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ABSTRACT

We show that deep neural networks achieve dimension-independent rates of con-
vergence for learning structured densities such as those arising in image, audio,
video, and text applications. More precisely, we show that neural networks with a
simple L2-minimizing loss achieve a rate of n−1/(4+r) in nonparametric density
estimation when the underlying density is Markov to a graph whose maximum
clique size is at most r, and we show that in the aforementioned applications, this
size is typically constant, i.e., r = O(1). We then show that the optimal rate in L1

is n−1/(2+r) which, compared to the standard nonparametric rate of n−1/(2+d),
shows that the effective dimension of such problems is the size of the largest clique
in the Markov random field. These rates are independent of the data’s ambient
dimension, making them applicable to realistic models of image, sound, video,
and text data. Our results provide a novel justification for deep learning’s ability
to circumvent the curse of dimensionality, demonstrating dimension-independent
convergence rates in these contexts.

1 INTRODUCTION

Deep learning has emerged as a remarkably effective technique for numerous statistical problems
that were historically extremely challenging, especially in high-dimensional settings. In the realm of
deep generative models, which can be framed as density estimation, deep methods have showcased
the ability to learn density functions with thousands or millions of dimensions using merely a few
million data points (Oussidi & Elhassouny, 2018; Ho et al., 2020; Cao et al., 2024). This stands in
stark contrast to standard density estimation theory, which would demand astronomical sample sizes
due to the curse of dimensionality. The manifold hypothesis is perhaps the most widely accepted
explanation for deep learning’s ability to circumvent this curse (Bengio et al., 2013; Brahma et al.,
2016). This hypothesis posits that, despite a distribution’s ambient space being high-dimensional,
the mass of the density is heavily concentrated around a lower-dimensional subset of that space,
such as an embedded manifold. As we will argue later, for complex data types of significant inter-
est—images, video, sound, and text—this assumption is intimately linked to spatio-temporal local-
ity. For instance, covariates1 that are nearby spatio-temporally, e.g., neighboring pixels, tend to be
strongly dependent, suggesting they lie near a lower-dimensional subspace.

This paper investigates the benefits of leveraging the converse structure: The independence of
spatio-temporally distant covariates. Covariates that are spatio-temporally distant often exhibit near-
independence, particularly when conditioned on intervening covariates. Consider a sound recording:
two one-second segments separated by a minute might share common elements, such as the same
speaker. However, given the intervening minute of audio, these segments become effectively inde-
pendent. The minute-long interval contains sufficient information to render the separated segments
mutually uninformative. This principle of conditional independence extends to various data types,
including images, where pixels far apart tend to be independent when conditioned on the surrounding
region. This sort of dependence structure is naturally described by a Markov random field (MRF).

In this work, we show that, for a very general class of densities that are Markov to an undirected
graph (a.k.a. MRF), density estimation can be achieved with a neural network and a simple L2

1By “covariate” we mean a specific entry in a particular collection of data, for example a specific pixel
location and color channel in a collection of image data or an index for tabular data.
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X=x X=x

(a)

Path (L4) Grid (L3×3)

Grid with Diagonals (L+
3×4)

(b)

Figure 1: (a): Examples of conditioning X = x (dotted lines) when a density’s support is a man-
ifold (solid lines). (b): Highly simplified examples of common MRF graphs. Paths correspond to
sequential data and grids to spatial.

minimizing loss at a rate of approximately n−1/(4+r), where r is the size of the largest clique in the
graph. To compare, without the MRF assumption, the same class of densities can be estimated at a
rate no better than n−1/(2+d), implying that the effective dimension is approximately r. We argue
and show evidence that the MRF assumption is valid for many data types where neural networks
excel (images, sound, video, etc.; see Figure 1b) and demonstrate that this approach to density
estimation causes the effective dimension r of these problems to remain constant or at least be
orders of magnitude smaller than the ambient dimension d.

2 BACKGROUND AND RELATED WORK

In this section, we lay the foundation for our main results by introducing key concepts and related
work. We begin by discussing traditional approaches to nonparametric density estimation and their
limitations, particularly the curse of dimensionality. We then explore the manifold hypothesis, a
widely accepted explanation for the success of deep learning in high-dimensional settings. Follow-
ing this, we introduce Markov random fields (MRFs) and their applications in modeling various
types of data, including images and sequential information. This background will provide the nec-
essary context for understanding the novelty of our approach, which leverages MRF structures to
achieve dimension-independent convergence rates in density estimation, offering an alternative per-
spective to the manifold hypothesis.

2.1 NONPARAMETRIC DENSITY ESTIMATION

Density estimation is the task of estimating a d-dimensional target probability density p from ob-
served data, x1, . . . ,xn

iid∼ p. Of course, this is a classical problem for which we do not intend to
provide a comprehensive overview, and instead refer readers to books such as Devroye & Gyorfi
(1985); Devroye & Lugosi (2001); Tsybakov (2009) for additional background. Historically, p was
assumed to belong to a specific class of distributions, such as Gaussian, and the estimator p̂n was
selected accordingly. For more complex p, nonparametric density estimators like kernel density es-
timators or histograms are employed (Devroye & Gyorfi, 1985; Devroye & Lugosi, 2001). These
methods converge to p for any density given sufficient data, but notably suffer from the curse of di-
mensionality. For instance, when p is Lipschitz continuous2 and estimator parameters are optimally
chosen, the L1 error,

∫
|p(x)− p̂n(x)| dx = ∥p− p̂n∥1, converges at rate O(n−1/(2+d)). This non-

parametric rate is known to be optimal for Lipschitz continuous densities, and numerous studies
over the past decade have established that neural networks and generative models can achieve this
optimal rate (Liang, 2017; Singh et al., 2018; Uppal et al., 2019; Oko et al., 2023; Zhang et al.,
2024; Kwon & Chae, 2024). This rate implies that the sample complexity grows exponentially in

2A function f : Rd → R is Lipschitz continuous if there exists L ≥ 0 such that |f(x)−f(y)| ≤ L ∥x− y∥2
for all x, y.
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the dimension d, making the success of deep neural networks for estimating densities with millions
of dimensions all the more remarkable. This is often explained via the manifold hypothesis.

2.2 MANIFOLD HYPOTHESIS

The manifold hypothesis posits that many high-dimensional real-world distributions concentrate
around lower-dimensional spaces, such as submanifolds of the ambient space. This assumption un-
derpins, either explicitly or implicitly, numerous machine learning methods. For instance, principal
component analysis assumes that a distribution is concentrated around an affine subspace, while
sparsity assumptions can be formulated as a union of manifolds, where the subsets of the union are
axis-aligned subspaces.

The success of deep learning methods in handling high-dimensional data, such as images, videos,
and audio, is frequently attributed to the manifold hypothesis. Experimental validation of the mani-
fold hypothesis has been conducted for image datasets. In Pope et al. (2021), the authors determined
that the intrinsic dimension of the ImageNet dataset lies between 25 and 40 dimensions, significantly
lower than its ambient dimension. This hypothesis is closely linked to correlation and dependency
between covariates. In images, for example, adjacent pixels xi and xj typically have similar values,
causing the dataset to concentrate towards the linear subspace xi = xj , which is a submanifold.
Figure 3(a) illustrates this concept, showing the values of pixels (8, 8) and (8, 9) for 100 randomly
selected images from the grayscaled CIFAR-10 dataset, where a strong concentration along the di-
agonal is evident.

Further supporting this hypothesis, Carlsson et al. (2008) discovered that the set of 3 × 3 pixel
patches from natural images concentrates around a 2-dimensional manifold. Theoretically, distri-
butions concentrating around lower-dimensional subsets of the ambient space have been shown to
yield improved estimation properties. For instance, Weed & Bach (2019) demonstrated that while a
dataset typically converges at rate n−1/d to the true distribution in Wasserstein distance, when the
dataset exhibits a lower d′-dimensional structure, it converges at the faster rate of n−1/d′ . Similar
results illustrating the manifold hypothesis and its benefits can be found in Pelletier (2005); Ozakin
& Gray (2009); Jiang (2017); Schmidt-Hieber (2019); Nakada & Imaizumi (2020); Berenfeld et al.
(2022); Jiao et al. (2023); Tang & Yang (2024).

While the manifold hypothesis explains local dependencies, it’s worth considering scenarios that
deviate from this model. For example, the manifold hypothesis cannot be satisfied when covariates
are independent. For example, if two covariates x ∼ px and y ∼ py are independent, their joint den-
sity px,y(x, y) = px(x)py(y) fills a rectangle in their product space. As one may expect, pixels that
are distant from one another tend to become more independent. This phenomenon is illustrated in
Figure 3(d), which plots the grayscale values of pixels (8, 8) and (14, 28), showing a more dispersed
pattern. This observation naturally leads to modeling the space of images as a Markov random field,
where local dependencies are captured while allowing for independence between distant pixels.

Remark 2.1. A related result Cole & Lu (2024) shows that score-based diffusion can achieve
dimension-free rates for estimating densities in the Barron space Barron (1993) with subgaussian
tails.

2.3 MARKOV RANDOM FIELDS

A Markov random field (MRF) consists of a random vector x = (x1, . . . , xd) and a graph
G = (V,E), where the graph’s vertices correspond to the entries of the random vector, i.e.,
V = {x1, . . . , xd}. The graph encodes information about the conditional independence of the vec-
tor’s entries. For a set A = {a1, . . . , ad′} ⊂ {1, . . . , d}, let xA =

(
xa1 , . . . , xad′

)
. Given three

disjoint subsets A,B,C of {x1, . . . , xd}, the graph G indicates that the random vectors xA and xB
are conditionally independent given xC if there is no path from A to B that doesn’t pass through C.

