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Abstract

Foundation models have become a key paradigm in computational pathology
(CPath), enabling scalable and generalizable analysis of histopathological images.
Early work centered on uni-modal models trained solely on visual data, but recent
advances highlight the potential of multi-modal approaches that integrate textual
reports, structured knowledge, and molecular profiles. In this survey, we review 32
multi-modal foundation models built primarily on hematoxylin and eosin (H&E)
whole-slide images (WSIs) and tile-level representations, categorizing them into
vision–language, vision–knowledge graph, and vision–gene expression paradigms,
with vision–language models further divided into non-LLM- and LLM-based
variants. We also analyze 28 datasets, grouped into image–text pairs, instruc-
tion datasets, and image–other modality pairs, and summarize downstream tasks,
training and evaluation strategies, and future challenges. This survey provides a
comprehensive resource for advancing AI in pathology.

1 Introduction

The advent of foundation models has transformed computational pathology (CPath), enabling scalable
analysis of histopathological images for improved diagnosis, prognosis, and biomarker discovery [53].
H&E-stained whole-slide images (WSIs) remain the most common modality, providing rich tissue
morphology but requiring tiling into patches for computation [10, 29, 74, 22, 15]. Early uni-modal
models [73, 14, 71] advanced classification, segmentation, and prediction by learning visual features,
but their reliance on image-only data limited interpretability. Recent work therefore focuses on multi-
modal models [48, 74, 49], which integrate pathology reports, knowledge graphs, and molecular
profiles to capture richer context and deliver more clinically relevant insights. A detailed discussion
of related background is provided in Appendix Section A.
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Figure 1: A roadmap of MMFM4CPath.

Existing multi-modal foundation
models for CPath (MMFM4CPath)
fall into three paradigms: vi-
sion–language, vision–knowledge
graph, and vision–gene expression. A
roadmap of up-to-date MMFM4CPath
is shown in Figure 1. Vision–language
models [34, 37, 65, 62] use textual
annotations such as WSI reports and
captions to enrich visual features,
supporting zero-shot learning and cross-modal integration; they are further divided into non-LLM-
and LLM-based variants, with the latter leveraging LLMs for stronger language understanding and
generation. Vision–knowledge graph models [90, 89] incorporate structured pathology ontologies to
guide learning, while vision–gene expression models [78, 70] align image features with RNA and
other omics data to capture genotype–phenotype associations.

Table 1: Comparison with related surveys.

Survey
# MMFM4CPath # Datasets for MMFM4CPath Tasks

Taxo-
-nomy

V-L V-KG V-GE Total Image-
Text Pair

Instr-
ution I-OM Total

Non-LLM LLM
Ochi et, al. [53] 4 ✗ ✗ 1 5 4 ✗ 1 5 ✓
Chanda et, al. [10] 7 4 1 ✗ 12 8 6 ✗ 14 ✗
Guan et, al. [29] 3 11 ✗ 1 14 8 6 ✗ 14 ✗
Bilal et, al. [8] 8 4 ✗ 2 14 ✗ ✗ ✗ ✗ ✓
Li et, al. [43] 8 ✗ 2 ✗ 10 12 ✗ 2 14 ✓

This Survey 13 14 2 3 32 12 12 4 28 ✓

While existing surveys have explored
FM4CPath [53, 10, 29, 8, 43], they
often lack a comprehensive analysis
tailored to multi-modal approaches.
As shown in Table 1, our survey
differentiates itself by systematically
categorizing 32 of the most up-to-
date MMFM4CPath and analyzing
28 available multi-modal datasets for
pathology, with an emphasis on modalities beyond vision-language integration. Additionally, we pro-
vide an in-depth discussion on evaluation methodologies, training strategies, and emerging challenges
in this field. The key contributions of this survey include:

• Comprehensive and Up-to-Date Survey. We review 32 multi-modal foundation models in com-
putational pathology across vision-language, vision-knowledge graph, and vision-gene expression
paradigms, offering broader and more current coverage of architectures, pretraining strategies, and
adaptations than prior surveys.

• Analysis of Pathology-Specific Multi-Modal Datasets. We curate 28 datasets and categorize
them into three types: image-text pairs, multi-modal instructions, and image-other modality pairs,
highlighting their roles in modality alignment and instruction tuning.

• Overview of Multi-Modal Evaluation Tasks. We provide a taxonomy of six evaluation cate-
gories—classification, retrieval, generation, segmentation, prediction, and VQA—and summarize
how different MMFM4CPath are assessed under various settings.

• Future Research Opportunities. We outline three directions: integrating H&E with spatial omics,
predicting MxIF markers from H&E for virtual staining, and establishing standardized benchmarks
for fair comparison, aiming to improve clinical relevance and scalability.

2 Multi-Modal Foundation Models for CPath

2.1 Non-LLM-Based Vision-Language FM4CPath

Vision–language FM4CPath enhance pathology image understanding by aligning image–text pairs
with SSL frameworks such as CLIP [54] and CoCa [81], supporting robust visual features, zero-shot
learning, and cross-modal tasks. They typically pair a vision encoder with joint visual–language
pretraining [91] and increasingly use LLMs or V-LLMs, either fine-tuned as text encoders or directly
for generation and conversation.

CLIP-based Vision-Language FM4CPath. The success of CLIP on natural images has motivated
its adaptation to CPath. PLIP [34], PathCLIP [65], and QuiltNet [37] fine-tune CLIP on tile–caption
datasets, while CHIEF [74] combines a CPath-pretrained image encoder with CLIP’s text encoder
and a weakly supervised aggregator for WSI-level representations. Moving beyond off-the-shelf
encoders, PathGen-CLIP [20] uses V-LLMs to generate high-quality captions and trains CLIP from
scratch before fine-tuning on public datasets, whereas PathAlign-R [3] trains a CLIP framework from
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scratch directly at the WSI-level. More recently, MLLM4PUE [88] employs V-LLMs as backbones
to unify image and text into universal multi-modal embeddings for pathology.

