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ABSTRACT

The impact of quantization on the overall performance of deep learning models is
a well-studied problem. However, understanding and overcoming its effects on a
more fine-grained level is still lacking, especially for harder tasks such as object
detection with both classification and regression objectives. This work identifies
the performance for a subset of task-critical categories, i.e. the critical-category
performance, as a crucial yet largely overlooked fine-grained objective for detection
tasks. We analyze the impact of quantization at the category-level granularity, and
propose methods to improve performance for the critical categories. Specifically,
we find that certain critical categories have a higher sensitivity to quantization, and
have inferior generalization after quantization-aware training (QAT). To explain
this, we provide theoretical and empirical links between their performance gaps and
the corresponding loss landscapes with the Fisher information framework. Using
this evidence, we propose a Fisher-aware mixed-precision quantization scheme,
and a Fisher-trace regularization for the QAT on the critical-category loss land-
scape. The proposed methods improve critical-category performance metrics of the
quantized transformer-based DETR detectors. When compared to the conventional
quantization objective, our Fisher-aware quantization scheme shows up to 0.9%
mAP increase on COCO dataset. A further 0.5% mAP improvement is achieved
for selected critical categories with the proposed Fisher-trace regularization.

1 INTRODUCTION

Object detection is a challenging core application in computer vision, which is crucial for practical
tasks such as autonomous driving etc. Recent DEtection TRansformer (DETR) model (Carion
et al., 2020) and its variants achieve state-of-the-art results on multiple detection benchmarks (Liu
et al., 2022). However, their performance comes at the cost of large model sizes and complicated
architecture. Therefore, quantization (Choi et al., 2018; Dong et al., 2020; 2019; Polino et al., 2018;
Yang et al., 2021) is typically applied in real-world applications to reduce the memory footprint and
inference latency time on cloud and edge devices (Horowitz, 2014). Inevitably, the perturbation
of weights and activations introduced by the quantization process degrades the performance of
floating-point models. Previous research mainly focuses on a trade-off between the model size and
the overall performance (e.g. average accuracy for classification and mean average precision (mAP)
for detection) of the quantized models (Dong et al., 2019; Yang et al., 2021; Xiao et al., 2022).

However, a fine-grained performance objectives are often more important than the overall performance
in the real world (Barocas et al., 2019; Tran et al., 2022). Suppose an autonomous vehicle is processing
a scene containing people, vehicles, trees, light poles, and buildings, as illustrated in Fig. 1 (left)1.
Some non-critical objects (light poles, trees, and buildings) only need to be localized to avoid collision,
yet misclassification within this group of categories is not as critical if they are all considered as
“other obstacles”. On the other hand, critical classes such as a person or vehicle require both accurate
classification and localization for safe operation. The overall performance cannot distinguish between
an error within non-critical categories vs. a critical object error. So, it is missing the granularity to
represent the true task-critical objectives of real-world applications. Yet to the best of our knowledge,
for both post-training quantization (PTQ) and quantization-aware training (QAT), the analysis of the
impact on such task-critical fine-grained objectives of object detection models is overlooked.

1Street scene photo in Fig. 1 credits to Google Street View.
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Figure 1: Overview. We investigate a practical setting with task-dependent critical-category objec-
tives, which is formulated with label transformation in Sec. 3.2. We empirically observe disparate
effects of quantization on the critical-category performance in Sec. 3.3, where PTQ and QAT lead
to performance gaps for critical categories. With the theoretical analysis using Fisher information,
we propose Fisher-aware quantization scheme and regularization in Sec. 4 to improve critical perfor-
mance for quantized DETR models as demonstrated in Sec. 5 experiments.

In this paper, we follow this practical yet overlooked setting to formulate a set of task-critical
objectives for DETR-based object detection models, accomplish a fine-grained quantization impact
analysis, and propose techniques to improve the corresponding objectives. Specifically, we disentangle
classification and localization objectives to define a fine-grained critical-category performance with
non-critical label transformation, as shown in the updated bounding boxes in Fig. 1 (left). With
this formulation, we introduce a thorough analysis of the impact of quantization on the critical-
category performance of DETR model. As illustrated in Fig. 1 (right), we find that quantization
has a disparate effect on the category-wise performance, where some groups of classes are more
sensitive to quantization with up to 1.7% additional mAP drop. Furthermore, unlike the almost-
guaranteed improvement of the overall performance after QAT, such training can increase performance
gaps for some task-critical categories. We provide both theoretical and empirical analysis of such
quantization effects using the loss surface landscape of the critical objectives using the Fisher
information framework (Perronnin & Dance, 2007).

Based on this analysis, we propose two novel techniques: Fisher-aware mixed-precision quantiza-
tion scheme, and Fisher-trace regularization. Both techniques optimize the landscape of critical
objectives and, therefore, improve critical-category performance. Our experiments show consistent
critical-category performance improvements for DETR object detectors with different backbones and
architecture variants. The contributions of this paper are summarized as follows:

• We formulate the critical-category performance for object detection applications, and observe
disparate effects of quantization on the performance of task-critical categories.

• We provide analytical explanations of the quantization effects on critical-category perfor-
mance for DETR-based models using a theoretical link to the Fisher information matrix.

• We propose Fisher-aware mixed-precision quantization scheme that considers the sensitivity
of critical-category objectives and improves corresponding detection metrics.

• We propose Fisher-trace regularization for the loss landscape of our objectives during
quantization-aware training to further improve critical-category results.

