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Abstract

Combining Gaussian processes with the expressive
power of deep neural networks is commonly done
nowadays through deep kernel learning (DKL). Un-
fortunately, due to the kernel optimization process,
this often results in losing their Bayesian benefits.
In this study, we present a novel approach for learn-
ing deep kernels by utilizing infinite-width neural
networks. We propose to use the Neural Network
Gaussian Process (NNGP) model as a guide to
the DKL model in the optimization process. Our
approach harnesses the reliable uncertainty estima-
tion of the NNGPs to adapt the DKL target confi-
dence when it encounters novel data points. As a
result, we get the best of both worlds, we leverage
the Bayesian behavior of the NNGP, namely its
robustness to overfitting, and accurate uncertainty
estimation, while maintaining the generalization
abilities, scalability, and flexibility of deep ker-
nels. Empirically, we show on multiple benchmark
datasets of varying sizes and dimensionality, that
our method is robust to overfitting, has good predic-
tive performance, and provides reliable uncertainty
estimations.

1 INTRODUCTION

Gaussian processes (GPs) are an effective Bayesian non-
parametric family of models. They have several appealing
features, such as tractable inference, accurate uncertainty
estimation, and the ability to generalize well from small
datasets [Rasmussen and Williams, 2006, Snell and Zemel,
2021, Achituve et al., 2021b]. In GPs, the kernel function
is the crucial factor that determines their performance, as
it measures the similarity between data points and signifi-
cantly impacts which functions the model considers proba-
ble. Standard kernels, such as RBF kernels, perform well on

certain learning problems, but they are inadequate for com-
plex data modalities, like images and texts, failing to capture
the desired semantic similarity. One appealing solution is to
combine GPs with the expressive power of Neural Networks
(NNs). There are two popular ways to achieve that. The first
is through learning deep kernels, and the second is through
kernels that correspond to infinite-width networks. In what
follows we present both approaches, their limitations, and
our proposed approach that combines the two.

One popular way to combine GPs and NNs is through deep
kernel learning (DKL) [Calandra et al., 2016, Wilson et al.,
2016a]. DKL uses a standard kernel over an embedding
learned by a neural network, combining the tractable in-
ference of GPs with the expressive power of deep neural
networks (DNNs). Unfortunately, despite appearing to be
a natural way to combine the benefits of GPs and DNNs,
DKL often falls short of expectations in practice. A recent
study found that deep kernels can severely overfit, some-
times even worse than standard NNs [Ober et al., 2021].
This work suggests that the DKL overfitting is caused by
the optimization process “over-correlating” the data points.

An alternative way to link DNNs and GPs, without rely-
ing on DKL, is through the equivalence between GPs and
infinite-width deep neural networks [Neal, 1996, Lee et al.,
2018, de G. Matthews et al., 2018, Garriga-Alonso et al.,
2019, Novak et al., 2019, Yang, 2019]. Specifically, consider
the distribution over DNN weights when they are initialized
i.i.d. As the width of the DNN layers increases to infinity,
the distribution of functions represented by the NN con-
verges to a Gaussian process. Importantly, that GP has a
kernel function that can be computed efficiently despite hav-
ing an infinite width. The main advantage of this approach
is clear - it allows us to apply tractable Bayesian inference
to highly expressive neural networks of infinite width. And,
as the structure of DNNs provide valuable inductive biases
for many data modalities, they can generate a corresponding
kernel that is better suited to various data modalities.

This approach, however, also has several drawbacks that
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hinder its widespread adoption. First and foremost, in many
cases, these models underperform standard NNs that were
optimized for a specific task [Novak et al., 2019]. One pos-
sible explanation for this is that the success of DNNs is
connected to the implicit bias in the optimization process
(e.g. [Vardi and Shamir, 2021]), which can not be captured
by them. Second, the evaluation of the kernel in training and
inference time can be costly. This is partially due to the fact
that the NN kernel needs to be computed for every pair of
data points, in comparison to DKL where we run the net-
work on each datum once before applying a standard kernel.
Finally, it is challenging to incorporate established mecha-
nisms such as inducing point techniques with these types of
models. This is in contrast to DKLs which are more flexible
and easier to scale. The limitations of current solutions raise
the question: How can we combine GPs with NNs without
compromising performance or uncertainty estimation?