Consider a simple example with random variables x, y, and z, where x = y+ ϵx and z = y+ ϵz, with
ϵx, ϵz, and y being jointly independent. In this scenario, the distributions of x and z are conditionally
independent given y. Figure 2 illustrates the corresponding MRF graph for this example.

It’s important to understand that while an MRF conveys information about conditional indepen-
dence, the absence of such information in the MRF does not necessarily imply dependence in the
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(a) (8, 8) vs (8, 9) (b) (8, 8) vs (8, 10) (c) (8, 8) vs (9, 12) (d) (8, 8) vs (14, 28)

(e) (8, 8) vs (8, 9) cond. (f) (8, 8) vs (8, 10) cond. (g) (8, 8) vs (9, 12) cond. (h) (8, 8)vs(14, 28) cond.

Figure 3: Top row: Scatterplots comparing the grayscale values of pixel (8,8) with various other
pixels for 100 randomly selected images. The decreasing correlation between pixels as their distance
increases is evident.
Bottom row: The same comparisons as the top row, but conditioned on pixel (9,8) having a value
approximately equal to 0.48 (the median value for this pixel across the dataset). Note the increased
concentration of points towards the center along the horizontal axis, indicating reduced correlation
when conditioned on a neighboring pixel.
These plots demonstrate how pixel correlations decrease with distance and how conditioning on a
neighboring pixel can significantly reduce correlations, supporting the use of Markov Random Field
models for image data. Similar plots for the COCO dataset can be found in Appendix F.

actual data. In other words, covariates can be conditionally independent in reality even if this in-
dependence is not explicitly represented in the MRF structure. The MRF provides a conservative
model of independence relationships, capturing known or assumed conditional independencies with-
out ruling out additional independencies that may exist in the data. Consequently, any random vector
associated with a complete graph—where all vertices are adjacent to one another—is a valid MRF,
since it provides no information about the independence of the covariates. This is because every
vertex is connected to every other vertex, so removing any number of vertices will never separate
the graph into multiple components. Because it conveys no information about the conditional inde-
pendence of the covariates, it even applies to a random vector where all entries are independent.

x y z

Figure 2: An example MRF.
The random variables x and y
are independent given z.

One of the most well-known MRFs is the Markov chain. A Markov
chain of length d corresponds to the “path” graph Ld of d random
variables. The above example with x, y, z corresponds to the graph
L3 and the MRF corresponding to L4 shown in Figure 1b. In a
Markov chain, the indices are often interpreted as a time parameter.
A classic example is a gambling scenario: A person’s money at time
t + 1 is conditionally independent of their total value at time t − s
(for s > 0), given their value at time t. This property, known as the
Markov property, encapsulates the idea that the future state depends only on the present state, not on
past states. Markov chains have a long history of use for modeling sequential information, including
audio and text data.

Beyond sequential data, MRFs have seen significant use in image processing. In this work, we focus
on grayscale images for simplicity, bearing in mind that the results extend to RGB/color images
as well. For image processing, the classic MRF model consists of a random variable that is a 2-
dimensional grid X = [Xi,j ]i,j and a graph G where all pixels adjacent in X are also adjacent in
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G. Figure 1b contains one example from two different types of grid graphs: one standard ”grid”
graph L3×3 and one “grid with diagonals” graph L+

4×3, where the subscripts indicate the number of
rows and columns of vertices, respectively. For the remainder of this work, our references to “grid”
graphs encompass both variants—those with and without diagonal connections—unless explicitly
stated otherwise. Such models have seen wide use in image processing and computer vision (see
Li, 1994, for an overview). Denoising stands as perhaps the most common application of MRFs in
image processing. This approach assumes that each pixel is best predicted using just its neighbors
and ignoring the rest of the image. While this model proves effective for mitigating phenomena like
additive white noise (Keener, 2010), it falls short as a comprehensive image model. Similarly, the
path graph, often used for sequential data, oversimplifies the complex dependencies in real-world
sequential information.

3 IMPROVING THE PATH AND GRID MARKOV RANDOM FIELD MODELS

While standard path and grid MRF models may suffice for correcting extremely local or high-
frequency noise in sequential or spatial data, they fall far short of capturing the true distribution
of complex data types. Consider, for example, audio data consisting of 21-second clips where the
middle second is missing and needs to be predicted. According to the path MRF model, this missing
second would depend solely on the audio samples directly preceding and following it. Consequently,
under a Markov chain (i.e. path MRF) model, the remaining 20 seconds of audio (less two samples)
would be deemed completely uninformative for predicting the middle second, given these two adja-
cent samples.

This simplistic model fails to capture the richer, longer-range dependencies present in real-world
audio data. In practice, the content of the missing second is likely influenced by a broader context
than just its immediate neighbors. For instance, the rhythm or theme established in the preceding
few seconds, or the anticipation of what follows immediately after, could be crucial for predict-
ing the missing segment. This moderately broader context is entirely discarded by the basic path
MRF. Similarly, for image data, the standard grid MRF model suggests that a region of an image
depends only on its immediate bordering pixels. However, realistic images often exhibit patterns
and structures that span multiple pixels in various directions. For example, the edge of an object
or a gradient in lighting might extend across several pixels, creating dependencies that the basic
grid model fails to capture. Figure 4 illustrates this concept concretely, demonstrating the effects
of different MRF models on image inpainting tasks and highlighting the implications of varying
levels of contextual information. These limitations motivate the need for more sophisticated MRF
models where segments or regions are more extensively connected, allowing for the incorporation
of relevant contextual information without necessarily spanning the entire dataset.

To model sequential and spatial data more realistically, we propose using the “power graph” of the
path and grid models. For a graph G, the power graph Gt with t ∈ N is defined as the graph where an
edge exists between every pair of vertices within t steps of each other in G, with G1 = G. Figures 5
and 6 illustrate this concept using path graphs and grid graphs, respectively. This construction causes
contiguous sections of sequences and patches of grids to become fully connected, as demonstrated
in Figure 5.

Applying this power graph concept to a grid graph assumes that local patches of images are highly
dependent, making no assumptions about conditional independence within a patch. It also implies
that distant regions of an image become independent as the distance between them increases, and
that these regions are independent when conditioned on a sufficiently wide separating region of
pixels.

We can experimentally validate these assumptions using image data. The top row of Figure 3 shows
the grayscale values of pixel (8,8) versus selected other pixels for 100 randomly chosen images
from the CIFAR-10 training dataset. The bottom row repeats this experiment, but conditioned on
the value of the adjacent pixel (9,8) being near its median value.

These experiments reveal that, when conditioned on the adjacent pixel, the dependence (as measured
by correlation) decreases significantly. Notably, pixels (8,8) and (9,12) appear almost completely
independent when conditioned on pixel (9,8). This provides strong evidence for the validity of the
MRF model. The MRF model predicts that (8,8) and (9,12) should be independent when condi-
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(a) (b) (c) (d)

Figure 4: The leftmost image (a) is a 640× 427 pixel photograph from the COCO 2014 dataset (Lin
et al., 2014). Image (b) shows an enlarged version of the 102 × 102 pixel region outlined in (a).
Images (c) and (d) display the 12-pixel and 1-pixel width borders of that region, respectively. Mod-
eling this image with an MRF graph L640×427 or L+

640×427 would imply that the distribution of the
missing interior in (d) depends exclusively on its 1-pixel wide border, with the rest of the image in
(a) being uninformative for predicting this interior region. In contrast, predicting the interior using
the 12-pixel border in (c) is more reasonable. This scenario corresponds to models like L6

640×427

or
(
L+
640×427

)6
, which capture more extensive local dependencies. It’s important to note that for

the MRF model to hold, the interior doesn’t need to be deterministically constructed from the sur-
rounding pixels. Rather, the surrounding pixels need only provide sufficient information about the
interior (e.g., that it’s a cat’s face) such that the rest of the image doesn’t contribute any additional
information for predicting the interior region.

Figure 5: Illustrations of a path graph and its powers. Left: The path graph L5. Center: The power
graph L2

5. Right: The power graph L3
5. In L5, only immediately contiguous vertices are connected.

In L2
5, every group of three contiguous vertices forms a complete subgraph. In L3

5, every group
of four contiguous vertices forms a complete subgraph. This progression demonstrates increasing
connectivity among nearby vertices in the graph.

tioned on surrounding pixels (the number of which depends on the graph power of the MRF graph).
Remarkably, we observe that pixels appear independent when conditioned on just a single adjacent
pixel, suggesting that the grid MRF assumption may be even more conservative than necessary.

The power graph extension of path and grid MRFs presents a fundamentally different perspective
on modeling high-dimensional data compared to the widely accepted manifold hypothesis. While
the manifold hypothesis posits that high-dimensional data concentrates around lower-dimensional
structures, our MRF approach embraces the full dimensionality of the data, focusing instead on the
independence structure between variables. This model aligns well with the observed structure in
various data types, capturing local dependencies while allowing for long-range independencies. For

(a) (b) (c) (d)

Figure 6: Comparison of vertex neighborhoods in different graph structures. (a) Neighborhood of
a vertex in a standard grid graph Ld×d. (b) Neighborhood of the same vertex in the power graph
L2
d×d. (c) Neighborhood of a vertex in a grid graph with diagonals L+

d×d. (d) Neighborhood of the
same vertex in the power graph (L+

d×d)
2.
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sequential data such as audio or text, it accounts for strong dependencies between nearby elements
while acknowledging the decreasing influence of distant context. In spatial data like images, it
models high correlation between neighboring pixels and gradual decorrelation as distance increases.
Our experimental results provide compelling evidence for this MRF model’s validity. The observed
conditional independence between distant pixels, given intervening pixels, supports our power graph
MRF approach’s fundamental assumptions.

It’s important to note that this approach is not meant to supersede the manifold hypothesis, but
instead to augment it. The manifold hypothesis explains sample efficiency from local structure,
while the MRF model adds additional model efficiency from a global perspective. Together, they
provide a more comprehensive framework for understanding high-dimensional data.