2 RELATED WORK

Object detection. Object detection is a core task for visual scene understanding. Conventional object
detectors rely on a bounding box proposals (Girshick, 2015), fixed-grid anchors (Redmon et al., 2016)
or window centers (Tian et al., 2019). However, the performance of these methods is largely affected
by the bounding box priors and the post-processing steps (Carion et al., 2020). The transformer-based
DETR (Carion et al., 2020) provides a fully end-to-end detection pipeline without a surrogate tasks.
Follow-up research further enhances DETR by introducing a deformable attention (Zhu et al., 2021),
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query denoising (Li et al., 2022), and learnable dynamic anchors as queries (Liu et al., 2022). With
the growing popularity of DETR-based architecture, we believe that understanding of quantization
impact on DETR performance is an important topic, especially at the fine-grained level. Common
object detection benchmarks evaluate fine-grained performance metrics that depend on the object
size (Lin et al., 2014) or occlusion status (Geiger et al., 2012). However in practical applications,
object type i.e. its category is often more important than the object size. This motivates us to further
investigate detectors with critical-category objectives.

Efficiency-performance tradeoff. Multiple methods have been proposed to compress deep neural
network (DNN) models, including pruning (Han et al., 2015; Wen et al., 2016; Yang et al., 2020b;
2023), quantization (Polino et al., 2018; Dong et al., 2020; Yang et al., 2021; Guo et al., 2022),
factorization (Wen et al., 2017; Ding et al., 2019; Yang et al., 2020a), and neural architecture
search (Wu et al., 2019; Cai et al., 2020) etc. This work explores the impact of quantization that is
widely supported by the hardware (Horowitz, 2014) and can be almost universally applied to DNN
compression in architecture-agnostic fashion. Post-compression model performance is the key focus
in previous research. However, the overall i.e. average performance hides the important fine-grained
metrics e.g. the results for certain groups of categories. Recent works (Tran et al., 2022; Good et al.,
2022) analyze the disparate impact of pruning on classification accuracy, which leads to the fairness
concerns (Barocas et al., 2019). Our work extends this direction and investigates quantization effects
of DETR-based object detection at the critical-category performance granularity.

Second-order information in deep learning. Unlike conventional optimization with the first-order
gradients, recent research has found the importance of utilizing second-order information to increase
the generalization and robustness of DNN models. Sharpness-aware minimization (Foret et al., 2021)
links a loss landscape sharpness with the model ability to generalize. The latter can be improved
using a regularized loss with the Hessian eigenvalues (Yang et al., 2022) computed w.r.t. parameter
vector. Hessian eigenvalues are also used as importance estimates to guide the precision selection in
mixed-precision quantization (Dong et al., 2019; 2020; Yao et al., 2021). Given the difficulty of exact
Hessian computation, Fisher information matrix is proposed as an approximation of the importance in
pruning (Kwon et al., 2022). In this work, we link the disparate impact of quantization to the critical
objectives with the second-order Fisher information, and propose Fisher-aware quantization and
regularization methods to overcome the quantization effects on critical categories in object detection.

3 CRITICAL-CATEGORY PERFORMANCE ANALYSIS

In this section, we provide an introduction to the notations and the object detection training objectives
for DETR model in Sec. 3.1; formulate our critical-category performance in Sec. 3.2; and finally
empirically analyze the impact of quantization on such critical performance in Sec. 3.3.

3.1 PRELIMINARY

We recap the computation process of DETR-based object detectors, and provide relevant notations
for the rest of this paper. We mainly focus our discussion on the output of DETR model rather than
its architecture. Then, the following notation is applicable to both the original DETR (Carion et al.,
2020) and its more advanced variants such as DAB-DETR (Liu et al., 2022), Deformable DETR (Zhu
et al., 2021) as well as any other detector with the end-to-end architecture.

Given an input image x, the DETR-type model f(·) outputs a fixed-size set of N bounding box
predictions f(x) = {[p̂i, b̂i]}i=1...N . In each bounding box prediction, p̂i is the vector of classification
logits and b̂i is the vector of bounding box coordinates. The former p̂i ∈ Rn+1 contains logits for n
classes and an empty-box class (∅). The predicted bounding box b̂i ∈ R4 consists of 4 scalars that
define the center coordinates as well as the height and the width relative to the image size.

During the training, annotation is provided for each training image as a set of ground truth boxes
yi = {[ci, bi]}, where ci is the target class label and bi defines the bounding box. A Hungarian
matching process is performed to find the closest one-to-one matching between ground truth boxes
and predicted boxes including those with “no object” ∅ predictions. The training loss is computed
between each pair of matched boxes, which is defined as a linear combination of a classification loss
Lcls(p̂i, ci) for all boxes, and a box loss Lbox(b̂i, bi) for all non-empty boxes.
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3.2 FORMULATION OF CRITICAL-CATEGORY OBJECTIVES

As discussed in Sec. 1, the overall performance metric evaluated on the validation dataset can be not
the most effective objective in some real-world scenarios. Category-level fine-grained performance for
some specific task-critical categories can be more crucial than the averaged metrics. Here we provide
a practical definition of the critical-category objectives for the detection task, and a corresponding
evaluation method when applied to DETR-type detectors.

In classification tasks, class-level performance is often defined as the accuracy or loss of the model on
a subset of the validation dataset that contains objects belonging to a certain group of classes (Tran
et al., 2022). However, such definition is not practical for object detection task, as each input image in
the dataset contains multiple objects from different categories. Instead, this work defines the critical
objective based on the entire validation dataset, but with a transformed model outputs and annotations
during the loss computation in order to focus it towards a certain group of critical object categories.