CoCa-based Vision-Language FM4CPath. CoCa’s multi-modal decoder bridges visual and linguis-
tic features by transforming image embeddings into text-aware representations, thereby improving
cross-modal integration for MMFM4CPath. Building on this, CONCH [48], PRISM [58], and Lu-
cassen et al. [51] pre-train image encoders on pathology datasets before joint vision–language training,
with PRISM and Lucassen extending to WSI-level via Perceiver[40] and clinical reports. MUSK [77]
separately trains image and text encoders with BEiT-3 [72] and MIM [31], then aligns them under
CoCa. TITAN [22] introduces a three-stage WSI framework: iBOT pre-training with positional
encoding, CoCa-based refinement combining tile- and WSI-level features, and pathology-specialized
V-LLM–generated captions and reports.

Other Vision-Language FM4CPath. Unlike previous methods that use CLIP or CoCa framework,
PathAlign-G [3] first pre-trains a ViT-S using Masked Siamese Networks (MSN) [6], and then
fine-tunes the model using the BLIP-2 framework. This enables PathAlign-G to utilize a shared
pathology image-text embedding space, enhancing its cross-modal capabilities and making it more
suitable for generative tasks.

2.2 LLM-Based Vision-Language FM4CPath

The fusion of vision and language allows MMFM4CPath to align pathology images with language
signals, enabling LLMs to gain pathology knowledge and serve as generative assistants [49]. These
models pair a pre-trained image encoder with an LLM via a lightweight alignment module and
fine-tune the LLM using supervised or self-supervised objectives, which fall into instruction-based or
non-instruction-based approaches.

Instruction-Based V-LLMs for CPath. Most visual LLMs for CPath are instruction tuned on curated
datasets to adapt general LLMs and enhance cross-modal understanding. PathAsst [65] aligns a
PathCLIP encoder with an LLM via QA instructions and light fine-tuning. Quilt-LLaVA [57] and PA-
LLaVA [20] use public instruction sets, while PathChat [49] employs a broader corpus. SlideChat [15]
and WSI-LLaVA [45] scale to gigapixel WSIs with WSI-level instructions. PathInsight [75] directly
tunes existing VLLMs without separate encoders. Dr-LLaVA [61] combines instruction tuning with
reinforcement learning for clinically valid multi-turn responses. CLOVER [11] improves efficiency
with BLIP-2 and a lightweight Q-Former, freezing encoders and using GPT-3.5 plus template
instructions. CPath-Omni [62] unifies tile- and WSI-level processing with four training stages over
tile-caption, tile-instruction, and WSI-instruction datasets to enable generation and conversation.

Non-Instruction-Based V-LLMs for CPath. Non-instruction-based V-LLMs for CPath focus on
generation tasks without explicit instruction tuning. PathGen-LLaVA [64] trains a CLIP model from
scratch on tile–caption pairs, adds a fully connected layer to align image and text features, and uses
supervised image captioning to generate pathology descriptions. W2T [12] combines four frozen
visual and three text extractors, training with next-word prediction (NWP) on its WSI-VQA dataset
for generative WSI question answering. HistoGPT [69] provides small, medium, and large variants:
the smaller models use a Perceiver WSI encoder with MIL and NWP fine-tuning, while the large
version applies a GNN to capture WSI-level positional information. HistoGPT supports multi-image
report generation and incorporates prompts for expert knowledge guidance.

2.3 Enhancing FM4CPath with Other Modalities

Pathology-specific datasets are often small, noisy, and sourced from heterogeneous origins such as
websites or videos [34, 37], leading to unstructured data that lacks domain knowledge. In contrast,
large-scale multi-modal resources aligned with clinical practice, including gene expression profiles,
remain underutilized for pretraining. To address this, recent studies explore incorporating modalities
beyond vision and language to strengthen training signals.

Vision-Knowledge Graph FM4CPath. To integrate structured domain-specific knowledge, KEP [90]
constructs a pathology knowledge graph and encodes it using a knowledge encoder, which then
guides vision-language pretraining. They design a pathology knowledge encoding (PKE) method to
align semantic groups in the latent space for training the knowledge encoder. Similarly, KEEP [89]
builds a disease knowledge graph for encoding and employs knowledge-guided dataset structuring to
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generate tile-caption pairs for pretraining within the CLIP framework, incorporating strategies such
as positive mining, hardest negative sampling, and false negative elimination.

Vision-Gene Expression FM4CPath. Gene expression profiles provide WSI-level molecular insights
that complement morphological features and capture biologically significant details. TANGLE [41]
aligns WSIs with RNA sequences encoded by an MLP using contrastive loss, extending training to
both human and rat tissues. THREADS [70] similarly leverages sequencing data but integrates both
WSI–RNA and WSI–DNA pairs. mSTAR [78] incorporates WSIs, reports, and gene expression into
an extended CLIP framework, applying inter-modality and inter-cancer contrastive learning and using
self-distillation to transfer multi-modal knowledge to the patch extractor.

3 Multi-Modal Datasets for CPath

Larger, more diverse, and higher-quality datasets are key to the success of FM4CPath [71, 91], yet
curating pathology-specific public datasets remains challenging. Numerous well-designed datasets
have been introduced to address pathology tasks and advance CPath. We summarize existing multi-
modal datasets, highlighting those of higher quality or proven utility, and categorize them into three
groups in Appendix Table 3.

Image-Text Pair Datasets for CPath. Image–text datasets in CPath include tile–caption and
WSI–report pairs, which support contrastive pretraining to enrich image embeddings and enable
zero-shot and cross-modal tasks. Because expert annotations are costly and institutions prefer in-
house data, many datasets are built from online sources, books, and educational resources, such
as QULIT[37], OPENPATH[34], ARCH[24], and MI-ZERO[50]. Standardized pipelines filter non-
pathology images, segment sub-figures, refine captions with LLMs, and align figures with text;
for instance, QULIT also applies speech recognition to extract text from videos. Other datasets
expand existing resources or rely on internal data to improve scale and diversity [65, 48, 64, 62, 20].
ARCH uniquely frames multiple-instance captioning by assigning one caption per image bag, while
datasets such as PATHGEN[64], HISTGEN[30], and MASS-340K [22] generate WSI–report pairs
using generative models or LLM-based processing.

