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ABSTRACT

Moral actions are judged not only by their outcomes but by the context in which they occur. We
present COMETH (Contextual Organization of Moral Evaluation from Textual Human inputs),
a framework that integrates a probabilistic context learner with LLM-based semantic abstraction
and human moral evaluations to model how context shapes the acceptability of ambiguous ac-
tions. We curate an empirically grounded dataset of 300 scenarios across six core actions (vi-
olating Do not kill, Do not deceive, and Do not break the law) and collect ternary judgments
(Blame/Neutral/Support) from N=101 participants. A preprocessing pipeline standardizes actions
via an LLM filter and MiniLM embeddings with K-means, producing robust, reproducible core-
action clusters. COMETH then learns action-specific moral contexts by clustering scenarios on-
line from human judgment distributions using principled divergence criteria. To generalize and
explain predictions, a Generalization module extracts concise, non-evaluative binary contextual fea-
tures and learns feature weights in a transparent likelihood-based model. Empirically, COMETH
roughly doubles alignment with majority human judgments relative to end-to-end LLM prompting
(≈ 60% vs. ≈ 30% on average), while revealing which contextual features drive its predictions. The
contributions are: (i) an empirically grounded moral-context dataset, (ii) a reproducible pipeline
combining human judgments with model-based context learning and LLM semantics, and (iii) an
interpretable alternative to end-to-end LLMs for context-sensitive moral prediction and explanation.

1 INTRODUCTION

Artificial Intelligence (AI) is increasingly shaping important aspects of human activity, mediating not only practical
tasks but also social, economic, and moral interactions. This expanding role amplifies the urgency of ethical supervi-
sion and moral alignment, in order to ensure that AI systems consistently comply with human ethical standards across
diverse contexts (Awad et al., 2022; Rahwan et al., 2019; Gabriel, 2020; Khamassi et al., 2024). The growth in AI
capabilities and applications, notably through Large Language Models (LLMs) and Reinforcement Learning (RL), in-
creases the need for systems capable of adapting to morally complex situations that can be very sensitive to contextual
variability (Bonnefon et al., 2024; Perez et al., 2023; Ma et al., 2024).

To meet this challenge, computational ethics has emerged as an interdisciplinary field that draws from moral philoso-
phy, cognitive science, social psychology, law, and ethics to inform AI design with empirically informed ethical and
computational frameworks grounded in our understanding of human moral cognition and behavior (Awad et al., 2022;
Scherrer et al., 2023; Pflanzer et al., 2023). Central to this pursuit is recognizing the profound context-dependency of
human moral cognition: identical actions frequently elicit divergent moral judgments depending on cultural norms,
situational dynamics, or psychological nuances (Awad et al., 2020; 2018; Forbes et al., 2021).

Empirical studies, such as The Moral Machine experiment (Awad et al., 2018), reveal significant global variations in
moral judgments, highlighting both universal ethical intuitions and culturally specific differences (Awad et al., 2020).
These findings show the limitations of rigid ethical frameworks in capturing the flexible, context-sensitive nature of
human morality, pushing for adaptive AI alignment methods that reflect this reality (Awad et al., 2024; Birhane et al.,
2024; He et al., 2025).

Ensuring that AI-based systems, notably LLMs, remain beneficial to the society is a challenge that research on AI
alignment intends to meet. AI alignment research focuses on the value alignment problem, which Russell & Norvig
(2021) states as follows: “the values or objectives put into the machine must be aligned with those of the human”. It
is now consensual that an AI-based system should align with human values (Gabriel, 2020). A growing line of recent
research investigates LLMs’ ability to align with human values and make consistent moral decisions (Scherrer et al.,
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2023; Garcia et al., 2024). Aligning LLMs with human values is often approached through reinforcement learning
from human feedback (Ji et al., 2023), but faces the challenge of diverse and sometimes conflicting human inputs
(Conitzer et al., 2024). However, it is difficult to ensure alignment with human values in opaque AI systems where no
real reasoning abilities, nor guarantees of truth value can be ensured (Khamassi et al., 2024). A promising avenue to
overcome the limitations of current approaches is to combine LLMs with systems such as model-based RL, capable
of autonomously learning the effects of specific actions in the real world to enable (1) AI reasoning about actions’
potential risk to undermine human values, and (2) AI explainability of why a particular action presents a specific risk.

