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Abstract

The remarkable advances in deep learning have led to the emergence of many off-the-shelf
classifiers, e.g., large pre-trained models. However, since they are typically trained on clean
data, they remain vulnerable to adversarial attacks. Despite this vulnerability, their supe-
rior performance and transferability make off-the-shelf classifiers still valuable in practice,
demanding further work to provide adversarial robustness for them in a post-hoc manner.
A recently proposed method, denoised smoothing, leverages a denoiser model in front of the
classifier to obtain provable robustness without additional training. However, the denoiser
often creates hallucination, i.e., images that have lost the semantics of their originally as-
signed class, leading to a drop in robustness. Furthermore, its noise-and-denoise procedure
introduces a significant distribution shift from the original distribution, causing the denoised
smoothing framework to achieve sub-optimal robustness. In this paper, we introduce Fine-
Tuning with Confidence-Aware Denoised Image Selection (FT-CADIS), a novel fine-tuning
scheme to enhance the certified robustness of off-the-shelf classifiers. FT-CADIS is inspired
by the observation that the confidence of off-the-shelf classifiers can effectively identify hal-
lucinated images during denoised smoothing. Based on this, we develop a confidence-aware
training objective to handle such hallucinated images and improve the stability of fine-tuning
from denoised images. In this way, the classifier can be fine-tuned using only images that
are beneficial for adversarial robustness. We also find that such a fine-tuning can be done
by merely updating a small fraction (i.e., 1%) of parameters of the classifier. Extensive
experiments demonstrate that FT-CADIS has established the state-of-the-art certified ro-
bustness among denoised smoothing methods across all ℓ2-adversary radius in a variety of
benchmarks, such as CIFAR-10 and ImageNet.

1 Introduction

Despite the recent advancements in modern deep neural networks in various computer vision tasks (Radford
et al., 2021; Rombach et al., 2022; Kirillov et al., 2023), they still suffer from the presence of adversarial
examples (Szegedy et al., 2013) i.e., a non-recognizable perturbation (for humans) of an image often fools
the image classifiers to flip the output class (Goodfellow et al., 2014). Such adversarial examples can
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Figure 1: Overview of FT-CADIS framework. (1) Confidence-aware denoised image selection: for a given
clean image, we create denoised images and find non-hallucinated images. (2) Fine-tuning with confidence-
aware denoised image selection: we propose fine-tuning objectives to improve both generalizability and
robustness of the smoothed classifier based on selected non-hallucinated images.

be artificially crafted with malicious intent, i.e., adversarial attacks, which pose a significant threat to the
practical deployment of deep neural networks. To alleviate this issue, various approaches have been proposed
to develop robust neural networks, such as adversarial training (Madry et al., 2018; Wang et al., 2019) and
certified defenses (Wong & Kolter, 2018; Cohen et al., 2019; Li et al., 2023).

Among these efforts, randomized smoothing (Lecuyer et al., 2019; Cohen et al., 2019) has gained much
attention as a framework to build robust classifiers. This is due to its superior provable guarantee of the
non-existence of adversarial examples, i.e., certified robustness (Wong & Kolter, 2018; Xiao et al., 2018),
under any perturbations confined in a ℓ2-norm. Specifically, it builds a smoothed classifier through taking a
majority vote from a base classifier, e.g., a neural network, under Gaussian perturbations of the given input
image. However, it has been practically challenging to scale the model due to a critical drawback: the base
classifier should be specifically trained on noise-augmented data (Lecuyer et al., 2019; Cohen et al., 2019).

Recently, Lee (2021); Carlini et al. (2023) have introduced denoised smoothing which utilizes pre-trained
off-the-shelf classifiers within the randomized smoothing framework. Rather than directly predicting the
label of a noise-augmented image, it first feeds the perturbed image into a denoiser, e.g., a diffusion model,
and then obtains the predicted label of the denoised image using off-the-shelf pre-trained classifiers that have
been trained on clean images. Intriguingly, denoised smoothing with recently developed diffusion models and
pre-trained classifiers, e.g., guided diffusion (Dhariwal & Nichol, 2021) and BEiT (Bao et al., 2022), shows
its superior scalability with comparable certified robustness in ℓ2-adversary to the current state-of-the-art
methods (Horváth et al., 2022b; Jeong et al., 2023).

On the other hand, denoised smoothing also exhibits clear limitations. Firstly, denoised images do not follow
the standard pre-training distribution of the classifiers, which results in a limited robustness of the denoised
smoothing framework. Secondly, fine-tuning the pre-trained classifiers with the denoised images also yields
sub-optimal classifiers due to the hallucinated images (Carlini et al., 2023), i.e., the diffusion denoiser tends
to generate image semantics from an incorrect class rather than the originally assigned class (see Figure 2a).
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Consequently, denoised smoothing with such classifiers leads to a drop of the certified accuracy, especially
in the large ℓ2-radius regime, i.e., high Gaussian variance (see Table 1b).

Contribution. In this paper, we aim to address the aforementioned issues of denoised smoothing by
designing a fine-tuning objective for off-the-shelf classifiers that distinguishes between hallucinated images,
i.e., images that have lost the original semantics after denoising, and non-hallucinated images, i.e., images
that maintain the original semantics after denoising. To this end, we propose to use the “likelihood of
denoised images”, i.e., confidence, of the off-the-shelf classifier with respect to the originally assigned class
as a proxy for determining whether an image is hallucinated and then fine-tune the classifier with non-
hallucinated images only. Consequently, we have developed a confidence-aware training objective based on
the likelihood of denoised images to effectively discriminate hallucinated images (see Figure 1).

Specifically, we propose a scalable and practical framework for fine-tuning off-the-shelf classifiers, coined Fine-
Tuning with Confidence-Aware Denoised Image Selection (FT-CADIS), which improves certified robustness
under denoised smoothing. In order to achieve this, two new losses are defined: the Confidence-aware
selective cross-entropy loss and the Confidence-aware masked adversarial loss. Two losses are selectively
applied only to non-hallucinated images, thereby ensuring that the overall training process avoids over-
optimizing hallucinated samples, i.e., samples that are harmful for generalization, while maximizing the
robustness of smoothed classifiers. Our particular loss design is motivated by Jeong et al. (2023), who were
the first to investigate training objectives for randomized smoothing depending on sample-wise confidence
information. We demonstrate that our novel definition of confidence in randomized smoothing, specifically
through the ratio of non-hallucinated images from a denoiser, can dramatically stabilize the confidence-aware
training, overcoming its previous limitation of severe accuracy degradation (e.g., see Table 1b).

In our experiments, we have validated the effectiveness of our proposed method on standard benchmarks for
certified ℓ2-robustness, i.e., CIFAR-10 (Krizhevsky, 2009) and ImageNet (Russakovsky et al., 2015). Our
results show that the proposed method significantly outperforms existing state-of-the-art denoised smoothing
methods in certified robustness across all ℓ2-norm setups, while updating only 1% of the parameters of off-
the-shelf classifiers on ImageNet. In particular, FT-CADIS significantly improves the certified robustness in
the high Gaussian variance regime, i.e., high certified radius. For instance, FT-CADIS outperforms the best
performing baseline, i.e., diffusion denoised (Carlini et al., 2023), by 29.5%→ 39.4% at ε = 2.0 for ImageNet
experiments.

2 Preliminaries

Adversarial robustness and randomized smoothing. We assume a labeled dataset D = {(xi, yi)}n
i=1

sampled from P , where xi ∈ X ⊂ Rd and yi ∈ Y := {1, ..., K}, and aim to develop a classifier f : X → Y
which correctly classifies a given input x into the corresponding label among K classes, i.e., f(xi) = yi.

