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Abstract
Hindsight experience replay and goal relabel-
ing are successful in reinforcement learning (RL)
since they enable agents to learn from failures.
Despite their successes, we lack a theoretical un-
derstanding, such as (i) why hindsight experience
replay improves sample efficiency and (ii) how to
design a relabeling method that achieves sample
efficiency. To this end, we construct an exam-
ple to show the information-theoretical improve-
ment in sample efficiency achieved by goal re-
labeling. Our example reveals that goal relabel-
ing can enhance sample efficiency and exploit the
rich information in observations through better
hypothesis elimination. Based on these insights,
we develop an RL algorithm called GOALIVE.
To analyze the sample complexity of GOALIVE,
we introduce a complexity measure, the goal-
conditioned Bellman-Eluder (GOAL-BE) dimen-
sion, which characterizes the sample complex-
ity of goal-conditioned RL problems. Com-
pared to the Bellman-Eluder dimension, the goal-
conditioned version offers an exponential im-
provement in the best case. To the best of our
knowledge, our work provides the first character-
ization of the theoretical improvement in sample
efficiency achieved by goal relabeling.

1. Introduction
Numerous RL problems encountered in real-world scenar-
ios involve sparse rewards and vast state spaces (Silver
et al., 2017; Savinov et al., 2018; Riedmiller et al., 2018),
making them challenging to solve due to the lack of mean-
ingful feedback. A widely used technique to address these
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challenges is hindsight experience replay and goal relabel-
ing (Andrychowicz et al., 2017). Such algorithms typi-
cally employ a goal-dependent reward. In each iteration,
the agent updates the value function concerning a relabeled
goal rather than the target goal. Numerous empirical stud-
ies have demonstrated the effectiveness of hindsight ex-
perience replay and goal relabeling in various scenarios
(Andrychowicz et al., 2017; Pong et al., 2018; Fang et al.,
2019; Colas et al., 2019; Li et al., 2020; Pitis et al., 2020;
Zhang et al., 2020).

Despite its empirical success, the theoretical understanding
of hindsight experience replay and goal relabeling is still
elusive. Empirical studies have employed various meth-
ods for these techniques; however, these methods lack the-
oretical guarantees (Andrychowicz et al., 2017; Pong et al.,
2018; Nair et al., 2018; Pitis et al., 2020). Additionally, the
design of provably efficient algorithms incorporating goal
relabeling remains unclear, as existing research on efficient
exploration (Jiang et al., 2017; Cai et al., 2019; Jin et al.,
2020b) does not incorporate goal relabeling. While prior
research has produced sample-efficient algorithms for mul-
titask RL and reward-free RL (Jin et al., 2020a; Lu et al.,
2022; Cheng et al., 2022), which share similarities with
goal-conditioned RL, these results do not fully capture the
benefits of goal relabeling.

Consequently, we aim to enhance the theoretical under-
standing of goal relabeling by addressing the following
questions: First, does hindsight experience replay and goal
relabeling provably improve sample efficiency? Second, if
the answer is positive, how does goal relabeling contribute
to this improvement? Third, can we design a principled
goal-conditioned algorithm that provably achieves better
sample efficiency for problems with sparse rewards and
large state spaces? Our contributions address these ques-
tions and can be summarized as follows.

• For the first problem, we provide an affirmative an-
swer by constructive proof. We show in §3 that
there exist MDPs for which model-free algorithms
using goal-conditioned value functions achieve poly-
nomial sample complexity. In contrast, all model-
free methods, given a value function class without
multiple goals, incur sample complexity exponential
in the horizon. In other word, we show that using

1



How Does Goal Relabeling Improve Sample Efficiency?

goal-conditioned value functions exponentially im-
proves the sample complexity in the best case. To the
best of our knowledge, this is the first result illustrat-
ing the information-theoretical improvement achieved
by using goal-conditioned value functions in model-
free algorithms.

• For the second question, we show in §3.2 that we can
better utilize the information in the observation by us-
ing goal relabeling in the algorithm. By incorporat-
ing goal-conditioned value functions into model-free
algorithms, we can evaluate multiples Bellman errors
with the rewards concerning multiple goals. Such a
procedure allows us to eliminate more hypotheses us-
ing the value function of the same state-action pair
with respect to different goals, which is more sample
efficient.

• For the third question, we propose a novel algo-
rithm called GOAl-conditioned optimism Led Itera-
tive Value-function Elimination (GOALIVE) in §4 us-
ing the above intuition. By using goal relabeling, the
agent can obtain rich feedback from the observation
even when the reward with respect to the target goal
is sparse. Additionally, we employed general func-
tion approximation to handle large state space. We
show that the relabeling method employed in existing
algorithms (Andrychowicz et al., 2017; Li et al., 2020;
Pitis et al., 2020) can be regarded as a modification of
our algorithm.

• To analyze the algorithm we proposed, we introduce
a new complexity measure called GOAL-conditioned
Bellman-Eluder (GOAL-BE) dimension in §5.1, which
characterizes the complexity of goal-conditioned RL
problems. We demonstrate that the sample com-
plexity of GOALIVE can be upper-bounded by the
GOAL-BE dimension. We prove that the proposed
complexity measure is not larger than the original
Bellman-Eluder dimension, which shows that our def-
inition is more general. We also show in §5 that
GOAL-BE dimension can be exponentially smaller
than the original one in the best case.

To the best of our knowledge, this is the first study to de-
velop a provably efficient goal-conditioned algorithm and
explain the improvement achieved by goal relabeling.

1.1. Related Work

Our work is closely related to the line of research on prov-
ably efficient exploration in the function approximation set-
ting (Jiang et al., 2017; Jin et al., 2020b; Cai et al., 2019;
Du et al., 2021; Uehara et al., 2021; Zhang et al., 2022; Liu
et al., 2024). This line of research typically considers ex-
ploration for a single task and is not readily applicable to

scenarios involving multiple goals (Jiang et al., 2017; Jin
et al., 2020b; Cai et al., 2019). Sun et al. (2019) observed
that model-free algorithms can be inefficient since they fail
to exploit the information in observations. Our work shows
that using goal-conditioned value functions improves the
sample efficiency of model-free algorithms.

The study of efficient exploration in multitask settings (Lu
et al., 2022; Cheng et al., 2022) is more closely related to
our work, as it considers multiple goals. However, these
studies cannot explain the benefits of using multitask meth-
ods for solving a single task. The research on reward-free
exploration (Jin et al., 2020a; Wang et al., 2020) also aligns
with our work, as both aim to develop exploration strategies
that do not rely on the original reward. Nonetheless, these
studies employ model-based algorithms, whereas model-
free algorithms are more prevalent in empirical results.

Our work is inspired by empirical findings in hindsight ex-
perience replay and goal relabeling (Andrychowicz et al.,
2017; Pong et al., 2018; Fang et al., 2019; Colas et al.,
2019; Li et al., 2020; Pitis et al., 2020; Zhang et al., 2020).
We provide a theoretical explanation for the improvement
in sample efficiency achieved through goal relabeling.

Notations. We define [n] = {1, . . . , n} when n is an inte-
ger. For a set F , we denote by |F| the cardinality of F .

2. Preliminary
In this paper, we focus on goal-conditioned reinforcement
learning, where the goal serves as a parameter of the re-
ward function. For example, the reward function can be
designed as an indicator function that takes the goal as in-
put and assigns non-zero values only when the final state
matches the specified goal. More specifically, we con-
sider an episodic MDP V∗ = (S,A,G, H,P∗, r∗) with
a state space S ∈ Rd, an action space A, a goal space
G, a horizon H , transition kernels P∗ = {P∗h}Hh=1, and
known reward functions r∗ = {r∗h}Hh=1. We assume that
the reward functions are bounded and deterministic, that is,
‖r∗h‖∞ ∈ [0, 1] for all h ∈ [H]. The agent iteratively inter-
acts with the environment as follows. At the beginning of
each episode, the agent determines a policy π = {πh}Hh=1,
where πh : S × G → ∆(A) for any h ∈ [H]. With-
out loss of generality, we assume that the initial state is
fixed to sinit ∈ S across all episodes. At the h-th step, the
agent receives a state sh and takes an action ah following
ah ∼ πh(· | sh, g∗), where g∗ is the target goal. Subse-
quently, the agent receives a reward r∗h(sh, ah, g

∗) and the
next state following sh+1 ∼ P∗h+1(· | sh, ah). The episode
ends after the agent receives the last state sH+1. For a given
policy π = {πh}Hh=1, we define the value function V πh and
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the Q-function Qπh for any h ∈ [H] and g ∈ G as

V πh (s, g) := Eπ,P∗
[ H∑
i=h

r∗i (si, ai, g)
∣∣∣ sh = s

]
, (1)

Qπh(s, a, g) := Eπ,P∗
[ H∑
i=h

r∗i (si, ai, g)
∣∣∣ sh = s, ah = a

]
.