Remarkably, in the following section, we will demonstrate that under these MRF assumptions, there
exist estimators based on neural networks with standard loss functions (e.g. squared loss) that can
achieve dimension-independent rates of convergence for density estimation. This result is particu-
larly significant as it suggests a path to overcoming the curse of dimensionality in high-dimensional
density estimation tasks without relying on low-dimensional embeddings. By focusing on indepen-
dence structures rather than dimension reduction, our approach offers a novel explanation for the
success of deep learning methods in processing complex, high-dimensional data, complementing
and contrasting with the insights provided by the manifold hypothesis.

4 MRF-BASED DENSITY ESTIMATION WITH NEURAL NETWORKS

We begin by presenting the foundational results of this work that demonstrate that one can estimate
a density p given its Markov graph, at a rate that depends only on the size of the largest clique
of the graph. We will present two results, one using a neural network style architecture using a
practical empirical risk minimization style training and a second estimator that is more complex and
computationally intractable that achieves approximately optimal rates of convergence.

4.1 STRUCTURED NEURAL DENSITY ESTIMATION

Our estimators are based on the classical Hammersley-Clifford Theorem (Hammersley & Clifford,
1971). Before presenting the theorem we must review a few concepts. A graph G is called complete
if every vertex is adjacent to every other vertex. For a graph G = (V,E) a clique is a complete
subgraph, i.e., G′ = (V ′, E′) with V ′ ⊂ V and E′ ⊂ E, that is complete. A maximal clique of
a graph is a set of cliques which are not contained within another clique. Observe that maximal
cliques of the same graph can have different numbers of vertices. See Figure 7 for examples of
maximal cliques. The collection of the maximal cliques of a graph will be denoted C(G).
Proposition 4.1 (Hammersley & Clifford, 1971). Let G = (V,E) be a graph and p be a probability
density function satisfying the Markov property with respect to G. Let C(G) be the set of maximal
cliques in G. Then

p(x) =
∏

V ′∈C(G)

ψV ′(xV ′),

where xV ′ are the indices of x corresponding to V ′.

Figure 7: A graph with max-
imal cliques denoted by sur-
rounding rectangles.

For neural networks we investigate estimators of the form:

p̂(x) =
∏

V ′∈C(G)

ψ̂V ′(xV ′),

where ψ̂V ′ are ReLU networks with architectures dependent only
on G, |V ′|, and the sample size n. The weights are constrained
to [−1, 1], effectively implementing weight decay via constrained
optimization rather than norm penalization.

We analyze an estimator that minimizes the integrated squared error
between p and our estimator p̂:∫

(p (x)− p̂ (x))
2
dx =

∫
p(x)2dx− 2

∫
p(x)p̂(x)dx+

∫
p̂(x)2dx. (1)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In empirical minimization, the first term of equation 1 is constant. The second term can be estimated
using the law of large numbers:∫

p(x)p̂(x)dx =Ex∼p [p̂(x)] ≈
1

n

n∑
i=1

p̂(xi) where x1, . . . ,xn
i.i.d.∼ p.

The last term can be estimated stochastically. Let Ud be the d-dimensional uniform distribution on
the unit cube and ϵ1, ϵ2, . . . , ϵn′

i.i.d.∼ Ud. Then:∫
p̂(x)2dx = Eϵ∼Ud

[
p̂(ϵ)2

]
≈ 1

n′

n′∑
i=1

p̂(ϵi)
2.

4.2 MAIN RESULT

We now present our theorem on the convergence rate for L2-minimizing neural network-based
density estimators:
Theorem 4.2. Let G = (V,E) be a finite graph and r be the size of the largest clique in G.
There exists a known sequence of architectures F∗ such that for

p̂n = arg min
f∈F∗

(
∥f∥22 −

2

n

n∑
i=1

f(xi)

)
,

where x1, . . . ,xn
i.i.d.∼ p, we have

∥p− p̂n∥1 ∈ Õp

(
n−1/(4+r)

)
,

for any Lipschitz continuous, positive density p satisfying the Markov property with respect to
G.
The proof of the theorem, based on results from Schmidt-Hieber (2017), details the architectures
and specifies how their parameters scale with the sample size. The proof of this theorem, and
all results in this work, can be found in the appendices. The minimax rate for density estimation
on d-dimensional densities is O

(
n−1/(2+d)

)
, so the “effective dimension” of an estimating a

density using the estimator from the theorem above is r + 2. Consequently we see that the rate of
convergence for density estimation can be greatly improved for MRFs with certain graphs G. We
will discuss the consequences of this in greater detail in Section 4.3.

4.3 CONSEQUENCES OF MAIN RESULTS

Our results indicate that the effective dimension of any density estimation problem under MRF
assumptions is the size of its largest clique. The following results demonstrate examples where the
largest clique is significantly smaller than the full dimensionality.

For definitions of the graphs Ld×d′ and L+
d×d′ , we refer the reader to the examples in Figure 1b.

While these examples should provide intuitive understanding, formal definitions can be found in
Appendix D.

Images We begin with the most compelling setting, corresponding to images:

Lemma 4.3. Let Ld×d′ be a d× d′ grid graph with t < d, d′. The size of the largest clique in Ltd×d′
is less than or equal to t2+4t+3

2 .

Lemma 4.4. Let L+
d×d′ be the d × d′ grid graph with diagonals, and t < d, d′. The size of the

largest clique in the graph
(
L+
d×d′

)t
is (t+ 1)2.

Judging from the exmaple in Figure 3, t = 2 already gives a fairly reasonable model for images.
Thus we have the following dimension-independent rate:
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Corollary 4.5 (Dimension-independent rates). The neural density estimator in Theorem 4.2
achieves a rate of

∥p− p̂n∥1 ∈ Õp

(
n−1/7

)
for the grid graph L2

d×d′

and
∥p− p̂n∥1 ∈ Õp

(
n−1/9

)
for the grid with diagonals graph

(
L+
d×d′

)2
.

Even when t > 1, we have r = O(t2) with t ≪ d. In practice we expect t = O(1), so even with
t > 1, the rates are still dimension-independent.

Recall that if a density p is an MRF with respect to a graph G = (V,E), it is also an MRF with respect
to any graph G′ = (V,E′) that contains all the edges from G, i.e., E ⊆ E′. Thus, the absence of
edges in an MRF represents a stronger condition on p. In the graph Ltd×d′ , every (t + 1) × (t + 1)
block of vertices is fully connected. As demonstrated in Figure 3, when conditioned on an adjacent
pixel, pixels tend to become independent with very little distance between them. Figure 3h shows
that pixels (8,8) and (9,12) are seemingly independent conditioned on (9,8). Modeling CIFAR-10
as an MRF graph L+

32×32 would imply that (8,8) and (9,12) are independent conditioned on every
pixel surrounding (8,8), a much more stringent requirement than conditioning on one adjacent pixel.
Thus, modeling CIFAR-10 as (L+

32×32)
2 appears to be a conservative approach. Consequently, the

effective dimension for estimating CIFAR-10 is (2 + 1)2 = 9 rather than 32 × 32 = 1024, an over
100-fold improvement!

Sequences For sequential data, we have the following lemma:
Lemma 4.6. Let Ld be a d-length path graph. The size of the largest clique in Ltd is equal to
min(t+ 1, d).

Again, we observe that the effective dimension can be far less than the ambient dimension for se-
quential data, such as audio.

The MRF approach can be extended to various data types, yielding similar dimension reduction
results. For instance, color images can be modeled as a three-dimensional random tensor X ∈
Rc×w×h with a graph G. In this model, the vertices in X:,i,j ∪ X:,i′,j′ are fully connected for |i −
i′| ≤ 1 and |j − j′| ≤ 1, corresponding to a grid graph with diagonals where all channels are
connected. Video data can be represented by four-dimensional graphs corresponding to order-4
tensors in Rt×c×w×h, with a similar connective structure. While text data is discrete in nature,
once tokenized and passed through d-dimensional word embeddings, it resembles spatial data with
dimensions Rd×t and can benefit from independence structure.

In all these cases, the maximum clique size is determined by how quickly independence is achieved
spatio-temporally or in the embedding space, rather than by the overall data dimensionality. This ap-
proach yields effective dimensions that are orders of magnitude smaller than the ambient dimension,
leading to dimension-independent learning rates.

Crucially, this dimension independence is maintained across varying data sizes. For instance, crop-
ping an image would leave the maximum clique size unchanged (provided the cropping isn’t too
extreme), while expanding an image would create a larger MRF graph but, assuming the under-
lying pattern holds, the maximum clique size would remain constant. This property results in a
dimension-independent rate of learning that remains consistent across different image sizes. Thus,
whether dealing with a 100 × 100 pixel image or a 1000 × 1000 pixel image of similar content,
the effective learning rate remains tied to the maximum clique size rather than the total number of
pixels, exemplifying true dimension independence in the learning process.

These extensions demonstrate the versatility of the MRF approach in modeling complex, high-
dimensional data structures across various modalities, while significantly reducing the effective di-
mensionality of the problem.

Hierarchical models Although not the primary focus of this work, our results have potential ap-
plications to other data types not typically associated with deep learning. For instance, hierarchical
data is often modeled as a rooted tree. For tree-structured MRFs, the following is a well-known:
Lemma 4.7. Let G be a tree with at least two vertices. The size of the largest clique in G is 2.

9
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Estimating densities with a tree MRF has been studied previously and is called “tree density estima-
tion.” The largest clique size being 2 and yielding a Õ(n−1/4) rate of convergence approximately
matches previous work on this problem. In Liu et al. (2011); Györfi et al. (2022) it was found that
one can estimate a density with an unknown tree MRF, without the strong density assumption at
a rate O(n−1/4). Compared to Theorem 4.2, this is an improvement by a factor of n2, but these
estimators are not based on neural networks, which is our focus. In the next section, we show that
the O(n−1/4) is not only optimal for trees, but can be generalized to arbitrary MRFs.

