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ABSTRACT

Existing methods for isolating hard subpopulations and spurious correlations in
datasets often require human intervention. This can make these methods labor-
intensive and dataset-specific. To address these shortcomings, we present a scalable
method for automatically distilling a model’s failure modes. Specifically, we
harness linear classifiers to identify consistent error patterns, and, in turn, induce a
natural representation of these failure modes as directions within the feature space.
We demonstrate that this framework allows us to discover and automatically caption
challenging subpopulations within the training dataset. Moreover, by combining
our framework with off-the-shelf diffusion models, we can generate images that
are especially challenging for the analyzed model, and thus can be used to perform
synthetic data augmentation that helps remedy the model’s failure modes.

1 INTRODUCTION

The composition of the training dataset has key implications for machine learning models’ behavior
(Feldman, 2019; Carlini et al., 2019; Koh & Liang, 2017; Ghorbani & Zou, 2019; Ilyas et al., 2022),
especially as the training environments often deviate from deployment conditions (Rabanser et al.,
2019; Koh et al., 2020; Hendrycks et al., 2020). For example, a model might struggle on specific
subpopulations in the data if that subpopulation was mislabeled (Northcutt et al., 2021; Stock & Cisse,
2018; Beyer et al., 2020; Vasudevan et al., 2022), underrepresented (Sagawa et al., 2020; Santurkar
et al., 2021), or corrupted (Hendrycks & Dietterich, 2019; Hendrycks et al., 2020). More broadly, the
training dataset might contain spurious correlations, encouraging the model to depend on prediction
rules that do not generalize to deployment (Xiao et al., 2020; Geirhos et al., 2020; DeGrave et al.,
2021). Moreover, identifying meaningful subpopulations within data allows for dataset refinement
(such as filtering or relabeling) (Yang et al., 2019; Stock & Cisse, 2018), and training more fair (Kim
et al., 2019; Du et al., 2021) or accurate (Jabbour et al., 2020; Srivastava et al., 2020) models.

However, dominant approaches to such identification of biases and difficult subpopulations within
datasets often require human intervention, which is typically labor intensive and thus not conducive
to routine usage. For example, recent works (Tsipras et al., 2020; Vasudevan et al., 2022) need to
resort to manual data exploration to identify label idiosyncrasies and failure modes in widely used
datasets such as ImageNet. On the other hand, a different line of work (Sohoni et al., 2020; Nam et al.,
2020; Kim et al., 2019; Liu et al., 2021; Hashimoto et al., 2018) does present automatic methods for
identifying and intervening on hard examples, but these methods are not designed to capture simple,
human-understandable patterns. For instance, Liu et al. (2021) directly upweights inputs that were
misclassified early in training, but these examples do not necessarily represent a consistent failure
mode. This motivates the question:

How can we extract meaningful patterns of model errors on large datasets?

One way to approach this question is through model interpretability methods. These include saliency
maps (Adebayo et al., 2018; Simonyan et al., 2013), integrated gradients (Sundararajan et al., 2017),
and LIME (Ribeiro et al., 2016b), and perform feature attribution for particular inputs. Specifically,
they aim to highlight which parts of an input were most important for making a model prediction,
and can thus hint at brittleness of that prediction. However, while feature attribution can indeed help
debug individual test examples, it does not provide a global understanding of the underlying biases of
the dataset — at least without manually examining many such individual attributions.
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OUR CONTRIBUTIONS

In this work, we build a scalable mechanism for globally understanding large datasets from the
perspective of the model’s prediction rules. Specifically, our goal is not only to identify interpretable
failure modes within the data, but also to inform actionable interventions to remedy these problems.

Our approach distills a given model’s failure modes as directions in a certain feature space. In
particular, we train linear classifiers on normalized feature embeddings within that space to identify
consistent mistakes in the original model’s predictions. The decision boundary of each such classifier
then defines a “direction" of hard examples. By measuring each data-point’s alignment with this
identified direction, we can understand how relevant that example is for the failure mode we intend to
capture. We leverage this framework to:

• Detection: Automatically detect and quantify reliability failures, such as brittleness to
distribution shifts or performance degradation on hard subpopulations (Section 2.1).

• Interpretation: Understand and automatically assign meaningful captions to the error
patterns identified by our method (Section 2.2).

• Intervention: Intervene during training in order to improve model reliability along the
identified axes of failure (Section 2.3). In particular, by leveraging our framework in
conjunction with off-the-shelf diffusion models, we can perform synthetic data augmentation
tailored to improve the analyzed model’s mistakes.

Using our framework, we can automatically identify and intervene on hard subpopulations in image
datasets such as CIFAR-10, ImageNet, and ChestX-ray14. Importantly, we do not require direct
human intervention or pre-annotated subgroups. The resulting framework is thus a scalable approach
to identifying important subpopulations in large datasets with respect to their downstream tasks.

2 CAPTURING FAILURE MODES AS DIRECTIONS WITHIN A LATENT SPACE

The presence of certain undesirable patterns, such as spurious correlations or underrepresented
subpopulations, in a training dataset can prevent a learned model from properly generalizing during
deployment. As a running example, consider the task of distinguishing “old” versus “young” faces,
wherein the training dataset age is spuriously correlated with gender (such that the faces of older men
and younger women are overrepresented). Such correlations occur in the CelebA dataset (Liu et al.,
2015) (though here we construct a dataset that strengthens them)1. Thus, a model trained on such a
dataset might rely too heavily on gender, and will struggle to predict the age of younger men or older
women. How can we detect model failures on these subpopulations?

The guiding principle of our framework is to model such failure modes as directions within a certain
latent space (Figure 1). In the above example, we would like to identify an axis such that the (easier)
examples of “old men” and the (harder) examples of “old women” lie in opposite directions. We then
can capture the role of an individual data point in the dataset by evaluating how closely its normalized
embedding aligns with that extracted direction (axis). But how can we learn these directions?

Our method. The key idea of our approach is to find a hyperplane that best separates the correct
examples from incorrect ones. In the presence of global failure modes such as spurious correlations,
the original model will likely make consistent mistakes, and these mistakes will share features. Using
a held out validation set, we can therefore train a linear support vector machine (SVM) for each class
to predict the original model’s mistakes based on these shared features. The SVM then establishes a
decision boundary between the correct and incorrect examples, and the direction of the failure mode
will be orthogonal to this decision boundary (i.e., the normal vector to the hyperplane). Intuitively,
the more aligned an example is with the identified failure direction, the harder the example was for
the original neural network. Details of our method can be found in Appendix A.

The choice of latent space: Leveraging shared vision/language embeddings. Naturally, the
choice of embedding space for the SVM greatly impacts the types of failure modes it picks up. Which
embedding space should we choose? One option is to use the latent space of the original neural
network. However, especially if the model fits the training data perfectly, it has likely learned latent

1We can also detect this failure mode in the original CelebA dataset (See Appendix B.1)
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Figure 1: A summary of our approach, as applied to CelebA. Consider the task of classifying faces as
"young" or "old", where the training set contains a spurious correlation with gender. (Left) Given a
trained base model, we evaluate it on a held-out validation set. (Middle) For each class (here “old"),
we train a linear SVM on a shared vision/language latent space to predict whether the base model
would have classified an input from the validation set correctly. We then extract a direction (gray) for
the captured failure mode as the vector orthogonal to the learned hyperplane. Here, the SVM learns
to use gender to separate the incorrect (red) vs. correct (green) examples. (Right) Images farthest
from the SVM decision boundary exemplify the hardest (“old women") or the easiest (“old men")
test examples. Furthermore, we can select captions that, when embedded in the shared latent space,
are farthest from the decision boundary and thus capture the pattern of errors learned by the SVM.

representations which overfit to the training labels. In our running example of CelebA, the few older
women in the training set could be memorized, and so their latent embeddings would likely be very
different from those of older women in the test set. As shown in Appendix B.1.6, these discontinuities
reduce the efficacy of our method, as the resulting featurizations are likely inconsistent.

To address this problem, we use an embedding that is agnostic to the specific dataset. In particular, we
featurize our images using CLIP (Radford et al., 2021), which embeds both images and language into
a shared latent space of unit vectors. Using these embeddings will also let us automatically assign
captions to the directions extracted from the SVM. We consider other latent spaces in Appendix B.1.

Having captured the model’s failure modes as directions within that latent space, we can detect,
interpret, and intervene on difficult subpopulations. We now describe implementing these primitives.

2.1 DETECTION

How can we tell whether the extracted direction actually encapsulates a prevalent error pattern? To
answer this question, we need a way to quantify the strength of the identified failure mode. Our
framework provides a natural metric: the validation error of the trained SVMs. The more consistent
the failure mode is, the more easily a simple linear classifier can separate the errors in the CLIP
embedding space. Thus, the cross-validation score (i.e, the SVM’s accuracy on held-out data) serves
as a measure of the failure mode’s strength in the dataset. It can then be used to detect classes that
have a clear bias present, which will be useful for the following interpretation and intervention steps.

2.2 INTERPRETATION

Since the trained SVMs are constrained to capture simple (approximately linearly separable) patterns
in embedding space, we can easily interpret the extracted directions to understand the failure modes of
the dataset. We explore two approaches to extracting the subpopulations captured by our framework.

Most aligned examples. The examples whose normalized embeddings are most aligned with the
extracted direction represent the most prototypically correct or incorrect inputs. Therefore, to get a
sense of what failure mode the direction is capturing, we can examine the most extreme examples
according to the SVM’s decision value, which is proportional to the signed distance to the SVM’s
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decision boundary. Returning to our running example, in Figure 1 the images of the “old" class that
are the “most correct" correspond to men, while the “most incorrect" ones correspond to women.

Automatic captioning. We can leverage the fact that the SVM is trained on a shared vi-
sion/language latent space (i.e., CLIP) to automatically assign captions to the captured failure
mode. Just as above we surfaced the most aligned images, we can similarly surface the most aligned
captions, i.e, captions whose normalized embedding best matches the extracted direction.

Specifically, assume that each class has a reference caption r, which is a generic phrase that could
describe all examples of the class (e.g., “a photo of a person”). We then generate a candidate set of
more specific captions c1, ..., cm that include additional attributes (e.g., “a photo of a person with a
moustache”). Our goal is to pick the caption for which the additional information provided by c —
beyond that which was already provided by r — best captures the the extracted failure mode.

