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Abstract

Hyperparameter optimization (HPO) is a core problem for the machine learning1

community and remains largely unsolved due to the significant computational re-2

sources required to evaluate hyperparameter configurations. As a result, a series of3

recent related works have focused on the direction of transfer learning for quickly4

fine-tuning hyperparameters on a dataset. Unfortunately, the community does5

not have a common large-scale benchmark for comparing HPO algorithms. In-6

stead, the de facto practice consists of empirical protocols on arbitrary small-scale7

meta-datasets that vary inconsistently across publications, making reproducibility8

a challenge. To resolve this major bottleneck and enable a fair and fast comparison9

of black-box HPO methods on a level playing field, we propose HPO-B, a new10

large-scale benchmark in the form of a collection of meta-datasets. Our benchmark11

is assembled and preprocessed from the OpenML repository and consists of 17612

search spaces (algorithms) evaluated sparsely on 196 datasets with a total of 6.413

million hyperparameter evaluations. For ensuring reproducibility on our bench-14

mark, we detail explicit experimental protocols, splits, and evaluation measures for15

comparing methods for both non-transfer, as well as, transfer learning HPO.16

1 Introduction17

Hyperparameter Optimization (HPO) is arguably the major open challenge for the machine learning18

community due to the expensive computational resources demanded to evaluate configurations.19

As a result, HPO and its broader umbrella research area, AutoML, have drawn particular interest20

over the past decade [2, 14, 26, 27]. Black-box HPO is a specific sub-problem that focuses on21

the case where the function to be optimized (e.g. the generalization performance of an algorithm)22

is unknown, non-differentiable with respect to the hyperparameters, and intermediate evaluation23

proxies are not computable (opposed to gray-box HPO [19] which accesses intermediate performance24

measurements).25

Although black-box HPO is a core problem, existing solutions based on parametric surrogate models26

for estimating the performance of a configuration overfit the limited number of evaluated configu-27

rations. As a result, the AutoML community has recently invested efforts in resolving the sample-28

inefficiency of parametric surrogates via meta- and transfer-learning [10, 15, 23, 24, 29, 31, 34].29
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Unfortunately, despite the promising potential of transfer-learning in black-box HPO, the impact of30

such algorithms is hindered by their poor experimental reproducibility. Our personal prior research31

experience, as well as the feedback from the community, highlight that reproducing and generalizing32

the results of transfer-learning HPO methods is challenging. In essence, the problem arises when the33

results of a well-performing method in the experimental protocol of a publication either can not be34

replicated; or when the method underperforms in a slightly different empirical protocol. We believe35

that a way of resolving this negative impasse is to propose a new public large-scale benchmark for36

comparing HPO methods, where the exact training/validation/test splits of the meta-datasets, the37

exact evaluation protocol, and the performance measures are well-specified. The strategy of adopting38

benchmarks is a trend in related areas, such as in computer vision [7], or NAS [8, 36].39

In this perspective, we present HPO-B2, the largest public benchmark of meta-datasets for black-box40

HPO containing 6.4M hyperparameter evaluations across 176 search spaces (algorithms) and on 19641

datasets in total. The collection is derived from the raw data of OpenML [28], but underwent an42

extensive process of cleaning, preprocessing and organization (Section 5). Additionally, we offer43

off-the-shelf ready variants of the benchmark that are adapted for both non-transfer, as well as transfer44

HPO experiments, together with the respective evaluation protocols (Section 6). This large, diverse,45

yet plug-and-play benchmark can significantly boost future research in black-box HPO.46

2 Terminology47

To help the reader navigate through our paper, we present the compact thesaurus of Table 1 for48

defining the vernacular of the HPO community.49

Term Definition
Configuration Specific settings/values of hyperparameters
Search space The domain of a configuration: scale and range of each hyperparameter’s values
Response The performance of an algorithm given a configuration and dataset
Surrogate A (typically parametric) function that approximates the response
Seed Set of initial configurations used to fit the initial surrogate model
Black-box The response is an unknown and non-differentiable function of a configuration
Task An HPO problem given a search space and a dataset
Evaluation The measured response of a configuration on a dataset
Trial An evaluation on a task during the HPO procedure
Meta-dataset Collection of recorded evaluations from different tasks on a search space
Meta-instance An evaluation in the meta-dataset for one of the tasks
Meta-feature Descriptive attributes of a dataset
Source tasks In a meta- or transfer-learning setup refers to the known tasks we train from
Target tasks In a meta- or transfer-learning setup refers to the new tasks we test on
Benchmark New definition: Collection of meta-datasets from different search spaces