Formally, suppose there are in total n categories in the dataset. Without loss of generality, suppose the
first m categories are the critical ones for a certain task that requires both an accurate classification
and localization. Then, the rest of categories (m + 1 to n) are non-critical and a misclassification
between them is acceptable. This can be expressed by the transformed prediction p̂′i ∈ Rm+2 as

p̂′i[j] =


p̂i[j] j = 1 . . .m

max p̂i[m+ 1 : n] j = m+ 1

p̂i[n+ 1] j = m+ 2

. (1)

The (m+ 1)-th category in p̂′i corresponds to “others”, which represents non-critical categories. The
max function is used to avoid a distinction when classifying non-critical categories. The (m+ 2)-th
category in p̂′i is used for ∅ class, which is originally defined as the (n+ 1)-th category in p̂i.

The same transformation is also applied to the ground truth box label ci, where all ci ∈ {m+1, . . . , n}
are set as the (m + 1)-th label in the transformed c′i. No change is applied to the bounding box
coordinates for the predicted and ground truth bounding boxes as we only define critical performance
at the classification granularity to have simplified yet practical and instructive setting.

Note that the logit transformation can be applied directly to the output of a trained DETR model
without any change to its architecture or weights W . With both p̂′i and c′i being transformed, the
Hungarian matching, loss computation, and mAP computation can be performed without modification.
We name the loss computed with the original p̂i and ci as “Overall objective” and it is expressed as

LA(W ) =
∑N

i=1

[
Lcls(p̂i(W ), ci) + Lbox(b̂i(W ), bi)

]
. (2)

Similarly, the “Critical objective” is defined with the transformed p̂′i and c′i as

LF (W ) =
∑N

i=1

[
Lcls(p̂

′
i(W ), c′i) + Lbox(b̂i(W ), bi)

]
. (3)

Each objective corresponds to either the “Overall performance” or the “Critical performance” when
evaluating the mAP detection metric with the original or transformed outputs and labels, respectively.

3.3 EMPIRICAL EVIDENCE OF POST-QUANTIZATION GAPS

With the defined objective, we analyze how quantization affects the critical performance of DETR
model. Specifically, we start with the official pretrained checkpoint of DETR with ResNet-50
backbone2. We use a symmetric linear quantizer Q(·) (Dong et al., 2019) to quantize a weight tensor
W to q bits, which can be expressed by

Q(W ) = Round
[
W

2q−1 − 1

max(|W |)

]
max(|W |)
2q−1 − 1

. (4)

2https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth
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Table 1: Critical mAP for each super category before and after 4-bit uniform quantization.

Super category Person Vehicle Outdoor Animal Accessory Sports Kitchen Food Furniture Electronic Appliance Indoor Overall

Pretrained 39.4 43.9 44.4 42.5 44.6 44.2 44.8 44.7 44.7 43.8 43.9 44.9 41.9
PTQ 4-bit 20.1 23.3 23.9 22.3 23.9 23.7 24.2 23.9 23.7 23.4 23.5 24.0 20.9

mAP drop 19.3 20.6 20.5 20.2 20.7 20.5 20.6 20.8 21.0 20.4 20.4 20.9 21.0

Table 2: Critical mAP for each super category of 4-bit quantized model before and after QAT.

Super category Person Vehicle Outdoor Animal Accessory Sports Kitchen Food Furniture Electronic Appliance Indoor Overall

PTQ 4-bit 20.1 23.3 23.9 22.3 23.9 23.7 24.2 23.9 23.7 23.4 23.5 24.0 20.9
QAT 4-bit 34.6 38.6 39.2 37.2 39.4 38.9 39.5 39.3 39.2 38.6 38.6 39.6 36.7

mAP gain 14.5 15.3 15.3 14.9 15.5 15.2 15.3 15.4 15.5 15.2 15.1 15.6 15.8

We quantize all trainable weights in the DETR model with an exception of the final feed-forward
(FFN) layers for the class and bounding box outputs. Quantization of these FFN layers leads to a
catastrophic performance drop in the PTQ setting (Yuan et al., 2022). A 4-bit quantization is applied
uniformly to the weights of all layers for all experiments in this section.

For critical performance, we define critical categories based on the “super category” labels in the
COCO dataset (Lin et al., 2014). In total, 12 super categories are available in the COCO, where each
contains from 1 to 10 categories of similar objects. For each selected super category, we consider all
the categories within it as critical categories, while the rest of categories as non-critical and transform
their logits and labels accordingly. The mAP measured at the transformed output is denoted as the
critical mAP of this super category. For example, when measuring the critical performance of “Indoor”
super category, “book”, “clock”, “vase”, “scissors”, “teddy bear”, “hair drier”, and “toothbrush” are
considered as critical categories (the first m categories in the Eq. (1) logit-label transformation), while
others are set as non-critical. We perform such evaluation for all 12 super categories to understand
the category-level impact of quantization on DETR.

As shown in Tab. 1, quantization has a disparate impact on the critical performance of the DETR
model. The mAP drop after quantization has an up to 1.7% gap. We further perform 50 epochs of
QAT and report the critical performance in Tab. 2. The performance increases differently for each
super category with a gap of up to 1.1% mAP.

4 METHODS TO OVERCOME CRITICAL-CATEGORY QUANTIZATION EFFECTS

In this section, we provide theoretical analysis on the cause of empirical performance gaps in Sec. 4.1.
Then, we propose our methods to improve such performance from the aspect of quantization scheme
design and quantization-aware training objective in Sec. 4.2 and Sec. 4.3, respectively.