This paper proposes a solution to the above question, which
we call Guided Deep Kernel Learning (GDKL). GDKL
combines the benefits of DKL with NNGPs, by leveraging
the uncertainty estimation of NNGPs to guide the DKL opti-
mization process. To this end, we propose a novel procedure
to optimize deep kernels by having them match the distri-
bution of the NNGP’s latent function given the target value.
For example, consider a regression task, the DKL will try to
match a Gaussian centered near the target with an adaptive
level of certainty that depends on the NNGP. We show that
this approach achieves the best of both worlds. It enjoys the
flexibility, scalability, and predictive capabilities of DKL,
while retaining the Bayesian benefits of GPs. Namely, our
method can estimate uncertainty more reliably and is drasti-
cally less prone to overfitting than DKL, without sacrificing
performance. The experiments show the superiority of our
method against natural baseline methods on several bench-
mark datasets in terms of both performance and uncertainty
quantification.

This paper makes the following novel contributions. (i) We
propose GDKL, a novel method to train deep kernels having
their uncertainty calibrated by infinite-width networks; (ii)
GDKL allows to perform either exact inference or approx-
imate inference using common inducing point techniques;
(iii) we demonstrate the benefits of GDKL over baseline
methods for small- to mid-sized benchmark datasets with
low and high data dimensionality. We conclude that GDKL
generalizes well, can estimate uncertainty more reliably, and
is significantly more robust against overfitting compared to
standard deep kernels and competing methods.

2 BACKGROUND

Notations. We denote scalars with lower-case letters (e.g.,
x), vectors with bold lower-case letters, (e.g., x), and ma-
trices with bold capital letters (e.g., X). Given a dataset
D = {(x1,y1), ..., (xn,yn)}, we denote by X ∈ Rn×d

and Y ∈ Rn×c the design and label matrices whose ith row
is xi and yi respectively.

Gaussian Processes. Gaussian processes are a family of
Bayesian non-parametric models. GPs assume that the map-
ping from input points to the target values is via latent
functions F = {f1, ..., f c}. In this study, we assume in-
dependence between the latent function values. Consider a
single output dimension process f(·), a GP is fully specified
by the mean function m(x) and the covariance function
k(x,x′). We denote it by f(x) ∼ GP(m(x), k(x,x′)).
The mean m(x) is commonly taken to be the constant zero
function, and the kernel k(x,x′) is a positive semi-definite
function. The kernel defines the correlation between func-
tion values at different input locations. Thus, it is the main
contributing factor in predicting on novel inputs. One of
the major benefits of GPs is that in regression tasks with
Gaussian noise, p(yi|f(xi)) = N (f(xi), σ

2
n), the inference

has a closed-form Gaussian solution. Specifically, we have
analytical expressions for the posterior p(f∗|x∗,D) and the
marginal p(y∗|x∗,D) where D is the training data and x∗
is a test data point. The hyper-parameters of the GPs, which
we will refer to as parameters in this study, are commonly
optimized using the marginal likelihood. Here, we promote
the use of the predictive distribution to learn them. Sev-
eral studies considered this approach in the literature (e.g.,
[Jankowiak et al., 2020, Snell and Zemel, 2021, Achituve
et al., 2021b, Lotfi et al., 2022]). Usually, this objective
leads to better predictive abilities, yet as we will show, it is
not robust against overfitting when training deep kernels.

Deep Kernel Learning In [Wilson et al., 2016a], the
authors proposed to combine deep neural networks with
GPs by applying a GP on the representation learned by
a NN. For example, consider the RBF kernel k(x,x′) =
exp(−||x − x′||2/2ℓ2) (although any other kernel can be
used), they proposed the following kernel kθ(x,x

′) =
exp(−||gθ(x)− gθ(x

′)||2/2ℓ2) where gθ is a NN with pa-
rameters θ. They then trained θ to maximize the log marginal
likelihood log(p(y|X)) using the closed-form expression
for regression problems. Later works extended this approach
to classification [Linderman et al., 2015, Wilson et al.,
2016b, Milios et al., 2018, Achituve et al., 2021a].

Infinite width networks. Studying the behavior of NNs
in the infinite-width limit has its roots in the seminal work
of Neal [1996]. It was shown that at initialization (with
proper tuning), the distribution over functions represented
by a single hidden layer NN converges to a GP as the width
increases to infinity. This approach was later extended to
infinite deep NNs as well [Lee et al., 2018, de G. Matthews
et al., 2018]. This means that at the infinite-width limit, the
Bayesian neural network inference problem is reduced to GP
inference with a kernel defined by the neural network limit.
In this study, we will refer to instances of this approach as



Figure 1: Illustrative example: (Left) Points in D1, the target function, and the GP prediction. Data contains a gap in [4,8] to
demonstrate a low-confidence region. (Right) Points in D2 and the Gaussian objective p(f∗|x∗, y∗,D1) for each point.