Table 1: A thesaurus of the common HPO terminology used throughout this paper

3 Related Work50

Non-transfer black-box HPO: The mainstream paradigm in HPO relies on surrogates to estimate the51

performance of hyperparameter configurations. For example, [2] were the first to propose Gaussian52

Processes (GP) as surrogates. The same authors also propose a Tree Parzen Estimator (TPE) for53

computing the non-parametric densities of the hyperparameters given the observed performances.54

Both approaches achieve a considerable lift over random [3] and manual search. To address the cubic55

run-time complexity of GPs concerning the number of evaluated configurations, DNGO [26] trains56

neural networks for generating adaptive basis functions of hyperparameters, in combination with a57

Bayesian linear regressor that models uncertainty. Alternatively, SMAC [14] represents the surrogate58

as a random forest, and BOHAMIANN [27] employs Bayesian neural networks instead of plain59

neural networks to estimate the uncertainty of a configuration’s performance. For an extensive study60

2The benchmark is publicly available at https://github.com/releaunifreiburg/HPO-B
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on non-transfer Bayesian optimization techniques for HPO, we refer the readers to [5, 25] that study61

the impact of the underlying assumptions associated with black-box HPO algorithms.62

Transfer black-box HPO: To expedite HPO, it is important to leverage information from existing63

evaluations of configurations from prior tasks. A common approach is to capture the similarity64

between datasets using meta-features (i.e. descriptive dataset characteristics). Meta-features have65

been used as a warm-start initialization technique [11, 16], or as part of the surrogate directly [1].66

Transfer learning is also explored through the weighted combination of surrogates, such as in TST-67

R [34], RGPE [10], and TAF-R [35]. Another direction is learning a shared surrogate across tasks.68

ABLR optimizes a shared hyperparameter embedding with separate Bayesian linear regressors per69

task [20], while GCP [23] maps the hyperparameter response to a shared distribution with a Gaussian70

Copula process. Furthermore, FSBO [31] meta-learns a deep-kernel Gaussian Process surrogate,71

whereas DMFBS incorporates the dataset context through end-to-end meta-feature networks [16].72

Meta-datasets: The work by Wistuba et al. [33] popularised the usage of meta-dataset benchmarks73

with pre-computed evaluations for the hyperparameters of SVM (288 configurations) and Adaboost74

(108 configurations) on 50 datasets; a benchmark that inspired multiple follow-up works [10, 30].75

Existing attempts to provide HPO benchmarks deal only with the non-transfer black-box HPO76

setup [9]. As they contain results for one or very few datasets per search space, they cannot be77

used for the evaluation of transfer black-box HPO methods. Nevertheless, there is a trend in using78

evaluations of search spaces from the OpenML repository [12], which contains evaluations reported79

by an open community, as well as large-scale experiments contributed by specific research labs [4, 18].80

However, the choice of OpenML search spaces in publications is ad-hoc: one related work uses81

SVM and XGBoost [20], a second uses GLMNet and SVM [31], while a third paper uses XGBoost,82

Random Forest and SVM [21]. We assess that the community i) inconsistently cherry-picks (assuming83

bona fides) search spaces, with ii) arbitrary train/validation/test splits of the tasks within the meta-84

dataset, and iii) inconsistent preprocessing of hyperparameters and responses. In our experiments, we85

observed that existing methods do not generalize well on new meta-datasets (Section 7).86

Our Novelty: As a remedy, we propose a novel benchmark derived from OpenML [12], that resolves87

the existing reproducibility issues of existing non-transfer and transfer black-box HPO methods, by88

ensuring a fairly-reproducible empirical protocol. The contributions of our benchmark are multi-fold.89

First of all, we remove the confounding factors induced by different meta-dataset preprocessing90

pipelines (e.g. hyperparameter scaling and transformations, missing value imputations, one-hot91

encodings, etc.). Secondly, we provide a specified collection of search spaces, with specified datasets92

and evaluations. Furthermore, for transfer learning HPO methods, we also provide pre-defined93

training/validation/testing splits of tasks. For experiments on the test tasks, we additionally provide94