4.1 CAUSE OF POST-QUANTIZATION PERFORMANCE GAPS

For a pretrained DETR model with weights W , we investigate how quantization affects the critical
objective LF (W ). We obtain the following two insights:

Insight 1: Larger Fisher trace of critical objectives results in a higher sensitivity to weight
perturbation. The quantization process replaces the floating-point weights W of the pretrained
DETR model with the quantized values Q(W ) as in Eq. (4). Effectively, this perturbs the weights
away from their optimal values, which leads to an increase in the critical objective value. With
the second-order Taylor expansion around W , the quantization-perturbed loss LF (Q(W )) can be
approximated using the non-perturbed objective LF (W ) as

LF (Q(W )) ≈ LF (W ) + gT∆+
1

2
∆TH∆, (5)

where the gradient g = ∂LF (W )/∂W , the Hessian H = ∂2LF (W )/∂W 2, and the weight perturba-
tion or, in other words, the quantization error ∆ = Q(W )−W .
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Figure 2: Fisher trace of the critical-category objective vs. critical mAPs. Performance is
evaluated for the 4-bit quantized model after PTQ (left) and QAT (right), respectively.

We assume that the pretrained model converges to a local minimum. Then, the first-order term can be
ignored because g is close to zero (LeCun et al., 1989). Hence, Eq. (5) can be rewritten as

LF (Q(W ))− LF (W ) ∝ ∆TH∆. (6)

For large models such as DETR, computation of the exact Hessian matrix H is practically infeasible.
Previous research (Kwon et al., 2022) shows that the Hessian can be approximated by the empirical
Fisher information matrix I computed as the expectation over the entire dataset by

I := E
[

∂

∂W
LF (W )

∂

∂W
LF (W )T

]
. (7)

In practice, we can also assume I to be a diagonal matrix. This further simplifies Eq. (6) as

LF (Q(W ))− LF (W ) ∝ ∆TI∆ =
∑

i
∆2

i ∥∂LF (W )/∂wi∥22 =
∑

i
∆2

i Iii, (8)

where the latter result represents a sum of Fisher trace elements (tr(I) =
∑

i Iii) weighted by the
squared quantization error and it is performed over each element wi of W .

Eq. (8) provides a feasible yet effective sensitivity metric to estimate the impact of quantization noise
on the critical objectives. It analytically connects the quantization-caused weight perturbation with the
maximum likelihood estimator for critical objectives using Fisher information framework (Ly et al.,
2017). Hence, an objective with the larger sensitivity metric leads to inferior critical performance. To
verify Eq. (8), we plot the Fisher trace for the critical objectives when estimated using the pretrained
floating-point DETR in Fig. 2 (left). We can clearly see a correlation between a larger Fisher trace
and a lower critical-category performance metric for the post-training quantization setting.

Insight 2: Sharp loss landscape leads to a poor generalization for critical categories after
quantization-aware training. During the conventional QAT process, weights of the DETR model
are trained to minimize the overall objective LA(Q(W )). However, a convergence of LA does not
guarantee good performance on all critical objectives LF . Foret et al. (2021) find a positive correlation
between the validation performance for the objective LF and a sharpness S of the loss landscape
around the local minima Q(W ) of the QAT. The minima sharpness S(Q(W )) of the quantized model
is formulated as

S(Q(W )) = max
∥ϵ∥2≤ρ

LF (Q(W ) + ϵ)− LF (Q(W )), (9)

where ρ > 0 is a ℓ2 norm bound for the worst-case weight perturbation.

Finding the exact solution to the maximization in Eq. (9) can be computationally costly. With the
detailed derivations in Appendix A, we can simplify this problem as

S ≈ max
||ϵ||2≤ρ

[
LF (Q(W )) + ϵT g

]
− LF (Q(W )) = max

||ϵ||2≤ρ
ϵT

∂

∂W
LF (Q(W ))

∝ ∂

∂W
LF (Q(W ))T

∂

∂W
LF (Q(W )) = tr(I).

(10)

Hence, the trace of the diagonal Fisher information matrix from Eq. (7) approximates the sharpness
of the critical loss landscape for the quantized model. The sharper loss landscape leads to inferior
test-time critical performance after QAT. To verify this, we empirically measure the Fisher trace
using Eq. (10) on different critical objectives of the DETR model after 50 epochs of QAT. As shown
in Fig. 2 (right), lower Fisher trace leads to higher critical mAP after QAT. Hence, Fisher trace of the
critical objective is a good indication of the model’s post-QAT generalization.
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4.2 FISHER-AWARE MIXED-PRECISION QUANTIZATION SCHEME

With the derived quantization impact on the loss in Eq. (8), we propose a mixed-precision quantization
scheme that minimizes the quantization effects within a model-size budget. Specifically, we define
the following minimization problem

min
q1:L

∑L

i=1
∆2

i

∥∥∥∥ ∂

∂wi
(αLA(W ) + LF (W ))

∥∥∥∥2
2

, s.t.
L∑

i=1

qi ∥wi∥0 ≤ B, (11)

where L denotes the number of layers in the model, wi is the i-th layer’s weight vector, and
∆i = Q(wi)− wi is the quantization error of the i-th layer’s weight when quantized to qi bits. B
denotes the model size allowance of the quantized model. As the quantization precision qi takes
discrete integer values, the optimization problem in Eq. (11) can be efficiently solved as an Integer
Linear Programming (ILP) problem (Dong et al., 2020; Yao et al., 2021).

Note that in Eq. (11) we consider the Fisher information of both critical and overall objectives. This
approach allows us to achieve good overall performance and increase the critical performance of
interest for the quantized model. A hyperparameter α is used to balance LF and LA.

4.3 FISHER TRACE FOR QAT REGULARIZATION

Besides using Fisher information metric to design quantization scheme, we further apply regu-
larization during the QAT process of the quantized DETR model to achieve better generalization
performance on critical categories. Following the derivation in Eq. (10), we propose to minimize
critical loss sharpness S(Q(W )) during the conventional QAT optimization. Specifically, for a
critical objective LF , we add the Fisher trace regularization as

min
W

LA(Q(W )) + λ tr(IF ), (12)

where λ ≥ 0 is the strength of the regularization, and IF denotes the Fisher information matrix of
the critical objective LF (Q(W )) w.r.t. weight W .