To do so, we score a caption c by how aligned the normalized embedding ĉ = c−r
||c−r||2 is with the

direction captured by the SVM. This amounts to choosing the captions for which ĉ has the most
positive (easiest) or negative (hardest) SVM decision values. In contrast to previous works that choose
the captions closest to the mean of a selected group of hard examples (c.f., Eyuboglu et al. (2022)),
our method avoids this proxy and directly assigns a caption to the captured failure mode itself.

Directly decoding the SVM direction with diffusion models. Some of the recently developed
diffusion models (e.g., retrieval augmented diffusion models (Blattmann et al., 2022), DALL-E
2 (Ramesh et al., 2022)) generate images directly from the shared vision/language (CLIP) space. In
such cases, we can directly decode the extracted SVM direction into generated images. This enables
us to visually capture the direction itself, without needing to generate a set of candidate captions.

Specifically, let r be the normalized embedding of the reference caption, and w the normalized SVM
direction. By rotating between r and either w or −w via spherical interpolation, we can generate
harder or easier images, respectively. Here, we expect the degree of rotation α to determine the extent
of difficulty2. As shown in Section 4, passing this rotated embedding to the diffusion model indeed
lets us directly generate images that encapsulate the extracted failure mode.

2.3 INTERVENTION

Now that we have identified some of the failure modes of the model, can we improve our model’s
performance on the corresponding challenging subpopulations? It turns out that this is possible, via
both real and synthetic data augmentation.

Filtering intervention. Given an external pool of examples that was not used to train the original
model, we can select the best of these examples to improve performance on the hard subpopulations.
Specifically, if the goal is to add only K examples per class to the training dataset (e.g., due to com-
putation constraints), we simply add the K images with the most negative SVM decision values. In
Appendix B.1.2, we discuss an alternative intervention scheme, upweighting hard training examples.

Synthetic data augmentation. In the absence of such an external pool of such data, we can leverage
our framework together with text-to-image diffusion models (e.g., Stable Diffusion (Rombach et al.,
2022), DALL-E 2 (Ramesh et al., 2022), and Imagen (Saharia et al., 2022)) to generate synthetic
images instead. After automatically captioning each failure mode, we simply input these captions
into the diffusion model to generate images from the corresponding subpopulation. In Section 4, we
show that fine-tuning the model on such images improves model reliability on these subpopulations.

3 VALIDATING OUR FRAMEWORK IN THE PRESENCE OF KNOWN
SUBPOPULATIONS

In Section 2, we presented an approach for distilling the failure modes as directions within a latent
space. In this section, we validate our framework by evaluating its performance on datasets with
known pathologies. In Section 4, we apply our framework to discover challenging subpopulations in
datasets where the bias is not known beforehand. Experimental details can be found in Appendix B.

2Our approach mirrors the “text-diff” technique in DALLE-2 (Ramesh et al., 2022), which uses spherical
interpolation to transform images according to textual commands.
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(b) Class 1: Young

Figure 2: For each CelebA class, the fraction of test images that are of the minority gender when
ordering the images by either their SVM decision value or model confidences. We include additional
baselines: Domino (Eyuboglu et al., 2022), LfF (Nam et al., 2020), and confidences after early
stopping. Our framework more reliably captures the spurious correlation than all other baselines.

Young

SVM Caption: “a photo of a young woman who 
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no beard”

SVM Caption: “a photo of a man who has no 
beard”

SVM Caption: “a photo of a young woman who 
has an oval face”

Old

Hard
Exemplars

Easy
Exemplars

Figure 3: The images and captions for each class with the most
extreme SVM decision values. Those scored as most incorrect
are in the minority subpopulations (“old women" and “young
men"), while those scored as most correct are in the majority
subpopulations (“old men" and “young women").
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Figure 4: Our SVM’s cross val-
idation score (corresponding to
its estimated ability to assess the
strength of the extracted failure
mode) compared to the strength
of the planted spurious correlation.
The SVM scores are highly corre-
lated with the strength of the shift.

We focus on two settings: (1) detecting a spurious correlation in a facial recognition dataset, and (2)
isolating underrepresented subtypes in image classification. In Appendix B, we consider other settings,
such as Colored MNIST (Arjovsky et al., 2019) and ImageNet-C (Hendrycks & Dietterich, 2019).

3.1 USING OUR FRAMEWORK TO ISOLATE AND LABEL SPURIOUS CORRELATIONS

We revisit our running example from Section 2, where a model is trained to predict age from the
CelebA dataset. The training dataset contains a spurious correlation with gender (which we enhance
by selectively subsetting the original dataset). We use a validation set that is balanced across age
and gender, but also explore unbalanced validation sets in Appendix B.1 and Section 4.

Capturing the spurious correlation. Does our framework identify gender as the key failure mode
in this setting? It turns out that even though only 33% of the dataset comes from the challenging sub-
populations “old women” and “young men”, 89% of the images flagged as incorrect by our framework
are from these groups. Indeed, as shown in Figure 2, the SVM more consistently selects those hard sub-
populations, compared to using the original confidences. As the underlying linear classifier is forced
to use simple prediction rules, the corresponding SVM flags a more homogenous population than
does using the original confidences. We find that our method further outperforms other baselines such
as Domino (Eyuboglu et al., 2022), Learning from Failure (Nam et al., 2020), or using confidences
after early stopping (as in Liu et al. (2021)) (see Appendix B.1 for further experimental details).

Automatically interpreting the captured failure mode. In Figure 3, we surface the examples
most aligned with the extracted direction using the SVM’s decision values. As shown, examples
with the most negative SVM decision values are indeed from the hard subpopulations. We also
automatically caption each captured failure mode. To this end, we consider a candidate caption set
which includes attributes such as age, gender, and facial descriptors. The captions that are most aligned
with the extracted direction in CLIP space capture the spurious correlation on gender (Figure 3).
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Figure 5: For each CIFAR-100 superclass, the
fraction of the top K flagged test images that be-
long to the underrepresented subclass (averaged
over classes). We compare using the SVM’s deci-
sion value and the model’s confidences to select
the top K images; the SVM more consistently
identifies the minority subpopulation.
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Figure 6: For CIFAR-100, the accuracy on the
minority subclasses after adding K images per
superclass from the extra data (reported over five
runs.) We compare using the SVM’s decision
value or the model’s confidences to select images.
Relying on the SVM’s values provides the most
improvement on the minority subclasses.

Quantifying the strength of the shift. As mentioned in Section 2, the cross-validation scores of
the SVM quantify the strength of the spurious correlation. In Figure 4, we train base models on
versions of CelebA with increasing degrees of the planted spurious correlation, and find that the SVM
cross-validation scores strongly correlate with the strength of the planted shift.

3.2 IDENTIFYING UNDERREPRESENTED SUB-TYPES

Above, we considered a setting where the model predicts incorrectly because it relies on a spurious
feature (gender). What if a model struggles on a subpopulation not due to a spurious feature, but
simply because there are not enough examples of that image type?

To evaluate our approach in this setting, consider the task of predicting the superclass of a hierarchical
dataset when subclasses have been underrepresented. In particular, the CIFAR-100 (Krizhevsky,
2009) dataset contains twenty superclasses, each of which contains five equally represented subclasses.
For each such superclass, we subsample one subclass so that it is underrepresented in the training
data. For instance, for the superclass “aquatic mammals”, we remove a large fraction of the subclass
beavers from the training dataset. In Figure 5, we find that our framework correctly isolates the
minority subclass as the most incorrect for each superclass more consistently than does confidences.

Validating automatic captioning. For each superclass, we construct a caption set that corresponds
to the possible subclasses (e.g., for the superclass “aquatic mammals,” the caption set is “a photo of a
beaver”, “a photo of a dolphin”, etc.). As we find, the caption corresponding to the minority subclass
was the top negative caption for 80% of the superclasses, and in the top 2 for 95% of the superclasses.

Filtering intervention. Having isolated hard subpopulations, we now apply our framework down-
stream to improve performance on them. We use the trained SVMs to choose a subset of images from
a larger pool of data to add to the training set. In Figure 6, we find that using our framework to select
this extra data improves accuracy on the minority subclasses more than what using model confidences
or choosing a random subset offers, while maintaining approximately the same overall accuracy.

4 DISCOVERING NEW SUBPOPULATIONS IN IMAGE DATASETS

Above, we considered datasets with pathologies, such as spurious correlations or underrepresented
subtypes, that were known. In this section, we apply our framework to datasets without any pre-
annotated difficult subpopulations. Our approach discovers new subpopulations representing key
failure modes for the models. Specifically, we apply our framework to CIFAR-10 (Krizhevsky, 2009)
and ImageNet (Deng et al., 2009), and defer ChestX-ray14 (Rajpurkar et al., 2017) to Appendix C.3.
Experimental details can be found in Appendix C.

4.1 CIFAR-10

We begin with the CIFAR-10 (Krizhevsky, 2009) dataset. Since the accuracy of a ResNet18 on
CIFAR-10 is very high (93%), the original model does not make many errors. Thus, we instead
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Figure 7: (a) The images with the most extreme SVM decision values for the CIFAR-10 classes cat
and dog, along with the most positive/negative captions according to the SVM. (See Appendix C.1.3
for more examples.) (b) For each class, the accuracy of the K test images closest in CLIP embedding
space to the most positive/negative SVM captions for that class (averaged over classes). The images
closest to the negative caption have a lower accuracy than those closest to the positive caption.
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(a) Examples of hard and easy generated images.

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

Ac
cu

ra
cy Hard Synthetic Images

Easy Synthetic Images
Neutral Synthetic Images

(b) Model accuracies on the gen-
erated images.

Figure 8: To directly decode the SVM direction into images, we spherically interpolate the extracted
direction and the embedding of the reference caption before passing this vector to a diffusion model.
(a) Examples of synthetic hard and easy images of CIFAR-10 cats and dogs. The generated images
match the trends found in Figure 7a. Further examples can be found in Appendix C.1.4. (b) Base
model accuracy on generated hard and easy images (100 images per CIFAR-10 class) over varying
degrees of spherical interpolation (α). Neutral images were generated using the reference caption.
The base model performs worst on the hard generated images and best on the easy ones.

consider a weaker base model trained with 20% of the original CIFAR-10 dataset, where the other 20%
is used for validation and the last 60% is used as extra data for the subset intervention. (See Appendix
C.1 for additional experiments, including applying our framework to the larger CIFAR-10 dataset.)