Indeed, Model-Based Reinforcement Learning (MBRL) is particularly suited for addressing the challenge of context
adaptation due to its intrinsic capacity to model structured, context-specific reward dynamics and generalize learned
behaviors across varying scenarios (Rodriguez-Soto et al., 2022; Benechehab et al., 2025; Chartouny et al., 2025).
Recent innovations leverage LLM-generated datasets of moral dilemmas to train MBRL agents, thus utilizing the
contextual understanding and representational power of language models to enhance moral reasoning capabilities
(Bano et al., 2023; Du et al., 2023; Ziems et al., 2022). However, such synthetic datasets often lack empirical grounding
in real human moral behavior, raising critical concerns about their ecological validity, reproducibility, and the ethical
implications of circumventing participant consent and excluding culturally grounded moral diversity.

In this paper, we present COMETH (Contextual Organization of Moral Evaluation from Textual Human inputs) a
novel framework that integrates empirical moral judgment data with a Probabilistic RL architecture designed to infer
context-specific reward models from ternary human moral evaluations (blame, neutral, support). Our methodology is
evaluated on a dataset of 300 high-ambiguity moral scenarios that vary along multiple contextual dimensions. A key
innovation of COMETH lies in its hybrid architecture, which combines the multi-model context-learning capacity of
Model-Based Reinforcement Learning with the semantic abstraction of Large Language Models. We employ LLMs
to extract features of states and actions from natural language moral scenarios. The context-learning RL agent then
autonomously detects the need for context differentiation when the same (state, action) pair yields divergent distribu-
tions of human moral judgments. This mechanism enables the clustering of moral contexts and supports generalization
across semantically related scenarios. This integration offers a more efficient, transparent and interpretable alternative
to end-to-end LLM pipelines by explicitly modeling state, action, and reward representations. Through this frame-
work, our aim is to advance the development of morally aligned systems capable of better responding to the nuanced
and context-dependent nature of human moral reasoning.

2 THE COMETH PIPELINE

In this section, we present COMETH (Contextual Organization of Moral Evaluation from Textual Human inputs),
a novel method that integrates Probabilistic Context Learning inspired from Model-Based Reinforcement Learning
(MBRL) with Large Language Models (LLMs) and human moral evaluations to model how context shapes the ac-
ceptability of morally ambiguous actions (Figure 1). Our approach makes key contributions across four dimensions.
(i) We introduce a Probabilistic Context Learner to cluster scenarios, enabling the agent to represent and distinguish
moral contexts based on human-derived evaluative outcomes. (ii) We collect an empirically grounded dataset of 300
scenarios across six core actions with ternary judgments (blame/neutral/support) from 101 participants, grounded in
Gert’s common-morality rules (Gert, 2004). (iii) We develop a custom LLM-based pre-processing pipeline that ab-
stracts scenario descriptions into structured embeddings of moral actions, enabling the agent to identify semantically
similar actions across diverse narrative contexts. (iv) We add an interpretable Generalization module which extracts
the key contextual features of the clusters and learns feature weights, markedly improving predictive alignment with
human judgments vs. end-to-end LLM prompting.

2.1 PROBABILISTIC CONTEXT LEARNER

The Probabilistic Context Learner’s objective is to autonomously infer and refine clusters online—referred to as moral
contexts—by identifying patterns in ternary outcome distributions that reflect human moral judgments. These context
models aim at capturing the normative variability observed in human societies, where actions are judged differently
depending on the context (e.g., punching as an aggressor vs. in a situation of self-defense).

