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ABSTRACT

Building a working mental model of a protein typically requires weeks of reading, cross-
referencing crystal and predicted structures, and inspecting ligand complexes, an effort
that is slow, unevenly accessible, and often requires specialized computational skills.
We introduce Speak to a Protein, a new capability that turns protein analysis into an
interactive, multimodal dialogue with an expert co-scientist. The AI system retrieves
and synthesizes relevant literature, structures, and ligand data; grounds answers in a
live 3D scene; and can highlight, annotate, manipulate and see the visualization. It
also generates and runs code when needed, explaining results in both text and graph-
ics. We demonstrate these capabilities on relevant proteins, posing questions about bind-
ing pockets, conformational changes, or structure-activity relationships to test ideas in
real-time. Speak to a Protein reduces the time from question to evidence, lowers the
barrier to advanced structural analysis, and enables hypothesis generation by tightly
coupling language, code, and 3D structures. Speak to a Protein is freely accessible at
https://www.anonymousplayground.com.

Keywords Agentic co-scientist, scientific discovery, molecular visualization, deep research, drug discov-
ery, retrieval-augmented generation

1 INTRODUCTION

Proteins are the molecular machinery of life, and understanding their structure and function is fundamental
to modern biology and medicine. For a researcher in drug discovery or molecular biology, developing an
intuitive, ”working mental model” of a target protein, its active sites, its conformational dynamics, and its
network of interactions is a critical first step. However, this process is slow and arduous, often requiring a
combination of deep domain knowledge and specialized computational skills.

A researcher investigating a protein kinase to understand how a new series of inhibitors might bind must
embark on a fragmented and technically demanding workflow. This involves sifting through the PubMed
literature (Sayers et al., 2020), fetching and comparing multiple structures from the Protein Data Bank
(PDB) (Burley et al., 2018), querying UniProt (The UniProt Consortium, 2022) for functional annotations
and disease-associated variants, and extracting structure-activity relationship (SAR) data from databases
like ChEMBL (Mendez et al., 2018). Each step requires navigating different interfaces and data formats.
Furthermore, deeper analysis, such as superimposing structures, identifying key interactions, or plotting
bioactivity data, requires proficiency with specialized software or scripting languages, creating a significant
barrier to entry for many bench scientists. This high friction for asking and answering questions restrains
curiosity and slows the pace of discovery.

To address these challenges, we introduce Speak to a Protein, a new capability designed to transform pro-
tein analysis into an interactive dialogue with an AI co-scientist that collaborates with the user in real-time.
Using recent advances in large language models (LLMs) (Achiam et al., 2023), our system can compre-
hend complex, natural language queries about a protein of interest. It autonomously retrieves, integrates,
and synthesizes information from a comprehensive suite of biological data sources, including literature,
structural repositories, and biochemical databases.

The core innovation of Speak to a Protein is its ability to ground its responses across multiple, synchronized
modalities. When a user asks a question, the AI does not simply return text. It interacts with a live 3D
structural viewer to highlight residues, measure distances, or annotate binding pockets. It can generate and
execute Python code in a sandboxed environment to perform calculations, filter tabular data, or generate
plots on the fly. Furthermore, the AI co-scientist sees, understands and controls the visualization, offering
a natural interaction with the user. This tight coupling of natural language, 3D visualization, and code
execution creates a seamless and intuitive environment for scientific exploration.

This paper makes the following contributions: We present the design and architecture of an AI system that
integrates language, code execution, and 3D visualization for interactive protein analysis. We show how
this multimodal approach drastically lowers the barrier to complex structural and biochemical data analysis.

1

https://www.anonymousplayground.com


061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the system architecture. The system consists of a frontend with a protein viewer
and chat interface, which includes a virtual file system and Python sandbox for automated code execution
and viewer manipulation. The LLM Agent is the main orchestrator that interacts with the user and calls a set
of custom tools through Model Context Protocol (MCP). These tools include a literature search for a given
protein and text query, retrieving specialized data through APIs such as UniProt, PDBe and ChEMBL, as
well as executing Python code in a sandbox environment with a dedicated virtual file system.

Through case studies on relevant proteins, we show that this system enables a more fluid and powerful form
of hypothesis generation, accelerating the cycle from question to evidence.

2 RELATED WORK

The ambition to create an AI capable of scientific discovery is a long-standing goal, articulated in vi-
sions such as Hiroaki Kitano’s proposal for an ”AI Scientist”: a system that could autonomously formulate
hypotheses, design experiments, and achieve Nobel-class discoveries (Kitano, 2021). While such a fully
autonomous system (Boiko et al., 2023; Zou et al., 2025) remains a grand challenge, recent progress in large
language models (LLMs) has enabled the development of a more immediate and collaborative paradigm:
the ”AI co-scientist” or ”advanced intelligence” in Kitano’s words.

Early systems explored conversational interfaces for structural inspection and Q&A over proteins. Guo et al.
(2023) demonstrated ProteinChat, which couples LLM prompting with protein 3D structures to answer
user questions about residues and pockets. Contemporary efforts such as Wang et al. (2024) and Xiao et al.
(2024) investigate protein-aware prompting and multimodal conditioning for function/property reasoning.
Most recently, Wang et al. (2025) proposes Prot2Chat, an LLM that fuses protein sequence, structure, and
text via an early-fusion adapter, directly targeting protein Q&A.