In addition to the DETR training loss terms from Eqs. (2) and (3), we further add a distillation
loss (Hinton et al., 2015) between the quantized model (student) and the pretrained full-precision
model (teacher) following common QAT practice (Dong et al., 2020; Yang et al., 2021). The
distillation objective consists of a KL-divergence loss for class logits of the student and teacher
models, and a ℓ1 loss for the corresponding bounding box coordinates. Since we expect the student
model to have the same behavior as the teacher model, the distillation loss uses a fixed one-to-one
mapping between the predicted boxes of the two models without performing the Hungarian matching.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and metrics. We follow DETR (Carion et al., 2020) setup and use two variants of the COCO
2017 dataset (Lin et al., 2014): COCO detection and COCO panoptic segmentation. The detection
dataset contains 118K training images and bounding box labels with 80 categories combined into 12
super categories. The panoptic dataset consists of 133K training examples and corresponding labels
with 133 categories and 27 super categories. Both variants contain 5K data points in the validation
set. We perform Fisher evaluation and QAT using these training datasets and report the model
performance on the validation set. We show both the overall and critical mAP in our experiments.
As in Sec. 3.3, we define critical performance on each super category by considering all categories
within it as critical and the rest of the categories as non-critical. All mAP reported in the tables are in
percentage points. For COCO panoptic we report the mAP of box detection as mAPbox.

Model architectures. We conduct the majority of our experiments on the DETR model with ResNet-
50 backbone (DETR-R50). To show the scalability, we also experiment with ResNet-101 backbone
variant (DETR-R101), DAB-DETR (Liu et al., 2022) and Deformable DETR (Zhu et al., 2021).

Implementation details. We perform quantization of the pretrained models using their publicly
available checkpoints. We apply symmetric layer-wise weight quantization using Eq. (4), where
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Table 3: Comparing critical mAP of different quantization schemes on COCO detection dataset.

Model Quant scheme Critical 4-bit mAP Critical 6-bit mAP
Person Animal Indoor Person Animal Indoor

DETR-R50
Uniform 34.6 37.2 39.6 37.3 40.0 42.4

HAWQ-V2 35.31±0.05 37.90±0.16 40.20±0.18 37.29±0.04 40.20±0.06 42.60±0.06
Fisher-Overall 35.35±0.04 37.96±0.17 40.20±0.17 37.58±0.11 40.74±0.07 43.10±0.08
Fisher-Critical 35.56±0.08 38.10±0.09 40.33±0.04 37.73±0.02 40.86±0.06 43.26±0.07

DETR-R101 Fisher-Overall 36.36 39.30 41.70 39.1 42.0 44.4
Fisher-Critical 36.42 39.23 41.80 39.2 42.5 44.9

DAB
DETR-R50

Uniform 22.32±0.01 25.68±0.01 27.60±0.01 26.24±0.02 29.76±0.01 31.88±0.01
HAWQ-V2 8.26±0.00 11.66±0.00 12.80±0.00 19.10±0.00 19.90±0.00 21.60±0.00

Fisher-Overall 22.82±0.01 27.02±0.00 28.96±0.00 26.06±0.01 29.20±0.01 31.32±0.00
Fisher-Critical 23.18±0.00 27.86±0.22 27.98±0.00 26.38±0.00 29.28±0.00 31.88±0.20

Deformable
DETR-R50

Uniform 28.9 32.8 34.3 46.0 49.1 51.4
Fisher-Overall 42.7 46.2 48.4 46.3 49.5 51.8
Fisher-Critical 43.1 46.3 48.8 46.6 49.5 52.0

Table 4: Comparing critical mAPbox of different quantization schemes on COCO panoptic dataset.

Model Quant scheme Critical 4-bit mAP Critical 5-bit mAP
Person Animal Indoor Person Animal Indoor

Segm.
DETR-R50

Uniform 8.5 11.4 12.4 8.9 13.7 16.0
Fisher-Overall 16.64 21.60 23.80 18.79 24.00 26.70
Fisher-Critical 16.68 21.69 23.85 19.05 24.15 26.87

weights are scaled by the max of absolute values without clamping. We keep normalization and
softmax operations at full precision. For sensitivity analysis, we compute Fisher trace for our method
using all training set. Whereas for the implementation of HAWQ-V2 (Dong et al., 2020) baseline,
we randomly sample 1,000 training images due to the high cost of Hessian computation. We solve
mixed-precision quantization problem in Eq. (11) by the ILP with 3-8 bit budget for each layer. We
perform QAT with the straight-through gradient estimator (Bengio et al., 2013) for 50 epochs with
1e-5 learning rate. Regularization strength λ in Eq. (12) grows linearly from 1e-3 to 5e-3 throughout
the training epochs when Fisher regularization is applied. To mitigate the variance in training, in all
experiments we report the mean and, if shown, ± standard error of the final 5 epochs of training.

5.2 PERFORMANCE OF FISHER-AWARE QUANTIZATION SCHEME

As proposed in Sec. 4.2, we use Fisher information as a sensitivity measurement for designing
mixed-precision quantization scheme for object detection. We compare the proposed quantization
scheme with linear uniform quantization (Polino et al., 2018) and HAWQ-V2 (Dong et al., 2020) on
the COCO dataset task using its detection and panoptic variants. Additional CityScapes (Cordts et al.,
2016) dataset results are reported in Appendix C. Tab. 3 reports the critical mAP of super category
“Person”, “Animal”, and “Indoor” for the COCO detection dataset. We generate HAWQ-V2 and
Fisher-Overall quantization schemes with only the overall objective, and evaluate the model after
QAT on these super categories. For Fisher-Critical schemes, we apply the critical-category objective
for the super category of interest to the ILP optimization in Eq. (11), and report the critical mAP of
the quantization scheme corresponding to each super category. The overall mAP is not affected much
by the choice of Fisher-Critical vs. Fisher-Overall objectives as additionally described in Appendix C.