Each scenario is represented as a triplet scenario, action, judgment series, where the judgment series encodes the moral
evaluations (Blame, Neutral, Support) collected from the online survey (Section 2.2), and the core action is extracted
via pre-processing (Section 2.3). The Probabilistic Context Learner groups scenarios for a given action into context
models based on the distribution of these judgment series. For each action, the number of context models is smaller
than the number of scenarios, as the agent clusters scenarios with similar moral judgments. Contexts are created
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Figure 1: COMETH Pipeline. 101 participants answered an online survey which permit us to obtain moral judgments
distributions for the 300 scenarios we generated. Then a pre-processing algorithm extracts the core action of the
scenarios and group the scenarios sharing the same core action. The Probabilistic Context Learner then clustered
scenarios with the same action into distinct moral contexts based on human judgment distributions, using adding and
merging modules. To interpret and generalize, an LLM-based module extracted descriptive contextual features, which
were binarized into feature vectors. Aggregate feature profiles were computed for each context, and feature weights
were learned via a likelihood-based model. Finally, predictions of moral judgments were evaluated using a softmax-
based scoring function. Colors in the figure represent different core actions.

and updated online as new scenarios are observed, using two main components: the adding module and the merging
module, inspired from Chartouny et al. (2025) (See Section A.3).

When a new scenario is presented, the adding module determines whether it fits an existing context for the corre-
sponding action or requires creating a new one. For each stored context, the agent compares the scenario’s ternary
moral judgment distribution to the context’s reward distribution using the Kullback-Leibler (KL) divergence. A small
constant ϵ ensures all distributions are well-defined, and values are normalized.

If the minimal KL divergence is below a threshold ∆a, the scenario is assigned to the closest context; otherwise, a
new context is created. Assigning a scenario updates the context by adding its reward distribution to refine the model
and appending the scenario to the set associated with the context.

As scenarios accumulate, some context models may become similar. To prevent redundancy, a merging module com-
pares models using a semi-weighted Jensen-Shannon divergence (swJS), which accounts for both distribution similar-
ity and relative context sizes. After adding a scenario or creating a new context, the agent computes swJS between
all pairs of models for the action. If the divergence between two models falls below a threshold ∆m, the models
are merged, consolidating their observations and reducing the total number of contexts while preserving a diverse
representation of moral scenarios.

We determined that the optimal threshold values are ∆a = 0.12 and ∆m = 0.03. Details regarding the parameter
search procedure can be found in the appendix (see Section A.4).
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2.2 EMPIRICAL COLLECTION OF HUMAN MORAL JUDGMENTS

The objective of COMETH is to investigate how variations in contextual information modulate the moral evaluation
of a given action. Specifically, we hypothesize that a single action may be perceived as morally permissible in one
context while being judged morally impermissible in another. To empirically assess this hypothesis, we collected
normative data on human moral judgments through an online survey.

We constructed a dataset of 300 scenarios, inspired by Scherrer et al. (2023) and grounded in Gert’s common morality
framework (Gert, 2004). While Gert’s framework encompasses ten rules, we focused on three—Do not kill, Do not
deceive, and Do not break the law—and derived six core actions: euthanasia, killing in protection, lying for support,
lying for self-interest, stealing, and engaging in illegal protest. Each action was expanded into 50 impersonal scenario
variants using prompting with GPT-4 and manual rewriting, ensuring that participants evaluated the morality of others’
actions rather than their own decisions.

The final survey (N = 101, mean age = 35.2, 48 women) asked participants to judge each action as Blame, Support,
or Neutral. To control for order and language effects, scenarios were randomized across six groups and presented in
English or French. Further methodological details, scenario variants, and demographic breakdowns are provided in
the Appendix (see Section A.1).

2.3 PRE-PROCESSING METHODS

The Probabilistic Context Learner requires consistent representations of moral actions to avoid conflating distinct
actions that elicit similar judgments or splitting semantically equivalent ones. To achieve this, scenarios were pre-
processed with LLM-based filtering (Mistral-7B, Llama-3.1, Qwen-3-Next-80B; Yang et al., 2025) to extract the
principal action in a uniform “to + verb + complement” format. These representations were embedded using all-
MiniLM-L6-v2 and clustered with K-means, producing Core Action categories that form the basis for subsequent
moral evaluation and generalization. This step ensures the agent learns associations between actions and human
judgments rather than spurious similarities in scenario wording.