Multi-Modal Instruction Datasets for CPath. Multi-modal instruction datasets train LLM-based
vision–language FM4CPath as AI assistants in pathology. Since manual instruction design is costly,
most rely on LLMs for scalable generation, with visual question answering (VQA) being the dominant
form, covering both closed- and open-ended Q&A to build conversational ability. Different datasets
adopt varied strategies: PATHINSTRUCT[65] enables LLMs to invoke other pathology models, Lu et
al.[49] propose six instruction types for diverse conversations, and CLOVER INSTRUCTION[11]
combines LLM-generated and template-matched QAs for efficiency. PATHMMU[63] leverages GPT-
4V [1] to create professional multi-modal pathology Q&As with detailed explanations. Given the
lack of large-scale datasets for WSI interpretation, recent efforts also generate WSI-level instructions,
often by converting reports into VQAs with advanced LLM prompts.

Image-Other Modality Pair Dataset. Exploration beyond vision–language remains limited. Zhou
et al.[89, 90] built disease knowledge graphs with hierarchical semantic groups, MBTG-47K[70]
paired WSIs with DNA and RNA sequences, and Xu et al. [78] released a WSI–report–RNA dataset.
These efforts represent early attempts to integrate pathology images with additional modalities.

4 Evaluation Tasks

Unlike uni-modal FM4CPath, multi-modal MMFM4CPath not only improve image understanding
but also enable zero-shot and cross-modal tasks, and when combined with LLMs, they gain dialogue
and generative capabilities. As shown in Figure 2, their evaluation tasks can be grouped into six types:
classification, retrieval, generation, segmentation, prediction, and VQA, and further distinguished by
input level (tile or WSI). Pre-training data and model design are closely linked to evaluation scope;
for instance, CPath-Omni [62] covers the broadest range thanks to multi-scale training and diverse
instructions.

We categorize the evaluation tasks of MMFM4CPath into six types: classification, retrieval, gener-
ation, segmentation, prediction, and VQA. Classification is the most common evaluation task for
MMFM4CPath, as many pathology-related tasks, such as cancer subtyping and biomarker prediction,
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are fundamentally classification problems. Most MMFM4CPath are evaluated on classification tasks
across various settings. Models using tile-level inputs can perform WSI-level classification via
multiple instance learning (MIL), treated as weakly supervised due to the lack of detailed region
annotations. Multi-modal data enables zero-shot or few-shot classification with minimal reliance on
costly annotations. Some methods also assess out-of-distribution (OOD) generalization to handle
distribution shifts between training and test data (e.g., data collected from different institutions).
Additionally, CONCH [48] evaluates classification on rare diseases with imbalanced data.

Tasks

Classification

Tile-level

Supervised QuiltNet [40], PLIP [37], TITAN [23], MUSK [85], PathInsight [83]

Zero-Shot QuiltNet [40], PLIP [37], PathCLIP [70], CONCH [53], TITAN [23], MUSK [85], MLLM4PUE 
[97], PA-LLaVA [21], CPath-Omni [67], PathGen-CLIP [69], KEP [99], KEEP [98]

Few-Shot CONCH [53], TITAN [23], CLOVER [12], CPath-Omni [67], PathGen-CLIP [69]

WSI-level

(Weakly)  Supervised PRISM [63], PathAlign-R [3], CHIEF [80], MUSK [85], HistoGPT [74], W2T [13], CPath-
Omni [67], PathGen-CLIP [69], mSTAR [86], THREADS [75]

Zero-Shot PRISM [63], CONCH [53], KEP [99], KEEP [98], mSTAR [86]

Few-Shot CONCH [53], TANGLE [44], mSTAR [86]

OOD Generalization HistoGPT [74], CPath-Omni [67], THREADS [75]

Imbalanced CONCH [53]

Retrieval

Tile-level

Tile-to-Tile PLIP [37], MUSK [85]

Tile-to-Caption QuiltNet [40], PLIP [37], PathCLIP [70], CONCH [53], MUSK [85], MLLM4PUE [97], KEP 
[99], KEEP [98]

Caption-to-Tile QuiltNet [40], PathAlign-R [3], CONCH [53], MUSK [85], MLLM4PUE [97], KEP [99], KEEP 
[98]

Disease KEP [99]

Composed MLLM4PUE [97]

WSI-level

WSI-to-WSI TITAN [23], TANGLE [44], THREADS [75]

WSI-to-Report TITAN [23], Lucassen et al. [56]

Report-to-WSI TITAN [23], Lucassen et al. [56]

Gene-to-WSI THREADS [75]

Generation
Tile-level Tile Captioning PathAlign-G [3], CONCH [53], Quilt-LLaVA [62], PathInsight [83], CPath-Omni [67]

WSI-level Report Generation PRISM [63], TITAN [23], Lucassen et al. [56], HistoGPT [74], SlideChat [16], WSI-LLaVA 
[49], CPath-Omni [67], mSTAR [86]

Segmentation WSI-level Zero-Shot CONCH [53], KEEP [98]

Prediction WSI-level

Survival Prediction CHIEF [80], MUSK [85], W2T [13], mSTAR [86]

Tumor Thickness 
Prediction HistoGPT [74]

PR Prediction W2T [13]

 Diagnostic  
VQA

Tile-level

Closed-Ended & 
Open-Ended

MUSK [85], PathAsst [70], Dr-LLaVA [66], Quilt-LLaVA [62], PathChat [54], CLOVER [12], 
PA-LLaVA [21], CPath-Omni [67], PathGen-LLaVA [69]

Visual Referring 
Prompting CPath-Omni [67]

WSI-level Closed-Ended & 
Open-Ended SlideChat [16], W2T [13], WSI-LLaVA [49], CPath-Omni [67]

Figure 2: A taxonomy of MMFM4CPath by evalua-
tion tasks, with non-LLM vision–language, LLM-
based vision–language, vision–knowledge graph,
and vision–gene expression models highlighted in
different colors.

In addition to basic image-to-image retrieval,
non-LLM-based MMFM4CPath are widely
used for cross-modal retrieval tasks, such
as text-to-image and image-to-text retrieval.
KEP [90] performs one-to-many disease re-
trieval, retrieving captions or tiles with the
same disease label using disease names.
MLLM4PUE [88] enables many-to-one com-
posed retrieval by using pathology images and
questions as queries. Moreover, due to its ca-
pability to understand gene expression data,
THREADS [70] generates class prompts from
gene expression profiles for WSI retrieval.