With the same average quantization precision, our Fisher-aware method consistently outperforms
uniform quantization and the mixed-precision scheme derived from HAWQ-V2 on different models
and datasets. We note that the improvement of HAWQ-V2 over the uniform quantization is not
consistent on DETR-based models. This is caused by the instability of Hessian trace estimation for
the complicated DETR architecture and the harder object detection task. Fisher-aware approach,
on the other hand, is stable. In addition, we evaluate the time to estimate the Fisher trace w.r.t. the
Hessian trace for a batch of images on a Tesla P100 GPU, where Fisher trace can be estimated with
200-300× less computational cost. This allows us to estimate Fisher trace with a larger amount of
training data, which leads to a higher precision and stability.

Comparing to Fisher-overall, applying the critical objective leads to consistent improvements in
the corresponding critical performance. In particular, we improve critical mAP by up to 0.2% on
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Table 5: Comparing performance of DETR-R50 model on COCO detection dataset with different
QAT objectives. Fisher-critical quantization scheme with Person category is used for all models.

Model QAT objective 4-bit mAP 6-bit mAP
Overall Person Overall Person

DETR-R50 Overall 37.07±0.07 35.56±0.08 39.67±0.10 37.73±0.02
Fisher Reg 36.97±0.06 35.75±0.04 39.70±0.08 37.78±0.01

Table 6: Comparing mAPbox for DETR-R50 model on COCO panoptic dataset with different QAT
objectives. Fisher-critical quantization scheme with Person category is used for all models.

Model QAT objective 4-bit mAP 5-bit mAP
Overall Person Overall Person

Segm.
DETR-R50

Overall 33.24±0.10 16.68±0.01 36.08±0.07 19.05±0.09
Fisher-Reg 33.29±0.05 16.79±0.03 36.12±0.06 19.39±0.11

DETR-R50, 0.5% on DETR-R101, 0.8% on DAB DETR-R50, and 0.4% on Deformable DETR-R50.
Note that the originally poorly-performing critical categories such as “Person” result in significant
improvements. We further extend our experiments to the COCO panoptic dataset with the same
setup, where we report the mAPbox of different quantization schemes in Tab. 4. With the increased
number of categories in the panoptic dataset, the impact of quantization on each individual critical
category becomes even more disparate. Fisher-aware quantization with the overall objective improves
critical mAP by about 2× over uniform quantization. Further improvement on critical mAP is
consistently achieved with the Fisher-critical quantization scheme. This further shows the importance
of considering critical objectives when applying object detection models to real-world applications.

5.3 PERFORMANCE OF FISHER-TRACE REGULARIZATION

In this section, we compare the post-QAT results when using the conventional overall loss LA only vs.
our approach with Fisher trace regularization from Sec. 4.3 on the COCO detection dataset in Tab. 5.
The experimental results show that applying the proposed Fisher-trace regularization further improves
critical mAP. When combined with the mixed-precision quantization scheme from Sec. 4.2, our
method leads to a 1.15% and 0.48% critical ("person" class) performance improvement on DETR-R50
model over the uniform quantization in Tab. 3 for 4-bit (34.6% → 35.75%) and 6-bit (37.3% →
37.78%) precision, respectively. Note that our regularization scheme has a negligible impact on the
overall mAP: 37.07% → 36.97% for 4-bit and 39.67% → 39.70% for 6-bit precision, respectively.

Tab. 6 reports post-QAT results for COCO panoptic dataset. The proposed regularization further
increases critical performance by 0.11% and 0.34% mAP for, correspondingly, 4-bit and 5-bit preci-
sion settings when compared to our PTQ results in Tab. 4. Note that the uniform PTQ quantization
significantly underperforms in this setting. In Appendix D ablation study, we analyze the impact of
regularization strength. In addition, we compare model generalization abilities for a naive approach
when the critical loss LF is added to the overall loss LA as a heuristic QAT objective, and our
Fisher-trace regularization scheme that minimizes sharpness of the loss landscape.

6 CONCLUSIONS

This work investigated the impact of quantization on the fine-grained critical-category performance
of DETR-based object detectors. Motivated by the demand for practical applications, we formulated
the critical performance via the logit-label transformation of the corresponding categories. We
found that both the conventional PTQ and QAT cause disparate quantization effects on such critical
performance. We theoretically linked the disparate quantization effects with the sensitivity of critical
objectives to the quantization weight perturbation and the sharpness of the critical loss landscape in
the QAT. We characterized both derivations with the trace of the Fisher information matrix of the
critical objectives w.r.t. model weights. We proposed the Fisher-aware mixed-precision quantization
scheme and Fisher-trace regularization to improve the critical performance of interest. We hope this
work motivates future explorations on the fine-grained impacts of other compression methods in the
computer vision area and a general machine learning research.
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In the following supplementary materials, we provide detailed derivation and additional visualiza-
tions and experimental results. Specifically, Appendix A provides detailed derivation on Eq. (10).
Appendix B shows detailed visualizations of the layer-wise Fisher sensitivity and the corresponding
quantization precision settings derived using the proposed Fisher-aware quantization scheme method.
Appendix C further analyzes how the overall and critical-category objectives from Eq. (11) impact
the assigned precision, and shows additional experimental results for the Fisher-aware quantization
scheme. For Fisher-trace regularization, Appendix D performs ablation study on the impact of
regularization strength λ, compares the critical Fisher trace of the converged model with or without
Fisher-trace regularization, and verifies the design choice of using Fisher regularization instead of the
sum of overall and critical-category objective in the optimization.