Adversarial robustness refers to the worst-case behavior of f ; given a sample x ∈ X and the corresponding
label y ∈ Y, it requires f to produce a consistent output under any perturbation δ ∈ Rd which preserves the
original semantic of x. Here, δ is commonly assumed to be restricted in some ℓ2-norm in Rd, i.e., ∥δ∥2 ≤ ε
for some positive ε. For example, Moosavi-Dezfooli et al. (2016); Carlini et al. (2019) quantify adversarial
robustness as average minimum distance of the perturbations that cause f to flip the originally assigned
label y, defined as:

R(f ; P ) := E (x,y)∼P

[
min

f(x′ )̸=y
∥x′ − x∥2

]
. (1)

The primary obstacle in achieving adversarial robustness lies in the difficulty of evaluating and optimizing for
it, which is typically infeasible because f is usually modeled by a complex, high-dimensional neural network.
Randomized smoothing (Cohen et al., 2019; Lecuyer et al., 2019) addresses this challenge by constructing a
new robust classifier g from f , instead of directly modeling robustness with f . In particular, Cohen et al.
(2019) models g by selecting the most probable output of f under Gaussian noise N (0, σ2I), defined as:

g(x) := arg max
c∈Y

Pδ∼N (0,σ2I)[f(x + δ) = c] . (2)
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Intriguingly, g can guarantee the adversarial robustness around (x, y) ∼ P , i.e., R(g; x, y) can be lower-
bounded by the certified radius R(g, x, y), where Cohen et al. (2019) have proven that such a lower-bound
of certified radius is tight for ℓ2-adversary:

R(g; x, y) ≥ σ · Φ−1(pg(x, y)) =: R(g, x, y), where pg(x, y) := Pδ[f(x + δ) = y], (3)

provided that g(x) = y, i.e., y is the most probable output of f under Gaussian noise. Otherwise, we have
R(g; x, y) := 0. Here, Φ is the cumulative distribution function of the standard Gaussian distribution. We
remark that higher pg(x, y), i.e., average accuracy of f(x + δ), results in higher robustness.

Denoised smoothing. In randomized smoothing, it is crucial that f consistently classifies perturbed images
correctly. Salman et al. (2020) have proposed to define f based on concatenating a Gaussian denoiser, denoted
as denoise(·), with any off-the-shelf classifier fclf, i.e., trained with non-perturbed images, a method referred
to as denoised smoothing:

f(x + δ) := fclf(denoise(x + δ)) . (4)

Denoised smoothing provides a more scalable framework for randomized smoothing. First, we only need
off-the-shelf pre-trained classifiers (rather than noise-specialized classifiers), which is widely investigated and
developed (Dosovitskiy et al., 2020; Bao et al., 2022; Radford et al., 2021). Second, recent advancements
in diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021) have produced
appropriate denoisers for this approach. Previous efforts (Lee, 2021; Carlini et al., 2023) have further
demonstrated the potential of denoised smoothing in achieving the state-of-the-art certified robustness when
combined with recently advanced pre-trained classifiers and diffusion models.

Parameter-efficient fine-tuning. LoRA (Hu et al., 2022) is a widely-used parameter-efficient fine-tuning
method that originated from language models. It applies a low-rank constraint to approximate the update
matrix at each layer of the Transformer’s self-attention layer, significantly reducing the number of trainable
parameters for downstream tasks. During fine-tuning, all the parameters of the original model are frozen,
and the update of the layer is constrained by representing them with a low-rank decomposition. A forward
pass h = W0x can be modified as follows:

h = W0x + ∆W x = W0x + BAx, (5)

where x and h denote the input and output features of each layer, W0 ∈ Rd×k represents the original
weights of the base model f , while ∆W denotes the weight change, composed of the inserted low-rank
matrices B ∈ Rd×r and A ∈ Rr×k.

3 Method

In Section 3.1, we present a description of our problem and the main idea. In Section 3.2, we provide
descriptions of our selection strategy for non-hallucinated samples. In Section 3.3, we outline our overall
fine-tuning framework.

3.1 Problem description and Overview

In this paper, we investigate how to effectively elaborate an off-the-shelf classifier fclf within a denoised
smoothing scheme. We remark that the robustness of the smoothed classifier g from denoised smoothing
of fclf depends directly on the accuracy of the denoised images (see Eq. (3) and (4)). Therefore, one may
expect that improving fclf for clean images is sufficient to improve the generalizability and robustness of
g (Carlini et al., 2023), assuming that the denoised images follow the pre-training distribution with clean
images (Salman et al., 2020), i.e., the denoised images preserve the semantics of the original clean images.
However, this assumption is not true; the noise-and-denoise procedure of denoised smoothing often suffers
from distribution shifts and hallucination issues so that the resulting denoised images have completely
different semantics from the original labels (see Figure 2a).
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(a) Hallucinated images (b) Non-hallucinated images

Figure 2: Examples of denoised images for FT-CADIS on ImageNet at σ = 1.00. We visualize (a) hallucinated
images and (b) non-hallucinated images after the noise-and-denoise procedure. The red/green box indicates
the areas where the original semantic of the image is corrupted/preserved, respectively.

To alleviate these issues, we aim to develop a fine-tuning scheme for fclf to properly handle denoised samples.
One straightforward strategy would be to fine-tune fclf by minimizing the cross-entropy loss with all denoised
images (Carlini et al., 2023):

LCE := 1
M

M∑
i=1

CE
(

fclf
(
denoise(x + δi)

)
, y

)
, δi ∼ N (0, σ2I), (6)

where CE denotes the cross-entropy loss, and M denotes the number of noises. Here, we note that this
approach treats both non-hallucinated and hallucinated samples equally among the denoised samples. How-
ever, fine-tuning fclf with hallucinated samples, i.e., denoise(x+δi) does not resemble the class y, is harmful
for the generalizability since Eq. (6) forces the classifier fclf to remember non-y-like hallucinated images as
y. Our contribution lies in resolving this issue by introducing (1) a confidence-aware selection strategy to
distinguish between hallucinated and non-hallucinated images and (2) a fine-tuning strategy that excludes
hallucinated samples from the optimization process.

3.2 Confidence-aware denoised image selection

We propose a confidence-aware selection strategy to identify hallucinated images and non-hallucinated images
within a set of denoised images. Consider the denoised images Dx = {denoise(x+δ1), ..., denoise(x+δM )}
for a given clean image x and the number of noises M . We aim to find non-hallucinated images within Dx
that an off-the-shelf classifier fclf classifies as the assigned label y, i.e., fclf shows the highest confidence for
y among all possible classes. Conversely, if fclf classifies denoised images as a label other than y, we define
such denoised images as hallucinated images, i.e., samples that no longer preserve the core semantic of y.
Accordingly, the set of non-hallucinated images Dx,nh ∈ Dx is defined as follows:

Dx,nh = {x̂|fclf(denoise(x + δi)) = y, i ∈ [1, ..., M ]} . (7)

We remark that the off-the-shelf classifier fclf is pre-trained with clean images, rather than denoised images.
Thus, at the beginning of the fine-tuning, fclf often fails to correctly assign Dx,nh due to the distribution
shift from clean images to denoised images. Thus, we update Dx,nh at each training iteration using Eq. (7)
for a more accurate assignment of non-hallucinated images.

3.3 Fine-tuning with confidence-aware denoised image selection

Our main goal is to improve both the generalizability and the robustness of the smoothed classifier g, through
the fine-tuning of the off-the-shelf classifier fclf based on our confidence-aware denoised image selection in
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Section 3.2. To this end, we propose two fine-tuning objectives for an off-the-shelf classifier fclf, viz.,
Confidence-aware selective cross-entropy loss and Confidence-aware masked adversarial loss, to maximize
the generalizability and robustness of the corresponding smoothed classifier g, respectively.

