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ABSTRACT

In this paper, we strive to develop an interpretable GNNs’ inference paradigm,
termed MSInterpreter, which can serve as a plug-and-play scheme readily appli-
cable to various GNNs’ baselines. Unlike the most existing explanation meth-
ods, MSInterpreter provides a Message-passing Selection scheme (MSScheme) to
select the critical paths for GNNs’ message aggregations, which aims at reach-
ing the self-explaination instead of post-hoc explanations. In detail, the elaborate
MSScheme is designed to calculate weight factors of message aggregation paths
by considering the vanilla structure and node embedding components, where the
structure base aims at weight factors among node-induced substructures; on the
other hand, the node embedding base focuses on weight factors via node embed-
dings obtained by one-layer GNN. Finally, we demonstrate the effectiveness of
our approach on graph classification benchmarks.

1 INTRODUCTION

Recently, several advanced approaches (Ying et al., 2019; Luo et al., 2020; Schlichtkrull et al.,
2021; Huang et al., 2022; Vu & Thai, 2020; Gui et al., 2022; Yuan et al., 2021; Schnake et al., 2021;
Yuan et al., 2020; Yu & Gao, 2022) have been proposed to explain the predictions of graph neural
networks (GNNs), and are divided into two categories (Yuan et al., 2023), i.e., instance and model-
level explanation. The instance-level aims at critical nodes or subgraphs; on the other hand, model-
level focuses on a more high-level explainability. However, most of existing GNNs’ explainers are
post-hoc and lack the study regarding message-passing selection for GNNs’ inference.
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Figure 1: An illustration of the proposed MSInterpreter
framework, i.e., plugging the MSScheme at the begin-
ning of GNNs for an interpretable inference.

In this paper, we aim at selecting the
critical message-passing paths for GNNs’
aggregations, and thus develop an inter-
pretable GNNs’ inference paradigm, i.e.,
MSInterpreter, for the task of graph clas-
sification. As shown in Figure 1, the
main process is to build the Message-
passing Selection scheme (MSScheme),
and then plug it at the beginning of the
existing GNNs’ baselines to reach self-
explainable inference. The contributions
and details are summarized as follows:

• We propose the MSScheme to calculate the weight factors among the connected nodes and then
select the critical message-passing path for GNNs’ aggregations.

• We plug the MSScheme at the beginning of an arbitrary GNN to build MSInterpreter, which is
an end-to-end learnable framework to reach the self-explainable GNNs.

• We apply the MSInterpreter into graph classification task and provide the experimental analysis
to support the claim that it can achieve significantly improved explanations.
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2 METHOD

Notation. A graph consisting of n nodes can be represented as G = (A,X), where A ∈ Rn×n and
X ∈ Rn×d represent adjacency matrix and node feature matrix respectively. For a set of labeled
graphs S = {(G1, y1), .., (GN , yN )}, where yi ∈ Y denotes the label of i-th graph Gi ∈ G. The
graph classification task is to learn a function f : G → Y that maps graphs to the labels’ set.
The message-passing path is initialized as M = A. N (v) denotes the neighbor set of vertex v.
To efficiently obtain the critical message aggregation path for GNNs’ inference with application to
graph classification, we introduce the elaborate MSScheme as following.

MSScheme. The MSScheme aims at the critical message-passing paths for GNNs’ inference, which
is the essential module to reach the self-explaination. The MSScheme is formulated as:

M = M(A,Mask) ∈ Rn×n (1)
where M is the message-passing selection function using mask matrix Mask ∈ Rn×n. To obtain
mask matrix, we firstly compute the edge weight factors. Then, we sort these weights, and set the
high-weight edges as true, and vice versa. Specifically, the edge weights are obtained by considering
two components: the vanilla structure base and the node embedding base. For the vanilla structure
base, we compute the edge weight between nodes vi and vj using the intersection over union (IoU)
of the number of N (vi) and N (vj), i.e., Wstr(vi, vj) = ψ(

num(N (vi)
⋂

N (vj))
num(N (vi)

⋃
N (vj))

), where ψ is a norm
operation in a whole graph. On the other hand, edge weight regarding node embedding is computed
by Wemb(vi, vj) = φ(hvi , hvj ), where hvi and hvj denote the node embeddings of vi and vj via
one-layer GNN. φ is a mapping function like line or gaussian kernel function, etc. The resulting
edge factor is:

Wcom(vi, vj) = Wstr(vi, vj) + α · Wemb(vi, vj), (2)
where α is a hyperparameter to balance two weight factors.

MSInterpreter. To build the self-explainable GNNs, we plug the proposed MSScheme at the begin-
ning of the GNNs predictions. As shown in the Figure 1, we use the MSScheme to select the critical
message aggregation path to build the interpretable GNNs’ inference, i.e., MSInterpreter, which is
beneficial to build an end-to-end framework while training GNNs for the task of graph classification.

3 EXPERIMENT

We compare MSInterpreter with four popular explainable methods PGExplainer (Luo et al., 2020),
GNNExplainer (Ying et al., 2019) ,SubgraphX (Yuan et al., 2021), and GStarX (Zhang et al., 2022).
In Table 1, we list these methods’ accuracy, recall, and F1 score, and our method achieves the
competitive performances. More experimental details are provided in Appendix A.

Table 1: Evaluation of several explainable methods on two graph classification datasets (with anno-
tated explanatory edges) using a three-layer GIN architecture.