The integration of LLMs, whether by fine-
tuning them as part of the model’s architecture
or by directly utilizing existing models, enables
MMFM4CPath to generate captions/reports
from tiles/WSIs. CONCH [48] and KEP [90]
evaluate the segmentation capabilities of these
models. Some MMFM4CPath have also been
tested for prediction tasks, using WSIs to gen-
erate continuous value predictions.

LLM-based MMFM4CPath models focus on
evaluating their diagnostic VQA ability. Com-
pared to traditional QA tasks, VQA incorporates pathology images into its questions, challenging the
image understanding capabilities of V-LLMs. Typically, VQA tasks involve answers from a fixed set,
usually in the form of closed-ended questions, such as multiple-choice (single or multiple answers) or
true/false questions, as well as open-ended questions with no predefined answer options. These tasks
can also be divided into multi- and single-turn dialogues. The initial LLM-based MMFM4CPath
only performed tile-level VQA tasks [65, 49], but recently, conversational abilities on WSI have
gained increasing attention [15, 45]. Additionally, CPath-Omni [62] has been validated on the visual
referring prompting task, where the regions of interest (ROIs) are highlighted, and both the question
and answer are based on the these regions. It is worth noting that, due to its flexible format, the VQA
task offers high adaptability: tasks like classification and generation can be transformed into VQA
tasks via prompt engineering [75, 62]. Thus, LLM-based MMFM4CPath also encompass evalua-
tion capabilities typical of non-LLM-based models. In addition to the quantitative analysis above,
qualitative analysis is also frequently used to assess the performance of MMFM4CPath, especially
their VQA and generation abilities. This is done by directly observing or through evaluation by
professional pathologists to assess the quality of the generated text. Due to space constraints, the
Future Directions are included in Appendix Section D.

5 Conclusion

In this survey, we have systematically reviewed the recent advances in multi-modal foundation models
for computational pathology, focusing on three major paradigms: vision-language, vision-knowledge
graph, and vision-gene expression models. We categorized 32 state-of-the-art models, analyzed
28 multi-modal datasets, and summarized key downstream tasks and evaluation strategies. Our
comprehensive comparison highlights the growing impact and promise of integrating diverse data
modalities in computational pathology. We hope this survey serves as a valuable reference for future
research in developing generalizable, interpretable, and clinically useful multi-modal models.
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A Background

A.1 Computational Pathology

Computational Pathology (CPath) is an interdisciplinary field that applies computational techniques,
including machine learning and computer vision, to analyze and interpret pathological data. By
leveraging digital pathology, CPath enhances diagnostic accuracy, facilitates large-scale biomarker
discovery, and supports personalized medicine. Among the various imaging modalities in pathol-
ogy, Hematoxylin and Eosin (H&E) stained images serve as the most commonly used vehicle for
studying CPath. These images capture essential morphological characteristics of tissues, making
them fundamental for histopathological analysis. Within the realm of digital pathology, Whole
Slide Images (WSIs) and tile images are two primary forms of data representation. WSIs, generated
from high-resolution scanning of entire tissue slides, provide comprehensive visual information at
gigapixel scale, allowing pathologists to examine cellular structures in detail. However, due to their
enormous size and high computational demands, WSIs pose significant challenges in terms of storage,
processing, and analysis. To mitigate these challenges, WSIs are often divided into smaller, more
manageable tile images, which serve as the primary unit of analysis in many computational pathology
studies.

WSI Report: Prostatic adenocarcinoma with a 
Gleason score of 3 + 4 = 7 (Grade Group 2) confined 
to the prostate.

Tile Caption: Image displays a lymph node featuring 
a prominent germinal center. This center is 
enveloped by a mantle zone...

Whole-Slide Image (WSI)

Tile Image

Vision-Language Multi-Modality Vision-Gene Expression Multi-Modality

Vision-Knowledge Graph Multi-Modality

Figure 3: (Left) Illustration of whole-slide image and its corresponding
tile images from H&E-stained tissue. (Right) The three primary types of
multi-modal approaches in computational pathology.

While visual analysis
remains central to
CPath, researchers
increasingly rely on
multi-modal data to
enhance interpretabil-
ity and improve model
performance. One ma-
jor auxiliary modality
is language, which
includes both tile-level
captions that describe specific regions of tissue and WSI-level pathology reports that provide global
contextual information about a slide. Integrating text data with images enables vision-language
models to learn richer feature representations and facilitate interpretability. Another important
modality is structured domain knowledge, often represented in knowledge graphs, which encode
relationships between diseases, biomarkers, and tissue structures, guiding AI models toward more
biologically plausible interpretations. Additionally, molecular data, such as gene expression profiles,
offer complementary insights by linking histopathological features to underlying genetic mechanisms.
By aligning visual data with gene expression information, vision-gene expression models enable the
discovery of novel genotype-phenotype associations. Figure 3 illustrates examples of WSIs and tile
images alongside the three major multi-modal paradigms in CPath. The synergy of these multi-modal
approaches, including vision-language, vision-knowledge graph, and vision-gene expression, has
proven crucial in advancing the field of CPath, enabling more robust, generalizable, and interpretable
AI-driven pathology models.

A.2 Pre-training Objective for Multi-Modal FMs

Unlike uni-modal models, which are primarily pre-trained through self-supervised contrastive learning
(SSCL). Multi-modal FMs, due to their cross-modal nature, involve a more diverse set of self-
supervised learning (SSL) objectives during their pre-training process. Furthermore, when fine-tuning
LLMs to enable conversational abilities, supervised instruction tuning is usually required.