the Neural Network Gaussian Process (NNGP). The kernel
for a fully-connected network can be computed using the
following recursive formula:

k(1)(x,x′) = σ2
b + σ2

w ·
xTx′

d

k(l+1)(x,x′) = σ2
b + σ2

wEf∼N (0,K(l))[ϕ(f(x))ϕ(f(x
′))],

(1)
where σ2

b , σ
2
w are hyper-parameters which control the vari-

ances of the biases and weights respectively, d and l are
the input dimension and layer index respectively (e.g., K(l)

denotes the kernel of the lth layer), and ϕ(·) is the layer
point-wise non-linear function. For some non-linear activa-
tions, such as sigmoidal, Gaussian, and Relu, the formula
can be computed analytically [Williams, 1996, Cho and
Saul, 2009]. In other cases, it can be approximated effi-
ciently using Monte-Carlo methods as the expectation is
over a two-dimensional Gaussian random variable [Novak
et al., 2020]. Similarly, a kernel can be derived for other NN
architectures, such as CNNs and RNNs [Garriga-Alonso
et al., 2019, Novak et al., 2019, Yang, 2019].

Inducing points. One prominent limitation of GPs is the
difficulty of doing exact inference on large datasets. As-
suming we have a dataset with n points, exact inference
requires storing and inverting an n× n matrix. This opera-
tion imposes a memory and run-time complexity of Ω(n2).
A commonly used method to improve the scalability of GPs
is through the use of inducing points (e.g., [Titsias, 2009]).
Inducing point methods define a set of pseudo-observations
of size m≪ n, termed inducing locations. These locations
may or may not be learned as part of the optimization pro-
cess. Importantly, this mechanism allows us to control the
size of the matrix to invert since in order to make predictions
we can make all the costly operations only on these points
instead of the actual dataset.

3 METHOD

We now present and explain our method. We will first de-
scribe our approach in the setting of exact GP inference (i.e.,
without inducing points approximation), then we will show
how our framework can be easily generalized to include in-
ducing points, i.e the sparse GP case. Incorporating inducing
points into our framework allows our approach to handle a
wide range of problems, from limited-sized datasets, where
the overfitting of DKLs is most severe, to large-scale prob-
lems where the NNGPs are too computationally demanding
to run. It is important to stress that we do not place any
constraints on the NN architecture, unlike other existing
solutions [Liu et al., 2021, Mallick et al., 2021, Ober et al.,
2021, van Amersfoort et al., 2021]. For the sake of clarity,
we will describe our method for the case of a single output.
The generalization to the multi-outputs case is immediate
and will be discussed afterward.

3.1 GUIDED DEEP KERNEL LEARNING

Assume we are given a dataset D. We split it into a training
set D1 and a validation set D2. Denote by p the NNGP
model defined by an infinite-width neural network, and by
qθ the DKL model with parameters θ. Given a point x∗ we
denote by f∗ the value of the latent GP function on x∗, and
denote by DKL the Kullback–Leibler (KL) divergence.

To motivate our proposed approach, we first describe two
possible objectives, a Bayesian distillation objective (e.g.,
[Penso et al., 2022]) , and a predictive objective. Then, we
present our final objective, which can be viewed as a combi-
nation of the two.

In distillation, we wish to train qθ to mimic p. A natural way
to achieve this goal is with the following objective:

ℓdist(θ) = Ex∗∼D2DKL[qθ(f∗|x∗,D1)||p(f∗|x∗,D1)].
(2)



The objective in Eq. 2 tries to match the latent distribution
of the two models on an unseen data point from D2. Train-
ing qθ may produce a model that behaves like the Bayesian
NNGP model, but unfortunately, it will also inherit the sub-
par predictive performance of the NNGP model.

Alternatively, we can try to optimize the predictive distribu-
tion of the DKL model:

ℓpred(θ) = E(x∗,y∗)∼D2
[− log qθ(y∗|x∗,D1)]. (3)

This objective tends to produce accurate predictions as it
is directly optimized to predict y∗. However, it will not
behave like a Bayesian model. Namely, it will suffer from
the same overfitting issues as the standard DKL training
does [Lotfi et al., 2022] which will result in an overestimated
confidence. Appendix D.1 empirically demonstrates this
claim and the previous one. We evaluated both loss terms on
the UCI datasets Boston, Concrete, and Energy, and found
that indeed these losses behave as we anticipated.