Finding interpretable subpopulations within the CIFAR-10 dataset. Figure 7a displays exam-
ples of the failure modes identified by our framework. We identify white cats on grass and black dogs
as hard, while classifying brown cats and white/brown dogs that are inside as easy.

Do these directions in latent space map to real failure modes of the base model? Without manual
annotations, we can no longer directly report the original model’s accuracy on these minority groups.
However, as a proxy, we evaluate images that are closest in cosine similarity to the captions chosen by
the SVM. For example, to get white cats on the grass, we rank the CIFAR-10 cats by how close their
embeddings are to the caption “a photo of a white cat on grass” in CLIP space3. Using this proxy, in
Figure 7b we confirm that the surfaced SVM captions represent real failure modes in the dataset.

Decoding the SVM direction to generate challenging images. Since the SVM operates in CLIP
space, we can directly decode the extracted direction into an image using an off-the-shelf diffusion
model (Blattmann et al., 2022) which also samples from this space. By spherically interpolating
between the embedding of the reference caption (e.g., “a photo of a cat") and the extracted SVM
direction, we can generate harder or easier images corresponding to the extracted failure mode (Figure
8a). For example, interpolating with the hard direction for CIFAR-10 cats generates white cats on
grass, matching the extracted SVM caption in Figure 7a. Across classes, we verify that the original
model performs worse on the “hard" generated images and better on the “easy” ones (Figure 8b).

3In the Appendix C.1, we validate that this approach surfaces images that visually match the caption.
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(a) Evaluating images closest to the hard subpopulation
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(b) Evaluating images closest to the easy subpopulation

Figure 9: We fine-tune the model using 100 synthetic images per class generated via stable diffusion
based on the hard, easy, or reference caption. We measure the accuracy of the K test images closest to
the (a) hard or (b) easy SVM caption in CLIP space. Fine-tuning the model on the images generated
from the hard captions boosts the accuracy of the model on these corresponding, real test images
more than augmenting with generic synthetic images does. The analogous phenomenon does not
hold, however, when we target the easy subpopulation.

Targeted synthetic data augmentation. By leveraging text-to-image generative models, we can
generate images for targeted data augmentation. Using a off-the-shelf stable diffusion (Rombach et al.,
2022) model, we generate 100 images per class using the corresponding negative SVM caption (e.g.,
“a photo of a white cat on the grass”) as the prompt. After adding these images to the training set, we
retrain the last layer of the original model. Fine-tuning the model on these synthetic images improves
accuracy on the hard subpopulation — defined according to similarity in CLIP space to the negative
caption — compared to using generic images generated from the reference caption (Figure 9a).

It turns out that this procedure for targeted synthetic data augmentation is particularly effective for
the identified challenging subpopulation. Generating images using the easy caption (e.g., “a photo
of a cat inside”) does not improve accuracy on images within that subpopulation any more than
augmenting with generic synthetic images (Figure 9b).

It is also possible to augment the dataset with images generated directly from the SVM direction,
as in Figure 8a, using a diffusion model that samples directly from CLIP space. In doing so, we
could skip the intermediate captioning stage entirely. Currently, the diffusion models that operate in
CLIP space are either not open-source (DALL-E 2 (Ramesh et al., 2022)) or trained with less data
(Blattmann et al., 2022). However, with further progress in CLIP-space diffusion models, this may be
a promising mechanism for tailoring data augmentation directly from the SVM direction.

4.2 IMAGENET

We also apply our framework on a larger scale: to find challenging subpopulations in ImageNet (Deng
et al., 2009) (see Appendix C.2 for further experimental details). In Figure 10a, we display examples
of the failure modes captured by our framework with their associated SVM captions. These biases
include over-reliance on color (e.g., the coat of a red wolf) or sensitivity to co-occurring objects (e.g
the presence of a person holding the fish tench). We include more examples in Appendix C.2.1.

As in Section 4.1, we validate that these directions correspond to real failure modes by evaluating the
accuracy of the test images that are closest to the positive or negative SVM caption in CLIP space
(Figure 10b). The identified subpopulations indeed have a significant difference in overall accuracy.

5 RELATED WORK

Debiasing/fairness under known biases. There are many works on optimizing group fairness with
respect to known biases (Feldman et al., 2015; Kamishima et al., 2011; Hardt et al., 2016; Zafar et al.,
2017; Kusner et al., 2017; Balashankar et al., 2019); see also (Mehrabi et al., 2021; Hashimoto et al.,
2018) and the references therein. Outside the fairness literature, de-biasing approaches in machine
learning have been proposed for mitigating the effect of known biases during training (Sagawa et al.,
2020; Yang et al., 2019; He et al., 2019; Belinkov et al., 2019; Clark et al., 2019).

Discovery and mitigation of hard subpopulations. One line of work uses manual exploration to
identify pathologies, such as label ambiguity, in ImageNet (Stock & Cisse, 2018; Vasudevan et al.,
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Tench

SVM Caption: “a photo of a close-up fish”

SVM Caption: “a photo of a orange fish with a 
person”

Red Wolf

SVM Caption: “a photo of a white canine outside”

SVM Caption: “a photo of a orange canine on a 
blue background”

Hard
Exemplars

Easy
Exemplars

(a) Most extreme images and extracted SVM captions.
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Figure 10: (a) The most extreme images and captions by SVM decision value for ImageNet classes
tench and red wolf. Our framework identifies clear biases on color (e.g red wolf) and co-occurrence
of unrelated objects (e.g tench). (b) For each class, the accuracy of the top K images that were
closest in CLIP space to the most positive/negative SVM captions for that class. The identified hard
(negative) subpopulation has a lower accuracy than the identified easy (positive) subpopulation.

2022; Tsipras et al., 2020). Another presents automatic methods for discovering and intervening on
hard subpopulations. Sohoni et al. (2020) estimates subclass structure by clustering in the model’s
latent space, while Liu et al. (2021) directly upweights examples that the model misclassified early in
training. Other works directly train a second model which “emphasizes” the examples on which a
base model struggles (Nam et al., 2020; Hashimoto et al., 2018; Bao & Barzilay, 2022; Kim et al.,
2019; Utama et al., 2020; Sanh et al., 2020). Unlike our framework, these methods focus on the
overall test accuracy, rather than finding a consistent failure mode. Perhaps the closest work in spirit
to ours is Eyuboglu et al. (2022), which presents an automatic method for identifying challenging
subsets by fitting a Gaussian mixture model in CLIP space. However, our SVM provides a stronger
inductive bias towards simple subclasses, and furthermore imposes a useful geometry on the latent
space for scoring data points, intervening, and selecting captions in a more principled manner.

Model interpretability. Model interpretability methods seek to identify the relevant features for
a model’s prediction. They include gradient- (Simonyan et al., 2013; Dabkowski & Gal, 2017;
Sundararajan et al., 2017) and perturbation-based (Ribeiro et al., 2016a; Goyal et al., 2019; Fong
& Vedaldi, 2017; Dabkowski & Gal, 2017; Zintgraf et al., 2017; Dhurandhar et al., 2018; Chang
et al., 2019; Hendricks et al., 2018; Singla et al., 2021) methods. Other works analyze the model’s
activations (Bau et al., 2017; Kim et al., 2018; Yeh et al., 2020; Wong et al., 2021). Li & Xu (2021)
use a generative model to find biased attributes that impact model predictions. Concurrent work by
Abid et al. (2022) uses predefined concept activation vectors to discover latent space perturbations
that correct a model’s mistake. Finally, several papers investigate the vulnerability of models to
specific biases such as sensitivity to texture (Geirhos et al., 2019), background (Xiao et al., 2020),
spatial perturbations (Engstrom et al., 2019), common corruptions (Hendrycks & Dietterich, 2019),
and non-robust features (Szegedy et al., 2014; Goodfellow et al., 2015; Madry et al., 2018).

6 CONCLUSION

In this paper, we introduce a framework for automatically isolating, interpreting, and intervening on
hard but interpretable subpopulations of a dataset. In particular, by distilling the model’s failure modes
as directions in a latent space, our framework provides a mechanism for studying data-points in the
context of the model’s prediction rules. We thus can leverage our framework to automatically caption
the captured failure mode, quantify the strength of distribution shifts, and intervene to improve the
model’s performance on minority subgroups. Notably, our method enables the effective, automated
application of text-to-image models for synthetic data augmentation. We find that our technique
succeeds not only on datasets with planted hard subpopulations, but also on natural and widely-used
datasets; as such, we hope it will serve as a useful tool for scalable dataset exploration and debiasing.

Several interesting directions remain for further study. One of them is developing sophisticated
methods for caption candidate generation. Moreover, a given class may have multiple important
failure modes. Therefore, extending our method to disentangle these distinct failure modes—rather
than identifying only the most prominent one—is another promising direction for future work.
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A SETUP DETAILS

A.1 CODE

Our code is available at https://github.com/MadryLab/failure-directions.

A.2 FORMAL DESCRIPTION OF METHOD

Preliminaries We consider a standard image classification problem with image space X and label
space Y , training data (x, y) ∈ Dtrain, a held-out validation set Dval, and test set Dtest. Using the
training data, we have trained a base model (such as a neural network) fnn : X → Y to predict a
label given the input. For convenience, we define the “correctness” function c : X → {−1,+1},
where c(x) = 1 if fnn(x) correctly outputs the label associated to x, and c(x) = −1 otherwise.

A linear support vector machine (SVM) is a simple linear classifier, which finds a hyperplane
separating the data with the maximum margin. Specifically, given d-dimensional embeddings {x}ni=1

with labels {y}ni=1 ∈ {−1, 1}n, a linear SVM computes coefficients w ∈ Rd and intercept b ∈ R
which optimize the objective:

min
w,b

1

2
||w||22 + C

n∑
i=1

max(0, 1− yi(wTxi + b))

This optimization problem seeks to maximize the margin, while penalizing misclassifications using
a soft hinge loss. The parameter C, learned via cross-validation, trades off between these two
objectives.

Once the parameters w and b have been learned, for a given embedding x, we can calculate the
decision value:

h(x) = wTx+ b

This represents the confidence of the SVM, and is proportional to the (signed) distance of x to the
hyperplane determined by w, b. The prediction of the SVM on x is simply then the sign of h(x), and
w is the “direction” of the failure mode.

