M 473.4G 32.2 48.7 76.2 54.0 53.5

Table 7: Configurations of models and corresponding results on MLLM benchmarks.

Model Size Scales #Params #FLOPs MMMU Math MMB SEED MMVet

OpenCLIP

Large (2242) 304M 79.4G 35.4 24.0 64.2 65.5 31.6
Large (2242, 4482) 304M 389.1G 37.6 24.2 64.5 66.0 33.0
Large (2242, 4482, 6722) 304M 1634G 37.8 24.5 64.0 66.3 32.8
Huge (2242) 632M 164.6G 36.1 25.2 64.2 65.6 30.7
big-G (2242) 1012M 473.4G 35.6 25.2 64.8 65.1 32.8

When reconstructing the features y from another model’s features x, the optimal MSE loss would be372

l = minf
1
dy
E||y − f(x)||22 = 1

dy
E||y − f̂(x)||22 = σ′2. The optimal MSE loss of reconstructing y373

from a dummy constant vector would be l0 = minµ
1
dy
E||y − µ||22 = 1

dy
E||y − µ̂||22 = σ2. Then374

we get the mutual information between x and y is I(x;y) = dy log σ − dy log σ
′ = −dy

2 log σ′2

σ2 ∝375

− log l
l0

.376

E Results on ConvNeXt377

To see if convolutional networks have similar behaviors as transformer-based models, we test378

ConvNeXt [23] models (per-trained on ImageNet-21k14,15,16) on three tasks: image classification,379

semantic segmentation, and depth estimation. We use ImageNet [32], ADE20k [50], and NYUv2 [33]380

datasets for each task. Similarly, we freeze the backbone and only train the task-specific head for all381

14https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth
15https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth
16https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth
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Table 8: Configurations of models and corresponding results on robotic manipulation.

Model Size Scales #Params #FLOPs Success Rate

MVP
Base (2242) 86M 17.5G 43.8
Base (2242, 4482) 86M 87.9G 62.5
Large (2242) 307M 61.6G 50.0
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Figure 6: Comparison of S2 scaling and model size scaling on ConvNeXt. We evaluate three tasks:
ImageNet classification, semantic segmentation, and depth estimation. For S2 scaling (plotted in
green curve), we test three sets of scales from single-scale (1x) to multi-scale (up to 3x), and we
adjust each set of scale so that it matches the GFLOPs of the respective model size. Note that for
specific models and tasks, we test S2 scaling on both base and large models (plotted in light green
and dark green curves separately).

experiments, using a single linear layer, UPerNet [43], and VPD depth decoder [49] as the decoder382

heads for three tasks, respectively. For model size scaling, we test the base, large, and xlarge size383

performance of ConvNeXt [23] model on each task. For S2 scaling, we test three sets of scales384

including (1x), (0.5x, 1x, 2x), and (0.5x, 1x, 2x, 3x).385

The detailed curves are shown in Figure 6. We can see that in the depth estimation task (case (c)),386

S2 scaling from base model significantly outperforms xlarge model with similar GFLOPs and only387

0.25× parameters. In the semantic segmentation task (case (b)), S2 scaling from base model has388

less competitive result than larger models, while S2 scaling from the large model outperforms the389

xlarge model with more GFLOPs but a smaller number of parameters. The ImageNet classification390

task (case (a)) is a failure case where S2 scaling from both base and large model fail to compete391

with the xlarge model. From the observation above, we see that the convolutional networks show392

similar properties as transformer-based models: S2 scaling has more advantages than model size393

scaling on dense prediction tasks such as segmentation and depth estimation while S2 scaling is394

sometimes worse in image classification. This is possibly due to the fact that base and large model395

are not pre-trained with S2 (see Section ??).396

F Ablations of Model Design397

We conduct the ablations on several designs of S2-Wrapper. Specifically, (i) we first compare running398

vision model on sub-images split from the large-scale image with running on the large-scale image399

directly, and then (ii) we compare concatenating feature maps from different scales with directly400

adding them together.401

Results for (i) are shown in Table 9. We evaluate S2-Wrapper with or without image splitting on402

ADE20k semantic segmentation. We test base and large baselines, as well as multi-scale base model403

with (1x, 2x) and (1x, 2x, 3x) scales separately. We can see that for (1x, 2x) scales, image splitting has404

better results than no splitting, which is due to image splitting makes sure the input to the model has405
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the same size as in pre-training, and avoids performance degradation caused by positional embedding406

interpolation when directly running on large images. However, note that even running directly407

on large images, multi-scale base model still has better results than base and large models, which408

indicates the effectiveness of S2 scaling. Furthermore, image splitting enjoys higher computational409

efficiency because it avoids the quadratic complexity of self-attention. Notice that without image410

splitting, the training will run into OOM error when using (1x, 2x, 3x) scales.411

Table 9: Ablation of splitting large-scale images. We compare splitting the large-scale image into
regular-sized sub-images vs. running the model directly on the large image. We evaluate on ADE20k
semantic segmentation. We can see that S2 scaling with image splitting consistently outperforms
directly running on the large image while being more compute-efficient.