5 seeds (i.e. 5 sets of initial hyperparameters to fit the initial surrogate) with 5 hyperparameter95

configurations, each. We also highlight recommended empirical measures for comparing HPO96

methods and assessing their statistical significance in Section 6. In that manner, the results of different97

papers that use our benchmark can be compared directly without fearing the confounding factors.98

Table 2 presents a summary of the descriptive statistics of meta-datasets from prior literature. To the99

best of our awareness, the proposed benchmark is also richer (in the number of search spaces and100

their dimensionality) and larger (in the number of evaluations) than all the prior protocols.101

Paper Venue/Year # Search Spaces # Datasets # HPs # Evals.
[1] ICML ’13 1 29 2 3K
[33] DSAA ’15 2 50 2, 4 20K
[11] AAAI ’15 3 57 4, 5 93K
[32] ECML-PKDD ’15 17 59 1-7 1.3M
[20] NeurIPS ’18 2 30 4, 10 655K
[23] ICML ’20 4 26 6, 9 343K
[16] DMKD ’21 1 120 7 414K
[31] ICLR ’21 3 80 2, 4 864K

Our HPO-B-v1 - 176 196 1-53 6.39M
Our HPO-B-v2/-v3 - 16 101 2-18 6.34M

Table 2: Summary statistics for various meta-datasets considered in prior works.
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4 A Brief Explanation of Bayesian Optimization Concepts102

As we often refer to HPO methods, in this section we present a brief coverage of Bayesian optimization103

as the most popular HPO method for black-box optimization. HPO aims at minimizing the function104

f : X → R which maps each hyperparameter configuration x ∈ X to the validation loss obtained105

when training the machine learning model using x. Bayesian optimization keeps track of all evaluated106

hyperparameter configurations in a history D = {(xi, yi)}i, where yi ∼ N (f(xi), σ
2
n) is the (noisy)107

response. A probabilistic model, the so-called surrogate model, is used to approximate the behavior108

of the response function. Gaussian Processes are a common choice for the surrogate model [22].109

Bayesian optimization is an iterative process that alternates between updating the surrogate model as110

described above and selecting the next hyperparameter configuration. The latter is done by finding the111

configuration which maximizes an acquisition function, which scores each feasible hyperparameter112

configuration using the surrogate model by finding a trade-off between exploration and exploitation.113

Arguably, the most popular acquisition function is the Expected Improvement [17].114

The efficiency of Bayesian optimization depends on the surrogate model’s ability to approximate the115

response function. However, this is a challenging task since every optimization starts with no or little116

knowledge about the response function. To overcome this cold-start problem, transfer methods have117

been proposed, where the transfer scenario slightly changes the problem definition. The main objective118

remains finding the configuration x? ∈ X (s̃) which optimizes the target response function f (s̃,t̃)119

for a given search space X (s̃). The knowledge about the target response is now denoted by D(s̃,t̃).120

Additionally, side information, the so-called meta-dataset, for S-many search spaces and T -many121

datasets, D =
⋃

s=1..S,t=1..T D(s,t), is available. Here, D(s,t) = {(x(s,t)
i , y

(s,t)
i )}i, x(s,t)

i ∈ X (s),122

and y(s,t)i is the noisy observation of the source response function f (s,t)i = f (t)(x
(s,t)
i ).123

5 Benchmark Description124

The benchmark HPO-B is a collection of meta-datasets collected from OpenML [12] with a diverse125

set of search spaces. We present three different versions of the meta-data set, as follows:126

• HPO-B-v1: The raw benchmark of all 176 meta-datasets;127

• HPO-B-v2: Subset of 16 meta-datasets with the most frequent search spaces;128

• HPO-B-v3: Split of HPO-B-v2 into training, validation and testing.129

When assembling the benchmark HPO-B-v1 we noticed that most of the evaluations are reported130

for a handful of popular search spaces, in particular, we noticed that 9% of the top meta-datasets131

include 99.3% of the evaluations. As a result, we created a second version HPO-B-v2 that includes132

only the frequent meta-datasets that have at least 10 datasets with at least 100 evaluations per dataset133