Diagnose We evaluate the strength of the most interpretable error pattern within a class y by quanti-
fying the ability of a per-class SVM hy to predict validation data errors on that class. Recall that each
SVM is trained by cross-validation. We use the average balanced accuracy, ā, across cross validation
splits to measure the strength of the underlying spurious correlation. Letting ny denote the number of
instances of class y in a given subset of data, the balanced accuracy is defined by

ā =
1

|Y|
∑
y∈Y

1

ny

∑
x:(x,y)∈Dtrain

1(c(x) = 1).

Intuitively, the more interpretable and widespread the error pattern is, the better it can be captured
by a linear predictor in latent space. To demonstrate this, on CelebA, we subselect the data to
underrepresent the hard demographics ("old" "female" and "young" "male") in the training data to
lesser or greater degrees. As was shown in Figure 4, ā increases as the strength of the spurious
correlation increases (i.e. as the proportion of hard demographics decreases). This measure can be
used to determine which classes have a clear bias present, for use in the following interpretation and
intervention steps.

Interpret Once the SVMs have captured any difficult subpopulations, we interpret them by surfacing
the most extreme examples in the test set, as well as automatically generating captions for the
identified failure modes. These interpretability techniques are only possible due to two key properties
of SVMs: (1) they are constrained to capture simple (approximately linearly separable) patterns in the
embedding space, and (2) their decision boundary is easily accessible, therefore providing a notion of
direction and distance in the embedding space.

• Most Extreme Examples Each SVM hy provides a natural measure of how hard an input x
is via its distance to the decision boundary, which was validated in Figure 2. Thus, we subs-
elect from Dtest the k images within class y, {x−i }ki=1, which minimize

∑
i h

y(clip(x−i )),
and likewise the k images {x+i }ki=1 which maximize

∑
i h

y(clip(x+i )). By definition, these
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images exemplify the decision rules learned by hy. Therefore, {x−i }ki=1 provide a con-
cise visual summary of “hard” examples, and similarly {x+i }ki=1 of “easy” examples. As
was shown in Figure 3, for class y =“old", {x−i }ki=1 indeed consists of all women, while
{x+i }ki=1 consists of all men.

• Captioning To generate a caption for the predicted error-prone subpopulation of a class
y, we leverage the shared vision-language CLIP embedding space on which the SVMs
were trained. For a class y, let the base caption β be “a photo of a y" and its embedding
r = clip(β). Given a set of candidate captions C, we aim to select the caption that hy
classifies most strongly, in terms of distance from the decision hyperplane, as an error.
Consider a candidate caption γ ∈ C and its embedding c = clip(γ). Since directions have
been recently shown to be meaningful in CLIP space (Radford et al., 2021), associate each
caption with a direction in the CLIP embedding space via dc = c−r

||c−r|| . The chosen caption
for errors on class y is then argmaxch

y(dc).

Intervene After identifying and interpreting the hard per-class trends, we use them to improve
accuracy of fnn by retraining. Let H = {(x, y) ∈ Dtrain s.t. h

y(clip(x)) < 0} denote the set of
training examples predicted to be hard. We consider various methods for intervening onH during
retraining.

• Upweighting Suppose fnn was originally trained to minimize an objective function

L(Dtrain) =
∑

(x,y)∈Dtrain

`(y, fnn(x))

We modify this objective by upweighting the flagged examples by some factor h:

L′(Dtrain) =
∑

(x,y)∈Dtrain

(h1(x ∈ H) + 1(x /∈ H)) · `(y, fnn(x))

• Subsetting If there exists an external pool of examles Dext that were not used to originally
train fnn, letHext = {(x, y) ∈ Dext s.t.h

y(clip(x)) < 0} and letD′train = Dtrain +Hext.
Thus, we add to the training set the most useful new examples from Dext. (In practice,
we simulate this setting by dividing the original training set into Dtrain and Dext, prior to
training fnn the first time.)

A.3 MODEL TRAINING DETAILS

We train ResNet18 models and perform hyperparameter search using the held out validation set.
Dataset specific experimental details can be found in Sections B and C. For all datasets except
ChestX-ray14, we use standard softmax classification with cross-entropy loss.

Our training uses SGD with momentum and weight decay. We further use a triangular cyclic learning
rate, where the learning rate linearly increases for a pre-specified number of epochs (“peak epochs”)
until hitting the base learning rate (“peak LR”), and then linearly decays for the rest of the epochs
until reaching zero at the end of training.

For ChestX-ray14, we predict for each condition a binary output with binary cross-entropy loss; the
threshold is then chosen to maximize the F1 score on the held out validation set.

We train our models using NVIDIA V100 gpus. We use the FFCV framework (Leclerc et al., 2022)
to further speed up training.

A.4 SVM TRAINING DETAILS

We use the pre-trained CLIP (Radford et al., 2021) model, equivalent to a ViT-B/32. We embed the
images using this encoder. We whiten the data (using the mean/standard deviation of the embeddings
computed from the training images) and then normalize the embeddings to be unit vectors.

We train a linear SVM on the embeddings of the held-out validation set with balanced class weighting
to predict whether the model got the image correct or incorrect. The regularization constant is chosen
using 2-fold cross validation by selecting the constant with the best balanced accuracy (i.e the average
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of the recall obtained for each class). These cross validation scores are also exported to quantify the
strength of the captured shift, as described in Section 2.

A.5 FILTERING DETAILS

After holding out a pool of data that was not used to train the original model, we select those images
with the most negative SVM decision values to add to the training set; we also compare to alternative
selection methods (by confidence value, and random). We applied this method to CIFAR-100, and
reported the accuracies on the hard subpopulation in Figure 6. Below, we report the overall test
accuracies before and after intervention when adding 100 images per superclass.

Original Random Confidences SVM

Overall accuracy 0.696 0.712 0.716 0.720

A.6 CAPTION GENERATION

In Section 2, we described how we can assign a caption to each captured failure mode by choosing the
caption that is most aligned with the positive or negative direction extracted by the SVM. To perform
caption assignment, we need to create a set of relevant candidate captions that we expect, roughly, to
lie in the same space as the images that the SVM was trained on. In particular, completely nonsensical
captions may have undefined CLIP embeddings. Similarly, completely irrelevant captions may be out
of distribution for the SVM, which was trained on images of a specific class.

To generate a sensible candidate set, we programmatically generate captions of the form “A photo
of a <adjective> <noun> <prepositional phrase>”, where the adjective and prepositional phrase are
optional. We describe the list of adjectives, nouns, and prepositional phrases for each dataset in
the experimental details section for that task. We chose this approach in order to guarantee the
descriptiveness of the candidate captions set. Automatically curating this candidate set, for example
by generating reasonable sentences using a language model, is an interesting avenue for future work.

A.7 DIRECTLY DECODING SVM DIRECTIONS WITH DIFFUSION MODELS

In Section 2, we described how to use diffusion models that sample from CLIP space to directly
decode our extracted SVM direction. We provide further details here.

Several models, including retrieval augmented diffusion models (Blattmann et al., 2022) and DALL-E
2 (Ramesh et al., 2022) sample from CLIP’s shared vision/language space. In contrast, Stable
Diffusion (Rombach et al., 2022) uses the hidden states of the CLIP’s text encoder (before it is
projected into the common image/language space). In our work, we use the pre-trained 768×768
retrieval-augmented diffusion model (RDM) (Blattmann et al., 2022), but only use text prompting
(no retrieval step). The checkpoint can be found here.

We fit the SVM on the same CLIP space that the RDM uses (CLIP ViT-L/14) with `2 normalization
but not whitening of mean/std. Let w be the normalized SVM direction. For a reference caption
with normalized embedding r, we then spherically interpolate r and either w or −w (e.g., z =
slerp(r, w, α)) to generate hard or easy images respectively. The degree of rotation α specifies the
level of difficulty (we generally choose α in the range [0, 0.3]). Unless otherwise stated, we use
α = 0.1 to generate the images. We then pass the spherically interpolated vector in lieu of the
text-conditioning vector to the RDM.
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A.8 TAILORED DATA AUGMENTATION USING TEXT-TO-IMAGE GENERATIVE MODELS

In Section 2, we described how we use text-to-image generative models to perform stable diffusion.
Specifically, we input the captions extracted by our SVM (easy, hard, and reference) into a pre-trained
Stable Diffusion (Rombach et al., 2022) model and generate 100 synthetic images per class. The
checkpoint (“sd-v1-4.ckpt”) can be found here. We then fine-tune the original model (retraining only
the last layer) on the combination of the new images and the original training dataset. Below we
report the overall test accuracies after fine-tuning: overall accuracies are maintained up to 1.3%.

Original Easy Hard Neutral

Overall accuracy 0.791 0.785 0.778 0.784
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B DATASETS WITH KNOWN CHALLENGING SUBPOPULATIONS.

B.1 CELEBA

In Section 3, we applied our framework to the task of predicting age on CelebA (Liu et al., 2015) with
a planted correlation with gender. Here, in this section, we discuss the training details and additional
experiments on that task.

B.1.1 EXPERIMENTAL DETAILS

Dataset construction We construct a training dataset with the following demographic breakdown:
6203 each of “old” “female” and “young” “male”, and 24812 of “old” “male” and “young” “female”.
There are thus four times as many faces of old men vs. old women (resp. young women vs. young
men). The held-out validation set contains 1795 examples for each of the demographic categories,
and we use the original test split of CelebA for our final test set. We consider the full CelebA dataset
and a setting where the validation distribution matches the training distribution in Appendix Sections
B.1.7 and B.1.4. We consider images with a resolution of 75×75.

Hyperparameters We use the following hyperparameters.