Here the expectation Eπ,P∗ [·] in (1) is taken with respect to
si+1 ∼ P∗i (· | si, ai) and ai ∼ πi(· | si, g) for i ∈ {h, h +
1, . . . ,H}. For convenience, we define V πH+1(s, g) = 0
for any state s ∈ S and policy π. We then define the goal-
conditioned Bellman operator Th by

Thf(s, a, g) := r∗h(s, a, g) + Es′∼Ph

[
max
a′

f(s′, a′, g)
]
,

we then have Q∗h(s, a, g) = ThQ∗h+1(s, a, g). For sim-
plicity, we define the expected total reward J(π, g) as
J(π, g) = V π1 (sinit, g). The objective of goal-conditioned
RL is to find a policy π∗ that maximizes the expected to-
tal reward with regard to the target goal g∗. Specifically,
for the episodic MDP V∗ = (S,A,G, H,P∗, r∗), we de-
fine the optimalQ-functionQ∗h and the optimal value func-
tion V ∗h asQ∗h(s, a, g) = maxπ Q

π
h(s, a, g) and V ∗h (s, g) =

maxπ V
π
h (s, g) for any (s, a, g) ∈ S×A×G. Correspond-

ingly, we define the optimal goal-conditioned policy π∗ by
the policy that satisfies Q∗h(s, a, g) = Qπ

∗

h (s, a, g) for any
(s, a, g) ∈ S ×A× G.

In this paper, we consider RL with value function approx-
imation. Formally, the learner is given a hypothesis class
F = F1 × · · · × FH , where Fh ⊂ (S × A × G 7→
[0, H − h + 1]) is the set of approximators of Q∗h defined
in (1). We also define fH+1 ≡ 0 for convenience. For a
hypothesis f = {fh}Hh=1, we define the goal-conditioned
average Bellman error by

E(f, π, h, g) : (2)

= Eπ
[
fh(s, a, g)− r∗h(s, a, g)−max

a′∈A
fh+1(s′, a′, g)

]
E(f, π, h) := max

g∈G
|E(f, π, h, g)| .

By Bellman equation, we have E(Q∗h, π, h) = 0 for all
policy π and h ∈ [H]. In this paper, an important tool
we used in the analysis is the Bellman-Eluder dimension,
which characterizes the complexity of an RL problem when
implementing model-free algorithms. In the following, we
introduce the definition of the Bellman-Eluder dimension.
We begin by explaining the concept of ε-independence be-
tween distributions.

Definition 2.1 (ε-independence between distributions). Let
F be a function class defined on X , and ν, µ1, . . . , µn be
probability measures over X . We say ν is ε-independent of
{µ1, µ2, . . . , µn} with respect to F if there exists f ∈ F

such that √√√√ n∑
i=1

{
Ex∼µi

[
f(x)

]}2

≤ ε,

but |Ex∼ν [f(x)]| > ε.

Intuitively, ν is independent of {µ1, . . . , µn} means if that
there exist a hypothesis, so that the value of the loss f is
small at all distribution {µi}ni=1, but the value of the loss
f is rather big at ν. Jin et al. (2021a) propose a dimension
based on the above notion of independence.
Definition 2.2 (Distributional Eluder dimension). Let F
be a function class defined on X × G, and Π be a family
of probability measures over X . The distributional Eluder
dimension dimDE(F ,Π, ε) is the length of the longest se-
quence {ρ1, . . . , ρn} ⊂ Π such that there exists ε′ ≥ ε
where ρi is ε′-independent of {ρ1, . . . , ρi−1} for all i ∈ [n].

Based on Definition 2.1 and 2.2, Jin et al. (2021a) proposed
BE dimension, which characterizes the complexity of a RL
problem using model-free algorithm with general function
approximation in single-task settings.
Definition 2.3 (Bellman Eluder (BE) dimension). Let F =
F1×· · ·×FH , whereFh ⊂ (S×A 7→ [0, H−h+1]). Let
(I−Th)F := {fh−Thfh+1 : f ∈ F} be the set of Bellman
residuals induced by F at step h, and D = {Dh}Hh=1 be a
collection of H probability measure families over S × A.
The ε-Bellman-Eluder of F with respect to D is defined as

dimBE(F ,D, ε) := max
h∈[H]

dimDE

(
(I − Th)F ,Dh, ε

)
.

We remark that their definition is not directly applicable to
goal-conditioned RL. The hypothesis class F in Definition
2.3 does not take the goal g as input. Thus, it remains un-
clear how to incorporate the goal space within the given
definition.

3. Mitigating Information Loss with
Goal-conditioned Value Functions

In this section, we present an example demonstrating
that goal-conditioned model-free algorithms can expo-
nentially improve sample efficiency compared to model-
free algorithms without multiple goals. To the best of
our knowledge, this is the first result illustrating the
information-theoretic improvement achieved by using a
goal-conditioned value function. We introduce the exam-
ple in §3.1 and provide the analysis in §3.2.

3.1. Example

We consider an episodic MDP with horizon H > 3 and
set d = H − 2. The state space is S = {1, 2}d, and
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the action space is A = {1, 2}. Our transition class con-
tains 2d transitions, each of which is uniquely indexed by
a path of length d, p = {p1, p2, . . . , pd}, with pi ∈ {1, 2}.
All the transitions are the same in the first H − 1 steps.
For h ≤ H − 2, when we use action a in the state
sh = (sh,1, . . . , sh,h, . . . , sh,d) in the h-th step, we will
transit to sh+1 = (sh,1, . . . , a, . . . , sh,d).

The transition in the H − 1-th step does not depend
on the action aH−1. In the transition indexed by p =
{p1, p2, . . . , pd}, we will transit to

sH = (1{sH−1,1 = p1}, . . . ,1{sH−1,d = pd})

when we select action a in sH−1 = (sH−1,1, . . . , sH−1,d).
The goal space is G = {0, 1}d, and goal-conditioned re-
ward is

r∗h(s, a, g) = 0 for h ∈ [H − 1], r∗H(s, a, g) = 1{s = g}.

We fix the initial state as s1 = [1]d. We want to
obtain the optimal policy with respect to the reward
{r∗h(s, a, g∗)}Hh=1, where g∗ = [1]d. A graphical illustra-
tion of the setting is provided in Figure 1.

3.2. Sample Efficiency of Model-free Algorithms

In this subsection, we use the provided example to show
that goal-conditioned model-free algorithms can be ex-
ponentially more sample-efficient compared to algorithms
that do not incorporate goals. We first introduce the defini-
tion of model-free algorithms. We then introduce the value
function class we use. Finally, we offer an analysis to show
that goal-conditioned algorithms exponentially improve the
sample efficiency in the given example.

Definition 3.1 (Goal-conditioned Model-free Algorithm).
Given a function class F : (S × A × G) → R, define the
original F-profile ΦF,g∗ : S → R|F|×|A| by ΦF,g∗(s) :=
[f(s, a, g∗)]f∈F,a∈A. An algorithm is model-free using F
without multiple goals if it accesses s exclusively through
ΦF,g∗(s) for all s ∈ S during its entire execution. We
also define the goal-conditioned F-profile ΦF,G : S →
R|F|×|A|×|G| by ΦF,G(s) := [f(s, a, g)]f∈F,a∈A,g∈G . An
algorithm is goal-conditioned model-free using F and G
if it accesses s exclusively through ΦF,G(s) for all s ∈ S
during its entire execution.

Definition 3.1 is a modification of Definition 1 in Sun et al.
(2019). In the definition, G is the space of goal, and
f(s, a, g) is the action-value of (s, a) when we are inter-
ested in the reward indexed by the goal g. We modified
Definition 1 in Sun et al. (2019) to incorporate goal.

Value Function Class. We consider solving this MDP with
model-free algorithms. In the following, we introduce the
value function class we employ for solving this MDP.

For a hypothesis p = (p1, . . . , pd) ∈ {1, 2}d, we define
Qp
h(s, a, g) as the optimal action value function of (s, a)

with respect to the transition p and the reward indexed by
g. It is obvious that Qp

H(s, a, g) = 1{s = g}. For h < H ,
Qp
h(s, a, g) is defined as follows. For sh = (sh,1, . . . , sh,d)

and p = (p1, . . . , pd), we define

fh,d̄(sh, a,p) =

{
1{sh,d̄ = pd̄} when d̄ < h,

1{a = pd̄} when d̄ = h,

for d̄ ≤ h. By the definition of the setting, fh,d̄(sh, a,p)

is the d̄-th component of sH in the transition indexed by p
when we use a in the state sH . Therefore, when we de-
note by Qp

h the optimal value function in the MDP with the
transition indexed by p, we have

Qp
h(sh, a, g) =

h∏
d̄=1

1{fh,d̄(sh, a,p) = gd̄},

where g = (g1, . . . , gd). Intuitively, Qp
h represents the fea-

sibility of reaching the goal state g from the state-action
pair (sh, a). We then define F = F1 × . . . × FH and
Fg∗ = Fg∗,1 × . . .×Fg∗,H , where

Fh : =
{
Qp
h(·, ·, ·) | p ∈ {1, 2}d

}
, (3)

Fg∗,h : =
{
Qp
h(·, ·, g∗) | p ∈ {1, 2}d

}
.