(Section 5.1). Furthermore, as we clarified in Section 3 a major reproducibility issue of the related134

work on transfer HPO is the lack of clear training, validation, and test splits for the meta-datasets. To135

resolve this issue, we additionally created HPO-B-v3 as a derivation of HPO-B-v2 with pre-defined136

splits of the training, validation, and testing tasks for every meta-dataset, in addition to providing137

initial configurations (seeds) for the test tasks. The three versions were designed to fulfill concrete138

purposes with regards to different types of HPO methods. For non-transfer black-box HPO methods,139

we recommend using HPO-B-v2 which offers a large pool of HPO tasks. Naturally, for transfer HPO140

tasks we recommend using HPO-B-v3 where meta-datasets are split into training, validation, and141

testing. We still are releasing the large HPO-B-v1 benchmark to anticipate next-generation methods142

for heterogeneous transfer learning techniques that meta-learn surrogates across different search143

spaces, where all 176 meta-datasets might be useful despite most of them having few evaluations.144

Concretely, HPO-B-v3 contains the set of filtered search spaces of HPO-B-v2, which are specially145

split into four sets: meta-train, meta-validation. meta-test and an augmented version of the meta-train146

dataset. Every split contains different datasets from the same search space. We distributed the datasets147

per search space as 80% of the datasets to meta-train, 10% to meta-validation, and 10% to meta-test,148

respectively. A special, augmented version of the meta-train is created by adding all other search149

space evaluations from HPO-B-v1 that are not part of HPO-B-v3. On the other hand, in HPO-B-v3150

we also provide seeds for initializing the HPO. They are presented as five different sets of five initial151
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configurations to be used by a particular HPO method. By providing five different seeds we decrease152

the random effect of the specific initial configurations. To ease the comparison among HPO methods,153

we suggest using the recommended initial configurations for testing. Although, we admit that some154

algorithms proposing novel warm-starting strategies might need to bypass the recommended initial155

configurations.156

5.1 Benchmark summary157

The created benchmark contains 6,394,555 total evaluations across 176 search spaces that are sparsely158

evaluated on 196 datasets. By accounting for the search spaces that comply with our filtering criteria159

(at least 10 datasets with 100 evaluations), we obtain HPO-B-v2 with 16 different search spaces and160

6,347,916 evaluations on 101 datasets. Notice that the benchmark does not include evaluations for161

all datasets in every search space. The number of dimensions, datasets, and evaluations per search162

space is listed in Table 3. An additional description of the rest of all the search spaces in HPO-B-v1163

is presented in the Appendix. In addition, Table 3 shows the description of the meta-dataset splits164

according to the HPO-B-v3.165

Search Space ID #HPs Meta-Train Meta-Validation Meta-Test
#Evals. #DS #Evals. #DS #Evals. #DS

rpart.preproc(16) 4796 3 10694 36 1198 4 1200 4
svm (6) 5527 8 385115 51 196213 6 354316 6
rpart (29) 5636 6 503439 54 184204 7 339301 6
rpart (31) 5859 6 58809 56 17248 7 21060 6
glmnet (4) 5860 2 3100 27 598 3 857 3
svm (7) 5891 8 44091 51 13008 6 17293 6
xgboost (4) 5906 16 2289 24 584 3 513 2
ranger (9) 5965 10 414678 60 73006 7 83597 7
ranger (5) 5970 2 68300 55 18511 7 19023 6
xgboost (6) 5971 16 44401 52 11492 6 19637 6
glmnet (11) 6766 2 599056 51 210298 6 310114 6
xgboost (9) 6767 18 491497 52 211498 7 299709 6
ranger (13) 6794 10 591831 52 230100 6 406145 6
ranger (15) 7607 9 18686 58 4203 7 5028 7
ranger (16) 7609 9 41631 59 8215 7 9689 7
ranger (7) 5889 6 1433 20 410 2 598 2

Table 3: Description of the search spaces in HPO-B-v3; "#HPs" stands for the number of hyperpa-
rameters, "#Evals." for the number of evaluations in a search space, while "#DS" for the number of
datasets across which the evaluations are collected. The search spaces are named with the respective
OpenML version number (in parenthesis), and their original names are preceded by mlr.classif.