2.4 GENERALIZATION METHODS

After clustering scenarios with the Probabilistic Context Learner, we introduced a Generalization module to evaluate
predictive capacity and provide interpretability. This module uses an LLM to extract descriptive contextual features for
each cluster, capturing properties consistently shared within a context but absent elsewhere. Features are represented
as concise binary statements, and each scenario is encoded as a vector indicating the presence or absence of these
features.

At the cluster level, aggregate feature profiles summarize the characteristic properties of each context. A similarity
score between each scenario and context is computed based on these features, and a softmax over scores produces
a probability distribution over clusters. The module is trained by minimizing the negative log-likelihood of the true
cluster assignments, with feature importance weights learned during training. This allows the model to predict into
which cluster a new scenario would be assigned, while simultaneously providing interpretable weights linking indi-
vidual features to predictive performance. By selecting the most probable label from the assigned cluster distribution,
the model predicts the human moral judgment of a scenario, which allows us to evaluate how well COMETH aligns
with human judgments. Detailed technical specifications, including model optimization, cross-validation, and exact
feature extraction procedures, are provided in the Appendix (see Section A.6).

3 RESULTS

We first present the results obtained by the COMETH pipeline using 3 different open-source Large Language Models,
namely Mistral-7B-Instruct-v0.3, Llama-3.1-8B-Instruct and Qwen3-Next-80B-A3B-Instruct (Yang et al., 2025). We
compare these results to those obtained with end-to-end LLM methods when it is possible to do so.

3.1 PRE-PROCESSING RESULTS

We evaluated the pre-processing algorithm by measuring how well the clustered representations matched the expected
core action groups. To assess robustness and reproducibility, we compared the cluster assignments generated by 3
different open-source LLMs across five prompting strategies. Table 1 reports the Adjusted Rand Index (ARI) between
the clustering obtained with each LLM and the ideal clustering (50 scenarios per cluster, aligned with the core actions).
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Figure 2: Clustering of moral scenarios by the Probabilistic Context Learner. Each subplot corresponds to a spe-
cific action type and displays the clustering performed by the agent. Points represent individual states derived from
moral scenarios, while squares denote the clusters (or contexts) created by the agent. The size of each square is propor-
tional to the number of states it contains. The coordinates of all elements are based on the probability distribution over
the outcomes Support and Blame; the third outcome (Neutral) is implicitly defined as 1−P (Support)−P (Blame),
allowing for a two-dimensional representation. The number and shape of the clusters emerge dynamically from the
data and align with human intuition based on visual inspection of the same distributions.

For clarity, we show two results: the ARI for the prompt that yielded the highest mean performance across LLMs
(referred to as the Main Act prompt), and the best ARI achieved by each LLM individually (prompts are available in
the appendix, see A.5.1).

LLM ARI Main Act Best ARI
Mistral 7B 0.75 0.89
Llama 8B 0.79 0.79
Qwen 80B 0.87 0.90

Table 1: Pre-processing accuracy of different LLMs across moral actions (%).

The results in Table 1 show that all three LLMs achieve strong clustering performance, with ARI values up to 0.90.
Qwen-80B consistently performs best across prompts, displaying robustness and prompt resilience, while Mistral-7B
reaches nearly the same accuracy (0.89) but with higher variability. Llama-8B, by contrast, remains stable but never
exceeds 0.79, suggesting limited capacity for fine-grained clustering. Importantly, the choice of prompt substantially
affects performance: compact formulations such as Infinitive and OneWord degrade results across all models, whereas
MainAct yields consistently high ARIs (0.79–0.87) and thus provides the most reliable and transferable representation.
For clarity, Table 1 reports only the best ARI per model and the ARI obtained with the MainAct prompt. The full
results, including ARI, NMI, and V-measure across all prompts, are available in Appendix B.1. These findings indicate
that the pre-processing step can be implemented reproducibly with different LLMs, but that prompt design is crucial
for ensuring semantically coherent action clusters.
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Figure 3: Temporal evolution of clusters for the action “To lie by interest.” This figure illustrates the agent’s
continual learning process as new scenarios are introduced. Subplots show successive clustering states over time.
When a new scenario is similar to an existing cluster, it is integrated and the cluster is updated (e.g., left panel). If
the scenario is dissimilar, a new cluster is created (e.g., center panel, second cluster). When two clusters become
sufficiently close, they are merged by the agent (e.g., right panel, last cluster). Clusters containing more scenarios
exhibit increased stability and undergo smaller changes during updates.