By definition,F contains goal-conditioned value functions,
while Fg∗ only contains value functions with respect to g∗.
In the example above, we have the following lemma, which
show that goal-conditioned value functions exponentially
improve the sample efficiency of model-free algorithms.

Lemma 3.2 (Exponential Improvement of Goal-condi-
tioned Model-free Algorithms). Fix δ, ε ∈ (0, 1]. In
the given example, any model-free algorithm without mul-
tiple goals, which uses Fg∗ in (3) as the value func-
tion class, using o(2H) trajectories outputs a policy π̂
with V π̂(s1, g

∗) ≤ V ∗(s1, g
∗) − 1/2 with probability at

least 1/3. Meanwhile, with probability 1 − δ, there ex-
ists a goal-conditioned model-free algorithm using F in
(3) as the value function class (Algorithm 1) outputs π̂
satisfying V π̂(s1, g

∗) ≥ V ∗(s1, g
∗) − ε using at most

poly(H, 1/ε, log(1/δ)) trajectories for any transition in
this family.

Proof. See Appendix §A for a detailed proof.

Interpretation. Our observation is that, goal-conditioned
model-free algorithms are more effective at utilizing the
rich information in data compared to original model-free
algorithms. In goal-conditioned algorithm, we can obtain
nonzero reward even when the reward with respect to the
target goal is sparse, since we can use the reward with re-
spect to different goals for hypothesis elimination. As a
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(1, 1)

(1, 1) (2, 1)

(1, 1) (1, 2) (2, 1) (2, 2)

(0, 1) (0, 0) (1, 1) (1, 0)

a = 1 a = 2

a = 1 a = 2 a = 1 a = 2

Figure 1. An example of the MDP construction in §3,
with d = 2 and H = 4. All models are determinis-
tic, and each model is uniquely indexed by a sequence
of actions p. We use p∗ to denote the index of the true
model. Here p∗ = (2, 1). The last transition is designed
such that the agent always lands in a state that contains
“0” unless it follows path p∗.

result, we can eliminate more hypotheses using Bellman
errors with respect to different goals, which improves the
sample efficiency. In Definition 3.1, a model-free algorithm
without multiple goals accesses the state s only through the
value concerning the target goal g∗. Therefore, it can only
eliminate hypotheses using the Bellman error with respect
to g∗, which can be zero for most of the hypotheses when
the reward is sparse. By using the reward and value func-
tions with respect to multiple goal, we obtain denser feed-
back, leading to more effective hypothesis elimination.

To illustrate the above idea, we revisit the example in §3.1.
We consider the case where the true transition p∗ = (2, 1)
and the target goal g∗ = (1, 1). For the trajectory τ =
(s1, a1, · · · , ss, a4, s5), we calculate the Bellman error and
provide it in Table 1. As we show in Table 1, since the
reward with respect to the target goal g∗ is sparse, the Bell-
man error of most of the hypotheses is zero if we only con-
sider the target goal g∗. Therefore, we can only eliminate
one hypothesis using the Bellman error with respect to g∗.
Meanwhile, we can obtain nonzero reward and eliminate
all the wrong hypotheses using the reward and Bellman er-
ror with respect to g = (1, 0). Therefore, we can achieve
exponential improvement in sample efficiency using goal
relabeling.

Rationale for Focusing Our Analysis on Model-Free Al-
gorithms. In the above analysis, we focus on model-free
algorithms as they are widely used in existing works that
apply goal relabeling (Andrychowicz et al., 2017; Li et al.,
2020; Pitis et al., 2020). Sun et al. (2019) show that model-
based algorithms are more sample efficient as they lever-
age more supervision. However, model-based algorithms
necessitate an additional, often complex, planning phase to
derive an optimal policy. This phase, particularly in en-
vironments with complex dynamics, introduces substantial
computational costs and a heightened risk of error accu-
mulation. Errors in estimating dynamics during the plan-
ning phase can magnify, potentially resulting in signifi-

cantly suboptimal policies.

In contrast, goal-conditioned model-free algorithms avoid
the complexities of modeling the dynamics and subse-
quent planning, choosing instead to directly approximate
the value function. This direct approach reduces the risk of
error propagation inherent in planning, providing a poten-
tially more robust solution in scenarios where accurately
modeling the dynamics is challenging. Consequently, even
though the goal-conditioned value function’s theoretical
complexity may match or surpass that of the dynamics, the
practical advantages of operational efficiency, robustness,
and applicability make goal-conditioned model-free meth-
ods a compelling choice in complex environments. There-
fore, model-free algorithms are more popular in real-life
application, making it crucial to theoretically analyze the
improvements achieved by goal relabeling in model-free
algorithms.

4. Algorithm: Goal-conditioned Optimism
Led Iterative Value-function Elimination

In §3, we construct an example and show that using goal-
conditioned value function can exponentially improve the
sample efficiency in the best case. It is natural to ask, how
to design an algorithm that provably achieves the improved
sample efficiency? In §3.2 and Table 1, we show that goal-
conditioned value functions improve the sample efficiency
since it make the feedback denser and allows better hypoth-
esis elimination. Based on the idea above, we propose an
algorithm called GOAl-conditioned optimism Led Iterative
Value function Elimination (GOALIVE), which is a modifi-
cation of Algorithm OLIVE proposed in Jiang et al. (2017).

At a high level, our algorithm eliminate hypothesis Qh ∈
Fh using the average Bellman error and the data we have
collected. After elimination, we choose the exploration
policy πt by selecting the most optimistic hypothesis con-
cerning the target goal g∗ and the corresponding greedy
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Bellman error w.r.t the goal g Elimination
g = (0, 0) g = (0, 1) g = (1, 0) g = (1, 1) All goals Only g∗

H
yp

ot
he

si
s

of
p

p = (1, 1) 1 0 −1 0 Yes No

p = (1, 2) 0 1 −1 0 Yes No

0 0 0 0p = (2, 1) No No

p = (2, 2) 0 0 −1 1 Yes Yes

Table 1. Comparison between using multiple goals and only using the target goal g∗ for hypothesis elimination. In this table, we use the
blue color to highlight the true hypothesis p∗ and the target goal g∗. This table present the Bellman error Qp

3 (s3, a3, g)−r∗3(s3, a3, g)−
Qp

4 (s4, a4, g), where s3 = (2, 2) and s4 = (1, 0). The table demonstrates that all incorrect hypotheses can be eliminated after goal
relabeling with the given data, whereas only one hypothesis can be eliminated using the Bellman error with respect to the target goal
g∗.

Algorithm 1 GOAl-conditioned optimism Led Iterative
Value function Elimination (GOALIVE)

1: Input: Hypothesis class F , elimination thresholds ζact
and ζelim, numbers of iterations nact and nelim.

2: Initialize: B0 ← F , Dth ← ∅ for all h and t.
3: for iteration t = 1, 2, . . . do
4: Choose policy πt = πft , where f t =

argmaxf∈Bt−1 f(x1, πf (x1), g∗).
5: Execute πt for nact episodes and update Dth to in-

clude the new (sh, ah, sh+1) tuples.
6: Estimate Ê(f t, πt, h, g∗) for all h ∈ [H], where

Ê(f, πt, h, g)

=
1

|Dth|
∑

(s,a,s′)∈Dt
h

∆1[s, a, s′, g, fh, rh, fh+1],

where ∆1 is defined in (4).
7: if

∑H
h=1 Ê(f t, πt, h, g∗) ≤ Hζact then

8: Terminate and output πt.
9: end if

10: Pick any h ∈ [H] for which Ê(f t, πt, h, g∗) ≥ ζact
and set Dth = ∅.

11: Execute πt for nelim episodes and update Dth to in-
clude the new (sh, ah, sh+1) tuples.

12: Estimate Ê(f, πt, h) for all f ∈ F , where

Ê(f, πt, h)

=
1

|Dth|

∣∣∣∣∣∣max
g∈G

∑
(s,a,s′)∈Dt

h

∆1[s, a, s′, g, fh, rh, fh+1]

∣∣∣∣∣∣ .
13: Update Bt =

{
f ∈ Bt−1 :

∣∣∣Ê(f, πt, h)
∣∣∣ ≤ ζelim

}
.

14: end for

policy.

The pseudocode of GOALIVE is given in Algorithm 1. In
each episode, our algorithm performs three main steps:

• Optimistic planing: we compute the most optimistic
hypothesis Qk with regard to the target goal g∗, and
choose πk to be its greedy policy in Line 3. We then
use πk to interact with the environment in Line 4.