Dataset BA-2MOTIFS MUTAG0

Acc. Rec. F1 Acc. Rec. F1

GNN-Exp. 49.21 ±0.39 52.65 ±1.91 30.85 ±0.96 50.48 ±1.82 59.22 ±0.70 48.00 ±0.80

PGE-Exp. 36.05 ±0.11 80.23 ±0.57 35.13 ±0.21 56.27 ±0.59 83.60 ±0.89 59.44 ±0.56

SubgraphX 71.15 ±1.00 52.08 ±0.82 40.42 ±0.18 69.05 ±0.91 38.35 ±2.90 48.62 ±2.68

GStarX 61.85 ±0.01 86.86 ±1.67 49.56 ±0.45 46.96 ±0.01 74.62 ±1.85 58.88 ±0.24

MSInterpreter 66.34 ±0.37 90.78 ±0.87 53.75 ±0.53 79.31 ±0.95 88.69 ±1.63 76.12 ±1.04

4 CONCLUSIONS

In this paper, we introduce an novel framework to explain the GNNs’ inference with application to
graph classification. Firstly, we build a scheme MSScheme to analyze the weight factors of message-
passing paths, which is essential to obtain the crucial message aggregations for GNNs’ inference.
Then, we plug the MSScheme at the begin of the GNNs’ predictions to build an end-to-end inter-
pretable paradigm, i.e., MSInterpreter, which aims at reaching the self-explaination GNNs for graph
classification. Finally, we perform our proposed method in graph classification to demonstrate its
superior performance.
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A APPENDIX

Dataset. We compare two datasets with edge interpretation labels: MUTAG0 and BA2Motifs. The
statistics for the BA2Motif (Luo et al., 2020) and MUTAG0 (Tan et al., 2022) datasets are shown in
Table 2.

• MUTAG0 is a molecular dataset for graph classification tasks and consists of 4,337 molec-
ular graphs. In this dataset, nodes represent different atoms, and edges represent chemical
bonds. Each graph is assigned to one of the two categories according to its mutagenic ef-
fects (Riesen & Bunke, 2008). We observe that carbon rings are present in both mutagenic
and non-mutagenic graphs, but the carbon rings with the chemical groupsNH2 orNO2 are
mutagenic. Therefore, the carbon ring can be considered a shared base map, and the two
groupsNH2 andNO2 are the base sequence of the mutagenic map. For the non-mutagenic
graphs, there is no explicit base sequence. For the mutagenic graphs, there are true edge
masks that mark the edges of the mutagenic motifs.

• BA2Motifs is a synthetic graph motif detection dataset. BA2Motifs contains Barabasi-
Albert (BA) base graphs of size 20, and each graph has five node patterns. The node
features are 10-dimensional all-one vectors. Patterns can be house-like structures or cycles.
The graphs are divided into two categories based on the topics they contain. Therefore the
interpretation of this dataset is the edges that make up the two patterns.

Experiments Settings. We use three-layer GIN as the backbone network and set the hidden dimen-
sions as 128. We divide the dataset into three random groups (80%/10%/10%) as training, validation,
and test sets.

For the BA2Motifs dataset, we compute the three metrics only for correctly predicted data. For the
MUTAG0 dataset, we add one more restriction that the prediction category is mutagenic since only
mutagenic data have interpreted edges. We uniformly set the batch size to 64 and the number of
epochs to 100. For our method, we keep the sparsity at 0.5, and the hyperparameter α is set to 0.5.

Our implementation is based on Python 3.8.15, PyTorch 1.12.0, PyTorchGeometric 2.2.0 (Fey &
Lenssen, 2019), and DIG (Liu et al., 2021). We adopt the GNN implementation and the provided
implementation of the baseline explainer from the DIG library.

Graph Classification. We provide the accuracy of graph classification in table 3.Compared to the
four post-hoc explainers, our method keeps the accuracy no less than the accuracy of backbone.

Table 2: Dataset Statistics.

Dataset Graphs Edges(avg.) Nodes(avg.) Classes

MUTAG0 2301 32.54 31.74 2
BA2Motifs 1000 25.00 51.39 2

Table 3: Accuracy of graph classification for various interpretation methods

GIN GNN-Exp. PGE-Exp. SubgraphX GSTtarX MSInterpreter

MUTAG0 0.995 0.826 0.995 0.904 0.934 1.0
BA2Motifs 1.0 0.993 1.0 0.931 0.964 1.0

Discussion. The developments of graph neural networks (GNNs) have revolutionized the domains
non-Euclidean space (Jing et al., 2022; Chen et al., 2023). Especially, graph representation learning
and other graph symmetries with application to various graph downstream tasks are well studied,
e.g., vision tasks (Jing et al., 2021; Zhang et al., 2023), cell clustering (Alghamdi et al., 2021; Li
et al., 2022), chemical prediction (Tavakoli et al., 2022; Zhong et al., 2022; Chen et al., 2022b),
reinforcement learning (Liu et al., 2022) and power system (Boyaci et al., 2021; Chen et al., 2022a;
Han et al., 2022). However, the predictions of these GNN baselines lack explainability, i.e., their
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inferences for handling graph-structure data are still treated as black boxes, which limits their appli-
cations in some crucial areas.

Recently, several advanced approaches (Ying et al., 2019; Luo et al., 2020; Schlichtkrull et al.,
2021; Huang et al., 2022; Vu & Thai, 2020; Gui et al., 2022; Yuan et al., 2021; Schnake et al.,
2021; Yuan et al., 2020; Yu & Gao, 2022) have been proposed to explain the predictions of graph
neural networks (GNNs), and are divided into two categories (Yuan et al., 2023), i.e., instance and
model-level explanation. The instance-level aims at critical nodes or subgraphs; on the other hand,
model-level focuses on a more high-level explainability. However, most of existing GNNs’ explainers
are post-hoc and lack the study regarding message-passing selection for GNNs’ inference.
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