A DETAILED DERIVATION OF EQ. (10)

Starting from the formulation in Eq. (9), we perform the first-order Taylor expansion on the perturbed
loss LF (Q(W ) + ϵ) as

LF (Q(W ) + ϵ) ≈ LF (Q(W )) + ϵT
∂

∂W
LF (Q(W )). (13)

By substituting Eq. (13) into Eq. (9), the solution to maximization problem can be simplified as

S(Q(W )) = max
∥ϵ∥2≤ρ

LF (Q(W ) + ϵ)− LF (Q(W )) ≈ max
||ϵ||2≤ρ

ϵT
∂

∂W
LF (Q(W )). (14)

Note that both ϵ and ∂LF (Q(W ))/∂W are vectors with the same dimensions as weight W . Then,
their inner product can achieve the maximum when they are parallel vectors. Therefore, we can solve
the maximization in Eq. (14) as

S ≈ max
||ϵ||2≤ρ

ϵT
∂

∂W
LF (Q(W ))

=
ρ

∥ ∂
∂W LF (Q(W ))∥2

∂

∂W
LF (Q(W ))T

∂

∂W
LF (Q(W ))

∝ ∂

∂W
LF (Q(W ))T

∂

∂W
LF (Q(W )) = tr(I),

(15)

which is the final approximation of the loss landscape sharpness in Eq. (10).

B DETAILS ON FISHER-AWARE QUANTIZATION SCHEMES

This section illustrates the Fisher-aware sensitivity and the corresponding quantization schemes
assigned to the Fisher-overall configurations from Tab. 3 and Tab. 4. We report four models, namely
DETR-R50 (Fig. 3), DETR-R101 (Fig. 4), DAB DETR-R50 (Fig. 5), and Deformable DETR-R50
(Fig. 6), on the COCO detection dataset, and, additionally, report DETR-R50 (Fig. 7) and DETR-R101
(Fig. 8) on the COCO panoptic dataset.

As shown in the figures, the backbone layers demonstrate a relatively stable sensitivity distribution,
while the transformer encoder and decoder layers show sensitivity distribution with high variance.
This is expected given the different functionalities of transformer layers within an attention block (Car-
ion et al., 2020). Correspondingly, the quantization precision is assigned to each layer via solving the
ILP in Eq. (11), where higher precision is assigned to layers with higher sensitivity, while satisfying
the constraint on the overall budget allowance.

13



Under review as a conference paper at ICLR 2024

Figure 3: Bit precision vs. layer-wise sensitivity for DETR-R50 on COCO detection dataset.

Figure 4: Bit precision vs. layer-wise sensitivity for DETR-R101 on COCO detection dataset.

Figure 5: Bit precision vs. layer-wise sensitivity for DAB DETR-R50 on COCO detection dataset.

Figure 6: Bit precision vs. layer-wise sensitivity for Deformable DETR-R50 on COCO detection
dataset.
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Figure 7: Bit precision vs. layer-wise sensitivity for DETR-R50 on COCO panoptic dataset.

Figure 8: Bit precision vs. layer-wise sensitivity for DETR-R101 on COCO panoptic dataset.
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C ADDITIONAL RESULTS ON FISHER-AWARE QUANTIZATION SCHEME

This section provides additional experimental results on utilizing critical-category objectives in the
proposed Fisher-aware mixed-precision quantization scheme. To start with, Figs. 9 to 14 compares
the quantization scheme of Fisher-overall configuration and Fisher-critical configuration for different
models and critical categories reported in Tabs. 3 and 4. As shown in the figures, the inclusion of
different critical objectives into the sensitivity analysis leads to significant change in the precision
assigned to some of the layers. This further illustrates the diverse sensitivity distribution of various
critical-category objectives across layers. By considering the proposed objectives of interest in the
sensitivity analysis, we are able to improve the critical performance of quantized models.

Figure 9: Comparison of Fisher-critical and Fisher-overall mixed-precision schemes for DETR-R50
on COCO detection dataset when applied to person category.

Figure 10: Comparison of Fisher-critical and Fisher-overall mixed-precision schemes for DETR-R101
on COCO detection dataset when applied to indoor category.

Figure 11: Comparison of Fisher-critical and Fisher-overall mixed-precision schemes for DAB
DETR-R50 on COCO detection dataset when applied to animal category.
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Figure 12: Comparison of Fisher-critical and Fisher-overall mixed-precision schemes for Deformable
DETR-R50 on COCO detection dataset when applied to person category.

Figure 13: Comparison of Fisher-critical and Fisher-overall mixed-precision schemes for DETR-R50
on COCO panoptic dataset when applied to animal category.

Figure 14: Comparison of Fisher-critical and Fisher-overall mixed-precision schemes for DETR-R101
on COCO panoptic dataset when applied to person category.
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As Tab. 3 contains only the critical-category metrics, here we report the overall mAP of these
quantization schemes in Tabs. 7 and 8. They show the impact of the proposed objectives on the overall
performance. In general, Fisher-critical quantization scheme leads to a similar overall performance
with the Fisher-overall scheme, and they both are significantly better than the conventional uniform
and HAWQ-V2 quantization schemes. In some cases, the improvement of critical performance with
the Fisher-critical quantization scheme also improves the overall performance. This indicates that the
addition of such critical-category objective in the sensitivity analysis can be useful for increasing the
overall performance as well. This is an interesting direction to explore in future work.

Table 7: Overall mAP on COCO detection dataset for 4-bit setting.

Model Uniform Fisher-overall Fisher-Person Fisher-Animal Fisher-Indoor

DETR-R50 36.7 37.12±0.06 37.07±0.07 37.01±0.11 36.99±0.05
DETR-R101 37.4 38.26 38.22 37.97 38.24

DAB DETR-R50 22.7 24.42±0.00 25.28±0.00 25.84±0.27 24.08±0.00
Deformable DETR-R50 28.8 44.1 44.5 44.1 44.5

Table 8: Overall mAP on COCO detection dataset for 6-bit setting.