• Computing Bellman error: We evaluate the average
Bellman error of fk under πk in Line 5. We activate
the elimination phase if the Bellman error is large, and
otherwise returned πk in Line 7.

• Eliminating hypothesis with large Bellman error: pick
a step t ∈ [H] where the estimated Bellman error ex-
ceeds the activation threshold ζact; eliminate all hy-
potheses in the candidate set whose Bellman error at
step t exceeds the elimination threshold ζelim. We
highlight that we evaluate the average Bellman er-
ror with regard to all the goals in the goal space,
instead of only on g∗, which allows better hypothe-
sis elimination.

Connection with Existing Algorithms. The main differ-
ence between our algorithm and the original OLIVE pro-
posed in Jiang et al. (2017) is that, we use goal relabeling
when evaluating Bellman error. More specifically, for hy-
pothesis f t, step h, and the policy πt, we use

gth = argmax
g∈G

∑
(s,a,s′)∈Dh

∆1[s, a, s′, g, fh, rh, fh+1], (4)

where ∆1[s, a, s′, g, fh, rh, fh+1]

=

(
fh(s, a, g)− rh(s, a, g)−max

a′∈A
fh+1(s′, a′, g)

)
,

for hypothesis elimination instead of only using the target
goal g∗. Intuitively, goal relabeling allows us to eliminate
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more hypotheses in the elimination phase and improve the
sample efficiency compared to algorithms that do not use
multiple goals. The idea of using Bellman error for goal
relabeling has also appeared in previous work (Zhang
et al., 2020). Our analysis provides theoretical justification
for this relabeling method. We remark that we use average
Bellman error to address the stochastic dynamic.

In general, Equation (4) is difficult to compute, as it re-
quires iterating over the goal space. Existing algorithms
(Andrychowicz et al., 2017; Li et al., 2020; Pitis et al.,
2020) use the state space as the goal space. They view
the states in the data as achieved goals, and minimize Bell-
man error using achieved goals instead of all possible goals.
However, this approach is not sample efficient since they
might eliminate more hypotheses by evaluating the Bell-
man error on multiple goals. Therefore, their algorithms
can be viewed as modifications of Algorithm 1, which
favor computational efficiency over sample efficiency.
We further note that, in some special cases, the achieved
goal is the same as the goal that maximizes the Bellman
error, which is formalized in the following lemma.

Lemma 4.1 (Equivalence of Relabeling Method). We say
a hypothesis class is deterministic, if for any (f, s, a, g) ∈
F × S × A × G, there exists a unique s′ ∈ S, such that
fh(s, a, g) = r∗h(s, a, g) + maxa′∈A fh+1(s′, a′, g).

Suppose we have r∗H(s, a, g) = 1{s = g} and
r∗H−1(s, a, g) = 0 for all (s, a, g) ∈ S × A × G. Then
for a trajectory (s1, a1, . . . , aH , sH+1), we have

sH ∈ argmax
g∈G

∆2[sH−1, aH−1, g, fH−1, rh, fh+1, P
∗
h ]

where ∆2[s, a, g, f, r, f ′, P ]

=

∣∣∣∣f(s, a, g)− r(s, a, g)− Es′∼P (·|s,a) max
a′∈A

f ′(s′, a′, g)

∣∣∣∣
for any f ∈ F when F and P ∗H−1 are deterministic. That
is, the achieved goal is the goal that maximize the Bellman
error.

Proof. See Appendix §B.1 for a detailed proof.

Lemma 4.1 shows that in the example in §3, the relabel-
ing method in Algorithm 1 is the same with the relabel-
ing method in Andrychowicz et al. (2017), which theoreti-
cally justifies their method. This equivalence also suggests
that the empirical performance observed in standard goal-
conditioned RL benchmarks for existing relabeling meth-
ods could serve as an indirect measure of our algorithm’s
efficacy.

Repeating sampling using the same policy. In Algorithm
1, we sample multiple trajectories using the policy πk. This
procedure differs from GOLF proposed by Jin et al. (2021a),

and we only have the upper bound of sample complexity in-
stead of regret. However, this procedure is necessary since
the maximum operator cannot be interchanged with the ex-
pectation operator. More specifically, the loss we want to
evaluate is

max
g∈G

∣∣E(s,a,s′)∼µ[∆1(s, a, s′, g,Qh, rh, Qh+1)]
∣∣

where ∆1 is defined in (4), and we can only evaluate

E(s,a,s′)∼µ[max
g∈G
|∆1(s, a, s′, g,Qh, rh, Qh+1)|]

if we have only one trajectory to each policy. The latter
one can be large even for the true hypothesis, and cannot
be used for hypothesis elimination.

5. Analysis of GOALIVE
In this section, we present the analysis of GOALIVE. We
first introduce the complexity measure we use. We then
present the sample complexity of GOALIVE.

5.1. Complexity Measure: Goal-conditioned
Bellman-Eluder Dimension

In this section, we propose a new complexity measure
called goal-conditioned Bellman-Eluder dimension, which
quantifies the gain of using goal in model-free algorithms.
To enable general function approximation, we modify the
Bellman-Eluder dimension, which was proposed by Jin
et al. (2021a) to characterize the complexity of an RL prob-
lem with general function approximation. We start by de-
veloping a new goal-conditioned version of distributional
Eluder dimension.

Definition 5.1 (Goal-conditioned ε-independence between
Distributions). Let F be a function class defined on X ×G,
, and ν, µ1, . . . , µn be probability measures overX . We say
ν is goal-conditioned ε-independent of {µ1, µ2, . . . , µn}
with respect to F and g∗ if there exists f ∈ F and g ∈ G
such that √√√√ n∑

i=1

max
g∈G

∣∣∣Ex∼µi

[
f(x, g)

]∣∣∣2 ≤ ε,
but |Ex∼ν [f(x, g∗)]| > ε.

Definition 5.2 (Goal-conditioned Distributional Eluder Di-
mension). Let F be a function class defined on X ×
G, and Π be a family of probability measures over
X . The goal-conditioned distributional Eluder dimen-
sion dimGOAL−DE(F ,Π, ε) is the length of the longest se-
quence {ρ1, . . . , ρn} ⊂ Π such that there exists ε′ ≥ ε
where ρi is ε′-independent of {ρ1, . . . , ρi−1} for all i ∈ [n].
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When the space of goal only contains the goal we con-
cern about, that is, G = {g∗}, Definition 5.2 degenerates
to the original definition of distributional Eluder dimension
in Jin et al. (2021a). In Definition 5.1, we can consider∣∣Ex∼µi

[
f(x, g)

]∣∣ as the loss of hypothesis f concerning
the goal g evaluated on the distribution µi. Intuitively, ν
is independent of {µ1, . . . , µn} means if that there exist a
hypothesis, where the loss of f is small with respect to all
g ∈ G and {µi}ni=1, but the loss is considerably larger on
ν and the target goal g∗. Since we can choose any goals
for hypothesis elimination, the loss of the hypothesis that
have not been eliminated should be small with respect to
all g ∈ G. Therefore, we incorporate multiple goals in Def-
inition 5.1 by taking a maximum over g ∈ G. Equipped
with Definitions 5.1 and 5.2, we are ready to present the
definition of the goal-conditioned Bellman-Eluder (GOAL-
BE) dimension.

Definition 5.3 (GOAL-conditioned Bellman-E-
luder (GOAL-BE) Dimension). Let (I − Th)F :=
{fh − Thfh+1 : f ∈ F} be the set of Bellman residuals
induced by F at step h, and Π = {Πh}Hh=1 be a collection
of H probability measure families over X × U . The
ε-goal-conditioned Bellman-Eluder of F with respect to Π
is defined as

dimGOAL−BE(F ,Π, ε) :=

max
h∈[H]

dimGOAL−DE

(
(I − Th)F ,Πh, ε

)
.

Similar with Jin et al. (2021a), GOAL-BE dimension
also depends on the choice of the distribution class Π.
To simplify the presentation, we only consider DF :=
{DF,h}Hh=1, where DF,h denotes the set of all probabil-
ity measures over S × A at the h−th step, which can
be generated by executing the greedy policy πf with re-
gard to the target goal g∗ induced by any f ∈ F , i.e.,
πf,h(·) = argmaxa∈A fh(·, a, g∗) for all h ∈ [H].