4.4 APPROXIMATELY OPTIMAL ESTIMATOR

Although not the primary focus of this work, we present the following result which approximately
matches (up to log terms) the best possible rate for MRFs.

Theorem 4.8. Let G = (V,E) be a finite graph. There exists an estimator Vn such that for any
Lipschitz continuous density p satisfying the strong density assumption and Markov property with
respect to G, we have

∥p− Vn∥1 ∈ Õp

(
n−1/(2+r)

)
,

where Vn is a function of n i.i.d. samples from p, and r is the size of the largest clique in G.

For this estimator, the effective dimension is r. The estimator analyzed in this theorem is based
on Scheffé Tournaments over functions akin to histograms (Scheffe, 1947; Yatracos, 1985). This
estimator is not computationally tractable and is presented solely to demonstrate the theoretical pos-
sibility of this optimal rate. An open question remains as to whether this optimal rate is achievable
with neural networks and a tractable loss/algorithm. This rate cannot be substantially improved for
any MRF graph which we argue in Appendix E.

5 CONCLUSION

Neural density estimation has been the subject of intense study over the past few decades, dating at
least back to Magdon-Ismail & Atiya (1998). There has recently been interest in designing structured
neural density estimators that exploit graphical structure (Germain et al., 2015; Johnson et al., 2016;
Khemakhem et al., 2021; Wehenkel & Louppe, 2021; Chen et al., 2024). In this work, we have
presented a novel perspective on the success of neural networks in density estimation problems. Our
approach, based on Markov Random Field (MRF) structures, offers an alternative explanation to the
widely accepted manifold hypothesis for why deep learning methods can circumvent the curse of
dimensionality, and aligns with these recent developments on structured density estimation.

We have demonstrated that leveraging MRF assumptions can achieve dimension-independent con-
vergence rates for density estimation, with the effective dimensionality determined by the largest
clique in the MRF graph rather than the ambient data dimension. This potentially explains the
efficacy of neural networks in domains like image and sequential data processing.

Our MRF-based approach complements, rather than replaces, the manifold hypothesis. We envision
a combination of local manifold-like structures and global MRF-like independence properties at
play in real-world scenarios, with the manifold hypothesis explaining local features and our MRF
approach capturing broader independence structures.

This work opens avenues for future research, including investigating the interplay between local
manifold structures and global MRF properties, and developing practical algorithms exploiting these
structures within deep learning frameworks.

In conclusion, our work provides a novel theoretical framework for understanding neural networks
in high-dimensional spaces, offering an alternative to the manifold hypothesis and potentially stim-
ulating new directions in both the theory and practice of machine learning for high-dimensional
tasks.
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A NOTATIONS AND PRELIMINARIES

Before proving the main theorem we will first establish some notation and auxiliary results. For a
pair of functions f, g : X → R where X is an arbitrary domain, we define the f · g to be pointwise
function multiplication so (f ·g)(x) = f(x)g(x) for all x ∈ X. For a tuple of functions f1, . . . , fm :
X → R, the product symbol

∏m
i=1 fi is defined to be pointwise function multiplication, i.e., f1(x) ·

f2(x) · · · · · fm(x) for all x ∈ X. Let N be the set of positive integers. For any d ∈ N, let
[d] = {1, 2, . . . , d}.

For a set V ⊂ [d] with V = {v1, . . . , v|V |} where vi < vj for all i < j, let ed,V : Rd → R|V |;x 7→
[xv1 , . . . , xv|V | ], i.e., ed,V accepts a d-dimensional vector and outputs the indices at V , in order.
The function eV,d can be thought of as selecting some indices from a vector. As a slight abuse of
notation, the d subscript will be omitted.
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For a graph G = (V,E), the set of maximal cliques in G will be denoted C(G), and is a set of subsets
of V .

All of our results will assume the domain of the data is the unit cube [0, 1]d. A density p will be
called positive if p(x) > 0 for all x ∈ [0, 1]d. Since [0, 1]d is compact, a direct consequence of this
is that there exists c > 0 such that p(x) > c for all x.

A.1 PRELIMINARY RESULTS

Proposition A.1. Let p be a Lipschitz continuous probability density [0, 1]d,which is everywhere
positive on [0, 1]d and satisfies the Markov property with respect to a graph G = (V,E). Then, for
all x ∈ [0, 1]d,

p(x) =
∏

V ′∈C(G)

ψV ′ (eV ′(x)) ,

where each ψV ′ is Lipschitz continuous, and there exist constants c, C such that 0 < c ≤ C and
c ≤ ψV ′ ≤ C for all V ′ ∈ C(G).

Before proving this proposition we first prove the following support lemma.
Lemma A.2. Let f, g : [0, 1]d → R be Lipschitz continuous with f ≥ δ and g ≥ δ for some δ > 0.
Then f · g and 1/f are both Lipschitz continuous and there exists δ′ > 0 such that f · g ≥ δ′ and
1/f ≥ δ′.

Proof of Lemma A.2. Let f be Lf -Lipschitz and g be Lg-Lipschitz. Because f and g are Lipschitz
on a bounded set there exists Cf > 0 and Cg > 0 such that f ≤ Cf and g ≤ Cg . Let x, y ∈ [0, 1]d

be arbitrary.

We will begin by proving the product portion of the lemma:

|f(x)g(x)− f(y)g(y)| ≤ |f(x)g(x)− f(x)g(y)|+ |f(x)g(y)− f(y)g(y)|
≤ Cf |g(x)− g(y)|+ Cg |f(x)− f(y)|
≤ CfLg ∥x− y∥2 + CgLf ∥x− y∥2
≤ 2max (CfLg, CgLf ) ∥x− y∥2 .

The existence of a positive lower bound for f · g follows immediately from f · g ≥ δ2.

To prove the reciprocal portion of the lemma, observe that the function x 7→ 1/x is Lipschitz on the
range of f . Since the composition of Lipschitz functions is itself Lipschitz, it follows that 1/f is
Lipschitz. Finally we have that 1/f ≥ 1/Cf > 0, finishing the proof.

Proof of Proposition A.1. This proof utilizes results from Chang (2007), a work-in-progress book
currently used primarily as lecture notes. This work has a constructive proof of the Hammersley-
Clifford Theorem. For S ⊂ [d], let γS : Rd → Rd;x 7→ [xi1(i ∈ S)]i, i.e., indices outside of S are
set to zero (the zero vector could actually be set to any arbitrary but fixed vector, e.g., set a vector
y ∈ Rd and [γS ]i ̸∈S = yi). From the Chang (2007) (3.15), the proof of the Hammersley-Clifford
Theorem, it is shown that:

p(x) =
∏

V ′∈C(G)

ψV ′(x),

where,

ψV ′(x) =

∏
V ′′⊂V ′:|V ′′\V ′| mod 2=0 p (γV ′′ (x))∏
V ′′⊂V ′:|V ′′\V ′| mod 2=1 p (γV ′′ (x))

. (2)

For clarity we do an example of the index set of the product; so

V ′′ ⊂ V ′ : |V ′′ \ V ′| mod 2 = 0

denotes a product over all subsets of V ′ where the set V ′′ where V ′′∩V ′C contains an even number
of elements. From equation 2 it is clear that ψV ′ only depends on the indices of x in V ′. The
regularity conditions hold due to Lemma A.2.
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Given any set S. For any subset S′ ⊆ S, let 1S′ be the indicator function from S to {0, 1}, i.e.

1S′(x) =

{
0 if x /∈ S′

1 if x ∈ S′ for all x ∈ S.

Given any d, b ∈ N, V = {v1, . . . , v|V |} ⊂ [d] and C ≥ 1. For any A ∈ [b]|V |, let Λd,b,A,V be the
subset of [0, 1]d

Λd,b,A,V :=

{
x ∈ [0, 1]d | xvi ∈

[
Ai − 1

b
,
Ai
b

]
for all i ∈ [|V |]

}
. (3)

Let Qd,b,V,C be the set of functions from [0, 1]d → R

Qd,b,V,C :=

{
x 7→

∑
A∈[b]|V |

wA1Λd,b,A,V
(x) | wA ∈ [0, C]

}
. (4)

For a set L ⊂ Lβ
(
[0, 1]d

)
where 1 ≤ β <∞ and ϵ > 0, a subset C ⊆ L is called an ϵ-cover of L in

Lβ norm if, for any f ∈ L, there exists a g ∈ C such that ∥f − g∥β ≤ ϵ. Also, we define N(L, ϵ) to
be the cardinality of the smallest subset of L that is a (closed) ϵ-cover of L in Lβ norm. Note that
N(L, ϵ) depends on β. We will not specify it when it is clear in the context.

B PROOF OF THEOREM 4.2

Theorem B.1. Let G = (V,E) be a finite graph and r is the size of the largest clique in G. There
exists a neural network architecture F∗, such that, for

p̂n = arg min
f∈F∗

∥f∥22 −
2

n

n∑
i=1

f(Xi)

where X1, . . . , Xn
i.i.d.∼ p, then

∥p− p̂n∥2 ∈ Õp

(
n−1/(4+r)

)
,

for any Lipschitz continuous, positive density p satisfying the Markov property with G.

This is stronger than L1 convergence since, through Hölder’s inequality, we get L1 convergence at
the same rate.

Lemma B.2. Let (Ω,Σ, µ) be a measure space, and let f1, . . . , fm and g1, . . . , gm be measurable
and absolutely integrable functions on Ω. Further suppose there exists a constant C ≥ 0 such that,
for all i ∈ [m],

∥fi∥∞ ≤ C and ∥gi∥∞ ≤ C.

Then the following inequality holds:∥∥∥∥∥
m∏
i=1

fi −
m∏
i=1

gi

∥∥∥∥∥
∞

≤ Cm−1
m∑
i=1

∥fi − gi∥∞ .