5.2 Preprocessing166

The OpenML-Python API [13] was used to download the experiment data from167

OpenML [12]. We have collected all evaluations (referred to as runs in OpenML) tagged168

with Verified_Supervised_Classification available until April 15, 2021.169

We processed the raw data as follows. While the hyperparameter configuration was di-170

rectly available for many evaluations, some of them had to be parsed from WEKA argu-171

ments (e.g. weka.filters.unsupervised.attribute.RandomProjection -P 16.0 -R 42172

-D Sparse1). A small percentage (<0.001%) of these were too complex in structure to be automati-173

cally parsed, so they were discarded. Duplicate responses for the same hyperparameter configuration174

have been resolved by keeping only one random response. Finally, all tasks with fewer than five175

observations were also discarded.176

All categorical hyperparameters were one-hot encoded, taking into account all categories that occur177

in the different datasets for a search space. Missing values have been replaced with zeros and the178

corresponding missing indicator (a new feature) has been set to one. Hyperparameters that had179

the same value for all configurations in a search space were dropped. We manually decided which180
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hyperparameters required log-scaling by inspecting the distributions of each hyperparameter in each181

space (considerable manual effort). Finally, the hyperparameter ranges were scaled to [0, 1].182

5.3 Benchmark JSON schema183

The benchmark is offered as easily accessible JSON files. The first-level key of each JSON schema184

corresponds to the search space ID, whereas the second-level key specifies the dataset ID. By185

accessing the JSON schema with the search space s and the dataset t, we obtain the meta-dataset186

D(s,t) = {(x(s,t)
i , y

(s,t)
i )}i, x(s,t)

i ∈ X (s). The meta-dataset exhibits the following structure, where187

N denotes the number of evaluations available for the specific task:188

{search_space_ID: {dataset_ID:{X:[[x1],. . . ,[xN]], y:[[y1],. . . ,[yN]]}}}189

The initialization seeds are similarly provided as a JSON schema, where the third-level subschema190

has 5 keys whose values are the indices of the samples to use as initial configurations.191

6 Recommended Experimental Protocol192

One of the primary purposes of HPO-B is to standardize and facilitate the comparison between HPO193

techniques on a level playing field. In this section, we provide two specific recommendations: which194

benchmark to use for a type of algorithm and what metrics to use for comparing results.195

Evaluation Metrics We define the average normalized regret at trial e (a.k.a. average distance196

to the minimum) as min
x∈X (s,t)

e

(
f (s,t)(x)− y∗min

)
/ (y∗max − y∗min) with X (s,t)

e as the set of hyperpa-197

rameters that have been selected by a HPO method up to trial e, with y∗min and y∗max as the best and198

worst responses, respectively. The average rank represents the mean across tasks of the ranks of199

competing methods computed using the test accuracies of the best configuration until the e-th trial.200

Results across different search spaces are computed by a simple mean over the search-space-specific201

results.202

Non-Transfer Black-Box HPO Methods should be compared on all the tasks in HPO-B-v2 and203

for each of the five initial configurations. The authors of future papers should report the normalized204

regret and the mean ranks for all trials from 1 to 100 (excluding the seeds). We recommend that the205

authors show both aggregated and per search-space (possibly moved to the appendix) mean regret206

and mean rank curves for trials ranging from 1 to 100. In other words, as many runs as the number of207

tasks for a given space times the number of initialization seeds. To assess the statistical significance208

of methods, we recommend that critical difference diagrams [6] be computed for the ranks of all runs209

@25, @50, and @100 trials.210

Transfer Black-Box HPO Methods should be compared on the meta-data splits contained in HPO-211

B-v3. All competing methods should use exactly the evaluations of the provided meta-train datasets212

for meta- and transfer-learning their method, and tune the hyper-hyperparameters on the evaluations213

of the provided meta-validation datasets. In the end, the competing methods should be tested on the214

provided evaluations of the meta-test tasks. As our benchmark does not have pre-computed responses215

for all possible configurations in a space, the authors need to adapt their HPO acquisitions and216

suggest the next configuration only from the set of the pre-computed configurations for each specific217

meta-test task. Additionally, we recommend that the authors present (see details in the paragraph218

above) regret and rank plots, besides the critical difference diagrams @25, @50, and @100 trials. If219

a future transfer HPO method proposes a novel strategy for initializing configurations, for the sake of220

reproducibility we still recommend showing additional results with our initial configurations.221

7 Experimental Results222

The benchmark is intended to serve as a new standard for evaluating non-transfer and transfer223

black-box HPO methods. In the following, we will compare different methods according to our224

recommended protocol described in Section 6. This is intended to demonstrate the usefulness of our225

meta-dataset, while at the same time serving as an example for the aforementioned recommendations226

on comparing baselines and presenting results.227
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Figure 1: Normalized regret comparison of non-transfer black-box HPO methods on HPO-B-v2