Confidence-aware selective cross-entropy loss. We first aim to improve the generalizability of the
smoothed classifier g, i.e., the average certified accuracy of g. Specifically, we propose to optimize fclf with
non-hallucinated images Dx,nh:

LSCE := 1
M

∑
x̂∈Dx,nh

CE
(

fclf
(
x̂), y

)
. (8)

In other words, we optimize our classifier with the non-hallucinated images, while the hallucinated images
are excluded from our training objective. This prevents the drop in accuracy of fclf caused by being forced
to remember wrong semantics not relevant to the assigned class y. It also allows for fclf to properly learn
the distribution of denoised images, which is largely different from its pre-training distribution with clean
images.

Here, we find that training with the objective in Eq. (8) slows down the overall training procedure since
Dx,nh = ∅ sometimes occurs at the start of training. This is mainly due to the distribution shift from the
pre-training clean image distribution to the denoised images, i.e., fclf fails to classify denoised images due to
insufficient exposure to denoised images. To resolve this cold-start problem, we add the most-y-like denoised
image, i.e., a denoised image with the largest logit for y, to Dx,nh when it is empty.

Confidence-aware masked adversarial loss. We also propose a simple strategy to further improve the
robustness of the smoothed classifier g, i.e., the certified accuracy of g at large ℓ2-norm radius. Specifically, we
apply the concept of adversarial training (Madry et al., 2018; Zhang et al., 2019a; Wang et al., 2019; Salman
et al., 2019; Jeong et al., 2023) to our denoised smoothing setup; we carefully create more challenging images,
and then additionally learn these images during fine-tuning. Here, the main challenge is to ensure that the
adversarial images preserve the core semantic of the original image, thereby maintaining generalizability while
improving robustness. However, as illustrated in Figure 2, some clean images are prone to be hallucinated
after the noise-and-denoise procedure. Therefore, adversarial training in denoised smoothing should be
carefully designed to avoid incorporating hallucinated images.

To this end, we propose to create adversarial examples based only on images that are unlikely to be hallu-
cinated, i.e., clean images x with Dx,nh = Dx. Specifically, we apply our adversarial loss based on a simple
condition of “Dx,nh = M”:

LMAdv := 1[|Dx,nh| = M ] ·max
i

max
∥η∗

i
−ηi∥2≤ε

KL(fclf(x + η∗
i ), ŷ), (9)

where KL(·, ·) indicates the Kullback-Libler divergence and ηi := denoise(x+δi)−x is the difference between
each denoised image and the original clean image. To find the adversarial perturbation η∗

i , we perform a
T -step gradient ascent from each ηi with a step size of 2 · ε/T , while projecting η∗

i to remain within an
ℓ2-ball of radius ε: viz., the projected gradient descent (PGD) (Madry et al., 2018). For the adversarial
target ŷ, we adapt the consistency target from the previous robust training method (Jeong et al., 2023) to
our denoised smoothing setup by letting the target be the average likelihood of the denoised images, i.e.,
ŷ := 1

M

∑M
i=1 Softmax

(
fclf

(
denoise(x + δi)

))
.

Overall training objective. Building on our proposed training objectives LSCE and LMAdv, we now present
the complete objective for our Fine-Tuning with Confidence-Aware Denoised Image Selection (FT-CADIS).
Based on our confidence-aware denoised image selection scheme, Confidence-aware selective cross-entropy
loss and Confidence-aware masked adversarial loss are applied only to non-hallucinated images Dx,nh to
improve both generalizability and robustness of the smoothed classifier. The overall loss function is as
follows:

LFT-CADIS := LSCE + λ · LMAdv, (10)
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where λ > 0 is a hyperparameter, which controls the relative trade-off between the generalizability and the
robustness (see Section 4.3). The detailed algorithm for computing our LFT-CADIS is outlined in Algorithm 1.

Comparision with CAT-RS. Our FT-CADIS has drawn motivation from previous confidence-aware train-
ing strategies, e.g., CAT-RS (Jeong et al., 2023). The key difference is that FT-CADIS uses the confidence
of denoised images based on the pre-trained off-the-shelf classifier while CAT-RS learns their confidence of
Gaussian-augmented images during the training of the classifier from scratch. In particular, our method
takes advantage of off-the-shelf classifiers which are already capable of providing reasonable confidence for
identifying non-hallucinated images. Therefore, we can simply use the non-hallucinated images identified by
the off-the-shelf classifiers in our optimization objective. On the other hand, CAT-RS additionally assumes
a distribution of semantic-preserving noised sample counts based on the confidence, i.e., average accuracy,
of the models currently being trained from scratch. Therefore, the overall confidence remains low espe-
cially for complex datasets, resulting in a sub-optimal accuracy of the smoothed classifier (see Table 1b).
Our FT-CADIS successfully mitigates this issue based on our carefully designed confidence-based approach
utilizing off-the-shelf classifiers, achieving the state-of-the-art robustness even in complex datasets such as
ImageNet.

4 Experiments

We verify the effectiveness of our proposed training scheme for off-the-shelf classifiers by conducting compre-
hensive experiments. In Section 4.1, we explain our experimental setups, such as training configurations and
evaluation metrics. In Section 4.2, we present the main results on CIFAR-10 and ImageNet. In Section 4.3,
we conduct an ablation study to analysis the component-wise effect of our training objective.

4.1 Experimental setup

Baselines. We mainly consider the following recently proposed methods based on denoised smoothing
(Salman et al., 2020; Lee, 2021; Carlini et al., 2023; Jeong & Shin, 2024) framework. We additionally compare
with other robust training methods for certified robustness based on randomized smoothing (Lecuyer et al.,
2019; Cohen et al., 2019; Salman et al., 2019; Jeong & Shin, 2020; Zhai et al., 2020; Horváth et al., 2022a;
Yang et al., 2022; Jeong et al., 2021; Horváth et al., 2022b; Jeong et al., 2023). Following the previous works,
we consider three different noise levels, σ ∈ {0.25, 0.50, 1.00}, to obtain smoothed classifiers.

CIFAR-10 configuration. We follow the same classifier and the same denoiser employed by Carlini et al.
(2023). Specifically, we use the 86M-parameter ViT-B/16 classifier (Dosovitskiy et al., 2020) which is pre-
trained and fine-tuned on ImageNet-21K (Deng et al., 2009) and CIFAR-10 (Krizhevsky, 2009), respectively.
We use the 50M-parameter 32×32 diffusion model from Nichol & Dhariwal (2021) as the denoiser. We
provide more detailed setups in Appendix B.2.

ImageNet configuration. We use the 87M-parameter ViT-B/16 classifier which is pre-trained on LAION-
2B image-text pairs (Schuhmann et al., 2022) using OpenCLIP (Cherti et al., 2023) and fine-tuned on
ImageNet-12K and then ImageNet-1K. Compared to the previous state-of-the-art method, diffusion de-
noised (Carlini et al., 2023) based on BEiT-large model (Bao et al., 2022) with 305M parameters, we use
a much smaller off-the-shelf classifier (30% parameters). We also adopt parameter-efficient fine-tuning with
LoRA (Hu et al., 2022), i.e., the number of parameters updated through fine-tuning is only 1% of the total
parameters. We use the same denoiser employed by Carlini et al. (2023), i.e., 552M-parameter 256×256
unconditional model from Dhariwal & Nichol (2021). We provide more detailed setups in Appendix B.2.