Proof of Lemma B.2. We will proceed by induction on m.
Case m = 1: Trivial.
Induction: Suppose the lemma holds for some value of m. From the inductive hypothesis we have
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that∥∥∥∥∥
m+1∏
i=1

fi −
m+1∏
i=1

gi

∥∥∥∥∥
∞

≤

∥∥∥∥∥
m∏
i=1

fi · fm+1 −
m∏
i=1

gi · fm+1

∥∥∥∥∥
∞

+

∥∥∥∥∥
m∏
i=1

gi · fm+1 −
m∏
i=1

gi · gm+1

∥∥∥∥∥
∞

≤

∥∥∥∥∥
m∏
i=1

fi −
m∏
i=1

gi

∥∥∥∥∥
∞

∥fm+1∥∞ +

∥∥∥∥∥
m∏
i=1

gi

∥∥∥∥∥
∞

∥fm+1 − gm+1∥∞

≤

∥∥∥∥∥
m∏
i=1

fi −
m∏
i=1

gi

∥∥∥∥∥
∞

C + Cm ∥fm+1 − gm+1∥∞

≤Cm−1
m∑
i=1

∥fi − gi∥∞ C + Cm ∥fm+1 − gm+1∥∞

≤Cm
m+1∑
i=1

∥fi − gi∥∞ .

Space of Neural Network Architectures Define a space of neural networks as follows. Let σ
be the ReLU activation function with will act element-wise on vectors. For any ℓ ∈ N, w =
(w0, . . . , wℓ+1) with wi ∈ N, s ∈ N and F > 0, the space F (ℓ, w, s, F ) is defined by the functions
f : [0, 1]w0 → Rwℓ+1 which have the form:

f(x) =WℓσvℓWℓ−1σvℓ−1
· · ·W1σv1W0x,

where σvi(y) = σ(y − vi), Wi ∈ Rwi+1×wi , where every entry in Wi and vi have absolute value
less than or equal to 1, ∥f∥∞ ≤ F , and sum of the total number of nonzero entries of Wi and vi
is less than or equal to s. In this work the output dimension of all neural networks will be 1, i.e.
wℓ+1 will always be assumed to be 1. This is the same space of neural network models employed
by Schmidt-Hieber (2017).

Theorem B.3 (Theorem 5, Schmidt-Hieber, 2017). For any f ∈ Cβd ([0, 1]
d,K) and any integers

m ≥ 1 and N ≥ max((β + 1)d, (K + 1)ed), there exists a ReLU network f̃ ∈ F(ℓ, w, s,∞) with
depth

ℓ = 8 + (m+ 5)(1 + ⌈log2(max(d, β))⌉), (5)

widths

w = (d, 6(d+ ⌈β⌉)N, . . . , 6(d+ ⌈β⌉)N, 1), (6)

and sparsity

s ≤ 141(d+ β + 1)d+3N(m+ 6) (7)

such that ∥∥∥f̃ − f
∥∥∥
L∞([0,1]d)

≤ (2K + 1)(1 + d2 + β2)6dN2−m +K3βN−β/d. (8)

Lemma B.4 (Lemma 5, Remark 1, Schmidt-Hieber, 2017). For any δ > 0,

logN(F(ℓ, w, s,∞), ϵ, ∥·∥∞) ≤ (s+ 1) log(22ℓ+5ϵ−1(ℓ+ 1)w2
0w

2
ℓ+1s

2ℓ).

B.1 SQUARED-L2ERSION

Proof of Theorem B.1. Recall that, given a graph G, C(G) is the set of maximal cliques in G. For
any V ′ ∈ C(G), let FV ′ = F (ℓV ′ , wV ′ , s, C) where ℓV ′ , wV ′ , s, C will be determined later. Also,
let

F∗ =

{ ∏
V ′∈C(G)

qV ′ ◦ eV ′

∣∣∣ qV ′ ∈ FV ′

}
. (9)
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We shall show that F∗ is the neural network architecture satisfying the desired guarantees in Theo-
rem B.1.

For any set of n i.i.d. samples X1, . . . , Xn drawn from p, let

p∗n = arg min
f∈F∗

∥p− f∥22 and p̂n = arg min
f∈F∗

(
∥f∥22 −

2

n

n∑
i=1

f(Xi)

)
. (10)

Now, we would like to bound the term ∥p̂n − p∥22. We first express it as

∥p̂n − p∥22 =
(
∥p̂n − p∥22 − ∥p∗n − p∥22

)
+ ∥p∗n − p∥22.

For the term ∥p̂n − p∥22 − ∥p∗n − p∥22, we further express it as

∥p̂n − p∥22 − ∥p∗n − p∥22 = ∥p̂n − p∥22 −
(
∥p∥22 + ∥p̂n∥22 −

2

n

n∑
i=1

p̂n(Xi)

)
︸ ︷︷ ︸

:=A

+

(
∥p∥22 + ∥p̂n∥22 −

2

n

n∑
i=1

p̂n(Xi)

)
− ∥p∗n − p∥22︸ ︷︷ ︸

:=B

(11)

Before we bound A and B, we first provide a useful inequality. For any p′ ∈ F∗, we have

∥p′ − p∥22 −
(
∥p∥22 + ∥p′∥22 −

2

n

n∑
i=1

p′(Xi)

)

=
2

n

n∑
i=1

p′(Xi)− 2 ⟨p′, p⟩

≤ 2 max
f∈F∗

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣ since ⟨p′, p⟩ = Ep(p′) and p′ ∈ F∗. (12)

For the term A, we immediately have

A = ∥p̂n − p∥22 −
(
∥p∥22 + ∥p̂n∥22 −

2

n

n∑
i=1

p̂n(Xi)

)

≤ 2 max
f∈F∗

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣ since p̂n ∈ F∗.

For the term B, we have

B =

(
∥p∥22 + ∥p̂n∥22 −

2

n

n∑
i=1

p̂n(Xi)

)
− ∥p∗n − p∥22

≤
(
∥p∥22 + ∥p∗n∥22 −

2

n

n∑
i=1

p∗n(Xi)

)
− ∥p∗n − p∥22 by the optimality of p̂n

≤ 2 max
f∈F∗

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣ since p̂n ∈ F∗.

By plugging them into equation 11, we have

∥p̂n − p∥22 ≤ 4 max
f∈F∗

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣+ ∥p∗n − p∥22. (13)

We first analyze the term ∥p∗n − p∥22 in equation 13. From Proposition A.1, we have that

p =
∏

V ′∈C(G)

ψV ′ ◦ eV ′
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and there exists some Cψ > 0 so that ψV ′ ≤ Cψ for all V ′ and that, for some Lψ , all ψV ′ are Lψ-
Lipschitz continuous. We pick a sufficiently large C that is greater than Cψ . Also, by the definition
of F∗ in equation 9, we can pick a qV ′ ∈ FV ′ for each V ′ ∈ C(G) and form an f ∈ F∗ such that

f =
∏

V ′∈C(G)

qV ′ ◦ eV ′ .

We will specify each qV ′ later. Then, we have

∥f − p∥∞ =

∥∥∥∥ ∏
V ′∈C(G)

qV ′ ◦ eV ′ −
∏

V ′∈C(G)

ψV ′ ◦ eV ′

∥∥∥∥
∞

≤ C |C(G)|−1
∑

V ′∈C(G)

∥∥∥∥qV ′ ◦ eV ′ − ψV ′ ◦ eV ′

∥∥∥∥
∞

by Lemma B.2 (14)

Recall that FV ′ = F(ℓV ′ , wV ′ , s, C). For any sufficiently large m,N ∈ N which we will determine
later, we pick

ℓV ′ = 8 + (m+ 5)(1 + ⌈log2 |V ′|⌉),
wV ′ = (|V ′|, 6(|V ′|+ 1)N, 6(|V ′|+ 1)N, . . . , 6(|V ′|+ 1)N, 1) ,

s = ⌊141(r + 2)r+3N(m+ 6)⌋

and recall that we have picked C to be a constant larger than Cψ before. It is easy to check that the
hypotheses of Theorem B.3 are satisfied with K = Lψ , β = 1 and d = |V ′| and hence, by Theorem
B.3, if we pick

qV ′ = arg min
q′
V ′∈FV ′

∥∥∥∥q′V ′ ◦ eV ′ − ψV ′ ◦ eV ′

∥∥∥∥
∞

then we have∥∥∥∥qV ′ ◦ eV ′ − ψV ′ ◦ eV ′

∥∥∥∥
∞

≤ (2Lψ + 1)(1 + |V ′|2 + 1)6|V
′|N2−m + Lψ3N

−1/|V ′|

= O(N2−m +N−1/r) (15)

By plugging equation 15 into equation 14, we have

∥f − p∥∞ ≤ C |C(G)|−1
∑

V ′∈C(G)

O(N2−m +N−1/r) = O(N2−m +N−1/r)

Recall that the domain is [0, 1]d and hence we have

∥f − p∥22 =

∫
[0,1]d

|f(x)− p(x)|2dx ≤ ∥f − p∥2∞ .