A possible middle ground between these two approaches
is to optimize qθ(y∗|D1,x∗) to match the distribution of
p(f∗|D1,x∗, y∗). The key difference is that in this case the
latent variable f∗ is also conditioned on the sample y∗:

E(x∗,y∗)∼D2
DKL[qθ(f∗|x∗,D1)||p(f∗|x∗, y∗,D1)]. (4)

As the target latent distribution is conditioned on y∗, it will,
for regression, take the form of a Gaussian centered near
it, and the variance will be dependent on how confident
p(f∗|x∗, y∗,D1) is. In Figure 1 we illustrate the usefulness
of this objective on a toy problem. On the left panel we show
the points in D1, the ground truth function, as well as the
posterior p(f∗|x∗,D1). We intentionally omitted points in
the [4, 8] domain from D1 to highlight areas where the GP
is not confident. While the GP prediction in that area is not
accurate, it appropriately assigns high uncertainty to its pre-
diction. On the right panel, we show the points inD2 and for
each point, we show the target objective p(f∗|x∗, y∗,D1).
We highlight two desired properties of our objective seen
from this plot: When the GP is confident, the GP prediction
is tight around the ground truth, and not centered around the
noisy y∗ samples. However, when the GP is not confident
p(f∗|x∗, y∗,D1) is centered around the noisy y∗ samples
with a much larger variance.

In Appendix B we show that the objective in Eq. 4 is also
equivalent to the following:

E(x∗,y∗)∼D2
Eqθ(f∗|x∗,D1)[− log p(y∗|f∗)]

+DKL[qθ(f∗|x∗,D1)||p(f∗|x∗,D1)].
(5)

This representation makes it clear that our objective is in
fact a combination of Eq. 2 and Eq. 3. Specifically, Eq. 3
can be connected to the first term in Eq. 5 by marginalizing
over f∗ and using Jensen inequality. Conceptually, one can
think of Eq. 5 as having a data term, which is comparable to

Algorithm 1 Guided Deep Kernel Learning (GDKL)
Input:D = (X,y) - the dataset; K - a pre-computed kernel
of the NNGP on D; T - number of training iterations; β - a
hyper-parameter that scales the KL-divergence term.
Init θ, the parameters of the DKL.
For i = 1, ..., T :
• Randomly split D to D1 and D2, s.t. D = D1 ∪ D2

and D1 ∩ D2 = {∅}
• Construct KD1

from K by selecting the
entries of examples from D1

For all j ∈ D2:
# Exact expressions in the Appendix.
• Obtain the predictive posteriors p(fj |xj ,D1),
and qθ(fj |xj ,D1)

• LDKL
j ← DKL[qθ(fj |xj ,D1)||p(fj |xj ,D1)]

• LELL
j ← Eqθ(fj |xj ,D1)[− log p(yj |fj)]

End for
• L ← 1

|D2|Σ
|D2|
j=1LELL

j + β · LDKL
j .

• Compute ∇θL and perform update step.
End for

the DKL marginal likelihood objective, plus a regularizer
that prevents the model from over-fitting the training points.

To gain further insight into our approach, consider estimat-
ing log p(y∗|x∗,D1) using variational inference. While it
has an analytical solution for a Gaussian likelihood, we can
set it aside and derive the following evidence lower bound
(ELBO):

E(x∗,y∗)∼D2
log p(y∗|x∗,D1) =

E(x∗,y∗)∼D2
log

∫
qθ(f∗|x∗,D1)

qθ(f∗|x∗,D1)
p(y∗|f∗)p(f∗|x∗,D1)df∗ ≥

E(x∗,y∗)∼D2

∫
qθ(f∗|x∗,D1) log

p(y∗|f∗)p(f∗|x∗,D1)

qθ(f∗|x∗,D1)
df∗.

(6)
It is not hard to see that our objective is equivalent to max-
imizing the ELBO. Namely, qθ is essentially trained as a
variational distribution, similar to an encoder network in
variational auto-encoders (VAEs) [Kingma and Welling,
2014]. It thus tries to “encode” the label, but does not di-
rectly predict it.