Evaluation metrics. We follow the standard metric in the literature for assessing the certified robustness
of smoothed classifiers : the approximate certified test accuracy at r, which is the fraction of the test set that
Certify (Cohen et al., 2019), a practical Monte-Carlo-based certification procedure, classifies correctly with
a radius larger than r without abstaining. Throughout our experiments, following Carlini et al. (2023), we
use N = 100, 000 noise samples to certify robustness for entire CIFAR-10 test set and N = 10, 000 samples
for 1,000 randomly selected images from the ImageNet validation set (note that RS methods in Table 1b use
N = 100, 000). We use the hyperparameters from Cohen et al. (2019), specifically n0 = 100 and α = 0.001.
In ablation study, we additionally consider another standard metric, the average cerified radius (ACR) (Zhai
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Table 1: CIFAR-10 and ImageNet certified top-1 accuracy. We report the best certified accuracy among
the models trained with σ ∈ {0.25, 0.50, 1.00}, followed by the clean accuracy of the corresponding model in
parentheses. RS denotes methods based on randomized smoothing without a denoising procedure, and DS
denotes methods based on denoised smoothing. indicates training the classifier with Gaussian-augmented
images, indicates direct use of the off-the-shelf classifier without fine-tuning, indicates fine-tuning of the
denoiser, indicates fine-tuning the off-the-shelf classifier, and indicates parameter-efficient fine-tuning
of the off-the-shelf classifier (Hu et al., 2022). The highest certified accuracy in each column is bold-faced.
† indicates that extra data is used in the pre-training.

(a) CIFAR-10

Category Method Off-the-shelf
Certified Accuracy at ε (%)

0.25 0.50 0.75 1.00 1.25 1.50

RS

PixelDP (Lecuyer et al., 2019) (71.0)22.0 (44.0)2.0 - - - -
Gaussian (Cohen et al., 2019) (77.0)61.0 (66.0)43.0 (66.0)32.0 (66.0)22.0 (47.0)17.0 (47.0)14.0
SmoothAdv (Salman et al., 2019) (85.0)73.0 (76.0)58.0 (75.0)48.0 (57.0)38.0 (53.0)33.0 (53.0)29.0
Consistency (Jeong & Shin, 2020) (77.8)68.8 (75.8)58.1 (72.9)48.5 (52.3)37.8 (52.3)33.9 (52.3)29.9
MACER (Zhai et al., 2020) (81.0)71.0 (81.0)59.0 (66.0)46.0 (66.0)38.0 (66.0)29.0 (45.0)25.0
Boosting (Horváth et al., 2022a) (83.4)70.6 (76.8)60.4 (71.6)52.4 (52.4)38.8 (52.4)34.4 (52.4)30.4
DRT (Yang et al., 2022) (81.5)70.4 (72.6)60.2 (71.9)50.5 (56.1)39.8 (56.4)36.0 (56.4)30.4
SmoothMix (Jeong et al., 2021) (77.1)67.9 (77.1)57.9 (74.2)47.7 (61.8)37.2 (61.8)31.7 (61.8)25.7
ACES (Horváth et al., 2022b) (77.6)69.0 (73.4)57.2 (73.4)47.0 (57.0)37.8 (57.0)32.2 (57.0)27.8
CAT-RS (Jeong et al., 2023) (76.3)68.1 (76.3)58.8 (76.3)48.2 (62.3)38.5 (62.3)32.7 (62.3)27.1

DS

Denoised (Salman et al., 2020) (72.0)56.0 (62.0)41.0 (62.0)28.0 (44.0)19.0 (42.0)16.0 (44.0)13.0
Score-based Denoised (Lee, 2021) 60.0 42.0 28.0 19.0 11.0 6.0
Diffusion Denoised† (Carlini et al., 2023) (88.1)76.7 (88.1)63.0 (88.1)45.3 (77.0)32.1 - -
Diffusion Denoised†1 (Carlini et al., 2023) (91.2)79.3 (91.2)65.5 (91.2)48.7 (81.5)35.5 - -
Multi-scale Denoised† (Jeong & Shin, 2024) - (90.3)61.9 - (85.1)32.9 - (79.6)16.2
FT-CADIS (Ours)† (88.7)80.3 (88.7)68.4 (88.7)54.5 (74.9)39.9 (74.9)31.6 (74.9)23.5

(b) ImageNet

Category Method Off-the-shelf
Certified Accuracy at ε (%)

0.50 1.00 1.50 2.00 2.50

RS

PixelDP (Lecuyer et al., 2019) (33.0)16.0 - - - -
Gaussian (Cohen et al., 2019) (67.0)49.0 (57.0)37.0 (57.0)29.0 (44.0)19.0 (44.0)15.0
SmoothAdv (Salman et al., 2019) (65.0)56.0 (55.0)45.0 (55.0)38.0 (42.0)28.0 (42.0)26.0
Consistency (Jeong & Shin, 2020) (55.0)50.0 (55.0)44.0 (55.0)34.0 (41.0)24.0 (41.0)21.0
MACER (Zhai et al., 2020) (68.0)57.0 (64.0)43.0 (64.0)31.0 (48.0)25.0 (48.0)18.0
Boosting (Horváth et al., 2022a) (68.0)57.0 (57.0)44.6 (57.0)38.4 (44.6)28.6 (38.6)24.6
DRT (Yang et al., 2022) (52.2)46.8 (49.8)44.4 (49.8)39.8 (49.8)30.4 (49.8)29.0
SmoothMix (Jeong et al., 2021) (55.0)50.0 (55.0)43.0 (55.0)38.0 (40.0)26.0 (40.0)24.0
ACES (Horváth et al., 2022b) (63.2)54.0 (55.4)42.2 (55.0)35.6 (39.2)25.6 (50.6)22.0
CAT-RS (Jeong et al., 2023) (44.0)38.0 (44.0)35.0 (44.0)31.0 (44.0)27.0 (44.0)24.0

DS

Denoised (Salman et al., 2020) (60.0)33.0 (38.0)14.0 (38.0)6.0 - -
Score-based Denoised (Lee, 2021) 41.0 24.0 11.0 - -
Diffusion Denoised†(Carlini et al., 2023) (82.8)71.1 (77.1)54.3 (77.1)38.1 (60.0)29.5 -
Multi-scale Denoised† (Jeong & Shin, 2024) (76.6)54.6 (76.6)39.8 (76.6)23.0 (69.0)14.6 -

FT-CADIS (Ours)† (81.1)71.9 (77.0)60.1 (77.0)45.8 (66.2)39.4 (66.2)30.7

et al., 2020): the average of cerified radii on the test set Dtest while assigning incorrect samples as 0: viz.,
ACR := 1

|Dtest|
∑

(x,y)∈Dtest
[CR(f, σ, x) · 1g(x)=y], where CR(·) denotes the lower bound of certified radius

Certify returns.

4.2 Main experiments

Results on CIFAR-10. In Table 1a, we compare the performance of the baselines and FT-CADIS on
CIFAR-10. Overall, FT-CADIS outperforms all existing state-of-the-art denoised smoothing (denoted by
DS) approaches in every radii. For example, our method improves the best-performing denoised smoothing

1Further fine-tune the classifier on denoised images from CIFAR-10.
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Table 2: Comparison of the architectures and parameters between the previous state-of-the-art certified
defense methods and FT-CADIS on ImageNet.

Method CAT-RS
(Jeong et al., 2023)

Diffusion Denoised
(Carlini et al., 2023)

Multi-scale Denoised
(Jeong & Shin, 2024) FT-CADIS (Ours)

Denoiser - Guided Diffusion
(Dhariwal & Nichol, 2021)

Guided Diffusion
(Dhariwal & Nichol, 2021)

Guided Diffusion
(Dhariwal & Nichol, 2021)

Classifier ResNet-50
(He et al., 2016)

BEiT-large
(Bao et al., 2022)

ViT-B/16
(Dosovitskiy et al., 2020)

ViT-B/16 (+LoRA)
(Dosovitskiy et al., 2020)

Parameters Denoiser : -
Classifier : 26M

Denoiser : 552M
Classifier : 305M

Denoiser : 552M
Classifier : 87M

Denoiser : 552M
Classifier : 87M

Trainable Denoiser : -
Classifier : 26M

Denoiser : -
Classifier : -

Denoiser : 552M
Classifier : -

Denoiser : -
Classifier : 0.9M

Table 3: Comparison of ACR and certified accuracy for ablations of LFT-CADIS on CIFAR-10 with σ = 1.00.