Parameter Value

Batch Size 512
Epochs 30

Peak LR 0.02
Momentum 0.9

Weight Decay 5× 10−4

Peak Epoch 2

Caption generation We use a reference caption “A photo of a person.” We generate prepositional
phrases using the attributes provided by the CelebA dataset. The adjectives, nouns, and prepositional
phrases are as follows:

• Adjectives: [none, ’old’, ’young’]

• Nouns: [’person’, ’man’, ’woman’]

• Prepositions: [ none, ’who has stubble’, ’who has arched eyebrows’, ’who has bags under
their eyes’, ’who has bangs’, ’who has big lips’, ’who has a big nose’, ’who has black hair’,
’who has blond hair’, ’who has brown hair’, ’who has bushy eyebrows’, ’who has a double
chin’, ’who is wearing eyeglasses’, ’who has a goatee’, ’who has gray hair’, ’who has heavy
makeup on’, ’who has high cheekbones’, ’who has a mouth that is slightly open’, ’who has
a mustache’, ’who has narrow eyes’, ’who has no beard’, ’who has an oval face’, ’who has a
pointy nose’, ’who has a receding hairline’, ’who has rosy cheeks’, ’who has sideburns’,
’who has a smile’, ’who has straight hair’, ’who has wavy hair’, ’who has earrings’, ’who is
wearing a hat’, ’who has a lipstick on’, ’who is wearing a necktie’ ]

We thus generate a caption for every combination of adjective, noun, and prepositional phrase.

B.1.2 UPWEIGHTING INTERVENTION

Can we use the linear classifiers from our framework to reduce the model’s reliance on gender by
intervening during training? To examine this, after flagging examples in the training set as members
of the minority population, we upweight these examples during the model retraining. As shown
in Table 1, this intervention increases performance on the minority subpopulations, and is even
comparable in its impact to the “oracle" approach of upweighting all “young men” and “old women”.
Note that, since the base model has nearly zero training error, it is confident on all training examples.
Thus, confidences are not suitable for guiding an analogous intervention.

20



Published as a conference paper at ICLR 2023

Test Subgroup Accuracy
Minority Subclasses Majority Subclasses Overall Accuracy

Young Male Old Female Young Female Old Male

Base Model 0.568± 0.006 0.542± 0.010 0.915± 0.002 0.904± 0.002 0.795± 0.002
Oracle Upweight 0.600± 0.007 0.569± 0.010 0.896± 0.004 0.872± 0.004 0.797± 0.002
SVM Upweight 0.590± 0.011 0.568± 0.004 0.903± 0.003 0.901± 0.008 0.796± 0.003

Table 1: The performance (mean/std over five runs) of intervening during training by upweighting
examples in the CelebA training set. SVM Upweight doubles the loss weight for all training examples
that were predicted as incorrect by our framework. Oracle Upweight doubles the loss weight of all
minority examples using the dataset’s annotations. We find that intervening using the SVM increases
the accuracy of the minority subclasses to almost the same extent as the (optimal) oracle intervention.

B.1.3 GRADATIONS OF SPURIOUSNESS

In Section 3, we applied our framework to a subset of the CelebA dataset, chosen such that the
spurious correlation between age and gender was intensified. Specifically, we vary the intensity of
that spurious correlation, and demonstrate that the test error of the per-class SVMs reflects the degree
of the spurious correlation. In particular, for n from 1 to 8, the train dataset is filtered such that there
are n-times as many old male instances as young male instances, and n-times as many young female
instances as old female instances.

As shown in Figure 11, the test accuracy of the base model decreases as the spurious correlation
grows stronger, because the base model has relied more and more on the spurious correlation. This
complements Figure 4 in the main text, which demonstrated that the SVMs fit the test data better
with increasing spurious correlation.
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Figure 11: Test accuracy on spurious instances of CelebA, as a function of the spuriousness n of the
training dataset.
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B.1.4 CELEBA EXPERIMENTS WHEN THE VALIDATION MATCHES THE TRAINING
DISTRIBUTION.

In Section 3, we applied our framework to the CelebA dataset and used a validation set that was
balanced across age and gender. Here, we instead consider the case where the validation set matches
the train distribution, and thus also contains the strong spurious correlation with gender: specifically,
the validation set contains 810 old female and young male faces, and 3240 old male and young female
faces.

In this setting, there are fewer minority examples for the SVM to learn from, which thus makes
the task of selecting errors harder. However, we find that our framework still captures the gender
correlation (Figure 12). Moreover, our method is able to isolate this hard subpopulation better than
using model confidences (Figure 13).

CelebA: Young

Hard Exemplars

Easy Exemplars

SVM Caption: “a photo of a young woman who has high cheekbones”

SVM Caption: “a photo of a old man who has rosy cheeks” SVM Caption: “a photo of a young woman who has an oval face”

CelebA: Old

Figure 12: The images and captions for each class with the most extreme SVM decision values
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(a) Class: Old. Minority Gender: Female
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Figure 13: We repeat our CelebA experiments from Section 3, using a held out validation set that
matches the training distribution. We display for each class, the fraction of the top K images that
are of the minority gender when ordering the images by either their SVM decision value or by the
model’s confidences.

B.1.5 FURTHER EXPERIMENTAL DETAILS ON BASELINES

In Figure 2 of from Section B of the main paper, we compare the efficacy of using our SVM (versus
several baselines) for selecting the minority gender in the CelebA setting (replicated again below).
We found that our method was able to more consistently select the hard subpopulation than the other
baselines. In this section, we discuss the training details for this experiment.

Domino Domino (Eyuboglu et al., 2022) is an automatic method for identifying challenging subsets
of the data (“slices”) by fitting a Gaussian mixture model in CLIP embedding space. They then choose
captions generated from a large language model that are closes to the mean of each identified cluster.
Our use of an SVM provides a stronger inductive bias towards simple subclasses. Furthermore by
encapsulating the failure modes as a direction in the latent space, we can more easily score, intervene,
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(a) Class 0: Old
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(b) Class 1: Young

Figure 14: Repeated again for convenience: Figure 2 from Section B of the main paper. For each
class in CelebA, the fraction of test images that are of the minority gender when ordering the images
by either their SVM decision value, the model’s confidences, or a variety of other baselines. Our
framework more reliably captures the spurious correlation than all other baselines.

and caption the failure modes. In particular, we are able to caption the extracted failure mode directly,
rather than using the proxy of a cluster of hard examples. On the other hand, Domino can more easily
distinguish between multiple failure modes for the same class because it identifies multiple hard
clusters in the latent space.

We use the same parameters as suggested in the paper with y log likelihood weight=10, y hat log
likelihood weight=10, num slices=2.

Captioning: We first surface the top 3 identified negative captions from our framework and from
Domino:

• Our Framework:

– Old: “a photo of a young woman who has an oval face”, “a photo of a young woman
who has heavy makeup on”, “a photo of a young woman who has brown hair”

– Young: “a photo of a man who has no beard”, “a photo of a man who has a mouth that
is slightly open”, “a photo of a man who has a smile”

• Domino

– Slice 0: “a photo of her debut album.”, “a photo of carole lombard.”, “a photo of tina
turner.”

– Slice 1: “a photo of a compelling man.”, “a photo of a satisfied man.”, “a photo of a
hungry man.”

Both methods capture gender as the primary failure mode. However, Domino tends toward more
specific and thus sometimes more niche captions (i.e “a photo of carole lombard") than overall trends.
This is because Domino picks the caption that happens to be closest to the mean of the slice.

Learning From Failure Learning from Failure (LfF) (Nam et al., 2020), uses a biased classifier
trained with a Generalized Cross Entropy (GCE) loss to select hard examples. Specifically, if p(x) is
the softmax probability vector assigned by the model for input x, the GCE loss for example (x, y) is

GCE(p(x), y) =
1− py(x)q

q

For this baseline, we train our model with GCE loss using the default hyperparameter q = 0.7 as
from the original LfF paper.

Early Stopping In Just Train Twice (JTT) (Liu et al., 2021), a classifier trained on only a few
epochs is used to identify low confidence examples. For this baseline, we stop at epoch=10 (out of
30) and evaluate model confidences.
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B.1.6 USING OTHER LATENT SPACES

In our paper, we distill failure modes using the CLIP latent space. However, our method is not specific
to CLIP (we can use any embedding that can capture important features and is agnostic to the original
training dataset). In Figure 15, we explore using two other latent spaces for our method:

• Inception: We take features from an Inception V3 model (Szegedy et al., 2016) trained on
ImageNet.

• Original Latent Space: We take features from the model’s original latent space (i.e. its
penultimate layer).

We find that using our method with Inception embeddings is only slightly worse than using CLIP.
Since CLIP embeds both language and images in the same latent space, using CLIP further enables
us to automatically caption the extracted directions.

However, since the model’s latent space is tied closely to the training dataset, training an SVM on the
original latent space closely mirrors model confidences. Moreover, since the original model fit the
training data perfectly, the SVM extracted by our method predicts all training examples as correct —
even images that belong to the minority subpopulation — and thus cannot be used for upweighting
interventions. Thus, our method works best when using embeddings that are agnostic to the specific
dataset.
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Figure 15: We repeat our CelebA experiments from Section 3, and compare using the CLIP latent
space to using Inception features or the model’s original latent space.
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B.1.7 FULL CELEBA DATASET

In Section 3, we subselected images from the CelebA dataset to intensify the spurious correlation
between age and gender. Here, we train a base model on the unaltered CelebA dataset instead. Table
2 summarizes the presence of this spurious correlation in the dataset. The per-class SVMs pick up on
the spurious correlation, and to a greater extent than do confidences, as shown in Figures 16a and
16b. The validation set on which the SVMs were trained is the standard CelebA validation set.

Class (Age)
% Minority Gender Old Young

Overall 39.5% 31.6%
Incorrect 55.0% 57.1%

Table 2: First row: the percentage of each age group consisting of that age group’s minority gender
(female for old, male for young). Second row: the percentage of the base model’s mistakes on each
age group which are of the minority gender. Together, these capture the degree of spurious correlation
present, as the base model makes a disproportionately high number of mistakes on the minority
gender for each age group.
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(a) Class: Old. Minority Gender: Female
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Figure 16: For each class in the original CelebA dataset, the fraction of the top K images that are of
the minority gender when ordering the images by either their SVM decision value or by the model’s
confidences.
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B.2 COLORED MNIST

In the Colored MNIST dataset (Arjovsky et al., 2019), a spurious correlation is introduced between
tint and label for the handwritten MNIST dataset. The learning task labels y are binary, and are
generated as follows. We begin with labels ỹ, which are 0 for digits less than 5 and 1 for digits greater
than or equal to 5. To obtain the labels y actually used in the classification task, the labels ỹ are
flipped with probability 0.25. In other words, 75% of the time, the class label y in the learning task is
associated with the digit, and this feature generalizes to the test set.