We now introduce two modifications to our objective. We
add a hyperparameter β that multiplies the DKL term in
Eq. 5. This allows us to control the balance between predic-
tive training (β = 0) and distillation (β →∞). Second, we
utilize the fact that GPs are non-parametric and perform a
random split of D to different D1 and D2 sets at each itera-
tion. We found that this approach led to better generalization
compared to fixing these datasets. Hence the final objective
is the following:



L(θ) =ED1,D2E(x∗,y∗)∼D2
{Eqθ(f∗|x∗,D1)[− log p(y∗|f∗)]

+ β ·DKL[qθ(f∗|x∗,D1)||p(f∗|x∗,D1)]}.
(7)

Note that for the regression case, the DKL term and the ex-
pected log-likelihood term have a closed-form solution. In
classification tasks, we can use approximations that involve
a Gaussian likelihood, such as treating the classification
problem as a regression problem, using transformed Dirich-
let variables [Milios et al., 2018], or using the Pólya-Gamma
augmentation [Polson et al., 2013, Achituve et al., 2021a].
In this study, we used the transformed Dirichlet variables
technique. GDKL training procedure is illustrated in Algo-
rithm 1.

Finally, we would like to note a few technical details. First,
we can evaluate the kernel of the NNGP once and extract
at each iteration only the relevant sub-matrices. Second, the
extension to multi-output GPs results in additional summa-
tion over each output dimension. Third, our network and
the NNGP network do not have to share the same architec-
ture (besides the obvious difference in width) and we have
complete freedom in choosing the architecture. Lastly, to
make predictions on novel data points we use the full dataset
D using the standard GP formulas. Namely, when making
predictions our model is as fast as standard DKL models.

3.2 GUIDED DEEP KERNEL LEARNING WITH
INDUCING POINTS

Although the overfitting problem of DKLs is more acute
in cases with limited data, it can still return overconfident
predictions on large datasets. As such, we wish to extend
our approach to larger datasets by incorporating inducing
points. Denote by Z the set of m inducing locations, and
by u = f(Z) the function evaluation at these locations (i.e.,
the inducing variables). We follow the common practice
[Hensman et al., 2013], and define the posterior now as
qθ(f) =

∫
pθ(f |u)q(u)du, where pθ(f |u) is a Gaussian

density according to the GP prior of the DKL, and q(u) is
a variational Gaussian distribution with learned parameters.
We note that while we omit Z for brevity, it plays an impor-
tant role as the kernel matrix depends on Z. Now we can
plug this posterior distribution in Eq. 4:

ED1,D2
E(x∗,y∗)∼D2

DKL[qθ(f∗|x∗,Z)||p(f∗|x∗, y∗,D1)],
(8)

and obtain the objective in Eq. 7 with the new posterior:

ED1,D2E(x∗,y∗)∼D2
{Eqθ(f∗|x∗,Z)[− log p(y∗|f∗)]

+ β ·DKL[qθ(f∗|x∗,Z)||p(f∗|x∗,D1)]}.
(9)

A key part of scaling our objective is to allow for mini-
batching. The objective in Eq. 9 naturally factorizes over

the data points in D2, which leaves the D1 terms. As we
split our dataset at each iteration into a train and validation
set, a simple solution is to split a random batch instead of
the entire dataset. Namely, given a batch of examples B we
split it to two subsets B1 and B2 similar to the split we did
for D and compute the following objective:

EB1,B2
E(x∗,y∗)∼B2

{Eqθ(f∗|x∗,Z)[− log p(y∗|f∗)]
+ β ·DKL[qθ(f∗|x∗,Z)||p(f∗|x∗,B1)]}.

(10)

In this case, the inducing locations Z and the variational
parameters of q(u) are also learned as part of the optimiza-
tion process. Nevertheless, we achieve two important goals.
First, the DKL model still tries to match the posterior of the
label-informed NNGP model. Second, we need to evaluate
the NNGP model only on the actual data points which are
known in advance and can be computed beforehand. Thus,
we are avoiding costly evaluations on the inducing inputs by
this model. Furthermore, we can define the inducing inputs
in the feature space of the NN which is much more beneficial
in terms of optimization compared to the input space of the
network [Bradshaw et al., 2017, Achituve et al., 2021a]. In
Appendix C we provide additional computational aspects of
our method. Specifically, we discuss the scaling limitations
imposed by computing the NNGP kernel to train GDKL.
We argue that with GDKL this is not so much of an issue as
we have a a large degree of freedom in choosing the NNGP
architecture with it hurting too much the performance of
GDKL. Furthermore, with smart pre-computations GDKL
can be as fast as standard DKL during the training time of
the NN, and not only when making predictions.