Fine-tuning objective design ACR
Certified Accuracy at ε (%)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
LSCE + λ · LMAdv (LFT-CADIS; Ours) 0.784 48.1 43.5 40.6 36.9 32.5 28.6 23.7

(w/o) Non-hallucinated condition of LSCE 0.726 52.4 45.6 40.4 35.9 31.2 26.1 21.9
(w/o) Mask of LMAdv 0.374 11.2 10.9 10.4 10.2 10.2 10.2 10.2

Cross-entropy loss LCE (Carlini et al., 2023) 0.633 54.4 45.8 39.3 33.2 28.1 22.4 17.3

method (Carlini et al., 2023) by 35.5%→ 39.9% at ε = 1.00. FT-CADIS also outperforms every randomzied
smoothing techinque up to a radius of ε ≤ 1.00. Even though our method slightly underperforms at higher
radii in terms of certified accuracy, we note that FT-CADIS is the only denoised smoothing method which
achieves a reasonable robustness at ε > 1.00. This means that our FT-CADIS effectively alleviates the
distribution shift and hallucination issues observed in previous methods based on denoised smoothing (Carlini
et al., 2023). We provide the detailed results in Appendix B.5.

Results on ImageNet. In Table 1b, we compare the performance of the baselines and FT-CADIS on
ImageNet, which is a far more complex dataset than CIFAR-10. In summary, FT-CADIS outperforms all
existing state-of-the-art methods in every radii. In particular, our method surpasses the certified accuracy
of diffusion denoised (Carlini et al., 2023) by 9.9% at ε = 2.00. In Table 2, we also compare the architecture
and trainable parameters of each method. Our method even shows remarkable parameter efficiency, i.e., we
only update 0.9M parameters, which is 3% of Jeong et al. (2023) and 0.2% of Jeong & Shin (2024). The
overall results highlight the scalability of FT-CADIS, indicating its effectiveness in practical applications
with only a small parameter updates. We provide the detailed results in Appendix B.5 and further discuss
the efficiency of LoRA (Hu et al., 2022) on FT-CADIS in Appendix F.

4.3 Ablation study

In this section, we conduct an ablation study to further analyze the design of our proposed losses, the impact
of updating the set of non-hallucinated images, and the component-wise effectiveness of our method. Unless
otherwise stated, we report the test results based on a randomly sampled 1,000 images from the CIFAR-10
test set.

Effect of overall loss design. Table 3 presents a comparison of variants of LFT-CADIS, including: (a)
removing the non-hallucinated condition of LSCE in Eq. (8), (b) removing the masking condition of LMAdv in
Eq. (9), and (c) training with cross-entropy loss LCE only. In summary, we observe that (a) using only non-
hallucinated images for LSCE achieves better ACR and effectively balances between accuracy and robustness.
Additionally, we find that (b) the mask “Dx,nh = M” in LMAdv is crucial for stable training, as it prevents
the optimization of adversarial images that have lost the semantic of the original image; and (c) FT-CADIS
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Table 4: Comparison of ACR and certified accuracy for the ablation of the update of Dx,nh on CIFAR-10.

Noise Update of Dx,nh ACR
Certified Accuracy at ε (%)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

σ = 0.25 ✗ 0.632 91.1 80.4 66.7 49.0 0.0 0.0 0.0
✓ 0.642 87.9 78.7 68.0 54.0 0.0 0.0 0.0

σ = 0.50 ✗ 0.765 75.4 66.9 56.0 46.0 36.2 28.7 21.6
✓ 0.806 72.2 64.1 57.2 48.1 40.3 34.1 25.9

σ = 1.00 ✗ 0.626 53.4 45.9 38.2 32.9 27.3 22.5 16.4
✓ 0.783 48.1 43.5 40.6 36.9 32.4 28.5 23.8

Table 5: Comparison of ACR and certified accuracy for ablations of LMAdv on CIFAR-10 with σ = 0.50.
Every design adopts the 1[|Dx,nh| = M ] masking condition.

Adversarial objective design ACR
Certified Accuracy at ε (%)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
(a) maxi,η∗

i
KL(fclf(x + η∗

i ), y) 0.802 71.7 64.3 56.2 48.0 39.8 33.8 25.7
(b) 1

M

∑
i(maxη∗

i
KL(fclf(x + η∗

i ), ŷ)) 0.792 74.9 65.8 56.1 47.8 39.7 31.8 23.4
(c) 1

M

∑
i(maxη∗

i
KL(fclf(x + η∗

i ), y)) 0.792 74.8 64.9 57.0 48.0 39.9 31.5 23.0

maxi,η∗
i

KL(fclf(x + η∗
i ), ŷ) (LMAdv; Ours) 0.806 72.2 64.1 57.2 48.1 40.3 34.1 25.9

demonstrates higher robustness and ACR by combining Confidence-aware selective cross-entropy loss and
Confidence-aware masked adversarial loss.

Effect of Confidence-aware masked adversarial loss design. We further investigate the components of
Confidence-aware masked adversarial loss. Table 5 presents three variants of LMAdv in Eq. (9): (a) replacing
the consistent target ŷ with the assigned label y, (b) substituting the outer maximization with an average-
case, and (c) combining both (a) and (b). Overall, we find that our proposed LMAdv demonstrates superior
ACR compared to the variants, achieving the highest certified robustness while maintaining satisfactory
clean accuracy. It shows that both design choices, i.e., maximizing loss over adversarial images and using
soft-labeled adversarial targets, are particularly effective.

Effect of iterative update of Dx,nh. Our FT-CADIS iteratively updates the set of non-hallucinated
images, i.e., denoise(x + δ) ∈ Dx,nh, to deal with the distribution shift from the pre-training distribution
(clean images) to fine-tuning distribution (denoised images). Table 4 shows the effect of Dx,nh on varying σ ∈
{0.25, 0.50, 1.00}. For all noise levels, the iterative update strategy shows higher ACR with higher robustness.
We find that the fine-tuning classifier increases the ratio of applying LMAdv (see Figure 5 in Appendix D), i.e.,
fclf gradually classifies all the denoised images of x correctly, thereby focusing on maximizing robustness
and achieving a better trade-off between accuracy and robustness (Zhang et al., 2019a).

Effect of λ. In the fine-tuning objective of FT-CADIS in Eq. (10), λ determines the ratio between LMAdv

and LSCE. Figure 3a illustrates how λ affects the certified accuracy across different radii, with λ varying in
{0.5, 1.0, 2.0, 4.0, 8.0} and σ = 0.50. As λ increases, the robustness at high radii improves although the clean
accuracy decreases, i.e., the trade-off between clean accuracy and robustness.

Effect of M . Figure 3b shows the impact of M on the model when varying M ∈ {1, 2, 4, 8}. The robustness
of the smoothed classifier improves as M increases, while the clean accuracy decreases. With a higher M ,
the model is exposed to more denoised images included in Dx,nh, reducing the distribution shift from clean
images to denoised images. This increases the confidence of the smoothed classifier, i.e., the accuracy on
denoised images, resulting in more robust predictions.
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Figure 3: Comparison of certified accuracy for components in FT-CADIS, (a) λ and (b) M , on CIFAR-10.
We plot the results at σ = 0.50. We provide detailed results in Appendix C.