3.2 CLUSTERING RESULTS

We then evaluate the performance of the Probabilistic Context Learner on the set of moral scenarios we presented to
the human participants. Figure 2 shows the clustering performed by the agent across the entire dataset. Thanks to
pre-processing, each moral scenario is converted into a (state, action) pair, along with a reward distribution derived
from our moral judgment survey. For each state, the agent computes a reward distribution and uses it to create contexts,
which are internal representations grouping similar states, as previously described.

Figure 2 presents one subplot per action to enhance clarity. Each point represents an individual state, while squares
denote the clusters (or moral contexts) inferred by the agent. The size of each square reflects the number of states
it contains. The coordinates of the elements are based on their distribution values for Support and Blame. Since the
third possible outcome, Neutral, is defined as 1 − P (Support) − P (Blame), the full distribution can be effectively
projected in two dimensions. As illustrated, the number of clusters is not fixed in advance but emerges from the spatial
distribution of the states.

As shown in Figure 2, the agent generates a number of clusters that depend on the spatial distribution of the states. This
number is not predefined and aligns with the intuitive groupings that a human observer would make when viewing the
same distributions as bar plots.

Moreover, the agent exhibits dynamic learning by continuously updating and reorganizing its clusters as new scenarios
are introduced. Figure 3 illustrates this process for the action “To lie by interest.” on a reduced set of data. When a new
scenario closely matches an existing cluster, it is incorporated and the cluster is adjusted accordingly (e.g., Fig. 3-left).
If the scenario is dissimilar to all clusters, a new cluster is formed (e.g., Fig. 3-center). When two clusters converge,
the agent merges them (e.g., Fig. 3-right). Notably, clusters with more scenarios exhibit greater stability, with their
positions less influenced by new data.

3.3 GENERALIZATION RESULTS AND COMPARISON TO END-TO-END LLM METHODS

3.3.1 ALIGNMENT RATE COMPARISON

To evaluate the performance of our Generalization module, we report here the alignment rate, defined as the propor-
tion of scenarios for which the model’s most probable response matched the majority human judgment. This metric
offers an intuitive measure of how closely models reproduce human moral evaluations. Additional evaluation met-
rics (aligned accuracy and error probability for every action and every prompt) are provided in the Supplementary
Materials, see Section B.2 and Section B.3.1.

As shown in Figure 4, end-to-end LLM approaches achieve an average alignment rate of only ∼30%, indicating
limited capacity to generalize human moral judgments. In contrast, applying the COMETH pipeline with the same
LLMs doubles performance, reaching an average alignment rate of ∼60%. This substantial gain highlights the benefit
of grounding predictions in structured feature representations rather than relying solely on direct model outputs. The

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Lie by Interest Lie to Support Practice Euthanasia Kill to Protect Steal Protest Average
0.0

0.2

0.4

0.6

0.8

1.0
A

lig
nm

en
t s

co
re

Llama 7B (COMETH)
Mistral 8B (COMETH)
Qwen 80B (COMETH)
Mistral 8B (end-to-end)
Qwen 80B (end-to-end)
Llama 7B (end-to-end)

Figure 4: Comparison of alignment rates between the COMETH pipeline and end-to-end LLMs per action.
Mean alignment rates across the prompts used (3 for the COMETH pipeline, 5 for end-to-end methods) are shown
with standard deviations for each action, as well as the overall average across all actions. Results are presented
for MistralAI/Mistral-7B-Instruct-v0.3, Meta-LLaMA/LLaMA-3.1-8B-Instruct, and Qwen/Qwen-3-Next-80B-A3B-
Instruct (Yang et al., 2025), alongside human baseline data collected via an online survey.

relatively large variance across runs mainly stems from variability in feature extraction quality: when features are less
informative, the predictive component of the generalization module deteriorates. Moreover, the diversity of clusters
generated by the Probabilistic Context Learner also contributes to fluctuations in efficiency.