Model Uniform Fisher-overall Fisher-Person Fisher-Animal Fisher-Indoor

DETR-R50 39.4 39.57±0.10 39.67±0.10 39.60±0.04 39.61±0.08
DETR-R101 39.2 41.8 41.8 42.1 42.1

DAB DETR-R50 28.00 27.20±0.00 28.42±0.00 27.30±0.00 27.94±0.15
Deformable DETR-R50 47.8 48.1 48.5 48.1 48.5

Finally, we provide additional results of the Fisher-aware quantization scheme with the CityScapes
dataset in Tab. 9. We perform object detection task with DETR model on the CityScapes dataset
following the settings of Wang et al. (2022)3. We can observe the same trend that the proposed Fisher-
Overall scheme significantly outperforms uniform quantization, whereas Fisher-Critical scheme
further improves the performance on corresponding critical categories.

Table 9: Critical-category mAP on CityScapes for DETR-R50 with different quantization schemes.

Precision
Quant.
scheme

All
mAP

Critical mAP
Construct Object Human Vehicle

FP - 11.7 8.7 17.8 18.0 19.0

4-bit
Uniform 5.2 3.6 8.7 8.8 9.2

Fisher-Overall 8.8 5.5 12.6 13.8 14.6
Fisher-Critical 9.0 6.5 13.7 14.0 14.7

D ABLATION STUDY ON FISHER-TRACE REGULARIZATION

We start with the discussion about the impact of regularization strength λ on the overall and the
critical performance in the QAT process. Similarly to previous work on regularized training (Yang
et al., 2022), λ controls the tradeoff between the overall performance and the generalization gap for
the critical objective. Tab. 10 shows the overall and critical mAP during training if we set λ to a
smaller value, i.e. 1e-3. It can be seen that the Fisher trace regularization significantly improves
critical mAP during epoch range from 20 to 30 (up to 0.5%). However, as the training progresses
towards convergence, the critical performance drops while overall performance increases, indicating
the occurrence of overfitting. However, setting λ too large (i.e. 5e-3) in the initial epochs of the QAT
process significantly affects the convergence of the overall training objective. These observations
indicate that during the QAT process, a smaller regularization is needed initially to facilitate better
convergence, while a larger regularization is needed towards the end to prevent overfitting. To this
end, in this work we utilize a linear scheduling of the regularization strength as discussed in Sec. 5.1,
which can be formulated as λ = max

[
λT

t
T , λ0

]
, where t is the current epoch, T is the total number

of epochs, and λ0, λT denote the initial and final regularization strength, respectively. This scheme
leads to better critical mAP after the convergence as shown in Tabs. 4 and 5.

3https://github.com/encounter1997/DE-DETRs
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Table 10: QAT performance of DETR-R50 on COCO detection dataset. Person category is considered
as critical, and 4-bit Fisher-Critical quantization scheme is applied. The mAP metrics at each epoch
are reported using overall/critical format.

λ Epoch 10 Epoch 20 Epoch 30 Epoch 40 Epoch 50

0 36.8/34.8 36.7/34.7 36.9/34.9 37.3/35.1 37.2/35.2
1e-3 36.5/34.5 36.9/35.2 36.8/35.3 37.1/35.0 37.2/35.1

Table 11: Fisher trace of the critical objective when applied to DETR-R50 on COCO detection dataset.
In this setting, the person category is considered as critical.

Precision Quant. scheme Reg. Fisher trace

4-bit
Uniform No 37.3K

Fisher-critical No 30.4K
Fisher-critical Yes 14.9K

6-bit
Uniform No 88.9K

Fisher-critical No 18.2K
Fisher-critical Yes 15.5K

To further show the effectiveness of the Fisher-trace regularization, we compute the Fisher trace of
the critical objective on the quantized DETR model after QAT. We compare the critical Fisher trace
of models with different quantization and training schemes in Tab. 11 with 10,000 data examples
sampled from the COCO training set. Both the 4-bit and 6-bit uniform quantization settings lead to
the largest Fisher trace on the critical objective, while our Fisher-aware mixed-precision quantization
scheme helps to reduce the trace after QAT. Furthermore, the proposed regularization scheme with
explicit control over the Fisher trace results in the lowest value that indicates the least sharp local
minima. This observation confirms our insight in Sec. 4.1, where large critical Fisher trace leads to
inferior critical performance.

Finally, we verify the necessity of applying Fisher-trace regularization for the QAT of DETR model.
Specifically, we compare our proposed scheme with performing regular QAT with the summation
of overall and critical objective. For the Fisher-trace regularization, the motivation comes from our
Insight 2 in Sec. 4.1, where the QAT gap is caused by the sharp loss landscape leading to a poor
generalization. This cannot be simply resolved with the addition of critical objectives in the training
loss, as illustrated by the results in Tab. 12.

Table 12: QAT performance of DETR-R50 on COCO detection (left) and COCO panoptic (right)
datasets. All models are quantized with the corresponding Fisher-critical scheme. 4-bit is used for
COCO detection and 5-bit for COCO panoptic dataset, respectively.

QAT objective All mAP Person mAP QAT objective All mAP Person mAP

Overall 37.07±0.07 35.56±0.08 Overall 36.08±0.07 19.05±0.09
Overall+Critical 37.11±0.04 35.39±0.06 Overall+Critical 36.07±0.05 19.19±0.10

Fisher reg 36.97±0.06 35.75±0.04 Fisher reg 36.12±0.06 19.39±0.11
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