Model Scales Splitting mIoU

Base 5182 54.8
Large 5182 55.1
Base-S2 5182, 10362 ✗ 55.7
Base-S2 5182, 10362 ✓ 56.3
Base-S2 5182, 10362, 15542 ✗ OOM
Base-S2 5182, 10362, 15542 ✓ 56.9

Results for (ii) are shown in Table 10. We compare S2-Wrapper with concatenating features from412

different scales with directly adding the features. We evaluate on ADE20k semantic segmentation413

with DINOv2 and OpenCLIP. On both models, concatenating, as done by default in S2-Wrapper, has414

consistently better performance than adding the features.415

Table 10: Ablation of how to merge features from different scales. We compare concatenating
features with adding features from different scales. Concatenating has consistently better performance.

Model Scales Merging mIoU

DINOv2-Base-S2 5182, 10362, 15362 add 55.7
DINOv2-Base-S2 5182, 10362, 15362 concat 56.9
OpenCLIP-Base-S2 2562, 5122, 10242 add 51.4
OpenCLIP-Base-S2 2562, 5122, 10242 concat 52.5

G Throughput of Models with S2
416

Previously we use FLOPs to measure the computational cost of different models. Since FLOPs is417

only a surrogate metric for the actual throughput of the models, here we compare the throughput418

of different models and verify if it aligns with FLOPs. Table 11 shows the results. We report the419

FLOPs and throughput of DINOv2 model with base, large, and giant size, as well as base size with420

scales of (1×), (1×, 2×), and (1×, 2×, 3×). We test on base scales of 2242 and 5182. We can see421

that in general, the throughput follows the similar trends as FLOPs. For example, the base model422

with scales of (2242, 4482, 6722) has the similar throughput as the giant model with scale of (2242).423

The base model with scales of (2242, 4482) has the about 0.8× throughput as the large model with424

scale of (2242). On base scale of 5182, the multi-scale base models with scales of (1×, 2×), and425

(1×, 2×, 3×) have about 0.7× throughput as the large and giant models, respectively.426

H Additional Qualitative Results on V∗
427

We show more qualitative results on the V∗ benchmark. We compare the performances of LLaVA-1.5428

with S2 scaling, original LLaVA-1.5 [19], and GPT-4V [1] on several examples in visual detail429

understanding (V∗ [42]). Similarly, for LLaVa-1.5 with S2 scaling, we use Vicuna-7B [7] as LLM430

and OpenAI CLIP as the vision backbone and apply S2 scaling on the vision backbone.431
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Table 11: Comparison of FLOPs and Throughput.

Model Size Scales #FLOPs Throughput
(image/s)

Base (2242) 17.6G 138.5
Base (2242, 4482) 88.1G 39.5
Base (2242, 4482, 6722) 246.0G 16.5
Large (2242) 61.6G 54.5
Giant (2242) 204.9G 17.2

Base (5182) 134.4G 34.9
Base (5182, 10362) 671.8G 7.7
Base (5182, 10362, 15542) 1881G 2.7
Large (5182) 460.9G 11.8
Giant (5182) 1553G 3.8

In Figure 7, we see various examples that demonstrate the capabilities of different MLLMs. For432

instance, in example (f), the query is about the color of the flowers, which only occupy around433

670 pixels in the 2550× 1500 image. Here, LLaVA-1.5-S2 correctly identifies the color as ’white’.434

However, LLaVa-1.5 fails to capture the correct color and recognizes it as ’red’, which is actually the435

color of the flowerpot. On the other hand, GPT-4V recognizes the color as ’a mix of red and white’,436

indicating that it cannot distinguish the subtle differences between the flowerpot and flowers.437

In another example (c), the query is about the color of the woman’s shirt. Here, the size of the438

woman’s figure is small, and the purple color of the shirt is very similar to the dark background439

color. In this case, LLaVA-1.5-S2 correctly identifies the color of the shirt as ’purple’, while both440

LLaVA-1.5 and GPT-4V mistakenly identify the color of the shirt as ’black’ or ’blue’, which is the441

color of the background.442

The above examples highlight the difference in performance between LLaVA-1.5-S2, LLaVA-1.5 and443

GPT-4V. LLaVA-1.5-S2 distinguishes itself through its heightened sensitivity and enhanced precision444

in visual detail understanding. This advanced level of detail recognition can be attributed to the445

S2 scaling applied to its vision backbone, which significantly augments its ability to analyze and446

interpret subtle visual cues within complex images.447
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(a) What is the color of the chair? (b) What is the color of the water bottle?

(c) What is the color of the woman’s shirt? (d) What color of shirt is the man by the pool
wearing?

(e) What is the color of the cart? (f) What is the color of the flower?

Figure 7: Examples of LLaVA-1.5 with S2 scaling on the V∗ benchmark, demonstrating its
extreme ability in recognizing fine-grained details of an image.
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