The primary pre-training objective for multi-modal FMs is SSCL. CLIP [54], as a pioneer in this
field, ensures that the embeddings generated by the image encoder and text encoder are as similar
as possible for paired image-text data by utilizing contrastive loss. CoCa [81] builds upon CLIP by
adding a multi-modal encoder and an additional captioning loss to enable the mapping from the visual
space to the language space. BLIP-2 [44] trains a lightweight Querying Transformer (Q-Former)
using a two-stage strategy. In the first stage, a frozen image encoder bootstraps vision-language
representation learning, while in the second stage, visual features are mapped to the language model
input space, leveraging a frozen LLM for text generation. Additionally, next word prediction (NWP)
is a text-specific SSL task commonly used for fine-tuning LLMs. It aims to predict the most likely
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next token based on the given text sequence. Moreover, cross-modal alignment (CMA) multi-modal
domain-specific task, which aims to build a unified semantic space where the embedding vectors
from different modalities can reflect the same semantic content. In addition to contrastive learning,
generative reconstruction and prediction are also commonly used SSL proxy tasks for CMA.

Instruction tuning (IT) is a method for fine-tuning LLMs to enable them to better understand and
execute the instructions or task requirements provided by users. Unlike traditional pretraining
objectives like NWP, the goal of IT is to enable the model to generate meaningful responses or actions
based on specific instructions or questions. In Instruction Tuning, the model not only learns how to
generate language but also learns how to adapt and generate different outputs according to various
task requirements. This typically involves supervised training using a large number of instructions,
ensuring that the model can understand the intent of the tasks and effectively perform them. Such
tasks can include text generation, question answering, and conversation.

B Overview Table for Multi-Modal Foundation Models for CPath

We comprehensively summarize the network architectures and pre-training details across different
stages for Multi-Modal Foundation Models for CPath (MMFM4CPath), as shown in Table 2

C Overview Table for Multi-Modal Datasets for CPath

We categorize the multi-modal datasets for CPath into three types based on data types and provide a
summary of these datasets from multiple perspectives, as shown in Table 3.

D Future Directions

Developing MMFM4CPath Integrating H&E Images with Spatial Omics. The integration of
H&E-stained histopathology images with spatial omics data, such as spatial transcriptomics and
proteomics, represents a promising frontier in computational pathology. By coupling morpholog-
ical context with spatially resolved molecular signatures, future multi-modal foundation models
could enable precise cellular localization of gene and protein expression, bridging the gap between
tissue architecture and molecular mechanisms. Developing such models would require addressing
challenges like data sparsity, spatial resolution mismatch, and alignment between modalities, but
could significantly enhance our understanding of disease heterogeneity and microenvironmental
interactions.

Developing MMFM4CPath to Predict MxIF Markers from H&E Images. A compelling direction
involves using H&E images to predict marker expressions captured by multiplexed immunofluo-
rescence (MxIF), enabling cost-effective and scalable estimation of protein-level biomarkers. This
line of research leverages the morphological cues from H&E to infer high-dimensional proteomic
data, potentially reducing the need for expensive MxIF experiments. Multi-modal foundation models
trained with paired H&E-MxIF data could facilitate virtual staining or marker imputation, supporting
downstream tasks such as subtyping, immune landscape assessment, and therapy response prediction
in a non-invasive manner.

Standardized Benchmarking for MMFM4CPath. As the field matures, there is a pressing need
to establish standardized metrics and unified benchmarks for evaluating MMFM4CPath. Current
evaluations are fragmented across tasks, modalities, and datasets, limiting comparability and repro-
ducibility. Future work should focus on developing comprehensive evaluation protocols that span
classification, retrieval, generation, and VQA across tile- and WSI-level inputs. Such efforts would
guide model development, ensure fair comparisons, and accelerate the translation of multi-modal
models into clinical practice.

E Scope and Exclusions

This survey focuses on multi-modal foundation models (FMs) developed specifically for compu-
tational pathology (CPath), with an emphasis on models built upon hematoxylin and eosin (H&E)
stained whole-slide images (WSIs) and tile-level representations. We review 32 state-of-the-art
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Table 2: Overview of architecture and pre-training details of MMFM4CPath (Due to space constraints,
the references for the mentioned LLMs, V-LLMs, and off-the-shelf architectures are provided in the
footnote of this table.)

Model Year
Network Architecture† Pre-training Details§ Input

Image
TypeVision (V)‡ Language (L) / Knowledge Graph Multi-Modal Objective¶ Strategy∗ Data Short Description(Availability) (KG) / Gene Expression (GE) V O M

V
is

io
n-

L
an

gu
ag

e
N

on
-L

L
M

-B
as

ed

QuiltNet (author?) [37] ✓ 2023 T: ViT-B/32 L: Transformer Layers - SSL (CLIP) D D - 438K Tiles and 802K Captions Tiles

PLIP [34] ✓ 2023 T: ViT-B/32 L: Transformer Layers - SSL (CLIP) D D - 208K Tile-Caption Pairs Tiles

PathCLIP [65] ✗ 2024 T: ViT-B/32 L: Transformer Layers - SSL (CLIP) D D - 207K Tile-Caption Pairs Tiles

PRISM [58] ✗ 2024 T: ViT-H/14 L: BioGPT (L1–12) BioGPT (L13–24) with SSL (CoCa) F,S F F,S 587K WSIs with 195K Specimens WSIsW: Perceiver Net. Cross-Attention Layers

PathAlign-R [3] ✗ 2024 T: ViT-S/16
W: Q-Former L: Q-Former - SSL (MSN) S,N N - Tiles From 354,089 WSIs

WSIs
SSL (CLIP) F,S S - 434k WSI-Report Pairs

PathAlign-G [3] ✗ 2024 T: ViT-S/16
W: Q-Former

L: Q-Former
L (LLM): PaLM-2 S MLP

SSL (MSN) S,N N,N N Tiles From 354,089 WSIs
SSL (BLIP-2) F,S S,N N 434k WSI-Report Pairs
SSL (CMA) F,D N,F S -

CHIEF [74] ✓ 2024 T: Swin-T L: Transformer Layers MLP WSL (CLIP) D,S D S 60K WSIs with Labels WSIsW: Aggregator Net.