Now, by the optimality of p∗n in equation 10, we have

∥p∗n − p∥22 ≤ ∥f − p∥22 ≤ ∥f − p∥2∞ = O(N22−2m +N−2/r). (16)

Now, we take care of the term maxf∈F∗

∣∣∣∣Ep(f) − 1
n

∑n
i=1 f(Xi)

∣∣∣∣ in equation 13. To bound this

term for all f ∈ F∗, we first construct an ϵ-cover of F∗ in L∞. Then, we use the Hoeffding’s
inequality to bound this term for each f in the ϵ-cover and use the union bound to control the total
failure probability. To construct an ϵ-cover, we define the following notations. For any V ′ ∈ C(G),
let F̃V ′ be a minimal ϵ

C|C(G)|−1 -cover of FV ′ in L∞ where ϵ is a sufficiently small value and we will
determine it later. Also, let

F̃∗ =

 ∏
V ′∈C(G)

q̃V ′ ◦ eV ′ | q̃V ′ ∈ F̃V ′

 . (17)
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We will show that F̃∗ is an ϵ-cover of F in L∞. For any f ∈ F , it can be expressed as

f =
∏

V ′∈C(G)

qV ′ ◦ eV ′ for some qV ′ ∈ QV ′

Since F̃V ′ is an ϵ
C|C(G)|−1 -cover of FV ′ in L∞ for all V ′ ∈ C(G), there exists a q̃V ′ ∈ F̃V ′ such that

∥qV ′ − q̃V ′∥∞ ≤ ϵ

C |C(G)|−1
.

By the definition of F̃ , we set f̃ ∈ F̃ to be

f̃ =
∏

V ′∈C(G)

q̃V ′ ◦ eV ′

By Lemma B.2, we check that∥∥∥f − f̃
∥∥∥
∞

=

∥∥∥∥ ∏
V ′∈C(G)

qV ′ −
∏

V ′∈C(G)

q̃V ′

∥∥∥∥
∞

= C |C(G)|−1 ·
∑

V ′∈C(G)

∥qV ′ − q̃V ′∥∞

≤ C |C(G)|−1 · ϵ

C |C(G)|−1

= ϵ.

Now, we return to the term maxf∈F

∣∣∣∣Ep(f)− 1
n

∑n
i=1 f(Xi)

∣∣∣∣. Since F̃∗ is an ϵ-cover of F∗ in L∞,

for any f ∈ F∗, there exists a f̃ ∈ F̃∗ such that ∥f − f̃∥∞ ≤ ϵ and we have∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣
≤
∣∣∣∣Ep(f)− Ep(f̃)

∣∣∣∣+ ∣∣∣∣Ep(f̃)− 1

n

n∑
i=1

f̃(Xi)

∣∣∣∣+ ∣∣∣∣ 1n
n∑
i=1

f̃(Xi)−
1

n

n∑
i=1

f(Xi)

∣∣∣∣
≤ 2ϵ+

∣∣∣∣Ep(f̃)− 1

n

n∑
i=1

f̃(Xi)

∣∣∣∣
which implies

max
f∈F∗

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣ ≤ 2ϵ+ max
f̃∈F̃∗

∣∣∣∣Ep(f̃)− 1

n

n∑
i=1

f̃(Xi)

∣∣∣∣. (18)

By Hoeffding’s inequality and the union bound, for any t > 0, the probability of

max
f̃∈F̃∗

∣∣∣∣Ep(f̃)− 1

n

n∑
i=1

f̃(Xi)

∣∣∣∣ > t

is bounded by |F̃∗| · e−Ω(nt2).

To bound the term |F̃∗|, by the definition of F̃∗ in equation 17, we first have

log |F̃∗| =
∑

V ′∈C(G)

log |F̃V ′ |.

For each term log |F̃V ′ |, by Lemma B.4, we have

log |F̃V ′ | ≤ (s+ 1) log(22LV ′+5ϵ−1(LV ′ + 1)|V ′|2s2LV ′ ).

We now bound the architecture parameters. Recall that

ℓV ′ = 8 + (m+ 5)(1 + ⌈log2 |V ′|⌉) for any V ′ ∈ C(G) and

s = ⌊141(r + 2)r+3N(m+ 6)⌋.
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Namely, we have

ℓV ′ = O(m) and s = O(Nm) which implies log |F̃V ′ | ≤ O(Nm2 log
Nm

ϵ
).

That means we have

log |F̃∗| ≤
∑

V ′∈C(G)

O(Nm2 log
Nm

ϵ
) = O(Nm2 log

Nm

ϵ
).

By setting t = O(
√

Nm2

n log Nnm
ϵ ), we have

max
f̃∈F̃∗

∣∣∣∣Ep(f̃)− 1

n

n∑
i=1

f̃(Xi)

∣∣∣∣ < O(

√
Nm2

n
log

Nnm

ϵ
)

with at least probability 1− |F̃∗| · e−Ω(nt2) → 1 as n→ ∞. Plugging it into equation 18, we have

max
f∈F∗

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣ ≤ 2ϵ+O(

√
Nm2

n
log

Nnm

ϵ
). (19)

Furthermore, by plugging equation 16 and equation 19 into equation 13, we have

∥p̂n − p∥22 ≤ 4max
f∈Q

∣∣∣∣Ep(f)− 1

n

n∑
i=1

f(Xi)

∣∣∣∣+ ∥p∗n − p∥22

< O(ϵ+

√
Nm2

n
log

Nnm

ϵ
+N22−2m +N−2/r).

By picking

ϵ = n−
2

r+4 , N = n
r

r+4 and m =
r + 1

r + 4
log n,

we have

∥p̂n − p∥22 ≤ Õ(n−
2

r+4 ).

C PROOF OF THEOREM 4.8

Theorem C.1. Let G = (V,E) be a finite graph. There exists an estimator Vn such that for any
positive Lipschitz continuous density p satisfying the Markov property with respect to a graph G,
we have that

∥p− Vn∥1 ∈ Õp

(
n−1/(2+r)

)
,

where Vn is a function of n iid samples from p, and r is the size of the largest clique in G.

Lemma C.2. Let (Ω,Σ, µ) be a measure space, and let f1, . . . , fm and g1, . . . , gm be measurable
and absolutely integrable functions on Ω. Further suppose there exists a constant C ≥ 0 such that,
for all i ∈ [m],

∥fi∥∞ ≤ C and ∥gi∥∞ ≤ C.

Then the following inequality holds:∥∥∥∥∥
m∏
i=1

fi −
m∏
i=1

gi

∥∥∥∥∥
1

≤ Cm−1
m∑
i=1

∥fi − gi∥1 .

The proof of this lemma will rely heavily on the 1-∞ form of Hölder’s Inequality. The following is
such a version of Hölder’s Inequality, as stated in (Folland, 1999, Theorem 6.8a).
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Theorem C.3 (Hölder’s Inequality). If f and g are measurable functions on a measure space
(Ω,Σ, µ), then

∥f · g∥1 ≤ ∥f∥1 ∥g∥∞ .

Proof of Lemma C.2. We will proceed by induction on m.
Case m = 1: Trivial.
Induction: Suppose the lemma holds for some value of m. A consequence of Hölder’s Inequality is
that for general functions f and g, with ∥f∥1 , ∥f∥∞ , ∥g∥1 , ∥g∥∞ finite, both ∥f · g∥1 and ∥f · g∥∞
are also finite. From the inductive hypothesis we have that∥∥∥∥∥

m+1∏
i=1

fi −
m+1∏
i=1

gi

∥∥∥∥∥
1

≤

∥∥∥∥∥
m∏
i=1

fi · fm+1 −
m∏
i=1

gi · fm+1

∥∥∥∥∥
1

+

∥∥∥∥∥
m∏
i=1

gi · fm+1 −
m∏
i=1

gi · gm+1

∥∥∥∥∥
1

≤

∥∥∥∥∥
m∏
i=1

fi −
m∏
i=1

gi

∥∥∥∥∥
1

∥fm+1∥∞ +

∥∥∥∥∥
m∏
i=1

gi

∥∥∥∥∥
∞

∥fm+1 − gm+1∥1

≤

∥∥∥∥∥
m∏
i=1

fi −
m∏
i=1

gi

∥∥∥∥∥
1

C + Cm ∥fm+1 − gm+1∥1

≤Cm−1
m∑
i=1

∥fi − gi∥1 C + Cm ∥fm+1 − gm+1∥1

≤Cm
m+1∑
i=1

∥fi − gi∥1 .

Lemma C.4. Let p be an L-Lipschitz probability density on [0, 1]d then ∥p∥∞ ≤ 1 + L
√
d.

Proof of Lemma C.4. Since p is L-Lipschitz, we have

|p(x)− p(y)| ≤ L · ∥x− y∥2 for any x, y ∈ [0, 1]d

≤ L
√
d.

Also, since p is a probability density, we have

1 = ∥p∥1 =

∫
x∈[0,1]d

p(x)dx ≥ min
x∈[0,1]d

p(x).

Combining these two inequalities, we have

∥p∥∞ = max
x∈[0,1]d

p(x) ≤ min
x∈[0,1]d

p(x) + L
√
d ≤ 1 + L

√
d.

Lemma C.5. Let 1 ≥ ϵ > 0 and C ≥ 1. Then,

N(Qd,b,V,C , ϵ) ≤ (2C/ϵ)(
b|V |) .

Proof of Lemma C.5. Given an ϵ ∈ (0, 1], consider the set

Q̃d,b,V,C,ϵ :=
{
x 7→

∑
A∈[b]|V |

wA1Λd,b,A,V
(x) | wA ∈ {0, ϵ, 2ϵ, . . . , ⌊C/ϵ⌋ϵ}

}
.

Clearly, Q̃d,b,V,C,ϵ ⊂ Qd,b,V,C . We have that |{0, ϵ, 2ϵ, . . . , ⌊C/ϵ⌋ϵ}| ≤ 1 + C/ϵ ≤ 2C/ϵ. Thus,
from a simple combinatorics argument, it follows that∣∣∣Q̃d,b,V,C,ϵ∣∣∣ ≤ (2C/ϵ)(

b|V |) .
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Now, we argue that Q̃d,b,V,C,ϵ is an ϵ-cover of Qd,b,V,C in L1 distance. Let q ∈ Qd,b,V,C . From the
definition of Qd,b,V,C , it follows that

q(x) =
∑

A∈[b]|V |

wA1Λd,b,A,V
(x) for all x ∈ [0, 1]d.