However, we use color to plant a spurious correlation between the class label y and the tint of the
digit. In particular, we add a red/green tint that correlates perfectly with y (y = 0 corresponding
to red, and y = 1 corresponding to color green), to 90% of the training set, but only 50% of the
validation and set tests. As a result, there is a spurious correlation between the tint and the label y in
the train set, which does not generalize to the validation and test sets.

Thus on the training data, the color of the digit is a better predictor of its label y than the digit’s true
shape, but the digit’s true shape is a better predictor than its color on the test and validation data.

Hyperparameters. We use the following hyperparameters for training.

Parameter Value

Batch Size 512
Epochs 15

Peak LR 0.1
Momentum 0.9

Weight Decay 5e-04
Peak Epoch 2

As shown in Figure 17, the fit of the SVM on the test data improves as the spurious correlation grows
stronger. For each value of x, we also intervene by doubling the weight of the examples flagged as
“hard" by the SVM. Figure 18 demonstrates that while the test accuracy decreases with increasing
spurious correlation, intervention is effective (and increasingly so with x) at improving test accuracy.
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Figure 17: Cross-validation score on the test set
as a function of the spuriousness, i.e. the tinted
fraction x of the training set, for Colored MNIST.

0.5 0.6 0.7 0.8 0.9
Degree of Spurious Digit-Color Correlation

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Before Intervention
After Intervention

Figure 18: Test accuracy of Colored MNIST
before and after the upweighting intervention, as
a function of the spuriousness of the training set.
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B.3 IMAGENET-C

B.3.1 EXPERIMENTAL DETAILS

ImageNet-C is a dataset created by Hendrycks & Dietterich (2019) to benchmark neural nets’
robustness to common perturbations. Using the associated code, we create a corrupted ImageNet
dataset in which 10% of the training set is corrupted, and 50% of the validation and test sets are
corrupted. For simplicity, we restrict corruptions to Gaussian pixel-wise noise, with variance equal
to 0.26. We train a ResNet18 as the base architecture, with standard ImageNet normalization. The
resultant validation and test accuracies are 51.1% and 48.9%, respectively, but drop to 45.5% and
43.0% if restricted to corrupted images (validating that the corrupted images are indeed harder).

Hyperparameters. Hyperparameters were chosen to match those of the ordinary ImageNet dataset:

Parameter Value

Batch Size 1024
Epochs 16

Peak LR 0.5
Momentum 0.9

Weight Decay 5e-4
Peak Epoch 2

B.3.2 RESULTS

Capturing common corruptions. We find that the per-class SVMs pick up on the Gaussian
corruption, as shown in Figure 19. Since the corruption is light, this is non-trivial: in particular, notice
that the images chosen as “hardest" are not necessarily corrupted, as shown in Figure 20.
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Figure 19: The fraction of ImageNet-C test images that are corrupted with Gaussian noise when
ordering the images by either their SVM decision value or by the model’s confidences, averaged over
all classes. Our framework more reliably captures the corruption than using confidences.
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Intervention. In this setting, it does not make sense to intervene based on the captured corruption:
since blurred images represent neither a spurious correlation nor an underrepresented subpopulation,
but instead simply a “hard" class, we expect neither upweighting nor subsetting to improve perfor-
mance. The purpose of this dataset is to exhibit that our method can capture the hard subclass of
corrupted images, even though (as shown in Figure 20) there are many ways an image can be hard,
because it is a shared pattern across many of the errors.
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Figure 20: The images with the most positive (upper) and negative (lower) decision values for the
ImageNet-C class “tench”. While more of the bottom images are blurred, the “hardest" images may
be tenches in strange positions.
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B.4 CIFAR-100

In this section, we explain the experimental details of the experiment on CIFAR-100 in Section 3.
Specifically, we consider the task of predicted the super-classes of the CIFAR-100 dataset, which
contains 20 super-classes (each of which contain 5 subclasses).

Dataset construction We split the original training split into 20% validation set, 40% training set,
and 40% extra data (used in the subset intervention). The original test split serves as our test set. In
the training dataset, we choose one subclass to under-represent by removing 75% of that subclass
from the data. We choose this subclass by picking the worst-performing subclass for each superclass
based on a model trained on the original training split. Specifically, we drop the classes:

• {aquatic mammals: beaver, fish: shark, flowers: orchid, food containers: bowl, fruit and
vegetables: mushroom, household electrical devices: lamp, household furniture: table,
insects: caterpillar, large carnivores: bear, large outdoor man-made things: bridge, large
outdoor natural scenes: forest, large omnivores and herbivores: kangaroo, medium sized
mammals: possum, non-insect invertebrates: lobster, people: baby, reptiles: lizard, small
mammals: squirrel, trees: willow tree, vehicles 1: bus, vehicles 2: streetcar}

Hyperparameters. We use the following hyperparameters to train our models.

Parameter Value

Batch Size 512
Epochs 35

Peak LR 0.5
Momentum 0.9

Weight Decay 5.0× 10−4

Peak Epoch 5

B.4.1 RESULTS ON 80% TRAIN, 20% VALIDATION

In this section, we discuss results on a CIFAR-100 setup with 80% of the original train split allocated
for the train dataset and 20% allocated for the validation dataset (and no extra data). As above, in the
training set, we underrepresent one subclass per superclass (by removing 75% of that subclass from
the dataset). We then will explore the downstream implications of the CV score in this setting.

Efficacy in isolating the minority subpopulation In Figure 21, we replicate the experiment in
Figure 5 for this new split. The results are similar: using the SVM’s decision value more consistently
identifies the top K images over using model confidences.
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Figure 21: We replicate the experiment in Figure 5 for a scenario where 80% of the training dataset
is train and 20% is validation. For each superclass, the fraction of the top K flagged test images
that belong to the underrepresented subclass (averaged over classes) is shown. We compare using
the SVM’s decision value and the model’s confidences to select the top K images; the SVM more
consistently identifies the minority subpopulation.
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A deep-dive into the cross-validation (CV) score Recall from Section 2 that the cross-validation
(CV) score of the SVM serves as a measure of the extracted failure mode’s strength in the dataset.
In Figure 4 of the main paper, we found that (in the CelebA setting) the CV score of the SVM was
highly correlated with the degree of the planted shift.

In this section, we analyze the downstream implications of the CV score in the CIFAR-100 setup.
Specifically, we evaluate our method on CIFAR-100, where the minority subpopulation is underrepre-
sented to different degrees (e.g., removing 10%, 20%, etc of the minority subclass).

As in the CelebA case, the mean CV score across all classes increases as we remove more of the
minority subclass (Figure 22a). The CV score is negatively correlated with the downstream model’s
accuracy on the minority subpopulation (Figure 22b). Thus, the CV score can help measure the
degree of the underlying failure mode and its impact on downstream performance.
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Figure 22: CV score is correlated with the strength of the failure mode. (a) CV score (averaged over
classes) when different fractions of the minority population have been removed from the training
data. CV score increases as the degree of underrepresentation becomes more severe. (b) The CV
score negatively correlates with the model’s final accuracy on the minority subpopulation.

Since the CV score is correlated with the strength of the failure mode, it also reflects the membership
of the error set (predicted and actual). With higher CV scores, more of the predicted errors are
actually part of the planted subpopulation (Figure 23).
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Figure 23: As shown in Figure 22a, as the degree of the underrepresentation goes up, the CV score
also increases. The CV score is thus correlated with the proportion of the error set — (a) predicted
by the SVM and (b) actual — that is actually part of the minority subpopulation.

Inter-class CV Scores We now fix the degree of underrepresentation (removing 75% of the minority
examples). In this case, the size of the minority subclass is the same for each of the 20 superclasses.
However, the impact of underrepresentation is not equal between classes. For example, one might
need fewer examples to distinguish a beaver vs. a bear over two different types of trees. Recall that
we train an SVM per class: thus, each class has its own CV score. What do the differences in the
class CV score signify?
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For each of the 20 superclasses, we plot the CV score of that class’s SVM against the fraction of
errors (predicted and actual) which are of the minority subpopulation (Figure 24). Indeed, classes
with a higher CV score seem to indicate a stronger shift, in that a greater proportion of error set
belongs to the minority subpopulation.
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Figure 24: For each of the 20 superclasses, we plot the CV score for that class against the fraction of
the error set for that class — (a) predicted by the SVM and (b) actual — that belongs to the minority
subpopulation. We further display the Pearson correlation.
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C NATURAL DATASETS

C.1 CIFAR-10

In this section, we describe the experimental details and additional results for applying our framework
on the CIFAR-10 dataset.

C.1.1 EXPERIMENTAL DETAILS

Dataset. Since the original CIFAR-10 model has very high (93%) accuracy, we do the majority
of our experiments using a subset of CIFAR-10. Specifically, we train the model with 20% of the
original training split, and reserve 20% for the validation set and 60% as extra data for the subset
intervention. We discuss results on the full CIFAR-10 dataset in Appendix Section C.1.7.

Hyperparameters We use the following hyperparameters.

Parameter Value

Batch Size 512
Epochs 35

Peak LR 0.5
Momentum 0.9

Weight Decay 5.0× 10−4

Peak Epoch 5

For fine-tuning, we use the same parameters, except with peak LR of 0.1 and for 15 epochs.

C.1.2 CAPTION GENERATION DETAILS

For our CIFAR-10 experiments, we consider two caption sets: CIFAR-Simple, and CIFAR-Extended.
The two caption sets only differ in their sets of possible nouns (extended has a larger vocabulary):
they otherwise have the same list of adjectives and prepositions. In the main paper, and unless
otherwise noted, we use CIFAR-Simple: this is because the diffusion models struggle with extended
vocabularies. In the appendix, we include results with CIFAR-Extended where noted.