7.1 Non-transfer Black-Box HPO228

First, we compare Random Search, DNGO, BOHAMIANN, Gaussian Process (GP) with Matérn 3/2229

kernel, and Deep Gaussian Process (FSBO [31] without pre-training) on HPO-B-v2 in the non-transfer230

scenario. As recommended by us earlier, in Figure 1 we report aggregated results for normalized231

regret, average rank, and critical difference plots. In addition, we report in Figure 2 the aggregated232

normalized regret per search space. The values in the figures for the number of trials equal to 0233

correspond to the result after the five initialization steps. According to Figure 2, BOHAMIANN234

and Deep GP achieve comparable aggregated normalized regret across all search spaces, which235

suggests that both methods are equally well-suited for the tasks. The average rank and the critical236

difference plot paint a different picture, in which Deep GP and DNGO achieve better results. This237

discrepancy arises because each metric measures different performance aspects on different tasks,238

so it’s important to report both. As can be seen in Figure 10, Deep GP achieves better results than239

the GP in most of the tasks, which leads to a better average ranking. However, as we can see in240

Figure 1, the regrets are observed at heterogeneous scales that can skew the overall averages. In some241

cases where BOHAMIANN outperforms Deep GP (e.g. search spaces 5527, 5859, and 5636), the242

difference in normalized regret is evident, due to the nature of the search space, whereas in cases243

where it is the other way around, however, the difference is only slightly less evident (e.g. search244

spaces 4796, 5906, and 7609). An important aspect of HPO is the choice of the surrogate function245

and acquisition. Figure 3 presents an ablation of typical combinations and shows the accuracy of the246

Boosted Tree as a surrogate.247
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Figure 2: Aggregated comparisons of normalized regret and mean ranks across all search spaces for
the non-transfer HPO methods on HPO-B-v2

Figure 3: Aggregated comparisons of different surrogates and acquisition functions for transfer
HPO methods on HPO-B-v2; BT stands for Boosted Trees, RF for Random Forests, EI for Expected
Improvement, and UCB for Upper Confidence Bound.

Figure 4: Aggregated comparisons of normalized regret and mean ranks across all search spaces for
the transfer learning HPO methods on HPO-B-v3

7.2 Transfer Black-Box HPO248

Finally, we compare RGPE [10], ABLR [20], TST-R [34], TAF-R [35], and FSBO [31] on HPO-B-v3249

in the transfer scenario. All hyper-hyperparameters were optimized on the meta-validation datasets250

and we report results aggregated across all test search spaces in terms of normalized regret and251

average rank in Figure 4. The results per search space for normalized regret and average rank are252

given in Figure 5 and Figure 11, respectively. FSBO shows improvements over all the compared253

methods for the normalized regret metric and average rank metric. On the other hand, RGPE is254

seemingly performing similar to TST-R and TAF-R for the average regret, but performs significantly255
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Figure 5: Normalized regret comparison of transfer learning HPO methods on HPO-B-v3

better for the average rank metric. The explanation is the same as for our last experiment and can256

mainly be traced back to the strong performance of RGPE in search spaces 5971 and 5906. Such257

behaviors strengthen our recommendations of Section 6 for showing results in terms of both the ranks258

and the normalized regrets, as well as the ranks’ statistical significance.259

7.3 Comparing Non-Transfer vs. Transfer Black-Box HPO260

We provide a cumulative comparison of both non-transfer and transfer black-box methods in Figure 6,261

for demonstrating the benefit of transfer learning in HPO-B-v3. We see that the transfer methods262

(FSBO, RGPE, TST-R, TAF-R) achieve significantly better performances than the non-transfer tech-263

niques (GP, DNGO, BOHAMIANN, Deep Kernel GP). On the average rank plot and the associated264

Critical Difference diagrams, we notice that FSBO [31] achieves significantly better results than all265

baselines, followed by RGPE [10]. A detailed comparison of the ranks per search-space is presented266

in the supplementary material. In particular, the direct gain of transfer learning can observed by the267

dominance that FSBO has over Deep Kernel GP, considering that both use exactly the same surrogate268

model and the same acquisition function. In comparison, the deep kernel parameters in FSBO are269

initialized from the solution of a meta-learning optimization conducted on the meta-train tasks of270

HPO-B-v3 (transfer), while the parameters of Deep Kernel GP are initialized randomly (no transfer).271
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Figure 6: Comparisons of normalized regret and mean ranks across all search spaces for the transfer
learning and non-transfer HPO methods on HPO-B-v3