Detailed results (Tables S.4 and S.2, Appendix B.3.1) further reveal that performance strongly depends on the type
of moral action: unambiguous cases such as Euthanasia or Kill to Protect show consistently higher alignment than
contested actions like Protest or Steal. They also highlight that while end-to-end models are highly prompt-sensitive
(e.g., Llama-8B ranges from 0.41 to 0.64), COMETH reduces this variability and produces more stable clusters across
models. Notably, the relative improvement of smaller models such as Mistral-8B suggests that semantic structuring
can mitigate scale disparities, making robust moral prediction feasible even with lighter LLMs.

3.3.2 INTERPRETABILITY

To complement its clustering performance, the COMETH pipeline also enhances interpretability by revealing how
individual features contribute to human moral judgments. Specifically, it assigns weights to features within each
cluster, clarifying how the presence of a given element in a scenario shifts its likelihood of being associated with
“Support” or “Blame.” Figure 5 illustrates this for the action Practice Euthanasia: scenarios mentioning an “approved
directive” tend to be assigned to the second cluster, which corresponds to a “Support” judgment. Additional examples
are provided in the Appendix (Section B.3.2).

This interpretability constitutes a central contribution of COMETH: beyond improving alignment between LLM
predictions and human moral judgments, it offers an explainability framework directly grounded in human data.

4 DISCUSSION

This work presents COMETH (Contextual Organization of Moral Evaluation from Textual Human inputs), a frame-
work for context-sensitive moral alignment that integrates a probabilistic context learner, an LLM-based preprocessing
stage, and an interpretable generalization module. Compared to end-to-end LLM approaches, COMETH substantially
improves performance across multiple LLMs, it approximately doubles the alignment rate with human judgments. The
pre-processing step proves highly effective, reliably producing semantically coherent action clusters across diverse
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Figure 5: Feature weights obtained for the action ”Practice Euthanasia” with Qwen/Qwen-3-Next-80B-A3B-
Instruct (Yang et al., 2025). The plot reports the relative importance of each feature in shaping cluster assignments,
highlighting how different attributes influence whether the scenario is more likely to be assigned to each cluster and
then judged with support or blame.

prompts and models. Moreover, the feature-based structure of the pipeline provides interpretable explanations for pre-
dictions, contrasting sharply with the opacity of black-box LLM outputs. This interpretability is particularly valuable
for smaller or less capable LLMs, which benefit from the structured feature representation to achieve human-aligned
moral reasoning that would otherwise be unattainable.

While the model shows meaningful progress in generalization and alignment, limitations remain. COMETH relies on
probabilistic representations of moral preference distributions, requires access to human survey data for training, and
performs optimally when scenarios follow a consistent syntactic structure. Finally, predictions are evaluated using a
majority-label decision rule, whereas calibrated uncertainty estimates or abstention mechanisms would better reflect
the inherent ambiguity of moral judgments. These constraints restrict its applicability across the full diversity of
naturally occurring moral situations.

Future work should aim to broaden the scope and robustness of COMETH. Scaling to a wider range of scenarios
and richer human evaluation datasets could improve generalization. Additionally, integrating mechanisms to automat-
ically select and weight the most informative features would allow the system to achieve maximal alignment across
contexts. More ambitious directions include adding active learning to query humans in regions of high uncertainty or
disagreement and coupling the pipeline to decision-making modules so that agents can select morally aligned actions
while exposing the feature-level rationale.

By doubling the performance of end-to-end LLMs, providing reproducible pre-processing, and enabling interpretable
predictions even for smaller models, COMETH offers a concrete and practical path toward building AI systems that
can better distinguish and model moral contexts in a structured, transparent, and human-aligned manner. Ultimately,
while this work represents weak alignment (Khamassi et al., 2024), it establishes a foundation for stronger alignment
strategies that combine human-grounded data, interpretable feature representations, and model-based generalization.
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