Comparison with Original Bellman-Eluder Dimension.
Definition 5.3 can be viewed as a modification of the
original Bellman-Eluder dimension proposed by Jin et al.
(2021a). In fact, Definition 5.3 is more general than the
Bellman-Eluder dimension. Definition 5.3 reduces to the
original definition of the Bellman-Eluder dimension in Jin
et al. (2021a) when G = {g∗}. Intuitively, since we have
multiple loss for the same hypothesis, we are able to elim-
inate more hypothesis with the same data, which improves
the sample efficiency and reduces the complexity of the
original problem. This intuition is formalized in the fol-
lowing two lemmas. Lemma 5.4 shows that GOAL-BE di-
mension is smaller than the original BE dimension. Lemma
5.5 shows that in the example in §3, GOAL-BE dimen-
sion is exponentially smaller than the original BE dimen-
sion. Lemmas 5.4 and 5.5 show that using goal-conditioned
value functions provably reduces the complexity of a RL

problem.

Lemma 5.4 (Strictly Improvement over Original Bell-
man-Eluder Dimension). We define

Fg∗ = Fg∗,1 × . . .×Fg∗,H , Fg = Fg,1 × . . .×Fg,H ,

where Fh,g∗ = {Qh(·, ·, g∗) | Q ∈ Fh} and Fh,g =
{Qh(·, ·, g) | Q ∈ Fh, g ∈ G} . We then have

dimBE(Fg,Π, ε) ≥ dimBE(Fg∗ ,Π, ε)
and dimBE(Fg∗ ,Π, ε) ≥ dimGOAL−BE(F ,Π, ε). (5)

Proof. See Appendix §B.2 for a detailed proof.

Lemma 5.5 (Exponential Improvement in the Best Case).
In the example in §3, we have

dimBE(Fg∗ ,DF , ε) ≥ 2d − 1,

dimGOAL−BE(F ,DF , ε) = 1,

where Fg∗ = Fg∗,1 × . . . × Fg∗,H , F = F1 × . . . × FH .
Here Fg∗,h and Fh are defined in (3).

Proof. See Appendix §B.3 for a detailed proof.

5.2. Sample Complexity of GOALIVE

We first present the realizability assumption on the hypoth-
esis classF , which is commonly used in previous work (Jin
et al., 2021a; Sun et al., 2019).

Assumption 5.6 (Realizability). We assume that Q?h ∈ Fh
for all h ∈ [H].

Realizability requires that the hypothesis class is well-
specified and is able to characterizes the connection be-
tween different goals. We also introduce the definition
of the covering number, which is widely used in previous
work (Jin et al., 2021a;b; Liu et al., 2022).

Definition 5.7 (Covering Number of Hypothesis Class).
The ε-covering number of a set V under metric ρ, denoted
as N (V, ε, ρ), is the minimum integer n such that there ex-
ists a subset V0 ⊂ with |V0| = n, and for any x ∈ V , there
exists y ∈ V0 such that ρ(x, y) ≤ ε. For two hypotheses
f = {fh}Hh=1, f ′ = {f ′h}Hh=1, we define

‖f − f ′‖∞ (6)

= max
(h,s,a,g)∈[H]×S×A×G

|fh(s, a, g)− f ′h(s, a, g)|.

For F = F1 × . . . × FH , we define N (F , ε) =

maxh∈[H]N (Fh, ε, ‖·‖∞).
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Definition 5.8 (Covering Number of Goal Space). We say
G0 is an ε-covering of the goal space G if for any g ∈ G,
there exists g0 ∈ G0, such that

|rh(s, a, g)− rh(s, a, g0)| ≤ ε,
|fh(s, a, g)− fh(s, a, g0)| ≤ ε,

hold for all f ∈ F , h ∈ [H], and (x, u) ∈ X ×U . Let G(ε)

be the ε-covering of G with the smallest cardinal, and let
N (G, ε) = |G(ε)|.

When |G| < ∞, we have N (G, ε) ≤ |G|. Equipped
with the assumption and definitions above, we are ready
to present the sample complexity of GOALIVE.

Theorem 5.9 (Sample complexity of GOALIVE.). Under
Assumption 5.6, if we choose

ζgoal = ε/
(
600H

√
d
)
, ζact = 2ε/H,

ζelim = ε/
(
4H
√
d
)
, nact = 2592H2ι/ε2,

and nelim = 4608H2d log2(N (F , ζelim/8)) · ι/ε2,
where d = dimGOAL−BE

(
F ,DF , ε/H

)
,

ι = log2[N (G, ζgoal)Hd/(δε)],

then with probability at least 1 − δ, Algorithm 1
will output an O(ε)-optimal policy using at most
O(H3d2 log2[NF (ζelim/8)] · ι/ε2) episodes.

Proof. See Appendix §C for a detailed proof.

Theorem 5.9 shows that RL problems with low GOAL-
BE dimension can be solved efficiently by GOALIVE un-
der the realizability assumption. The sample complexity of
GOALIVE is Õ(H3d2/ε2), which is polynomial in 1/ε and
the number of horizon. The dependency on the complex-
ity measure is the same with Jin et al. (2021a). However,
as we show in Lemma 5.4 and Lemma 5.5, GOAL-BE di-
mension is not larger than the original BE dimension, and
can be exponentially smaller in the best case. The cost
we pay for the improvement on the complexity measure
is the log-covering number of the goal space. For the ex-
ample in §3.1, we have |G| = 2d. Therefore, we have
logN (G, ζgoal) ≤ H log 2, which is polynomial in the hori-
zon H .

Comparison with previous work on multitask RL. The
setting we study can be viewed as a special case of multi-
task RL. The difference is that we only concern about the
suboptimality of the target task g∗ instead of all task. Pre-
vious work (Lu et al., 2022) has also developed sample-
efficient algorithms for multitask RL. Lu et al. (2022)

designed a model-free algorithm for multitask RL and
demonstrated its sample efficiency. However, the com-
plexity measure they used is the original Eluder dimension,
which cannot exploit the connection between goals. More-
over, they considered that the tasks are randomly generated,
which is different from the empirical work of goal relabel-
ing, where the algorithm can set the goal in the training
phase. Therefore, their results cannot explain the success
of goal relabeling.

Connection with reward-free exploration. Our algorithm
is similar with reward-free exploration, in the sense that the
exploration strategy does not rely on the original reward.
Existing results in reward-free exploration use model-based
algorithm (Jin et al., 2020a; Wang et al., 2020). However,
model-based algorithms tend to have a larger asymptotic
bias. In the case of complex problems, the dynamics cannot
be learned perfectly, and the final policy can be highly sub-
optimal (Pong et al., 2018). Therefore, empirical work that
uses goal relabeling often applies model-free algorithms,
and their success and not be explained by the work that
use model-based algorithms. In fact, our algorithm can be
viewed as a model-free algorithm for reward-free explo-
ration.

Comparison with Zhu & Zhang (2023). In the context
of goal-conditioned RL, previous research, including the
notable work by Zhu & Zhang (2023), has provided a theo-
retical analysis. However, their analysis focuses on offline
RL and does not design algorithm for provably efficient ex-
ploration. Moreover, they assume that the dataset covers
the optimal policy with respect to all g ∈ G, whereas our
analysis does not rely on such a stringent assumption.
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List of Notation

In the sequel, we present a list of notations in the paper.

Notation Explanation

S, A, G The state, the action, and the goal spaces, respectively.
h The length of an episode.
t The index of the iteration in Algorithm 1 (GOALIVE).
E The average Bellman error defined in (2).
Φ The F-profile we defined i Definition 3.1.
F The hypothesis class used in model-free algorithms.
g∗ The target goal we concern about.

dimBE, dimGOAL−BE The original BE dimension, and the GOAL-BE dimension.
{Th}Hh=1 The Bellman operator we defined in §2.

Structure of Appendix

We provide a detailed proof of Lemma 3.2 in Appendix A, and provide the proof of Lemmas in §4, §5.1 in Appendix §C.
We provide the proof of auxiliary lemmas in §D.
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Appendix
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A Proof of Lemma 3.2 13

B Proof of Lemmas in §5.1 ans §4 15

C Proof of Theorem 5.9 17

D Proof of Lemmas in Appendix §C 18

A. Proof of Lemma 3.2

In this section, we first provide the proof of Lemma 3.2. We then provide more detail on the action-value function Qp
h .

Proof of Lemma 3.2. Our proof consists of two parts. In the first part, we show the inefficiency of model-free algorithms
without multiple goals. In the second part, we show that there exists a goal-conditioned model-free algorithm that achieves
provably efficient exploration.

(1, 1)

(1, 1) (2, 1)

(1, 1) (1, 2) (2, 1) (2, 2)

(0, 1) (0, 0) (1, 1) (1, 0)

a = 1 a = 2

a = 1 a = 2 a = 1 a = 2
Figure 2. An example of the MDP construc-
tion in §3, with d = 2 and H = 4. All
models are deterministic, and each model is
uniquely indexed by a sequence of actions p.
We use p∗ to denote the index of the true
model. Here p∗ = (2, 1). The last transition
is designed such that the agent always lands
in a state that contains “0” unless it follows
path p∗.