8 Discussing the Limitations of HPO-B272

HPO-B relies on OpenML evaluations that are not exhaustively computed for all the possible273

hyperparameter configurations of a search space. In that context, an acquisition function can suggest274

a next configuration only from the set of those configurations that were evaluated on a particular task.275

A possible way to tackle this limitation is fitting surrogate models on the evaluated configurations,276

and using the estimation of the surrogate as the response of a new configuration for which no actual277

evaluation exists. However, the choice of the surrogate model might add noisy/confounding effects278

to the evaluations, as there are open questions on the capacity of the surrogate model (i.e. do we279

need different surrogate complexities for different tasks/datasets?), or the choice of the loss function280

for training the surrogate. Moreover, as the majority of HPO-B tasks have an abundant number of281

evaluations (see Appendix E for details), it is highly likely that a well-performing configuration is282

already present in the set of existing evaluations.283

Another limitation of HPO-B is that it only covers black-box HPO tasks, instead of other HPO284

problems, such as grey-box HPO, or pipeline optimization for AutoML libraries. In addition, HPO-B285

is restricted by the nature of search spaces found in OpenML, which contains evaluations for well-286

established machine learning algorithms for tabular data, but lacks state-of-the-art deep learning287

methods or tasks on image or text data.288

9 Conclusions289

Recent HPO and transfer-learning HPO papers inconsistently use different meta-datasets, arbitrary290

train/validation/test splits, as well as ad-hoc preprocessing, which makes it hard to reproduce the291

published results. To resolve this bottleneck, we propose HPO-B, a novel benchmark based on the292

OpenML repository, that contains meta-datasets from 176 search spaces, 196 datasets, and a total of293

6.4 million evaluations. For promoting reproducibility at a level playing field we also provide initial294

configuration seeds, as well as predefined training, validation and testing splits. Our benchmark295

contains pre-processed meta-datasets and a clear set of HPO tasks and exact splits, therefore, it296

enables future benchmark results to be directly comparable. We believe our benchmark has the297

potential to become the de facto standard for experimentation in the realm of black-box HPO.298
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Checklist406

The checklist follows the references. Please read the checklist guidelines carefully for information on407

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or408

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing409

the appropriate section of your paper or providing a brief inline description. For example:410

• Did you include the license to the code and datasets? [Yes] See Section411

• Did you include the license to the code and datasets? [No] The code and the data are412

proprietary.413

• Did you include the license to the code and datasets? [N/A]414

Please do not modify the questions and only use the provided macros for your answers. Note that the415

Checklist section does not count towards the page limit. In your paper, please delete this instructions416

block and only keep the Checklist section heading above along with the questions/answers below.417

1. For all authors...418

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s419

contributions and scope? [Yes]420

(b) Did you describe the limitations of your work? [Yes]421

(c) Did you discuss any potential negative social impacts of your work? [N/A]422

(d) Have you read the ethics review guidelines and ensured that your paper conforms to423

them? [Yes]424

2. If you are including theoretical results...425

(a) Did you state the full set of assumptions of all theoretical results? [N/A]426

(b) Did you include complete proofs of all theoretical results? [N/A]427

3. If you ran experiments (e.g. for benchmarks)...428

(a) Did you include the code, data, and instructions needed to reproduce the main ex-429

perimental results (either in the supplemental material or as a URL)? [Yes] See our430

repository link in the introduction.431

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they432

were chosen)? [No] We used pre-defined configurations from previous work.433

(c) Did you report error bars (e.g., concerning the random seed after running experiments434

multiple times)? [Yes]435

(d) Did you include the total amount of computing and the type of resources used (e.g.,436

type of GPUs, internal cluster, or cloud provider)? [No]437

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...438

(a) If your work uses existing assets, did you cite the creators? [Yes]439

(b) Did you mention the license of the assets? [No] They are included in the cited440

publications.441

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]442

(d) Did you discuss whether and how consent was obtained from people whose data you’re443

using/curating? [No] We are using open-sourced assets.444

(e) Did you discuss whether the data you are using/curating contains personally identifiable445

information or offensive content? [N/A]446

5. If you used crowdsourcing or researched with human subjects...447

(a) Did you include the full text of instructions given to participants and screenshots, if448

applicable? [N/A]449

(b) Did you describe any potential participant risks, with links to Institutional Review450

Board (IRB) approvals, if applicable? [N/A]451

(c) Did you include the estimated hourly wage paid to participants and the total amount452

spent on participant compensation? [N/A]453
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