From the definition of Q̃d,b,V,C,ϵ, there exists a q̃ ∈ Q̃d,b,V,C,ϵ, with

q̃(x) =
∑

A∈[b]|V |

w̃A1Λd,b,A,V
(x) for all x ∈ [0, 1]d,

where |wA − w̃A| ≤ ϵ for all A. It therefore follows that

∥q − q̃∥1 =

∫
[0,1]d

∣∣∣∣∣∣
∑

A∈[b]|V |

wA1Λd,b,A,V
(x)−

∑
A∈[b]|V |

w̃A1Λd,b,A,V
(x)

∣∣∣∣∣∣ dx
=

∫
[0,1]d

∣∣∣∣∣∣
∑

A∈[b]|V |

(wA − w̃A)1Λd,b,A,V
(x)

∣∣∣∣∣∣ dx
=

∑
A∈[b]|V |

|wA − w̃A|
∫
[0,1]d

1Λd,b,A,V
(x)dx

≤
∑

A∈[b]|V |

ϵ · 1

b|V |

= ϵ.

Lemma C.6. Let V ⊂ [d] and f : [0, 1]|V | 7→ R be an L-Lipschitz function with 0 ≤ f ≤ C for
some C. Then,

min
q∈Qd,b,V,C

∥f ◦ eV − q∥1 ≤
√
|V |L/(2b).

Proof of Lemma C.6. For any A ∈ [b]|V |, recall that Λ|V |,b,A,[|V |] is defined in equation 3 as

Λ|V |,b,A,[|V |] =

|V |∏
i=1

[
Ai − 1

b
,
Ai
b

]
and let λA be the centroid of Λ|V |,b,A,[|V |] Also, let q be the function on [0, 1]d such that

q(x) =
∑

A∈[b]|V |

f(λA)1Λd,b,A,V
(x) for all x ∈ [0, 1]d.

By the assumption of f ≤ C, we have q ∈ Qd,b,V,C . Now, we bound ∥f ◦ eV − q∥1.

∥f ◦ eV − q∥1 =

∫
x∈[0,1]d

∣∣∣∣f(ev(x))− ∑
A∈[b]|V |

f(λA)1Λd,b,A,V
(x)

∣∣∣∣dx
=

∫
x∈[0,1]|V |

∣∣∣∣f(x)− ∑
A∈[b]|V |

f(λA)1Λ|V |,b,A,[|V |](x)

∣∣∣∣dx by Tonelli’s Theorem

≤
∑

A∈[b]|V |

∫
x∈Λ|V |,b,A,[|V |]

|f(x)− f(λA)1Λ|V |,b,A,[|V |](x)|dx. (20)

Note that if x ∈ Λ|V |,b,A,[|V |] then 1Λ|V |,b,A,[|V |](x) = 1. Hence, for x ∈ Λ|V |,b,A,[|V |], we have

|f(x)− f(λA)1Λ|V |,b,A,[|V |](x)| = |f(x)− f(λA)| ≤ L∥x− λA∥2 ≤ L ·
√
|V |
2b

.
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Plugging this into equation 20, we have

∥f ◦ eV − q∥1 ≤
∑

A∈[b]|V |

∫
x∈Λ|V |,b,A,[|V |]

L ·
√

|V |
2b

dx = L ·
√

|V |
2b

.

Theorem C.7 (Theorem 3.4 page 7 of Ashtiani et al. (2018), Theorem 3.6 page 54 of Devroye &
Lugosi (2001)). There exists a deterministic algorithm that, given a collection C of distributions

{p1, . . . , pM}, a parameter ε > 0 and at least
log(3M2/δ)

2ε2 iid samples from an unknown distribution
p, outputs an index j ∈ [M ] such that

∥pj − p∥1 ≤ 3 min
i∈[M ]

∥pi − p∥1 + 4ε (21)

with probability at least 1− δ/3.

Proof of Theorem C.1. For this proof, we will be employing Theorem C.7. For a nonnegative inte-
grable function f on [0, 1]d, define N̄ : f 7→ f/ ∥f∥1, with N̄(0) being set to the constant uniform
density.

For any d, b ∈ N, V ′ ⊂ [d] and sufficiently large constant C > 0, recall that Qd,b,V ′,C is the set
of histograms of width b on V ′ whose maximum weight is at most C as defined in equation 4 and
let Q̃d,b,V ′,C,b−1 be a minimal b−1 cover of Qd,b,V ′,C . Also, recall that C(G) is the set of maximal
cliques in G. Let

Qn =

{ ∏
V ′∈C(G)

qV ′ | qV ′ ∈ Qd,b,V ′,C

}
and Q̃n =

{ ∏
V ′∈C(G)

q̃V ′ | q̃V ′ ∈ Q̃d,b,V ′,C,b−1

}
.

(22)

The collection C of densities from Theorem C.7 correspond to the set N̄(Q̃n) := {N̄(q) | q ∈ Q̃n}.
To show that Theorem C.7 applies, we will first show that, for sufficiently large n,

n ≥
log
(
3M2/δ

)
2ε2

.

We first give a bound on M . Note that

M =
∣∣∣N̄ (Q̃n)∣∣∣ ≤ ∣∣∣Q̃n∣∣∣ = ∏

V ′∈C(G)

∣∣∣Q̃d,b,V ′,C

∣∣∣ .
Since each Q̃d,b,V ′,C is a minimal b−1 cover of Qd,b,V ′,C , we have∣∣∣Q̃d,b,V ′,C

∣∣∣ = N(Qd,b,V ′,C , b
−1) by the definition of a b−1-cover.

By Lemma C.5 and |V ′| ≤ r, we have

N(Qd,b,V ′,C , b
−1) ≤ (2Cb)

(
b|V

′|
)
≤ (2Cb)b

r

.

It implies that

M ≤
∏

V ′∈C(G)

(2Cb)b
r

≤ (2Cb)|C(G)|·b
r

≤ (2Cb)2
d·br since |C(G)| ≤ 2|V | = 2d.

By applying a logarithm yields, we have

logM ≤ 2dbr log(2Cb) = O(br log b)

Now, we have

log
(
3M2/δ

)
2ε2

=
1

2ϵ2
· (log 3 + 2 logM + log(1/δ)) ≤ O(

1

ϵ2
(br log b+ log

1

δ
)).
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By picking

ϵ = n−
1

r+2 log n, b = n−
1

r+2 and δ =
1

n
, (23)

we have, for a sufficiently large n,
log(3M2/δ)

2ε2 ≤ n.

Now, we are going to examine the RHS of equation 21 in Theorem C.7, i.e. bound the term
minq̃∈N̄(Q̃n)

∥p − q̃∥1. We first bound the term minq̃∈Q̃n
∥p − q̃∥1 and return to N̄(Q̃n) later.

Note that

min
q̃∈Q̃n

∥p− q̃∥1 ≤ min
q∈Qn

(
∥p− q∥1 + min

q̃∈Q̃n

∥q − q̃∥1

)
.

Recall the definition of Qn and Q̃n in equation 22. We have, for each q ∈ Qn, there is a q̃ ∈ Q̃n
such that, by Lemma C.2,

∥q̃ − q∥1 = O

(
C |C(G)|−1

b

)
= Õ(n−

1
2+r ). (24)

Therefore, we have

min
q̃∈Q̃n

∥p− q̃∥1 ≤ min
q∈Qn

∥p− q∥1 + Õ(n−
1

2+r ).

Now, we investigate the term minq∈Qn ∥p− q∥1. From Proposition A.1 it follows that

p(x) =
∏

V ′∈C(G)

ψV ′ ◦ eV ′ where all ψV ′ are all Lipschitz continuous for some L. (25)

Because ψV ′ are all Lipschitz continuous on a bounded set, they must all be bounded and, for
sufficiently large n, ψV ′ ≤ C for all V ′ ∈ C(G). By equation 25 and the definition in equation 22,
we can express

min
q∈Qn

∥p− q∥1 = min
q∈Qn

∥∥∥∥ ∏
V ′∈C(G)

ψV ′ ◦ eV ′ − q

∥∥∥∥
1

= min
qV ′∈Qd,b,V ′,C

∥∥∥∥ ∏
V ′∈C(G)

(ψV ′ ◦ eV ′ − qV ′)

∥∥∥∥
1

(26)

By Lemma C.2, for any qV ′ ∈ Qd,b,V ′,C , we have∥∥∥∥ ∏
V ′∈C(G)

(ψV ′ ◦ eV ′ − qV ′)

∥∥∥∥
1

≤ Cd−1
∑

V ′∈C(G)

∥∥∥∥ψV ′ ◦ eV ′ − qV ′

∥∥∥∥
1

and, by Lemma C.6, we have

min
qV ′∈Qd,b,V ′,C

∥∥∥∥ψV ′ ◦ eV ′ − qV ′

∥∥∥∥
1

≤ L

b
.

Plugging them into equation 26, we have

min
q∈Qn

∥p− q∥1 ≤
∑

V ′∈C(G)

Cd−1 · L
b
= Õ(n−

1
r+2 ).

If q∗ is minimizer of argminq̃∈Qn
∥p− q̃∥1, it also implies that

|∥q∗∥1 − 1| ≤ ∥p− q∗∥1 = Õ(n−
1

r+2 ) (27)

Combining with equation 24, if q̃∗ is a minimizer of argminq∈Q̃n
∥p− q∥1, we have

|∥q̃∗∥1 − 1| = Õ(n−
1

r+2 ) which means ∥q̃∗∥1 → 1 as n→ ∞.