Inefficiency of Model-free Algorithms without Multiple Goals. Our proof of the inefficiency of model-free algorithms
her is similar with the proof of Theorem 2 of Sun et al. (2019). We construct another class of non-factored models, such
that (1) learning in this new class is intractable, and (2) the two families are indistinguishable to any model-free algorithm
without multiple goals.

The new model class is obtained by transforming each Pp ∈ M into P̃p. P̃p has the same state space and transitions as
Pp, except for the transition from horizon H − 1 to H . The transition in the H-th step still does not depend on the action
aH . In the transition indexed by p = {p1, p2, . . . , pd}, we will transit to

sH+1 =

{
[1]d when sH = p,

[0]d else.

The reward function is the same as in the original model class. This example is similar with the one in Sun et al. (2019).
Solving this example is equivalent to solving a multi-armed bandit problem with one optimal arm among 2H−2 arms.
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Therefore, the sample complexity of any algorithm in the new example is Ω(2H).

To prove that the two model families are indistinguishable for model-free algorithms without multiple goals, which is
defined in Definition 3.1, we show that the original F-profiles, which is ΦF,g∗ in Definition 3.1, in Pp are identical to
those in P̃p. This implies that any model-free algorithm behaves in the same way in Pp and P̃p, so that the sample
complexity must be identical, and hence Ω(2H). To continue, we introduce the definition of the optimal planning, which
is an important tool to connect these two model families.

Definition A.1 (Optimal Planning). LetM be a class of transition. For a transition P = {Ph}Hh=1 ∈ M, we denote by
πP = {πPh }Hh=1, V P = {V Ph }Hh=1, QP = {QPh }Hh=1 the optimal policy, value function, and action-value function when
the transition of the MDP is P . We denote by OP(P) the mapping that maps a transition P to its optimal policy and
optimal Q function, that is OP(P) , (πP , QP). We then define OP(M) , {(πP , QP) | P ∈ M}.

Let M = {Pp}p∈{1,2}d and M̃ = {P̃p}p∈{−1,1}d . Let F = {Fh}Hh=1,Π = {Πh}Hh=1 to be the Q class and policy
classes from OP(M,G), F̃ = {F̃h}Hh=1 and Π̃ = {Π̃h}Hh=1 be the policy class from OP(M̃,G). Since all MDPs of
interest have fully deterministic dynamics, and non-zero rewards only occur at the last step, it suffices to show that for any
sequence of actions a = (a1, . . . , aH), (1) the final reward has the same distribution for Pp and P̃p, and (2) the original
F-profiles [Qh(sh, a, g

∗)]Qh∈Fh,a∈A and [Qh(sh, a, g
∗)]Qh∈F̃h,a∈A are equivalent at all states generated by taking a in

Pp and P̃p, respectively. The equivalence of the reward is obvious, In the following, we study the equivalence of the
original F-profiles.

In Pp and at level H , by the definition of the reward function, the original F-profile is [1]|FH | for the state without “0” and
[0]|FH | otherwise. Thus, when the action sequence a = p, the original F-profile of the reached state is [1]|Q|. Otherwise,
the original F-profile of the reached state is [0]|Q|. Similarly, in P̃p the original F-profile is [0]|F̃H | if the state is [0]d, and
it is [1]|F̃H | otherwise. The equivalence here is obvious since |F̃H | = |FH | = 2H−2.

For levelH−1, no matter the true model path p, theQp′ associated with path p′ has valueQp′

H−1(a,+1, g∗) = 1 {a = p′}
at state a. Hence the Q-profile at a can be represented as [1 {a = p′}]p′∈{−1,1}d , for both Pp and P̃p. We remark that
the original F-profile does not depend on the true model p because all models agree on the dynamics before the last step.
Similarly, for h < H − 1 where each state has two actions {−1, 1}, we have:

Qp′(a1:h−1, 1, g
∗) = 1 {a1:h−1 ◦ 1 = p′1:h} , Qp′(a1:h−1, 2, g

∗) = 1 {a1:h−1 ◦ 2 = p′1:h} .

Hence, the original F-profile can be represented as:[(
1 {a1:h−1 ◦ 1 = p′1:h} ,1 {a1:h−1 ◦ 2 = p′1:h}

)]
p′∈{−1,1}d

,

which is the same between Pp and P̃p. Therefore, the model Pp and P̃p have exactly the same original F-profile for all
action sequences, implying that any model-free algorithm without multiple goals, must have the same behavior on both
transition classes. Since the transition class M̃ = {P̃p}p admits an information-theoretic sample complexity lower bound
of Ω(2H), the same lower bound applies toM = {Pp}p for model-free algorithms without multiple goals.

Sample Efficiency of Goal-conditioned Model-free Algorithm This can be directly proved by combining Lemma 5.5
and Theorem 5.9. By Theorem 5.9, when we use Algorithm GOALIVE, we can obtain a 4ε-optimal policy with at most
15000H3d2

0 log2(N (F , ζelim/8)) · ι/ε2 episodes with probability 1 − δ. Here ι = log2[N (G, ζgoal)Hd0/(δε)] and d0 =

dimGOAL−BE

(
F ,DF , ε/H

)
. Since both F and G is finite, we have N (G, ζgoal) = N (F , ζelim/8) = 2H−2. By Lemma

5.5, we have d0 = 1. Therefore, the number of episodes is bounded from the above by 15000H7 log2[H/(δε)]/ε2, which
is poly(H, 1/ε, log(1/δ)). Thus, we conclude the proof of Lemma 3.2.
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B. Proof of Lemmas in §5.1 ans §4

B.1. Proof of Lemma 4.1

Proof of Lemma 4.1. Since we have QH(s, a, g) = 1s=g , for any s ∈ S , there exists a unique g ∈ G, such that
QH(s, a, g) = 1. Since PH−1 is deterministic, there exists a unique g ∈ G, such that

TH−1fH(sH−1, aH−1, g
′) = 1g=g′ .

Since F is deterministic, there exists a unique g ∈ G, such that fH−1(sH−1, aH−1, g
′) = 1g=g′ . We also know that

fH(sH , aH , g) = 1 if and only is g = sH . Therefore, we have

fH−1(sH−1, aH−1, g
′)− r∗H−1(sH−1, aH−1, g

′)−max
a′∈A

fH(sH , a
′, g′) ∈ {0, 1}

for any g′ ∈ G. Therefore, Lemma 4.1 holds if we have

fH−1(sH−1, aH−1, g
′)− r∗H−1(sH−1, aH−1, g

′)−max
a′∈A

fH(sH , a
′, g′) = 1

when g′ = sH . In the following, we consider the case that

fH−1(sH−1, aH−1, g
′)− r∗H−1(sH−1, aH−1, g

′)−max
a′∈A

fH(sH , a
′, g′) = 0

when g′ = sH . In this case, we have fH−1(sH−1, aH−1, g
′) = 0 when g′ = sH . Therefore, we have

fH−1(sH−1, aH−1, g
′) = 1g′=sH , and

fH−1(sH−1, aH−1, g)− r∗H−1(sH−1, aH−1, g)−max
a′∈A

fH(sH , a
′, g) = 1g=sH − 1g=sH = 0

for all g ∈ G. Therefore, we conclude the proof of Lemma 4.1.

B.2. Proof of Lemma 5.4

Proof of Lemma 5.4. By the definition of Fh,g∗ and Fh,g , we have Fh,g∗ ⊂ Fh,g . By Definition 2.2, we have dimDE((I−
Th)Fh,g∗ ,Πh, ε) ≤ dimDE((I − Th)Fh,g,Πh, ε). By Definition 2.3, we have dimBE(Fg∗ ,Π, ε) ≤ dimBE(Fg,Π, ε),
which finish the first part of the proof.

In the following part of the proof, we show that dimGOAL−BE(F ,Π, ε) ≤ dimBE(Fg∗ ,Π, ε). It is sufficient to show that
dimGOAL−DE((I − Th)F ,Πh, ε) ≤ dimDE((I − Th)Fg∗ ,Π, ε). We only need to show that if ν is goal-conditioned ε-
independent with {µ1, . . . , µn}, we then have ν is ε-independent with {µ1, . . . , µn}. By the definition of goal-conditioned
ε-independence, we have |Es,a∼νfh(s, a, g∗)− rh(s, a, g∗)− Thfh+1(s, a, g∗)| ≥ ε and√√√√ n∑

i=1

max
g∈G
|Es,a∼µifh(s, a, g)− rh(s, a, g)− Thfh+1(s, a, g)|2 ≤ ε

for some f ∈ F . Therefore, we have√√√√ n∑
i=1

|Es,a∼µi
fh(s, a, g∗)− rh(s, a, g∗)− Thfh+1(s, a, g∗)|2 ≤ ε.