For each CIFAR-10 class, we use the reference caption “a photo of a <class>.” We then generate a
candidate caption set of the form “a photo of a <adjective> <noun> <preposition>”. The adjectives,
nouns, and prepositional phrases are selected as follows:

• Adjectives: [none, ’white’, ’blue’, ’red’, ’green’, ’black’, ’yellow’, ’orange’, ’brown’],
• Prepositions: We choose a set of prepositions for each class. Specifically, all classes have

the following as potential prepositions: [None, ’outside’, ’inside’, ’on a black background’,
’on a white background’, ’on a green background’, ’on a blue background’]. Then each class
has the following class-specific prepositions:

– ’dog’: [’on the grass’, ’in a house’, ’in the snow’, ’in the forest’],
– ’cat’: [’on the grass’, ’in a house’, ’in the snow’, ’in the forest’],
– ’bird’: [’flying’, ’perched’, ’in the air’, ’on the ground’],
– ’horse’: [’in a field’, ’in the grass’],
– ’airplane’: [’flying’, ’in the air’, ’on the tarmac’, ’on a road’],
– ’truck’: [’on the road’, ’parked’],
– ’automobile’: [’on the road’, ’parked’],
– ’deer’: [’in a field’, ’in the grass’, ’in the snow’, ’in a forest’],
– ’ship’: [’in the ocean’, ’docked’, ’in the water’, ’on the horizon’],
– ’frog’: [’in the grass’, ’in a pond’],

Nouns: For CIFAR-Simple, we do not vary the noun (i.e., captions of a class cat will use the noun
cat). For CIFAR-Extended, we find the corresponding synset in the WordNet (Miller, 1995) hierarchy.
We then choose as possible nouns all the common names of the synsets that are descendents of the
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CIFAR synset. For example, for the class cat, a possible noun is “Persian cat.” We exclude nouns that
contain words that are not in the NLTK (Loper & Bird, 2002) words corpus.

For both sets, we generate the captions by taking every combination of adjective, noun, verb.
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C.1.3 MOST EXTREME EXAMPLES AND CAPTIONS

In Figure 25 we show the most extreme examples and captions by SVM decision value for all 10
classes.

Simple: “a photo of a white cat on the grass”
Extended: “a photo of a white mouser on the grass”

Simple: “a photo of a cat inside”
Extended: “a photo of a brown domestic cat inside”

Simple:: “a photo of a bird flying”
Extended: “a photo of a white oscine inside”

Simple: “a photo of a black bird on the ground”
Extended: “a photo of a blue black grouse”

Cat

Bird

Simple: “a photo of a automobile outside”
Extended: “a photo of a ambulance”

Simple: “a photo of a blue automobile on a black background”
Extended: “a photo of a black sedan”

Simple: “a photo of a red airplane inside”
Extended : “a photo of a red bomber”

Simple: “a photo of a black airplane”
Extended: “a photo of a black jet on a white background”

Automobile

Airplane

Hard Exemplars

Easy Exemplars

Hard Exemplars

Easy Exemplars

Simple: “a photo of a blue horse inside”
Extended: “a photo of a protohippus inside”

Simple: “a photo of a brown horse outside”
Extended: “a photo of a black steeplechaser outside”

Extended: “a photo of a agua”
Simple: “a photo of a red frog outside”

Simple: “a photo of a yellow frog”
Extended: “a photo of a green chameleon tree frog”

Horse

Frog

Simple: “a photo of a black dog”
Extended:: “a photo of a black feist”

Simple: “a photo of a white dog on the grass”
Extended: “a photo of a white saint bernard inside”

Simple: “a photo of a blue deer in the snow”
Extended: “a photo of a kob inside”

Simple: “a photo of a green deer in a forest”
Extended: “a photo of a wapiti in a forest”

Dog

Deer

Hard Exemplars

Easy Exemplars

Hard Exemplars

Easy Exemplars

Figure 25: Most extreme images with captions from CIFAR-Simple or CIFAR-Extended
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Simple: “a photo of a blue ship inside”
Extended: “a photo of a racing gig”

Simple: a photo of a brown ship docked
Extended: “a photo of a brown tugboat outside”

Ship

Simple: “a photo of a blue truck on the road”
Extended: “a photo of a technical”

Simple: “a photo of a truck”
Extended: “a photo of a white passenger van”

Truck

Hard Exemplars

Easy Exemplars

Figure 25: Most extreme images with captions from CIFAR-Simple or CIFAR-Extended

C.1.4 MORE EXAMPLES OF DIRECTLY DECODING SVM DIRECTION

In Figure 26, we include more examples of using spherical interpolation to directly decode the SVM
direction for CIFAR-10 (as in Figure 8a).

Generated 
Hard 

Examples

Generated 
Easy 

Examples

Generated 
Hard 

Examples

Generated 
Easy 

Examples

Airplane Automobile

Deer Horse

Figure 26: More images generated by directly decoding the SVM direction.
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C.1.5 VALIDATING THE PROXY OF EVALUATING IMAGES CLOSEST TO THE CAPTIONS

In Figure 7b from the main paper, we used the K closest images to the positive or negative SVM
caption as a proxy for the subpopulation that corresponded to that caption. Here, we validate that the
images which are closest in cosine distance to a given caption indeed closely match the description of
the caption itself. We use the CIFAR-Extended caption set.

(a) Caption “a photo of a red bomber"

(b) Caption: “a photo of a black jet on a white background"

(c) “a photo of white mouser on the grass"

(d) “a photo of a brown domestic cat inside"

Figure 27: The images closest in cosine distance to the given CLIP caption.
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C.1.6 FILTERING INTERVENTION FOR CIFAR-10

Here, we perform the filtering intervention for CIFAR-10. For each class, we take the top 100
examples according to our SVM decision values, the model’s base confidence, or a random baseline,
and then add those examples to the training dataset (Figure 28). Without annotations, we again
use the proxy of evaluating the images closest to the extracted negative SVM captions (here from
CIFAR-Extended). We find that our framework improves the performance on the minority subgroups
to a larger extent than other methods.
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Figure 28: For each CIFAR-10 class, the accuracy of the K examples closest to the negative SVM
caption after adding 100 images from the extra data (and retraining) either at random, based on the
SVM decision values, or based on the model confidences. Choosing these 100 images by using
the SVM decision value best improves the accuracy population described by the negative caption.
Results are averaged over classes and reported over 10 runs.
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C.1.7 RESULTS FOR FULL CIFAR-10 DATASET

Here we show the results of applying our framework on the full CIFAR-10 dataset. We therefore
use the entire training split, except for 20% used for validation. We find that similar failure modes
are captured (Figure 29), and the identified negative subpopulations have a lower accuracy than the
identified positive subpopulations (Figure 30).

Easy Exemplars

Hard Exemplars

Dog

SVM Caption: “a photo of a white ocelot on the grass”

SVM Caption: “a photo of a domestic cat”

SVM Caption: “a photo of a brown mexican hairless inside”

SVM Caption: “a photo of a tibetan terrier”

Cat

Figure 29: Most extreme images/captions surfaced by our framework for the full CIFAR-10 dataset
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Figure 30: Averaging over 10 classes, we evaluate the accuracy of the top K images closest in cosine
distance to the positive or negative caption on the test set.
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C.2 IMAGENET

We discuss the experimental details for the ImageNet dataset.

Dataset. We consider 40% of the original dataset as training data, 40% as extra data, and the last
20% as the validation set. We perform training and evaluation at a resolution of 224×224.

Hyperparameters We use the following hyperparameters, which were taken from the recom-
mended FFCV configuration:

Parameter Value

Batch Size 1024
Epochs 16

Peak LR 0.5
Momentum 0.9

Weight Decay 5× 10−4

Peak Epoch 2

Caption generation We again generate the captions programmatically using the caption “a photo
of a <adjective> <noun> <prepositional phrase>.” We use the following adjectives: [None, ’white’,
’blue’, ’red’, ’green’, ’black’, ’yellow’, ’orange’, ’brown’, ’group of’, ’close-up’, ’blurry’, ’far away’].

Since there are 1000 ImageNet classes, we need a way to group classes together to more scalably
assign prepositional phrases that makes sense (for example, the sentence “a purple lawn-mower that
is flying in the air” is likely out of distribution for the CLIP encoder.) We consider a set of ancestor
nodes in the WordNet hierarchy, and assign each ImageNet class to its closest ancestor in the set. The
set of ancestors and the number of ImageNet classes associated to each is below.

• {’fish’: 16, ’bird’: 59, ’amphibian’: 9, ’reptile’: 36, ’invertebrate’: 61, ’mammal’: 30,
’marsupial’: 3, ’aquatic mammal’: 4, ’canine’: 130, ’feline’: 13, ’rodent’: 6, ’swine’: 3,
’bovid’: 9, ’primate’: 20, ’device’: 124, ’entity’: 59, ’vehicle’: 7, ’aircraft’: 4, ’structure’:
57, ’wheeled vehicle’: 40, ’container’: 32, ’equipment’: 37, ’implement’: 36, ’covering’:
43, ’furniture’: 21, ’vessel’: 32, ’fabric’: 6, ’train’: 1, ’instrumentality’: 12, ’appliance’: 12,
’bus’: 3, ’food’: 38, ’fruit’: 16, ’geological formation’: 9, ’person’: 3, ’flower’: 2, ’fungus’:
7 }

We then use the following set of prepositions for each class. Specifically, all classes use the set of
prepositions [None, ’outside’, ’inside’, ’on a black background’, ’on a white background’, ’on a
green background’, ’on a blue background’, ’on a brown background’]. Furthermore, depending on
their assigned ancestor class, they use the following class specific prepositions

• ’reptile’, ’amphibian’: [’in a tank’, ’on the ground’, ’on a rock’, ’in the grass’]
• ’marsupial’, ’swine’, ’bovid’, ’feline’, ’canine’, ’rodent’: [’in the grass’, ’in a house’, ’in the

forest’, ’on the ground’, ’with a person’]
• ’fungus’: [’on the ground’, ’in the grass’]
• ’food’: [’on a plate’, ’one the ground’, ’on a table’, ’with a person’]
• ’geological formation’, ’train’, ’mammal’, ’structure’, ’entity’: []
• ’wheeled vehicle’, ’bus’, ’vehicle: [’on the road’, ’parked’]
• ’fruit’, ’fruit’, ’flower’: [’on a table’, ’on the ground’, ’on a tree’, ’with a person’, ’in the

grass’]
• ’fish’, ’aquatic mammal’: [’in a tank’, ’with a person’, ’underwater’]
• ’person’: [’in a house’, ’on a field’]
• ’equipment’,’instrumentality’, ’appliance’, ’container’, ’fabric’, ’covering’, ’device’, ’imple-

ment: [’on a table’, ’with a person’, ’with a hand’]
• ’primate’: [’in a tree’, ’on the ground’, ’in the grass’]
• ’invertebrate’: [’in the grass’, ’on the ground’, ’in a house’]
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• ’bird’: [’in the air’, ’on the ground’, ’in a cage’, ’in the grass’, ’flying’, ’perched’]
• ’aircraft’: [’in the air’, ’on the ground’]
• ’furniture’: [’in a house’]
• ’vessel’: [’in the water’, ’docked’, ’in the ocean’]

Finally, the ImageNet class names themselves can include quite niche words (which may not be
well-represented by CLIP). We thus use as the noun the ancestor corresponding to the ImageNet class.
As a reference caption, we use “A photo of a <ancestor>”.
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C.2.1 FURTHER IMAGENET EXAMPLES

In Figure 31 we show additional results for Imagenet classes cauliflower and agama.