4 RELATED WORK

Bayesian NNs. Bayesian NNs model the uncertainty over
the true underline function by assuming a probability dis-
tribution over the network parameters [Minka, 2000]. In-
stead of solving an optimizing process for a single set of
parameters, BNNs attempt to compute the Bayesian model
average (BMA) [Wilson and Izmailov, 2020]. However,
for modern NNs solving the BMA integral is computation-
ally intractable and approximations must be used. Notable
examples are the Laplace approximation [MacKay, 1992,
Khan et al., 2019, Daxberger et al., 2021], MCMC-based
methods [Neal, 1996, Welling and Teh, 2011, Chen et al.,
2014, Zhang et al., 2020], and variational inference [Graves,
2011, Blundell et al., 2015, Kingma et al., 2015]. These ap-
proximations usually result in either degraded performance,
specialized NN architectures, unreliable uncertainty estima-
tion, or computational difficulties in terms of memory and
time. One possible compelling alternative for making infer-
ence in parameter space is to do it in function spaces [Sun
et al., 2019, Wang et al., 2019, Rudner et al., 2021, Ma and
Hernández-Lobato, 2021]. However, these methods suffer
from similar issues as standard BNNs do and may involve



Figure 2: Results for small UCI datasets. We report the log-likelihood (top; right is better) and RMSE (bottom; left is better)
for each method over 10 splits on the training test sets. The log-likelihood of DKL on Boston is ∼-550.

rough approximations. A different line of work considers the
distribution over functions when using infinite-width layers
in fully connected networks [Neal, 1996, Lee et al., 2018,
de G. Matthews et al., 2018, Jacot et al., 2018]. This ap-
proach allows performing tractable Bayesian inference with
NNs while avoiding the optimization difficulties associated
with training them. Later, this approach was extended to
other architectures and layers, such as CNNs, RNNs, atten-
tion, and batch normalization [Garriga-Alonso et al., 2019,
Novak et al., 2019, Yang, 2019]. However, these approaches
suffer from several drawbacks, such as reduced generaliza-
tion, and costly kernel evaluation. In recent years several
studies (e.g., [Aitchison et al., 2021, Ober and Aitchison,
2021, Yang et al., 2021]) extended this idea to introduce
more flexibility to the kernel and the ability learn repre-
sentation. Yet, to date, these methods suffer from reduced
performance compared to standard NNs on large datasets,
and they are not well adjusted to different data modalities
and complex architectures. Lastly, there exists some evi-
dence [Brosse et al., 2020, Kristiadi et al., 2020] that being
Bayesian, even only on the last layer, can provide the desir-
able benefits of the Bayesian paradigm.

Learning representations with GPs. An alternative ap-
proach for learning in function spaces is with Gaussian
processes. However, Gaussian processes cannot learn a new
representation of the data [Wilson et al., 2016a]. Effectively
this limits them to data modalities on which standard ker-
nels can capture similarity well. Common solutions for this
problem are deep GPs [Damianou and Lawrence, 2013, Sal-
imbeni and Deisenroth, 2017], and deep kernel learning
[Calandra et al., 2016, Wilson et al., 2016a]. In this study,

we build on the latter approach. Unfortunately, it was found
that DKLs can overfit in a particular way [Ober et al., 2021].
The DKL objective will tend to correlate all data points
instead of only those that convey information about each
other. One way to mitigate this phenomenon is to use a fully
Bayesian approach [Ober et al., 2021]. Yet, this direction
inherits the challenges of working with BNNs which one
would like to avoid when using DKLs. Simultaneously, sev-
eral studies suggested methods to tackle this limitation of
DKLs. van Amersfoort et al. [2021] proposed to do spectral
normalization to the NNs parameters in architectures with
residual connections following [Liu et al., 2020]. However,
this method is limited to networks with residual connections
only and may depend heavily on the estimation quality of
the spectral norm. Also, in our experiments we often found
this method to be equivalent to standard DKLs. Liu et al.
[2021] proposed to use stochastic NNs to learn the represen-
tations of examples. The first method, termed DLVKL, uses
an encoder network, similar to that used in VAEs [Kingma
and Welling, 2014]. The second method, termed DLVKL-
NSDE, uses stochastic differential equation flows. To use
flow-based models, the feature and input spaces must have
the same dimensionality which makes this method impracti-
cal for high-dimensional data. Lastly, Mallick et al. [2021]
proposed to map data points to probability distributions us-
ing probabilistic NNs and fit a GP in that space. This method
builds on particle-based optimization [Liu and Wang, 2016]
and as such it operates on several NNs simultaneously which
may be challenging for even moderate-sized NNs. We would
like to note, that we expect our method to gain benefit from
similar techniques (e.g., [Lakshminarayanan et al., 2017]).