5 Related Work

Certified adversarial robustness. Recently, various defenses have been proposed to build robust classifiers
against adversarial attacks. In particular, certified defenses have gained significant attention due to their
guarantee of robustness (Wong & Kolter, 2018; Wang et al., 2018a;b; Wong et al., 2018). Among them,
randomized smoothing (Lecuyer et al., 2019; Li et al., 2019; Cohen et al., 2019) shows the state-of-the-art
performance by achieving the tight certified robustness guarantee over ℓ2-adversary (Cohen et al., 2019). This
approach converts any base classifier, e.g., a neural network, into a provably robust smoothed classifier by
taking a majority vote over random Gaussian noise. To maximize the robustness of the smoothed classifier,
the base classifier should be trained with Gaussian-augmented images (Lecuyer et al., 2019; Cohen et al.,
2019; Salman et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020; Jeong et al., 2023). For instance, Salman
et al. (2019) employed adversarial training (Madry et al., 2018) within the randomized smoothing framework,
while Jeong & Shin (2020) suggested training a classifier using simple consistency regularization. Moreover,
Jeong et al. (2023) introduced sample-wise control of target robustness, motivated by the accuracy-robustness
trade-off (Tsipras et al., 2019; Zhang et al., 2019a) in smoothed classifiers. However, training base classifiers
specifically for Gaussian-augmented images requires large training costs and thus these methods suffer from
scalability issues in complex datasets, e.g., the accuracy drops severely in the ImageNet dataset.

Denoised smoothing. Denoised smoothing alleviates the aforementioned scalability issue of randomized
smoothing by introducing “denoise-and-classify” strategy. This approach allows randomized smoothing to
be applied to any off-the-shelf classifier trained on clean images, i.e., not specifically trained on Gaussian-
augmented images, by adding a denoising step before feeding Gaussian-augmented images into the classifier.
In recent years, diffusion probabilistic models have emerged as an ideal choice for the denoiser in the denoised
smoothing scheme. In particular, Lee (2021) have initially explored the applicability of diffusion models in
denoised smoothing, and Carlini et al. (2023) further observe that combining the latest diffusion models
with an off-the-shelf classifier provides a state-of-the-art design for certified robustness. Meanwhile, Jeong &
Shin (2024) investigate the trade-off between robustness and accuracy in denoised smoothing, and proposed
a multi-scale smoothing scheme that incorporates denoiser fine-tuning.

Our work aims to improve the certified robustness of smoothed classifiers in denoised smoothing, which is
determined by the average accuracy of the off-the-shelf classifiers under denoised images. We improve such
robustness by addressing hallucination and distribution shift issues of denoised images. Specifically, we focus
on filtering out hallucinated images based on the confidence of off-the-shelf classifiers, and then fine-tune
off-the-shelf classifiers with non-hallucinated images.
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6 Conclusion

We propose FT-CADIS, a scalable fine-tuning strategy of off-the-shelf classifiers for certified robustness.
Specifically, we propose to use the confidence of off-the-shelf classifiers to mitigate the intrinsic drawbacks
of the denoised smoothing framework, i.e., hallucination and distribution shift. We also demonstrate that
this can be achieved by updating only 1% of the total parameters. We hope that our method could be a
meaningful step for the future research to develop a scalable approach for certified robustness.

Limitation and future work. In this work, we apply an efficient training technique for off-the-shelf
classifiers based on LoRA (Hu et al., 2022). Nevertheless, certification remains a bottleneck for throughput,
due to its majority voting process involving a large number of forward inferences, i.e., N = 100, 000. An
important future work would be to accelerate the certification process for a more practical deployment of
our method. In addition, certain public vision APIs do not allow us to access the underlying off-the-shelf
classifiers, i.e., black-box. In such cases, our method is not directly applicable, and further research on
training methods that are independent of model parameters, such as prompt-tuning (Jia et al., 2022), will
be necessary.
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Supplementary Material
Appendix: Confidence-aware Denoised Fine-tuning of

Off-the-shelf Models for Certified Robustness

A Training Procedure of FT-CADIS

Algorithm 1 Fine-Tuning with Confidence-Aware Denoised Image Selection (FT-CADIS)
Require: training sample (x, y). variance of Gaussian noise σ. number of noises M . off-the-shelf classifier

fclf. attack ℓ2-norm ε > 0. adversarial target ŷ ∈ ∆K−1. coefficient of Confidence-aware masked
adversarial loss λ > 0.

1: Generate x̂1 = NoiseAndDenoise(x1, σ), · · · , x̂M = NoiseAndDenoise(xM , σ) ▷ xi: copy of x
2: Identify Dx,nh = {x̂i | fclf(x̂i) = y, i ∈ [1, ..., M ]}
3: for i = 1 to M do
4: Li ← CE(fclf(x̂i), y)
5: η∗

i ← arg max
∥η∗

i
−ηi∥2≤ε

KL(fclf(x + η∗
i ), ŷ), ηi := x̂i − x

6: end for
7: Lπ

1:M , indices← argsort(L1:M ), Dπ
x,nh ← {x̂π

indices.index(i) | x̂i ∈ Dx,nh}
8: if Dπ

x,nh ̸= ∅ then
9: LSCE ← 1

M (
∑

x̂π
i

∈Dπ
x,nh
Lπ

i )
10: else
11: LSCE ← 1

M (Lπ
1 ) ▷ Lπ

1 : lowest cross-entropy loss
12: end if
13: LMAdv ← 1[|Dx,nh| = M ] ·max

i
KL(fclf(x + η∗

i ), ŷ)
14: LFT-CADIS ← LSCE + λ · LMAdv

Algorithm 2 Noise-and-Denoise Procedure (Carlini et al., 2023)
1: function NoiseAndDenoise(x, σ):
2: t∗, αt∗ ← GetTimestep(σ)
3: xt∗ ← √αt∗(x + δ), δ ∼ N (0, σ2I)
4: x̂← denoise(xt∗ ; t∗) ▷ denoise : one-shot diffusion denoising process
5: return x̂
6: end function
7:
8: function GetTimestep(σ):
9: t∗ ← find the timestep t s.t. σ2 = 1−αt

αt
▷ αt : noise level constant of diffusion model

10: return t∗, αt∗

11: end function
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B Experimental Details

B.1 Datasets

CIFAR-10 (Krizhevsky, 2009) consists of 60,000 RGB images of size 32×32, with 50,000 images for training
and 10,000 for testing. Each image is labeled as one of 10 classes. We apply the standard data augmentation,
including random horizontal flip and random translation up to 4 pixels, as used in previous works (Cohen
et al., 2019; Salman et al., 2019; Zhai et al., 2020; Jeong & Shin, 2020; Jeong et al., 2021; 2023). No additional
normalization is applied except for scaling the pixel values from [0,255] to [0.0, 1.0] when converting image
into a tensor. The full dataset can be downloaded at https://www.cs.toronto.edu/ kriz/cifar.html.

ImageNet (Russakovsky et al., 2015) consists of 1.28 million training images and 50,000 validation images,
each labeled into one of 1,000 classes. For the training images, we apply 224×224 randomly resized cropping
and horizontal flipping. For the test images, we resize them to 256×256 resolution, followed by center
cropping to 224×224. Similar to CIFAR-10, no additional normalization is applied except for scaling the
pixel values to [0.0, 1.0]. The full dataset can be downloaded at https://image-net.org/download.

B.2 Training

Noise-and-Denoise Procedure. We follow the protocol of Carlini et al. (2023) to obtain the denoised
images for fine-tuning. Firstly, the given image x is clipped to the range [-1,1] as expected by the off-the-
shelf diffusion models. Then, the perturbed image is obtained from a certain diffusion time step according
to the target noise level. Finally, we adopt a one-shot denoising, i.e., outputting the best estimate for the
denoised image in a single step, resulting in a denoised image within the range of [-1,1]. Since this range
differs from the typical range of [0, 1] assumed in prior works, we set the target noise level to twice the usual
level for training and certification. A detailed implementation can be found at https://github.com/ethz-
spylab/diffusion-denoised-smoothing and the algorithm is provided in Algorithm 2.