CONCH [48] ✓ 2024 T: ViT-B/16 L: Transformer Layers Transformer Layers
SSL (iBOT) S N N 16M Tiles Sampled From 21K WSIs

TilesSSL (NWP) N S S >950K Pathology Text Entries
SSL (CoCa) D D D 1.17M Tile–Caption Pairs

TITAN [22] ✓ 2024 T: ViT-L
W: ViT-S L: Transformer Layers Transformer Layers

SSL (iBOT) F,S N N 336K WSIs
WSIsSSL (CoCa) F,D D D 423K ROI-Caption Pairs

SSL (CoCa) F,D D D 183K WSI-Report Pairs

MUSK [77] ✓ 2025 T: V-FFN L: L-FFN Cross-Attention Decoder SSL (BEiT3) S S N 1B Text Tokens and 50M Tiles Tiles|←— Shared Attention Layers —→| SSL (CoCa) D D S 1.01M Tile–Caption Pairs

PathGen-CLIP [64] ✗ 2025 T: ViT-B/32 L: Transformer Layers - SSL (CLIP) S S - 1.6M High-Quality Tile-Caption Pairs TilesSSL (CLIP) D D - 700K Tile-Caption Pairs

MLLM4PUE [88] ✗ 2025 T: SigLIP L: Qwen 1.5 MLP SSL (CLIP) D D D 594K Tile-Caption Pairs Tiles

Lucassen et al. [51] ✗ 2025 T: ViT-L/14 L: BioGPT (L1–12) BioGPT (L13–24) with SSL (CoCa) F,S F F,S 42K WSIs and 19K Reports WSIsW: Perceiver Net. Cross-Attention Layers

L
L

M
-B

as
ed

PathAsst [65] ✗ 2024 T: ViT-B/32 L (LLM): Vicuna-13B MLP SSL (CMA) F F S Description Part of PATHINSTRUCT TilesSL (IT) F I D 35K Samples From PATHINSTRUCT

Dr-LLaVA [61] ✓ 2024 T: ViT-L/14 L (LLM): Vicuna-V1.5 MLP SL (IT) & RL D I D Multi-turn Dialogues Based on 16K Tiles Tiles

Quilt-LLaVA [57] ✓ 2024 T: ViT-B/32 L (LLM): GPT-4 MLP SSL (CMA) F F S 723K Tile-Caption Pairs TilesSL (IT) F I D 107K Pathology-Specific Instructions

PathChat [49] ✓ 2024 T: ViT-L/16 L (LLM): Llama 2-13B MLP with Attention
Pooling

SSL (CoCa) D N S 1.18M Tile-Caption Pairs
TilesSSL (CMA) F F D ∼100K Tile-Caption Pairs

SL (IT) F I D 457K Instructions with 999K VQA Turns

HistoGPT-S/M [69] ✓ 2024 T: Swin-T L (LLM): BioGPT-B / - WSL (MIL) F,S F/F - 15.1K WSIs with 6.7K Patient-Level Labels

Tiles
W: Perceiver Net. BioGPT-L SSL (NWP) F,F D/D - 15.1K WSI-Reports Pairs

HistoGPT-L [69] ✓ 2024 T: ViT-L/16 L (LLM): BioGPT-L - SSL (NWP) F,S S - 15.1K WSI-Reports PairsW: GCN

CLOVER [11] ✓ 2024 T: EVA-ViT-G/14 L: Q-Former L (LLM): Vicuna
7B / FlanT5XL

Q-Former
MLP

SSL (BILP-2) F S,N/N S,N 438K Tiles and 802K Captions TilesSL (IT) F N,I/I N,S 45K VQA Instructions

PathInsight [75] ✓ 2024 |←— V-LLM: LLaVA / Qwen-VL-7B / InternLM —→| SL (IT) I / I / I 45K Instances Covering 6 Pathology Tasks Tiles

SlideChat [15] ✓ 2024 T: ViT-L L (LLM): Qwen2.5-7B MLP SSL (CMA) F,S F S 4.2K WSI-Report Pairs WSIsW: LongNet SL (IT) F,D I D 176K Instruction-Following VQA Pairs

W2T [12] ✓ 2024
T: ViT-S / Res- L: PubMedBERT /

BioClinicalBERT /
An Embedding Mapping

Transformer Layers SSL (NWP) T: F
W: S

D
D
S

S 804 WSIs with 7.14K VQA Pairs WSIsResNet-50 / HIPT
W: Transformer Layers

PA-LLaVA [20] ✓ 2024 T: ViT-B/32 L (LLM): LLama3
with LoRA Transformer Layers

SSL (CLIP) D F F 827K Tile-Caption Pairs
TilesSSL (CMA) F I D 518K Tile-Caption Pairs

SL (IT) F I D 35.5K VQA Pairs

WSI-LLaVA [45] ✗ 2024
T: ViT-G/14
W: LongNet

MLP

L: Bio_ClinicalBERT
L (LLM): Vicuna-7b-v1.5 MLP

SSL (CLIP) F,F,S D,N N 9.85K WSI-Report Pairs
WSIsSSL (CMA) F,F,F N,F S 9.85K WSI-Report Pairs

SL (IT) F,F,F N,I D 175K VQA Pairs

CPath-Omni [62] ✗ 2024
T: ViT-H/14

ViT-L
W: SlideParser

L: Qwen2.5-14B MLP

SSL (CMA) F,F,F F S 700K Tile-Caption Pairs Tiles
or

WSIs

SL (IT) D,D,D I D 352K Tile Instructions
SSL (CoCa) F,F,D F F 5.85K WSI-Report Pairs

SL (IT) D,D,D I D 53K Tile and 34K WSI Instructions

PathGen-LLaVA [64] ✗ 2025 T: ViT-B/32 L: Transformer Layers
L (LLM): Vicuna MLP

SSL (CLIP) S S,N N 700K Tile-Caption Pairs
TilesSSL (CMA) F N,F S 700K Tile-Caption Pairs

SL (IC) F N,D D 30K Detailed Tile Descriptions

V
is

io
n-

K
G KEP [90] ✓ 2024 T: ViT-B/(16,32) L: PubMedBERT - SSL (PKE) N N,S - A Pathology KG with 50.5K Attributes TilesKG: PubMedBERT SSL (CLIP) D D,F - 715K Tile-Caption Pairs

KEEP [89] ✓ 2024 T: ViT-L/16 L, KG: PubMedBERT - SSL (PKE) N S - A Pathology KG with 139K Attributes TilesSSL (CLIP) D D - 143K Semantic Groups Through KG