Figure 3: Model performance on [50, 100, 200, 400, 800] training data points (x-axis in log-scale). We report the log-
likelihood (top) and RMSE/accuracy (bottom) on the test set for all datasets. A higher log-likelihood and accuracy, and
a lower RMSE are better. All the results are based on ten random seeds. On Buzz and CTSlice we didn’t report here the
standard deviation of the log-likelihood for the DKL model as it was very large and impaired the visibility of the figure.

We leave this direction to future research endeavors.

5 EXPERIMENTS

We evaluated GDKL on a number of benchmark regression
and classification datasets, ranging from small to medium
size, and low to high data dimensionality. Unless stated
otherwise, in all experiments we report the mean perfor-
mance (e.g., log-likelihood) along with one standard devi-
ation over random seeds, which may include randomness
in the data and the parameters. We stress that we used the
same initialization for all compared methods. Note that in
our evaluation we aim at showing that GDKL can obtain a
strong mean prediction with good uncertainty estimation,
while other methods usually fall short in at least one aspect.
Indeed, as we will show, when factoring both (important)
aspects GDKL is the best in most cases. Full implementa-
tion details are given in Appendix A, comparison to baseline
methods in terms of computational complexity are presented
in Appendix C, and further experiments are presented in
Appendix D. 1.

5.1 SMALL-SIZED DATASETS

To showcase our claim that GDKL can learn from small
datasets while being robust to overfitting, we first evaluated

1Our code is publicly available at https://github.com/
IdanAchituve/GDKL

it on the three small-sized UCI benchmark datasets: Boston,
Energy, and Concrete [Dua and Graff, 2017]. We compared
the exact GP variant of our method to (1) DKL - standard
DKL training [Calandra et al., 2016, Wilson et al., 2016a];
(2) NNGP - A GP with an NNGP kernel [Lee et al., 2018,
de G. Matthews et al., 2018]; and (3) GP-RBF - Standard GP
with an RBF kernel (without DKL). The last simple baseline
is considered a strong approach on these datasets [Salimbeni
and Deisenroth, 2017], as the semantic similarity is well
captured by the RBF kernel. All neural network models
(NNGP, DKL, and GDKL) use a three hidden layer fully-
connected network. DKL and GDKL use the same width
for each layer. We follow the training protocol suggested
in [Ober et al., 2021] with several modifications which are
described in Appendix A. As customary on these datasets
(e.g., [Salimbeni and Deisenroth, 2017]), we use k-fold
cross validation with 90% randomly selected data as training
and the remaining 10% as a held-out test set. Here we used
k = 10. We scale the inputs and outputs of each partition of
the data to have zero mean and unit standard deviation based
on the training part only (the output scaling is restored in
evaluation). Figure 2 shows the Log-Likelihood (LL) and
RMSE of the compared methods.

From the figure, we observe several findings. First, we in-
deed observe that standard DKL training produces a model
that has the characteristics of a NN and not a Bayesian
model, i.e. it has good RMSE values at train and test, but
it does not reliably estimate its uncertainty, as seen from
its inferior test log-likelihood values. Second, the RMSE

https://github.com/IdanAchituve/GDKL
https://github.com/IdanAchituve/GDKL


Table 1: Test results on full CIFAR-10 and CIFAR-100 based on three random seeds.

CIFAR-10 CIFAR-100

ACC (↑) LL (↑) ECE (↓) MCE (↓) ACC (↑) LL (↑) ECE (↓) MCE (↓)
DKL 95.45 ± 0.06 -0.19 ± 0.00 0.03 ± 0.00 0.30 ± 0.01 77.90 ± 0.45 -0.94 ± 0.00 0.08 ± 0.00 0.24 ± 0.02
DLVKL 95.65 ± 0.12 -0.18 ± 0.00 0.03 ± 0.00 0.42 ± 0.20 77.42 ± 0.05 -0.95 ± 0.02 0.09 ± 0.00 0.26 ± 0.02
DUE 95.48 ± 0.09 -0.19 ± 0.00 0.03 ± 0.00 0.32 ± 0.04 76.39 ± 0.23 -0.98 ± 0.03 0.10 ± 0.01 0.16 ± 0.02

GDKL (Ours) 95.67 ± 0.06 -0.17 ± 0.00 0.01 ± 0.00 0.27 ± 0.01 78.36 ± 0.19 -0.89 ± 0.01 0.06 ± 0.00 0.18 ± 0.01

performance of NNGP on the Energy dataset is considerably
worse than other baselines, confirming our claim that NNGP
can have poor predictive performance. Finally, GDKL is
always comparable to the best of the two on all datasets on
both metrics and is substantially less prone to overfitting.