CIFAR-10 fine-tuning. We conduct an end-to-end fine-tuning of a pre-trained ViT-B/16 (Dosovitskiy
et al., 2020), considering different scenarios of σ ∈ {0.25, 0.50, 1.00} for randomized smoothing. The same σ is
applied to both the training and certification. As part of the data pre-processing, we interpolate the dataset
to 224×224. Our fine-tuning follows the common practice of supervised ViT training. The default setting
is shown in Table 6a. We use the linear lr scaling rule (Goyal et al., 2017): lr = base lr × batch size ÷ 256.
The batch size is calculated as batch per GPU× number of GPUs × accum iter // number of noises, where
accum iter denotes the batch accumulation hyperparameter.

ImageNet fine-tuning. We adopt LoRA (Hu et al., 2022) to fine-tune a pre-trained ViT-B/16 (Dosovitskiy
et al., 2020) in a parameter-efficient manner. We use the same training scenarios as for CIFAR-10. As
part of the data pre-processing, we interpolate the dataset to 384×384. The default setting is shown in
Table 6b. Compared to end-to-end fine-tuning, we reduce the regularization setup, e.g., weight decay, lr
decay, drop path, and gradient clipping. For LoRA fine-tuning, we freeze the original model except for
the classification layer. Then, LoRA weights are incorporated into each query and value projection matrix
of the self-attention layers of ViT. For these low-rank matrices, we use Kaiming-uniform initialization for
weight A and zeros for weight B, following the official code. To implement LoRA with ViT, we refer to
https://github.com/JamesQFreeman/LoRA-ViT.

B.3 Hyperparameters

In our proposed loss functions (see Eqs. (8), (9), and (10)), there are two main hyperparameters: the
coefficient λ for the Confidence-aware masked adversarial loss, and the attack radius ε of Confidence-aware
masked adversarial loss. We have determined the optimal configurations for two hyperparameters through
a simple grid search on λ over [1,2,4] and ε over [0.125, 0.25, 0.5, 1.0].

For CIFAR-10, we use λ = 1.0, 2.0, 4.0 for σ = 0.25, 0.50, 1.00, respectively. Assuming that denoise(x+δ) ≈
x with high probability, we adopt a small ε = 0.25 by default, which is increased to 0.50 after 10 epochs
only for σ = 1.00. For ImageNet, we use λ = 2.0, 1.0, 2.0 for σ = 0.25, 0.50, 1.00 respectively, and ε is fixed
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Table 6: Denoised fine-tuning settings for the off-the-shelf classifier on CIFAR-10 and ImageNet.

(a) CIFAR-10 end-to-end fine-tuning

Configuration Value
Optimizer AdamW (Loshchilov & Hutter, 2019)
Optimizer momentum β1, β2 = 0.9, 0.999
Base learning rate 5e-4 (σ = 0.25, 0.50), 1e-4 (σ = 1.00)
Weight decay start, end = 0.04, 0.4 (cosine schedule)
Layer-wise lr decay (Clark et al., 2020; Bao et al., 2022) 0.65
Batch size 128
Learning rate schedule cosine decay (Loshchilov & Hutter, 2022)
Warmup epochs (Goyal et al., 2017) 3
Training epochs 30 (early stopping at 20)
Drop path (Huang et al., 2016) 0.2
Gradient clipping (Zhang et al., 2019b) 0.3

(b) ImageNet LoRA (Hu et al., 2022) fine-tuning

Configuration Value
Optimizer AdamW (Loshchilov & Hutter, 2019)
Optimizer momentum β1, β2 = 0.9, 0.999
Base learning rate 2e-4 (σ = 0.25), 4e-4 (σ = 0.50, 1.00)

Weight decay start, end = 0.02, 0.2 (σ = 0.25)
start, end = 0.01, 0.1 (σ = 0.50, 1.00)

Layer-wise lr decay (Clark et al., 2020; Bao et al., 2022) 0.8 (σ = 0.25), 0.9 (σ = 0.50, 1.00)
Batch size 128
Learning rate schedule cosine decay (Loshchilov & Hutter, 2022)
Warmup epochs (Goyal et al., 2017) 1
Training epochs 10 (early stopping at 5)
Drop path (Huang et al., 2016) 0.0
Gradient clipping (Zhang et al., 2019b) 1.0
LoRA rank r 4
LoRA scaler α 4

at 0.25 for all noise levels. Although the number of noises M and the number of attack steps T can also be
tuned for better performance, we fix M = 4 and T = 4 for CIFAR-10. For ImageNet, we fix M = 2 and
T = 1 to reduce the overall training cost. Additional training configurations are provided in Table 6. Due to
the extensive training cost of large models, we have adjusted some training configurations for the ablation
study, e.g., the warmup and training epochs are reduced to 2 and 20, with ε doubled after 10 epochs.

B.4 Computing infrastructure

In summary, we conduct our experiments using NVIDIA GeForce RTX 2080 Ti GPUs for CIFAR-10, NVIDIA
GeForce RTX 3090 and NVIDIA RTX A6000 GPUs for ImageNet. In the CIFAR-10 experiments, we utilize
4 NVIDIA GeForce RTX 2080 Ti GPUs for fine-tuning per run, resulting in ∼8 hours of training cost. During
the certification, we use 7 NVIDIA GeForce RTX 2080 Ti GPUs for data splitting, taking ∼9 minutes per
image (with N = 100, 000 for each inference) to perform a single pass of smoothed inference. In the ImageNet
experiments, we utilize 4 NVIDIA RTX A6000 GPUs for fine-tuning per run, observing ∼51 hours of training
cost. During the certification, 8 NVIDIA GeForce RTX 3090 GPUs are used in parallel, taking ∼4 minutes
per image (with N = 10, 000 for each inference) to complete a single pass of smoothed inference.
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B.5 Detailed results on main experiments

Table 7: Certified accuracy of FT-CADIS for varying levels of Gaussian noise σ on CIFAR-10 and ImageNet.
Values in bold-faced indicate the ones reported in Table 1a for CIFAR-10 and Table 1b for ImageNet.

(a) CIFAR-10

Noise
Certified Accuracy at ε (%)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
σ = 0.25 88.7 80.3 68.4 54.5 0.0 0.0 0.0
σ = 0.50 74.9 67.3 58.7 49.2 39.9 31.6 23.5
σ = 1.00 49.6 45.5 41.0 36.8 32.5 28.4 24.2

(b) ImageNet

Noise
Certified Accuracy at ε (%)

0.00 0.50 1.00 1.50 2.00 2.50
σ = 0.25 81.1 71.9 0.0 0.0 0.0 0.0
σ = 0.50 77.0 69.3 60.1 45.8 0.0 0.0
σ = 1.00 66.2 60.7 54.0 46.4 39.4 30.7
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Figure 4: Certified accuracy of FT-CADIS at different levels of Gaussian noise σ ∈ {0.25, 0.50, 1.00}. Upper
bounds in radius are calculated with N = 100,000 for CIFAR-10 and N = 10,000 for ImageNet.
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C Detailed Results on Effect of λ and M

Table 8: Comparison of ACR and certified accuracy for ablations of varying λ on CIFAR-10 with σ = 0.50.

Setups ACR
Certified Accuracy at ε (%)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
λ = 0.50 0.786 75.7 64.9 55.8 47.5 39.5 30.8 22.8
λ = 1.00 0.797 75.3 64.3 56.3 47.9 39.7 32.8 24.5
λ = 2.00 0.806 72.2 64.1 57.2 48.1 40.3 34.1 25.9
λ = 4.00 0.814 70.9 63.3 55.9 48.0 41.0 35.0 27.7
λ = 8.00 0.823 68.6 62.4 56.0 47.6 41.5 35.9 28.5

Table 9: Comparison of ACR and certified accuracy for ablations of varying M on CIFAR-10 with σ = 0.50.