We conclude the proof by the definition of ε-independence.
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B.3. Proof of Lemma 5.5

Proof of Lemma 5.5. By the definition of F , we know that

fh(s, a, g)− r∗h(s, a, g)− Thfh+1(s, a, g) = 0

for any (f, h, s, a, g) ∈ F × [H − 2]× S ×AG. Therefore, we have

dimDE((I − Th)Fh,g∗ ,DF,h, ε) = dimGOAL−DE((I − Th)Fh,DF,h, ε) = 1

for h ∈ [H − 2]. Therefore, we only need to consider the case where h = H − 1. For a hypothesis p ∈ {1, 2}d, we denote
by fp = {fph }Hh=1 ∈ F the corresponding value. By the setting of the dynamic system, when we use the optimal policy
with respect to g∗ and fp, we will arrive the state sH−1 = p. Therefore, we haveDF,H−1 = {δ(s,a) | s ∈ {1, 2}d, a ∈ A}.
For any fp ∈ F , δ(sH−1,a) ∈ DF,H−1, we have

E(s,a)∼µf
p
H−1(s, a, g∗) = 0, r∗H−1(s, a, g∗) = 0, E(s,a)∼µTH−1f

p
H(s, a, g∗) = 0

when sH−1 6= p∗ and sH−1 6= p. We also have

E(s,a)∼µf
p
H−1(s, a, g∗) = 1, r∗H−1(s, a, g∗) = 0, E(s,a)∼µTH−1f

p
H(s, a, g∗) = 0

when sH−1 6= p∗ and sH−1 = p. Since we have 2d hypotheses in total, we consider the sequence µ1 =

δ(s1H−1,a), . . . , µn = δ(snH−1,a), such that n = 2d − 1, µi 6= δ(p∗,a) for i ∈ [n], µi 6= µj when i 6= j. We set p[i] = s1
H−1

and choose f i = {f ih} the corresponding value function. We can easily verify that

E(s,a)∼µi
[f jH−1(s, a, g∗)− r∗H−1(s, a, g∗)− TH−1f

j
H(s, a, g∗)] = 0

when i < j. Therefore, we have

j−1∑
i=1

∣∣∣E(s,a)∼µi
[f jH−1(s, a, g∗)− r∗H−1(s, a, g∗)− TH−1f

j
H(s, a, g∗)]

∣∣∣2 = 0.

We also have

E(s,a)∼µi
[f iH−1(s, a, g∗)− r∗H−1(s, a, g∗)− TH−1f

i
H(s, a, g∗)] = 1.

Therefore, µi is ε-independent with {µ1, · · · , µi−1}. By the definition of distributional Eluder dimension, we have
dimDE((I − TH−1)FH−1,g∗ ,DF,H−1, ε) ≥ 2d − 1 for ε < 1.

For the second part of the proof, we first show that

max
g∈G

∣∣∣fH−1(s, a, g)− r∗H−1(s, a, g)− Es′ max
a′

fH(s′, a′, g)
∣∣∣ < 1

if and only if fH−1 = Q∗H−1, fH = Q∗H . First, in the given hypothesis class, we have fH = Q∗H holds for all f ∈ F .
When we select g = sH , we have∣∣∣fH−1(s, a, g)− r∗H−1(s, a, g)− Es′ max

a′
fH(s′, a′, g)

∣∣∣ = |fH−1(s, a, sH)− 1| .

When fH−1 6= QH−1, we have fH−1(s, a, sH) = 0, which contradict with |fH−1(s, a, sH)− 1| < 1. Therefore, we have
fH−1 = Q∗H−1.
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If ν is goal-conditioned ε-independent with µ, we have

max
g∈G

Es,a∼µ
∣∣∣fH−1(s, a, g)− r∗H−1(s, a, g)− Es′ max

a′
fH(s′, a′, g)

∣∣∣ < ε (7)

and

Es,a∼ν
∣∣∣fH−1(s, a, g∗)− r∗H−1(s, a, g∗)− Es′ max

a′
fH(s′, a′, g∗)

∣∣∣ > ε. (8)

By (7), we have fH−1 = Q∗H−1, fH = Q∗H , which implies

Es,a∼ν
∣∣∣fH−1(s, a, g∗)− r∗H−1(s, a, g∗)− Es′ max

a′
fH(s′, a′, g∗)

∣∣∣ = 0,

which contradicts with (8). Therefore, for any µ, ν ∈ DF,H−1, ν is not goal-conditioned ε-independent with µ. Therefore,
we have dimGOAL−DE((I − TH−1)F ,DF,H−1, ε) = 1, which concludes the proof.

C. Proof of Theorem 5.9

Proof of Theorem 5.9. We denote by T the index of the last iteration of Algorithm 1. By Algorithm 1, we know that the
elimination procedure is activated at the t-th iterations for t ∈ [T − 1], and is not activated in the T -th iteration. We also
know that the output policy is πT , which is the greedy policy with respect to fT . We use ht to denote the step that the
elimination procedure is activated in the t-th iteration. The following lemma provides a characterization of {ft}T−1

t=1 and
the elimination procedure.

Lemma C.1. We have E(f t, πt, ht, g∗) > ε/H for all t ∈ [T ′] with probability 1 − δ/8. We also have E(f, πt, ht) <

ε/(H
√
d) for all t ∈ [T ′] when f ∈ Bt with probability 1− δ/8. Here E(f t, πt, ht, g∗) and E(f, πt, ht) are defined in (2),

and T ′ = min{T − 1, dH + 1}.

Proof. See Appendix §D.1 for a detailed proof.

Lemma C.1 shows that, the average Bellman error of f t with respect to πt is large, and hypotheses with a large average
Bellman error with respect to πt will be eliminated with high probability. We denote by E1 the event in Lemma C.1. The
following lemma shows that T ≤ dH + 1 when E1 holds, which bounds the number of iterations in Algorithm 1.

Lemma C.2. When we condition on E1, we have T ≤ dH + 1.

Proof. See Appendix §D.2 for a detailed proof.

We also have the following lemma, which shows that the average Bellman error of fT is small.

Lemma C.3. When T ≤ dH + 1, we have
∑H
h=1 E(fT , πT , h, g∗) < 4ε holds with probability 1− δ/4.

Proof. See Appendix §D.3 for a detailed proof.

In addition, we have the following lemma, which show that the true hypothesis will not be eliminated with high probability.

Lemma C.4. We define Q∗ = {Q∗h}Hh=1, where Q∗h is the optimal goal-conditioned action-value function we defined in
§2. Then with probability 1− δ/4, we have Q∗ ∈ Bt for all t ∈ [T ′]. Here T ′ = min{T − 1, dH + 1}.

Proof. See Appendix §D.4 for a detailed proof.
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We denote by E3 the event we defined in Lemma C.4. In the following part of the proof, we condition on Events E1, E2,
and E3. In the following, we show that the suboptimality of πT is small when we condition on E1, E2, and E3. When we
condition on Event E1, We have V ∗1 (s1, g

∗) < fT1 (s1, a1, g
∗) by Line 4 of Algorithm 1. Therefore, we have

V ?1 (x1, g
∗)− V π

T

1 (x1, g
∗) ≤ max

a
fT1 (s1, a, g

∗)− V π
T

(s1, g
∗). (9)

Since fTH+1(s, a, g) = 0 and V π
T

H+1(s, a, g) = 0 for all (s, a, g) ∈ S ×A× G, we have

max
a

fT1 (s1, a, g
∗)− V π

T

(s1, g
∗) =

H∑
h=1

EπT

[
fTh (sh, ah, g

∗)− r∗h(sh, ah, g
∗)− fTh+1(sh+1, ah+1, g

∗)
]

−
H∑
h=1

EπT

[
Qπ

T

h (sh, ah, g
∗)− r∗h(sh, ah, g

∗)−Qπ
T

h+1(sh+1, ah+1, g
∗)
]
. (10)

Here the expectation EπT [·] is taken with respect to sh+1 ∼ P∗h(· | sh, ah) and ah ∼ πTh (· | sh, g∗). By Bellman equation,
we have

EπT

[
Qπ

T

h (sh, ah, g
∗)− r∗h(sh, ah, g

∗)−Qπ
T

h+1(sh+1, ah+1, g
∗)
]

= 0. (11)

By (2), we have

EπT

[
fTh (sh, ah, g

∗)− r∗h(sh, ah, g
∗)− fTh+1(sh+1, ah+1, g

∗)
]

= E(fT , πT , h, g∗). (12)

Combining (9), (10), (11), and (12), we have

V ?1 (x1, g
∗)− V π

T

1 (x1, g
∗) ≤

H∑
h=1

E(fT , πT , h, g∗).

When we condition on E2 in Lemma C.3, we have
∑H
h=1 E(fT , πT , h, g∗) ≤ 4ε. Therefore, when we condition on E1, E2,

and E3, the policy we return isO(ε)-optimal. By Lemmas C.1, C.3, and C.4, we have P (∩3
i=1Ei) ≥ 1− δ. Therefore, with

probability at least 1 − δ, Algorithm 1 will terminate in T ≤ (dH + 1) iterations and output a 4ε-optimal policy using at
most

(dH + 1)(nact + nelim) ≤ 15000H3d2 log2(N (F , ζelim/8)) · ι
ε2

episodes. Thus, we conclude the proof of Theorem 5.9.