5.2 HIGH-DIMENSIONAL DATASETS

Next, we expect to achieve the most benefit from DKL in
settings with high dimensional data, where standard kernels
do not perform as well. In these cases, the NN should be
encouraged to find a low-dimensional representation over
which a GP will work well. To test that scenario we con-
sidered the two regression datasets Buzz and CTSlice from
the UCI repository, and the classification dataset CIFAR-
10 [Krizhevsky et al., 2009]. Here, we use a subset of the
training data with a varied number of training examples
from 50 to 800 and recorded the log-likelihood and the
RMSE/accuracy of the model on the test set in each experi-
ment. For Buzz and CTSlice we allocated 10% of the data
for testing, and for CIFAR-10 we use the default test split.
On the regression datasets, we compared the exact GP vari-
ant of our method to the same baselines as in Section 5.1.
On CIFAR-10, we use the Dirichlet-based likelihood func-
tion suggested in [Milios et al., 2018] for inference. On this
dataset, we didn’t compare to the GP-RBF baseline as it
works poorly on images. However, we did compare to two
additional baselines: (1) DLVKL [Liu et al., 2021] which
learns a stochastic encoder network, reminiscent of VAEs
[Kingma and Welling, 2014], to promote a regularized rep-
resentation of the data; and (2) DUE [van Amersfoort et al.,
2021] which applies spectral normalization on the weights
with architectures that contain residual connections. Note
that unlike GDKL these baselines require some modifica-
tion to the NN. Here, we used a variant of the wide residual
network (WRN) [Zagoruyko and Komodakis, 2016] as a
feature extractor in DKL models. As for the NNGP baseline
(and for modeling p in GDKL), we used a variant of this
network without the average pooling layer as it imposes a
large computational burden. The results on the three datasets
are shown in Figure 3.

From the figures, we observe again that the DKL model over-
fits strongly, and in some cases, even its mean prediction is
substantially lower than baseline methods. In addition, the
NNGP works well on the regression datasets, but less so on

real images. And finally, here as well, across all training set
sizes, GDKL achieves the highest, or comparable, results in
both the log-likelihood and RMSE/accuracy. In Appendix
D.3 we also quantify the uncertainty of the models through
calibration on the CIFAR-10 dataset. We compare all meth-
ods both visually using reliability diagrams and common
metrics [Brier, 1950, Guo et al., 2017] on all dataset sizes.
The figures show that GDKL is best calibrated across all
metrics in all cases when n ≥ 200, and on smaller dataset
sizes it is second only to the NNGP model.

5.3 MEDIUM-SIZED, HIGH-DIMENSIONAL
DATASETS

Having established that GDKL works well in low-data
regime settings, we now evaluate its performance on larger
datasets in which exact inference is more challenging. We do
so on the full CIFAR-10 and CIFAR-100 datasets. We com-
pare GDKL to the standard DKL baseline, and to DLVKL
and DUE which were presented in Section 5.2. In general,
we followed the protocol suggested in [van Amersfoort et al.,
2021] for training on the CIFAR-10 dataset having only 10
inducing points. For CIFAR-100 we used a similar protocol
with 200 inducing points. Exact experimental details are
given in Appendix A. Here, as well, we used a variant of the
WRN for both the DKL models and the NNGP model used
by GDKL. Table 1 shows the test accuracy, log-likelihood,
expected calibration error (ECE), and maximum calibra-
tion error (MCE) for both datasets. The ECE measures a
weighted average distance between the classifier’s confi-
dence and accuracy, and the MCE measures the maximum
instead of the average. From the table, GDKL outperforms
all baselines in almost all of the cases. Note how GDKL
is able to maintain and even surpass the accuracy of DKL
while providing a classifier that is better calibrated.

6 CONCLUSIONS

In this study, we put forward a novel method for learning
deep kernels. Our goal is to train deep kernels that keep
the benefits of Bayesian models without sacrificing perfor-
mance. To this end, we define a new training procedure
that uses an infinite-width NN to guide the DKL optimiza-
tion, effectively setting adaptive levels of confidence in our
predictions. This objective utilizes the reliable uncertainty



estimation of NNGPs to allow our model to be as confi-
dent as possible without being over-confident. Finally, we
also proposed an extension of our model to incorporate in-
ducing points. We evaluated GDKL on small to mid-sized
datasets having low and high data dimensionality. We found
that our method consistently generalized well to novel data
points while not scarifying the Bayesian properties of it,
i.e., it doesn’t overfit. As a possible future research direc-
tion, it would be interesting to combine our framework with
Bayesian models other than infinite-width NNs.
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