Note that Q̃n may contain the 0 function. The fact that ∥q̃∗∥1 → 1 suggests that, for a sufficiently
large n, the 0 function is not a minimizer of argminq̃∈Q̃n

∥p− q̃∥1. For any n ∈ N, let Q̃′
n the set

Q̃n with 0 removed, i.e.,

Q̃′
n =

{
Q̃n if 0 ̸∈ Q̃n
Q̃n \ {0} if 0 ∈ Q̃n.
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Hence, for a sufficiently large n, we have minq̃∈Q̃′
n
∥p− q̃∥1 = minq̃∈Q̃n

∥p− q̃∥1. Now, we are
ready to analyze the term minq̃∈N̄(Q̃n) ∥p− q̃∥1. We have

min
q̃∈N̄(Q̃n)

∥p− q̃∥1 ≤ min
q̃∈N̄(Q̃′

n)
∥p− q̃∥1 ≤ min

q̃∈Q̃′
n

∥∥p− N̄(q̃)
∥∥
1
≤ min
q̃∈Q̃′

n

(
∥p− q̃∥1 +

∥∥q̃ − N̄(q̃)
∥∥
1

)
.

For any q̃ ∈ Q̃′
n, we have∥∥q̃ − N̄(q̃)

∥∥
1
=

∥∥∥∥q̃ − q̃

∥q̃∥1

∥∥∥∥
1

= |1− ∥q̃∥1| = |∥p∥1 − ∥q̃∥1| ≤ ∥p− q̃∥1.

Hence, by minq̃∈Q̃′
n
∥p− q̃∥1 = minq̃∈Q̃n

∥p− q̃∥1 and equation 27, we have

min
q̃∈N̄(Q̃n)

∥p− q̃∥1 ≤ 2 min
q̃∈Q̃′

n

∥p− q̃∥1 = Õ(n−
1

r+2 ).

Recall that we set ε = n−
1

r+2 log(n) in equation 23. Finally, suppose q′ is the output of the algo-
rithm, we have

∥q′ − p∥1 ≤ 3 · min
q̃∈N̄(Q̃n)

∥p− q̃∥1 + 4 · ϵ = Õ(n−
1

r+2 ).

D GRAPH PROOFS

For any d, d′, t ∈ N, define Ld×d′ to be the graph whose vertex set is [d]× [d′] and edge set is

{((i, j), (i′, j′)) | i, i′ ∈ [d], j, j′ ∈ [d′], (i, j) ̸= (i′, j′), |i− j|+ |i′ − j′| ≤ 1}

and Ltd×d′ to be the graph whose vertex set is [d]× [d′] and edge set is

{((i, j), (i′, j′)) | i, i′ ∈ [d], j, j′ ∈ [d′], (i, j) ̸= (i′, j′), |i− j|+ |i′ − j′| ≤ t}.

For any d, d′, t ∈ N, define L+
d×d′ to be the graph whose vertex set is [d]× [d′] and edge set is

{((i, j), (i′, j′)) | i, i′ ∈ [d], j, j′ ∈ [d′], (i, j) ̸= (i′, j′),max{|i− j|, |i′ − j′|} ≤ 1}

and (L+
d×d′)

t to be the graph whose vertex set is [d]× [d′] and edge set is

{((i, j), (i′, j′)) | i, i′ ∈ [d], j, j′ ∈ [d′], (i, j) ̸= (i′, j′),max{|i− j|, |i′ − j′|} ≤ t}.

For any d, t ∈ N, define Ld to be the graph whose vertex set is [d] and edge set is {(i, j) | i ̸=
j, |i−j| ≥ 1} andLtd to be the graph whose vertex set is [d] and edge set is {(i, j) | i ̸= j, |i−j| ≥ t}.

Proof of Lemma 4.3. For any clique C in (Ld×d′)
t, let (i0, j0) (resp. (i1, j1), (i′0, j

′
0) and (i′1, j

′
1))

be the vertex in C such that i0 + j0 is maximal (resp. i1 + j1 is minimal, i′0 − j′0 is maximal and
i′1 − j′1 is minimal). Namely, the vertex set of C is a subset of

S := {(i, j)|i ∈ [d], j ∈ [d′], i1 + j1 ≤ i+ j ≤ i0 + j0, i
′
1 − j′1 ≤ i− j ≤ i′0 − j′0}.

By the definition of cliques and (Ld×d′)
t, we have

(i0 + j0)− (i1 + j1) ≤ |i0 − i1|+ |j0 − j1| ≤ t since there is an edge between (i0, j0) and (i1, j1)

(i′0 − j′0)− (i′1 − j′1) ≤ |i′0 − i′1|+ |j′0 − j′1| ≤ t since there is an edge between (i′0, j
′
0) and (i′1, j

′
1)

To bound the size of S, we observe that, for each of the at most t + 1 possible values i1 + j1, i1 +
j1 + 1, . . . , i0 + j0 equal to i+ j, there are at most ⌈ t+1

2 ⌉ possible values among i′1 + j′1, i
′
1 + j′1 +

1, . . . , i′0 + j′0 equal to i− j by considering the parity. Therefore, |S| is at most (t+ 1) · ⌈ t+1
2 ⌉.

Hence, the size of the largest clique in (Ld×d′)
t is at most (t+ 1) · ⌈ t+1

2 ⌉ ≤ t2+4t+3
2 .
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Proof of Lemma 4.4. It is easy to check that the subgraph of (L+
d×d)

t induced by the vertex set
[t+ 1]× [t+ 1] is a clique. Hence, the size of the largest clique in (L+

d×d′)
t is at least (t+ 1)2.

For any clique C in (L+
d×d′)

t, let i0 (resp. i′0) be the smallest (resp. largest) first index of the vertices
in C and j0 (resp. j′0) be the smallest (resp. largest) second index of the vertices in C. Namely, the
vertex set of C is a subset of

S := {(i, j)|i ∈ [d], j ∈ [d′], i0 ≤ i ≤ i′0, j0 ≤ j ≤ j′0}.
To bound the size of S, by the definition of cliques and (L+

d×d′)
t, we have

i′0 − i0 ≤ t and j′0 − j0 ≤ t

Therefore, |S| is at most (t+ 1)2.

Hence, the size of the largest clique in (L+
d×d′)

t is (t+ 1)2.

Proof of Lemma 4.6. It is easy to check that the subgraph of Ltd induced by the vertex set [min{t+
1, d}] is a clique. Hence, the size of the largest clique in Ltd is at least min{t+ 1, d}.

For any clique C in Ltd, let i0 (resp. j0) be the smallest (resp. largest) index of the vertex in C.
Namely, the vertex set of C is be a subset of S := {i|i ∈ [d], i0 ≤ i ≤ j0}. By the definition of
cliques and Ltd, we have |i− j| ≤ min{t, d− 1}. Therefore, |S| is at most min{t+ 1, d}.

Hence, the size of the largest clique in Ltd is min{t+ 1, d}.

E LOWER BOUND FOR MRF RATES

We approach this problem assuming the data domain is [0, 1]d. For any MRF graph G with maxi-
mum clique size r, no estimator can achieve a rate of O

(
n−1/(2+r−ε)) for the set of all Lipschitz

continuous densities, for any ε > 0. We prove this by contradiction.

Suppose there exists a graph G, ε > 0, and an estimator p̂ that achieves this rate on Lipschitz
continuous densities satisfying the Markov property with respect to G. Without loss of generality,
assume the first r entries of the random vector, X1, . . . , Xr, form a maximal clique in G.

Consider an arbitrary r-dimensional Lipschitz continuous density q and let q′ be the density where,
for Y ∼ q′, (Y1, . . . , Yr) ∼ q and Yr+1, . . . , Yd are i.i.d. uniform random variables on [0, 1], jointly
independent of (Y1, . . . , Yr). Note that q′ is a Lipschitz continuous density satisfying the Markov
property with respect to G.

Using p̂ to estimate q′, we get ∥q′ − p̂∥1 ∈ O
(
n−1/(2+r−ε)). Let L denote the law of a random

variable, e.g., L(Y ) = q′.

It is well-known that applying the same function to a pair of random variables never increases their
L1 distance (see Devroye & Lugosi (2001), Section 5.4). Let f : (x1, . . . , xd) 7→ (x1, . . . , xr). Let
X̂ ∼ p̂. We then have L(f(Y )) = q and:

∥∥∥q − L(f(X̂))
∥∥∥
1
=
∥∥∥L(f(Y ))− L(f(X̂))

∥∥∥
1

≤
∥∥∥L(Y )− L(X̂)

∥∥∥
1

= ∥q′ − p̂∥1
= O

(
n−1/(2+r−ε)

)
Thus, L(f(X̂)) is an estimator that achieves a rate of O

(
n−1/(2+r−ε)) on r-dimensional Lipschitz

continuous densities. However, it is known that no estimator can achieve this rate, leading to a
contradiction.
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F COCO SCATTER PLOTS

(a) (120, 160)v(120, 161) (b) (120, 160)v(120, 162) (c) (120, 160)v(120, 400) (d) (120, 160)v(320, 520)

(e) (120, 160)v(120, 161)
cond.

(f) (120, 160)v(120, 162)
cond.

(g) (120, 160)v(120, 400)
cond.

(h) (120, 160)v(320, 520)
cond.

Figure 8: This figure presents scatter plots analogous to those in Figure 3 of the main text, but
derived from the COCO training set (Lin et al., 2014). The conditional scatter plots are based on
pixel (121,160) being near its median value.

Due to memory constraints, we used a subset of the data:

1. 4000 random samples were initially selected.
2. From these, 100 images with pixel (121,160) nearest to the median were chosen for the

conditional plots.

Note that increasing the sample size for conditioning resulted in lower observed correlation. This
is because a larger sample allows for a more precise conditioning, better approximating the true
conditional distribution. The wider the range of values for the conditioning pixel (121,160), the
more the selected points resemble the unconditional distribution, potentially introducing spurious
correlation.

These experiments provide an approximation of the conditional data. In our observations, using
larger datasets consistently and significantly reduced the observed correlation. This suggests that
using an even larger dataset would likely further reduce the observed correlation, bringing the results
closer to the true conditional independence structure.
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