V
is

io
n-

G
E

TANGLE [41] ✓ 2024 T: ViT-B (Rat) / Swin-T
(Human) W: ABMIL GE: A Three-Layer MLP - SSL (iBOT) S/N,N N - 15M Rat Tiles From 47K WSIs WSIsSSL (CLIP) F/F,S S - 8.67K WSI- Gene Pairs

mSTAR [78] ✗ 2024 T: ViT-L/16
W: Two-Layer TransMIL

L: BioBERT-Basev1.2 - SSL (CLIP) F,S D,D - 7.95K WSI-Report-Gene pairs WSIsGE: scBERT SSL (SD) D,F N,N - 7.95K WSIs

THREADS [70] ✗ 2025 T: ViT-L
W: ABMIL

GE: scGPT (RNA),
A Four-Layer MLP (DNA) - SSL (CLIP) F,S D,S - 26.6K WSI-Gene (RNA) Pairs & WSIs20.5K WSI-Gene (DNA) Pairs

† Network architecture types: T: Tile Encoder, W: WSI Encoder, L: Text Encoder, LLM: Large Language Model, V-LLM: Multi-modal LLM, KG: Knowledge Graph Encoder, GE: Gene Expression Encoder.
§ Multi-modal foundation models are typically pretrained in multiple stages, with each row in this column representing a distinct pretraining phase.
¶ Training objectives are categorized into Supervised Learning (SL), Weakly Supervised Learning (WSL), Self-Supervised Learning (SSL), and Reinforcement Learning (RL). SL includes Image Captioning (IC) and

Instruction Tuning (IT), WSL includes Multiple Instance Learning (MIL), and SSL encompasses Contrastive Learning (CL), Masked Siamese Networks (MSN), Next Word Prediction (NWP), Cross-Modal Alignment
(CMA), Pathology Knowledge Encoding (PKE), and Self-Distillation (SD). CL is further divided based on its contrastive objectives into CLIP, CoCa, BLIP-2, iBOT and BEiT3.

∗ Pre-training strategies for different architectures (V: Vision, O: Other Modalities, M: Multi-Modal): F: Frozen, S: From Scratch, D: Domain-Specific Tuning, I: Instruction Tuning, N: Not Used, -: Not Existed.
• References of mentioned LLMs and V-LLMs in Table 2: BioGPT [52], PaLM-2 S [5], Qwen 1.5 [7], Vicuna-13B [16], Vicuna-V1.5 [67], GPT-4 [2], Llama 2-13B [68], Vicuna 7B [16], FlanT5XL [17], LLaVA [46],

Qwen-VL-7B [7], InternLM [84], Qwen2.5-7B [79], LLama3 [26], LoRA [33], Vicuna-7b-v1.5 [87], Qwen2.5-14B [35], Vicuna [16]
• References of mentioned off-the-shelf architectures in Table 2: Perceiver Net. [40], GCN [25], EVA-ViT-G/14 [23], Q-Former [44], Swin-T [47], V-FFN [60], L-FFN [60], SigLIP [82], LongNet [21], PubMedBERT [27],

BioClinicalBERT [28], HIPT [13], ABMIL [38], TransMIL [59], BioBERT-Basev1.2 [42], scGPT [19], scBERT [80]

models that integrate pathology images with auxiliary modalities such as textual reports, knowledge
graphs, and molecular profiles, categorizing them into vision–language, vision–knowledge graph,
and vision–gene expression paradigms. In addition, we analyze 28 pathology-specific multi-modal
datasets, grouped into image–text pairs, instruction datasets, and image–other modality pairs, and
summarize the evaluation tasks and strategies most relevant to CPath foundation models.

Several related directions are excluded from the scope of this survey. Specifically, methods that
extend beyond pathology to broader biomedical imaging, including Computed Tomography (CT),
Magnetic Resonance Imaging (MRI), and X-ray [85, 83, 86, 76], are not covered in detail, as their
primary goal is to build universal medical imaging models rather than enhance pathology image
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Table 3: Multi-Modal Datasets for CPath.
Dataset† Data Type Description Staining‡Dataset Invariant Data Source Method LLM

Assisted(Availability) Public Private

Im
ag

e-
Te

xt
Pa

ir

QUILT [37] ✓ Tile-Caption Pair
437,878 tiles paired with 802,144
captions extracted from 4,475
videos.

H, I, O
QUILT-1M: Combining QUILT
with other pathology data sources
to form 1M pairs.

YouTube ✗ QuiltNet [37] ✓

PATHCAP [65] ✓ Tile-Caption Pair 207K pathology tile-caption pairs. H, I, O - PubMed [27] ✗ PathCLIP [65] ✓

OPENPATH [65] ✓ Tile-Caption Pair 208,404 tile-caption pairs. H, I, O

PATHLAION: 32,041 additional
tile–caption pairs scraped from the
Internet and the LAION dataset
[56]

WSI-Twitter, Replies,
PATHLAION ✗ PLIP [34] ✗

CONCH* [48] ✗ Tile-Caption Pair 1,170,647 tile–caption pairs. H, I, O - PMC OA [39] ✓ CONCH [48] ✓

HISTGEN [30] ✓ WSI-Report Pair A WSI-report dataset with 7,753
pairs. H - TCGA [66] ✗ - ✓

MASS-340K [22] ✗ WSI 335,645 WSIs across 20 organs. H, I
Synthetic captioning for 423,122
ROIs and curation of 182,862 WSI-
report pairs.

GTEx [18] ✓ TITAN [22] ✓

CPATH-PATCH
CAPTION

[62] ✗ Tile-Caption Pair 700,145 tile-caption pairs from di-
verse datasets. H, I, O - PATHCAP, QUILT-1M,

OPENPATH
✗ CPath-Omni [62] ✓

PATHGEN [64] ✓ Tile-Caption Pair 1.6 million high-quality tile-caption
pairs from 7,300 WSIs. H

PATHGENinit: 700K tile-caption
pairs from PATHCAP, OPENPATH,
and QUILT-1M

TCGA [66] ✗ PathGen-CLIP [64] ✓

MUNICH [69] ✗ WSI-Report Pair 15,129 paired WSIs and pathology
reports from 6,705 patients. H - - ✓ HistoGPT [69] ✗

PCAPTION-C [69] ✓ Tile-Caption Pair 1,409,058 tile-caption pairs. H, I, O

PCAPTION-0.8M: removing
non-human pathology data and
PCAPTION-0.5M: further filter
out pairs with <20 words.