D. Proof of Lemmas in Appendix §C

D.1. Proof of Lemma C.1

Proof. First, we have the following lemma, which shows that in the activation phase, Ê in Line 6 of Algorithm 1 is a good
estimator of E in (2).

Lemma D.1. [Concentration in the Activation Phase] With probability 1− δ/8, we have

|Ê(f t, πt, h, g∗)− E(f t, πt, h, g∗)| ≤ ε/(6H)

holds for all (t, h) ∈ [dH + 1]× [H].

Proof. See Appendix §D.5 for a detailed proof.
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Since the elimination phase is activated for t < T , we have Ê(f t, πt, ht, g∗) ≥ ζact. Therefore, we have

E(f t, πt, h, g∗) ≥ ζact − ε/(6H) ≥ ε/H

for t ≤ min{T − 1, dH + 1} when we condition on the event in Lemma D.1. Thus, we conclude the proof of the first part
of Lemma C.1. We also have the following lemma, which shows that in the elimination phase, Ê in Line 12 of Algorithm
1 is a good estimator of E in (2).

Lemma D.2. [Concentration in the Elimination Phase] With probability 1− δ/8, we have

|Ê(f, πt, h)− E(f, πt, h)| ≤ ε/(4H
√
d)

holds for all (f, t, h) ∈ F × [dH + 1]× [H]. Here Ê is defined in Line 12 of Algorithm 1.

Proof. See Appendix §D.6 for a detailed proof.

By the definition of Bt in Line 13 of Algorithm 1, we have Ê(f, πt, ht) ≤ ζelim for f ∈ Bt. Therefore, we have

E(f t, πt, h) ≤ ζelim + ε/(4H
√
d) ≤ ε/(H

√
d)

for t ≤ min{T − 1, dH + 1} when we condition on the event in Lemma D.1. Thus, we conclude the proof of the second
part of Lemma C.1.

D.2. Proof of Lemma C.2

Proof. We prove Lemma C.2 by contradiction. For the sake of contradiction, We assume that T > dH + 1. When
T > dH + 1, there exists h ∈ [H] and t1 < · · · < td+1 ≤ dH + 1, such that the elimination phase is activated in the ti-th
iteration at the h−th stage for i ∈ [d+ 1]. When we condition on E1 in Lemma C.1, we have E(f ti , πti , h, g∗) > ε/H for
i ∈ [d+ 1]. Since f ti ∈ Btj when i > j, we have E(f ti , πtj , h) ≤ ε/(H

√
d) when i > j. Therefore, we have√√√√i−1∑

j=1

(
E(f ti , πtj , h)

)2
<
√
d× ε/(H

√
d) = ε/H.

Therefore, the roll-in distribution of πt1 , . . . , πtd+1 at step h is a goal-conditioned ε/H-independent sequence of length
d+ 1, which contradicts with the definition of GOAL-BE dimension. Therefore, we have T ≤ dH + 1 when we condition
on E1, which conclude the proof of Lemma C.2.

D.3. Proof of Lemma C.3

Proof. Since the elimination phase is not activated in the T -th iteration, we have Ê(fT , πT , h, g∗) ≤ ζact. Therefore, when
we condition on the event in Lemma D.1, we have

E(fT , πT , h, g∗) ≤ ζact + ε/(6H) ≤ 4ε/H.

Therefore, we have
∑H
h=1 E(fT , πT , h, g∗) ≤ 4ε, which concludes the proof of Lemma C.3.

D.4. Proof of Lemma C.4

Proof. By Bellman equation, we have E(Q∗, π, h) = 0 for all policy π and h ∈ [H]. By Lemma D.2, we have
Ê(Q∗, πt, h) ≤ ε/(4H

√
d) = ζelim holds for all (t, h) ∈ [dH + 1] × [H]. By Line 13 of Algorithm 1, we have Q∗ ∈ Bt

when t ≤ dH + 1. Thus, we conclude the proof of Lemma C.4.
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D.5. Proof of Lemma D.1

Proof. Consider a fixed (t, h) ∈ [dH + 1]× [H] pair. Since∣∣∣∣fh(x, u, g∗)− rh(x, u, g∗)−max
u′∈U

fh+1(x′, u′, g∗)

∣∣∣∣ ≤ 3,

we have

|Ê(f t, πt, h, g∗)− E(f t, πt, h, g∗)| ≤ 6
√

2
√
nact

log
(
8H(dH2 + 1)/δ

)
holds with probability at least 1 − δ/(8H(dH + 1)) by Azuma-Hoefdding’s inequality. Here Ê is defined in Line 6 of
Algorithm 1. By taking a union bound, we have

|Ê(f t, πt, h, g∗)− E(f t, πt, h, g∗)| ≤ 6
√

2
√
nact

log
(
8H(dH2 + 1)/δ

)
holds for all (t, h) ∈ [dH + 1]× [H] with probability at least 1− δ/8. Since we set nact = 2592H2ι/ε2, we have

|Ê(f t, πt, h, g∗)− E(f t, πt, h, g∗)| ≤ ε/(6H).

Thus, we conclude the proof of Lemma D.1.

D.6. Proof of Lemma D.2

Proof. Let G(ζgoal) be an ζgoal-cover of G with cardinalityN (G, ζgoal), and let Z be an ζelim/16-cover of F with cardinality
N (F , ζelim/8). We define

Ê
(
f̂ , πt, ht,G(ζgoal)

)
=

1

|Dth|

∣∣∣∣∣∣ max
g∈G(ζgoal)

∑
(s,a,s′)∈Dt

h

(
fh(s, a, g)− rh(s, a, g)−max

a′∈A
fh+1(s′, a′, g)

)∣∣∣∣∣∣ ,
where Dth is the dataset in the elimination phase. By applying Azuma-Hoeffding’s inequality to all (t, f̂ , g) ∈ [dH + 1]×
Z × G(ε) and taking a union bound, we have

|Ê(f̂ , πt, ht, g)− E(f̂ , πt, ht, g)| ≤ 6
√

2
√
nelim

log
(
8H(dH2 + 1)N (G, ζgoal)N (F , ζelim/8)/δ

)
≤ ε/(9H

√
d) (13)

holds for all (t, f̂ , g) ∈ [dH + 1]×Z × G(ε) with probability at least 1− δ/8.

By the definition of the goal covering, we have∣∣∣Ê(f, πt, ht)− E(f, πt, ht)
∣∣∣ ≤ 6ζgoal +

∣∣∣Ê(f, πt, ht,G(ζgoal))− E(f, πt, ht,G(ζgoal))
∣∣∣ (14)

≤ ε/(100H) + max
g∈G(ζgoal)

∣∣∣Ê(f, πt, ht, g)− E(f, πt, ht, g)
∣∣∣

holds for all f ∈ F . Combining Equations (13) and (14), we have∣∣∣Ê(f̂ , πt, ht)− E(f̂ , πt, ht)
∣∣∣ ≤ 6ζgoal + ε/(9H

√
d) ≤ ε/(8H

√
d) (15)
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holds for all (t, f̂) ∈ [dH + 1]× Z with probability at least 1− δ/8. We denote the event in Equation (15) as E4. By the
definition of E in (2), we have∣∣∣E(f̂ , π, h)− E(f, π, h)

∣∣∣ =

∣∣∣∣max
g∈G
E(f, π, h, g)−max

g∈G
E(f̂ , π, h, g)

∣∣∣∣
≤ max

g∈G

∣∣∣E(f, π, h, g)− E(f̂ , π, h, g)
∣∣∣ ≤ 2

∥∥∥f − f̂∥∥∥
∞
.

Similarly, we have
∣∣∣Ê(f̂ , π, h)− Ê(f, π, h)

∣∣∣ ≤ 2
∥∥∥f − f̂∥∥∥

∞
. For any f ∈ F , we select f̂ ∈ Z with

∥∥∥f − f̂∥∥∥
∞
≤ ζelim/8.

When condition on Event E4 in Equation (15), we have∣∣∣Ê(f, πt, ht)− E(f, πt, ht)
∣∣∣ ≤ ∣∣∣Ê(f̂ , πt, ht)− E(f̂ , πt, ht)

∣∣∣+
∣∣∣E(f̂ , πt, ht)− E(f, πt, ht)

∣∣∣
+
∣∣∣Ê(f̂ , πt, ht)− Ê(f, πt, ht)

∣∣∣
≤ ε/(8H

√
d) + ζelim/2 ≤ ε/(4H

√
d)

holds for all (t, f) ∈ [dH + 1]×F with probability at least 1− δ/8. Thus, we complete the proof of Lemma D.2.
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