Agama

SVM Caption: “a photo of a blurry reptile on a white background”

SVM Caption: “A photo of a blue reptile”

Cauliflower

SVM Caption: “a photo of a green food with a person”

SVM Caption: “a photo of a yellow food on a white background”

Hard Exemplars

Easy Exemplars

Figure 31: Most extreme images/captions surfaced by our framework for ImageNet classes cauliflower
and Agama

C.2.2 IMAGENET AND CIFAR-10 NORMALIZED PLOTS

Since ImageNet and CIFAR-10 have different test set sizes (50 examples and 1000 examples per
class respectively), here we plot equivalents of Figures 7b and 10b. In Figure 32, instead of plotting
the top K images considered on the x-axis, we plot the fraction of the test set considered (from to 0%
to 100% of the test set). On the right-hand side of each plot, when this fraction is 1, we consider the
entire test set (thus, the easy and hard subpopulations both have accuracy equal to the overall test
accuracy).
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(a) CIFAR-10
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(b) ImageNet

Figure 32: For CIFAR-10 and ImageNet, we plot the accuracy of the K closest images to the positive
or the negative caption for each class averaged over classes. On the x-axis, we plot the fraction of the
test considered.
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C.2.3 DO FAILURE DIRECTIONS GENERALIZE TO OTHER ARCHITECTURES?

In this section, we perform our method on a second independent run of a ResNet18, as well as on
a ResNet50. In Figure 33, we then plot the accuracies of the ImageNet test images that are closest
to the extracted positive and negative captions. We find that our method behaves similarly on these
models as in Figure 10b.
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(a) ResNet18 (independent run)
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(b) ResNet50

Figure 33: We run our method on (a) an independent run of a ResNet18 and (b) a ResNet50. As in
Figure 10b, we plot the accuracy of the top K images closest to the positive and negative captions.
The identified hard subpopulation has a lower accuracy than the identified easy subpopulation.

In Figure 34, we find that on a few example classes, the failure modes extracted by our method for a
ResNet50 are similar to those extracted by the ResNet18 (see Figures 10a and 31).

Agama

Tench

SVM Caption: “a photo of a group of fish”

SVM Caption: “a photo of a orange fish with a person”

SVM Caption: “a photo of a green reptile inside”

SVM Caption: “a photo of a blue reptile on the ground”

Hard Exemplars

Easy Exemplars

Red Wolf

Cauliflower

SVM Caption: “a photo of a blurry food with a person”

SVM Caption: “a photo of a yellow food on the ground”

SVM Caption: “a photo of a white canine with a person”

SVM Caption: “a photo of a orange canine in a house”

Hard Exemplars

Easy Exemplars

Figure 34: We display the most extreme examples and SVM captions when running our method for a
ResNet50. We find that the failure directions are very similar to those extracted for a ResNet18.

Do the failure directions that we extracted using the ResNet18 also capture failure modes for other
architectures? To answer this question, we measure the subpopulation accuracies of each of these
models (as well as a pre-trained ViT-B) when using the ResNet18 positive/negative SVM captions
to define our subpopulations of interest (Figure 35). We find that these ResNet18 captions perform
almost as well as the SVM captions extracted for the specific underlying model, and define clear
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“easy” and “hard” subpopulations. Thus, the directions extracted for the ResNet18 also represent real
failure modes for other architectures.
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(a) ResNet18 (independent run)
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(b) ResNet50
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(c) ViT-B

Figure 35: We display the accuracies for various architectures of the test images closest to the SVM
captions extracted from a ResNet18. The directions extracted for the ResNet18 represent real failure
modes for other architectures.

C.2.4 RESULTS ON FULL IMAGENET SPLIT

In Figure 36, we additionally run our method on an ImageNet split of 80% train and 20% validation
(without any extra data). We find that our method behaves similarly to Figure 10b.
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(a) ResNet18 (independent run)

Figure 36: We run our model on an 80% train, 20% validation split of ImageNet, and display the
accuracies of the test images closest to the positive and negative caption.
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SVM Hard 
Exemplars

SVM Easy 
Exemplars

Lowest
Confidence

Highest 
Confidence

Figure 37: The most extreme examples by SVM decision value and by confidence for the “no effusion”
class. Notably, the SVM distills a failure mode that is not easily seen in the low confidence examples.
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% Flagged that is AP 59.826 %

Figure 38: The fraction of examples from the “no
effusion" class that are taken in the AP position.
Notably, the base model disproportionately strug-
gles on AP images, and the majority of images
flagged by our framework are AP.
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Figure 39: The fraction of the top K examples
from “no effusion” class that are AP. We compare
using the SVM’s decision value and the model’s
confidences to select these images.

C.3 CHESTX-RAY14

We apply our framework to the ChestXray-14 (Rajpurkar et al., 2017) dataset. This dataset contains
frontal X-ray images labeled with 14 different conditions. ChestXray-14 is a multi-label tagging task
(i.e., a single image can have more than one condition), so we treat each condition as its own binary
problem. In this section, we focus on the condition Effusion. Results on other conditions can be
found in Appendix C.3.

The trained SVM identifies visually distinguishable failure mode directions in latent space. As
shown in Figure 37, the representative images flagged by this SVM as most incorrect are blurrier and
less bright. Moreover, this trend is not reflected by the least confident images, indicating that our
framework is isolating a different trend than the one corresponding to ordering the images by base
model confidence.

In fact, we find that the SVM may be picking up on the position in which the exam was conducted.
While the majority of the X-rays are Posterior-Anterior (PA) radiographs, a little over a third are
Anterior-Posterior (AP). PA radiographs are usually clearer, but require the patient to be well enough
to stand (Tafti & Byerly, 2020). Examples of AP and PA radiographs from the dataset can be found
later in this section.

As shown in Table 38, the SVM for the class “no effusion” flags a large number of the AP radiographs
as incorrect. This indicates that the model might indeed rely on the position in which the radiograph
was taken to predict whether the patient was healthy. Moreover, the SVM selects the AP examples
more consistently than ordering the radiographs by the base model’s confidence (Figure 39).

Finally, in the rest of this appendix, we discuss the experimental details and additional results for
applying our framework to the ChestX-ray14 dataset.

C.3.1 EXPERIMENTAL DETAILS

We use the given train, validation, and test splits for the ChestX-ray14 dataset. We use a resolution of
224× 224, and consider each of the 14 conditions separately.
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Hyperparameters We use the following hyperparameters, which are the same as for ImageNet.

Parameter Value

Batch Size 1024
Epochs 16

Peak LR 0.5
Momentum 0.9

Weight Decay 5× 10−4

Peak Epoch 2

C.3.2 EXAMPLES OF AP AND PA IMAGES

The ChestX-ray14 Images have different positions in which the exam could have been conducted.
While the majority of the X-rays are Posterior-Anterior (PA) radiographs, a little over a third are
Anterior-Posterior (AP).

PA radiographs are usually clearer, and the position of the scapula obstructs less of the lung; however,
they require the patient to be well enough to stand (Tafti & Byerly, 2020). Examples of AP and PA
radiographs from the dataset for the same patient and same resolution can be found in Figure 40.
There are often also visible markers on the radiograph (i.e the words AP or portable) which distinguish
the two.

(a) Patient 1: AP (b) Patient 1: PA

(c) Patient 2: AP (d) Patient 2: PA

Figure 40: Examples of AP vs PA radiographs for the same patient.
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C.3.3 RESULTS FOR ADDITIONAL CONDITIONS

Effusion We begin with the condition “effusion". Figure 41 displays the most extreme figures by
SVM decision value and confidence for each class. We additionally plot, for the top K values ordered
by most negative decision value or confidence, the fraction of images that were AP radiographs. We
find that, to a higher degree than confidences, the model associates AP images as hard for the healthy
class and easy for the non-healthy class.

SVM Hard 
Exemplars

SVM Easy 
Exemplars

Lowest
Confidence

Highest 
Confidence

(a) Class: No Effusion

SVM Hard 
Exemplars

SVM Easy 
Exemplars

Lowest
Confidence

Highest 
Confidence

(b) Class: Effusion

Figure 41: Effusion. Left: Most extreme images according to SVM decision value and confidences.
Right: The fraction of the top K images that were AP. We order images by the most negative SVM
decision value or by the lowest model confidence.
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Mass We now consider the condition Mass (Figure 42). We again find that the SVM picks up on
distinct visual patterns that were not surfaced by confidences. Moreover, we interestingly find that
our framework surfaces AP images as hard for the non-healthy class, as opposed to the healthy class
in the case of Effusion.

SVM Hard 
Exemplars

SVM Easy 
Exemplars

Lowest
Confidence

Highest 
Confidence

(a) Class: No Mass

SVM Hard 
Exemplars

SVM Easy 
Exemplars

Lowest
Confidence

Highest 
Confidence

(b) Class: Mass

Figure 42: Mass. Left: Most extreme images according to SVM decision value and confidences.
Right: The fraction of the top K images that were AP. We order images by the most negative SVM
decision value or by the lowest model confidence.
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Infiltration Finally, we consider the condition Infiltration (Figure 43). As in the case of Effusion,
the framework associates AP with easier images for the non-healthy class and, to a lesser extent, hard
images for the healthy class.

SVM Hard 
Exemplars

SVM Easy 
Exemplars

Lowest
Confidence

Highest 
Confidence

(a) Class: No Infiltration

SVM Hard 
Exemplars

SVM Easy 
Exemplars

Lowest
Confidence

Highest 
Confidence

(b) Class: Infiltration

Figure 43: Infiltration. Left: Most extreme images according to SVM decision value and confidences.
Right: The fraction of the top K images that were AP. We order images by the most negative SVM
decision value or by the lowest model confidence.
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