Setups ACR
Certified Accuracy at ε (%)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
M = 1 0.773 75.6 67.0 56.3 46.2 38.1 29.4 21.6
M = 2 0.790 74.9 65.4 55.6 47.6 39.1 32.2 23.3
M = 4 0.806 72.2 64.1 57.2 48.1 40.3 34.1 25.9
M = 8 0.817 70.4 62.5 55.9 47.9 42.1 35.8 27.9

D Effect of Iterative Update of Dx,nh on LMAdv

w/ update
w/o update
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Figure 5: Change in the ratio of |Dx,nh| = M , i.e., ratio of clean images x satisfying the masking condition
of LMAdv, during fine-tuning on CIFAR-10 with σ = 1.00, depending on whether Dx,nh is being updated or
not. In the legend, red indicates that Dx,nh is iteratively updated, while orange indicates that Dx,nh is fixed.
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E Details on Certifying Robustness of FT-CADIS

We simply follow the common evaluation framework of the baselines (Carlini et al., 2023; Jeong & Shin,
2024). In denoised smoothing framework (Salman et al., 2020), the robustness of the smoothed classi-
fier g is guaranteed based on the accuracy of the off-the-shelf classifier fclf under denoised images, viz.,
Pδ[fclf(denoise(x + δ)) = y] =: pg(x, y). However, since fclf is a high-dimensional neural network, this ac-
curacy cannot be computed directly. Instead, we estimate it using the practical Monte-Carlo based algorithm
Certify from Cohen et al. (2019).

Certify algorithm consists of two main procedures: (a) given input x, identifying the most probable output
class ĉA of f , and (b) computing a lower-bound on the probability that output of f is ĉA:

(a) Using a small number n0 (e.g., n0 = 100) of denoised images and taking a majority vote over the
outputs of fclf, i.e., computing fclf(denoise(x + δ)) n0 times to identify the most frequent class
ĉA.

(b) Using a large number n (e.g., n = 100,000) of denoised images to estimate the lower bound of
Pδ[fclf(denoise(x + δ)) = ĉA], viz., pg(x, ĉA), considering the significance level α (see Cohen et al.
(2019) for details).

Finally, the certified ℓ2-norm radius of smoothed classifier, derived by Cohen et al. (2019), is calculated as
σ ·Φ−1(pg(x, ĉA)) when pg(x, ĉA)) > 1

2 ; otherwise return Abstain. It verifies that the smoothed classifier g

does not change its output within an ℓ2 ball of radius σ · Φ−1(pg(x, ĉA)) around any input x.
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F Analysis on Efficiency of FT-CADIS with LoRA

Table 10: Comparison of fine-tuning costs and ACR between the baselines (Carlini et al., 2023; Jeong &
Shin, 2024) and FT-CADIS on ImageNet with σ = 0.50. † indicates that the numbers are taken from the
original paper.

Method LoRA
(Hu et al., 2022) ACR Fine-tuned model Trainable

parameters GPU days

Diffusion Denoised
(Carlini et al., 2023) - 0.896 - 0M -

Multi-scale Denoised†

(Jeong & Shin, 2024) ✗ 0.743 Guided Diffusion
(Dhariwal & Nichol, 2021) 552M 32

FT-CADIS (Ours)
✗ 1.013 ViT-B/16

(Dosovitskiy et al., 2020) 87M 11.2

✓ 1.001 ViT-B/16
(Dosovitskiy et al., 2020) 0.9M 8.4

In Table 10, we compare the time complexity of different methods. Firstly, our FT-CADIS (without LoRA
(Hu et al., 2022)) largely outperforms Multi-scale Denoised (Jeong & Shin, 2024), i.e., 0.743 → 1.013 in
ACR, with significantly smaller training costs, i.e., 32 → 11.2 in GPU days. Furthermore, LoRA reduces
the training time of FT-CADIS by 25% and the trainable parameters by 99% compared to full parameter
fine-tuning, while maintaining ACR on par with full parameter fine-tuning. We note that the efficiency of
LoRA can be further improved through advancements of GPU infrastructure or low-level code optimization.
Since LoRA is generally applicable to other robust training techniques, we hope that our work initiates the
research direction on alleviating the large cost of robust training.

Meanwhile, Diffusion Denoised (Carlini et al., 2023) proposes to obtain a robust classifier without fine-tuning.
While they achieve reasonable robustness in an extremely efficient manner, i.e., no fine-tuning costs, they
suffer from the fundamental limitation associated with hallucination effect of the denoiser (see Figure 2a).
Due to this bottleneck, we find that the robustness of Diffusion Denoised degrades particularly at large
radii (see Table 1b). One of our main contributions is identifying and addressing such hallucination issue,
achieving improved robustness, i.e., 0.896 → 1.013 in ACR.
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G Analysis on Pre-trained Classifiers

Table 11: Comparison of ACR and certified accuracy between FT-CADIS and Diffusion Denoised (Carlini
et al., 2023) on CIFAR-10 with σ = 0.50.

Method Classifier Test
Accuracy ACR

Certified Accuracy at ε (%)
0.00 0.25 0.50 0.75 1.00 1.25 1.50

Diffusion Denoised
(Carlini et al., 2023) ResNet-110 (1.7M) 93.7% 0.669 75.0 62.8 50.2 38.9 30.9 22.8 15.6

FT-CADIS (Ours) ResNet-110 (1.7M) 93.7% 0.754 68.8 60.9 53.9 45.2 38.3 29.4 23.4
ViT-B/16 (85.8M) 97.9% 0.806 72.2 64.1 57.2 48.1 40.3 34.1 25.9

In Table 11, we investigate the relationship between our proposed method and pre-trained classifiers. The
results show that our proposed method still outperforms Carlini et al. (2023) on ResNet-110 (He et al.,
2016), i.e., a much smaller architecture than ViT-B/16 (Dosovitskiy et al., 2020). Also, we observe that the
certified robustness of our method improves as we use more advanced pre-trained classifiers, e.g., FT-CADIS
based on ViT-B/16 largely improves the results based on ResNet-110. These findings demonstrate that the
effectiveness of our method is not restricted to specific classifiers and can be further enhanced with continuous
advancements in this field.

H Additional Results on ℓ∞ Adversarial Attack

Table 12: Comparison of ℓ∞ certified accuracy (%) on CIFAR-10 with radius ε. We report the model with
the highest certified ℓ∞ accuracy for each method.

CIFAR-10 (ℓ∞) Diffusion Denoised
(Carlini et al., 2023)

Multi-scale Denoised
(Jeong & Shin, 2024) FT-CADIS (Ours)

Robust (ε = 2
255 ) 62.9 67.1 71.8

In Table 12, we present the certified robustness of defense methods on another threat model, i.e., ℓ∞-norm.
Specifically, we leverage the geometric relationships between the ℓ2-norm ball and ℓ∞-norm ball to assess
the robustness under ℓ∞-norm (Salman et al., 2019). Through this simple conversion, our proposed method
can provide robustness against other ℓp-adversaries.
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I Additional Examples of Hallucinated Images

Figure 6: Additional examples of hallucinated images after the noise-and-denoise procedure on ImageNet at
σ = 1.00. The red box indicates the areas where the original semantic of the image is corrupted.
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Figure 7: Additional examples of hallucinated images after the noise-and-denoise procedure on CIFAR-10 at
σ = 1.00. The red box indicates the areas where the original semantic of the image is corrupted.
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J Analysis on Training Stability of FT-CADIS

Figure 8: Plots of (1) Confidence-aware selective cross-entropy loss LSCE, (2) Confidence-aware masked adver-
sarial loss LMAdv, (3) Overall training objective LFT-CADIS, and (4) Top-1 accuracy from our main experiments
on CIFAR-10 with σ = 0.25.

In this section, we demonstrate that our training objective LFT-CADIS remains stable throughout the fine-
tuning process. As mentioned in Section 3.3, our overall objective is composed of Confidence-aware selective
cross-entropy loss LSCE and Confidence-aware masked adversarial loss LMAdv. In Figure 8, we show that (1)
the training loss, including the adversarial loss, converges smoothly without oscillation, and (2) the training
accuracy also converges well.
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