PMC-OA [39],
QUILT-1M ✗ PA-LLaVA [20] ✓

ARCH [24] ✓ Bag-Caption Pair
11,816 bags and 15,164 images,
with each bag containing multiple
tiles.

H, I - PubMed [27],
pathology textbooks ✗ - ✗

MI-ZERO [50] ✓ Tile-Caption Pair Diverse dataset of 33,480 tile-
caption pairs. H, I, O - educational resources,

ARCH ✗ - ✗

M
ul

ti-
M

od
al

In
st

ru
ct

io
n

PATHINSTRUCT [65] ✓
Tile-Level
Instruction

180K pathology multi-modal
instruction-following samples. H, I, O - YouTube ✗ PathAsst [49] ✓

CPATH-PATCH
INSTRUCTION

[62] ✗
Tile-Level
Instruction

351,871 tile-level samples, includ-
ing tile-caption pairs, VQA pairs, la-
beled images for classification, and
visual referring prompting pairs.

H

CPATH-VQA: created by generat-
ing VQA pairs using GPT-4o [36],
which combines classification la-
bels with image data for datasets
lacking captions.

CPATH-VQA,
PATHGEN,

CPATH-PATCHCAPTION,
PATHINSTRUCT

✓ CPath-Omni [62] ✓

CPATH-WSI
INSTRUCTION

[62] ✗
WSI-Level
Instruction

7,312 WSI-level samples, including
captioning, VQA, and classification. H Further generate a WSI VQA

dataset by prompting GPT-4 [2]. HISTGEN ✗ CPath-Omni [62] ✓

QULIT-
INSTRUCT

[57] ✓ VQA Pair 107,131 question/answer pairs. H, I, O

QUILT-VQA: a Q&A dataset
from Youtube videos, categorized
into image-dependent and general-
knowledge questions; QUILT-
VQA-RED: QUILT-VQA with
red circle marking the ROI in the
pathology image.

YouTube ✗ Quilt-LLaVA [57] ✓

PathChat* [49] ✗
Tile-Level
Instruction

456,916 instructions with 999,202
question and answer turns. H, I

PATHQABENCH: an expert-
curated benchmark of 105 high-
resolution pathology images, split
into PATHQABENCH-PUBLIC
and PATHQABENCH-PRIVATE
subsets.

PMC-OA [39],
TCGA [66] ✓ PathChat [49] ✓

CLOVER
INSTRUCTION

[11] ✓
Tile-Level
Instruction

45K question-and-answer instruc-
tions. H - QUILT-VQA,

PathVQA [32] ✓ CLOVER [11] ✓

PATH-
ENHANCEDS [75] ✓

Tile-Level
Instruction

49K tile-level instructions, includ-
ing captioning, VQA, classification
and conversation.

H - OPENPATH, TCGA [66],
PathVQA [32], etc. ✗ PathInsight [75] ✓

SLIDE-
INSTRUCTION

[15] ✓
WSI-Level
Instruction

44,181 WSI-caption pairs and
175,754 visual Q&A pairs. H

SLIDEBENCH: 734 WSI captions
along with a substantial number of
closed-set VQA pairs to establish
evaluation benchmark.

TCGA [66] ✗ SlideChat [15] ✓

WSI-VQA [12] ✓ VQA Pair 977 WSIs and 8,672 Q&A pairs. H - TCGA-BRCA [66] ✗ W2T [12] ✓

PA-LLaVA* [20] ✓ VQA Pair 35,543 question-answer pairs. H - PathVQA [32] ✗ PA-LLaVA [20] ✓

WSI-BENCH [45] ✗ VQA Pair
179,569 WSI-level VQA pairs,
which span across 3 pathological ca-
pabilities with 11 tasks.

H

SLIDEBENCH: 734 WSI captions
along with a substantial number of
closed-set VQA pairs to establish
evaluation benchmark.

TCGA [66] ✗ WSI-LLaVA [45] ✓

PATHMMU [63] ✓ VQA Pair 33,428 Q&As along with 24,067
pathology images. H, I, O

SLIDEBENCH: 734 WSI captions
along with a substantial number of
closed-set VQA pairs to establish
evaluation benchmark.

PubMed [27], QUILT-1M,
Atlas [4], OPENPATH

✗ - ✓

Im
ag

e-
O

th
er

M
od

al
ity KEEP* [89] ✓

Pathology KG KG contains 11,454 disease entities
and 139,143 associated attributes. - - DO [55],

UMLS [9] ✗

KEEP [89] ✓Pathology
Semantic Group

143K pathology semantic groups
linked through the disease KG H, I, O - QUILT-1M,

OPENPATH
✗

PATHKT [90] ✓ Pathology KG Pathology KG that consists of
50,470 informative attributes - - OncoTree ✗ KEP [90] ✗

mSTAR* [78] ✓
WSI-Report-RNA-

Seq Pair

A dataset with 7,947 cases with im-
age, text and RNA sequence modali-
ties for pretraining.

H - TGCA [66] ✗ mSTAR [78] ✓

MBTG-47K [70] ✗
WSI-RNA-Seq Pair
WSI-DNA-Seq Pair

26,615 WSI-RNA pairs, and 20,556
WSI-DNA pairs. H - TCGA [66],

GTEx [18] ✓ THREADS [70] ✗

† Some methods introduced datasets without naming them, so we use the method name instead and marked with an asterisk (*).
‡ Staining type: H: H&E, I: IHC, O: Others.

representation. Similarly, we do not comprehensively review general-purpose multi-modal large
language models (MLLMs) that incorporate pathology data only as a small subset of training, since
their emphasis lies in broader generative AI capabilities rather than pathology-specific representation
learning. By clearly defining these boundaries, we aim to provide a focused and coherent review
of foundation models for computational pathology while acknowledging related but out-of-scope
research directions.
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