Beyond text-only chat, domain copilots increasingly drive molecular viewers and modeling tools. Sun et al.
(2024) introduce ChatMol Copilot, an LLM agent that coordinates cheminformatics and modeling tools
(e.g., docking, conformer generation) in response to natural-language requests. In parallel, Ille et al. (2024)
systematically evaluates GPT-4’s ability to perform rudimentary structural modeling and protein–ligand
interaction analysis, highlighting both promise and limitations. Our work is aligned with this line but centers
on tightly coupling language, code execution, and a live 3D scene for grounded, manipulable answers.

Agent frameworks augment LLMs with tool use, retrieval, and planning. ChemCrow (Bran et al., 2024)
shows that equipping GPT-4 with chemistry tools enables multi-step synthesis planning and materials tasks.
More recently, CLADD (Lee et al., 2025) proposes a retrieval-augmented multi-agent system specialized
for drug discovery tasks. Speak to a Protein adopts the agentic paradigm for structural biology: it re-
trieves literature/structures, executes analyses (e.g., pocket mapping, SAR tables), and grounds responses
in synchronized 3D visualizations.

Compared to prior work, our contribution is an end-to-end, interactive co-scientist for proteins that (i)
unifies literature/structure/ligand retrieval, (ii) reasons with tabular and 3D modalities, (iii) executes code
for on-the-fly analyses, and (iv) directly annotates/manipulates the 3D scene in response to dialogue. This
tightly coupled language–code–3D loop reduces the time from question to evidence relative to agent-only
or text-only systems.

3 SYSTEM OVERVIEW: Speak to a Protein

3.1 ARCHITECTURE

The system architecture of Speak to a Protein (Figure 1) is organized around two main components: a front-
end for user interaction and visualization, and a back-end for language understanding, tool coordination,
and data retrieval. This is effectively a visual channel of communication between the AI co-scientist and
the human scientist. The front-end provides the primary user interface, incorporating both a conversational
chat panel and 3D molecular visualization capabilities (Figure 2 and Section 3.6). At its core is a Python
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Figure 2: Interactive analysis of the CDK2 structure (PDB: 1AQ1) using the Speak to a Protein multi-
modal assistant. The user enters natural language queries in the AI chat panel (right), and the system re-
sponds with both textual answers and real-time updates to the 3D visualization (left). Python code executed
in the integrated sandbox is shown in the console (bottom), providing full transparency and reproducibility
of the underlying analyses.

sandbox powered by Pyodide, enabling the execution of Python code directly in the browser to manipulate
structures and control the viewer. The sandbox includes a virtual file system, where structural files and
related data are stored for visualization. Users interact through the chat panel, entering natural language
requests. The system interprets responses from the AI agent and parses them to display textual information
in the chat. It also detects when a specialized action is needed and invokes the corresponding viewer tools:

• Virtual file system tool: Loads required data files from the backend and stores them for visualization.
• Python tool: Executes Python code, as generated by the model, to carry out custom analyses or visual

manipulations.

The outputs from these tools are sent to the backend, which determines whether additional actions are
needed or if results should be presented in the user interface. The backend processes natural language
queries and orchestrates all available tools through a central AI agent, running either as a local LLM or
via an external API (currently using OpenAI’s GPT-4.1). Upon receiving a user request, the agent plans
a sequence of actions, including complex reasoning, modifying the viewer state, or invoking some of its
domain-specific tools:

• Literature Search: Retrieves relevant scientific articles and extracts protein-related information from
PubMed Central.

• UniProt Search: Finds protein entries and annotations, including sequence, function, and cross-
references, from the UniProt database.

• ChEMBL Search: Retrieves bioactivity and assay data for small molecules and proteins from the
ChEMBL database.

• PDB Search: Locates experimental 3D structures and related metadata in the Protein Data Bank.
• MoleculeKit Search: Enables semantic search through the source code of MoleculeKit (Doerr et al.,

2016), a library for structure and formats manipulation.
• A python sandbox. Enables server-side computations using advanced libraries.

The system’s multimodal tooling layer is implemented as Model Context Protocol (MCP) (Anthropic, 2024)
servers that the model can invoke and compose during an interaction. Each tool provides a structured in-
terface to a core knowledge source, with outputs designed for integration into language reasoning and
context-conditioned retrieval-augmented generation (RAG). Concretely, we implement three primary tools:
(i) a literature retrieval component that performs sequence- and structure-grounded searches and builds a
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protein-conditioned RAG corpus from PubMed Central; (ii) a UniProt interface that supports both accession
discovery and access to detailed entry information, including sequence data, cross-references, functional an-
notations, and literature links; and (iii) a ChEMBL interface for harvesting assay activities and surfacing
structure–activity relationship (SAR) information. All tools rely on programmatic access to public biologi-
cal databases and return normalized, machine-readable results, enabling the model to consistently connect
protein identity with structural, functional, and biochemical evidence. This modular organization allows
complex scientific queries to be decomposed into well-defined tool calls, whose implementation details we
describe in Sections 3.2–3.4.

3.2 LITERATURE SEARCH AND COMPREHENSION

The literature tool constructs a protein-specific corpus that can be searched with a text query. While the
literature discovery relies on curated references from UniProt, the tool can be invoked with either a UniProt
accession, PDB ID or FASTA sequence of the protein in question. If the user provides a UniProt accession,
the references linked to this entry are augmented by expanding the selection to all linked PDB structures.
If the input is a PDB code, the system first queries UniProt for all entries cross-referenced to that structure,
and then collects their reference lists. If the input is a raw FASTA sequence, the system searches the
Protein Data Bank to identify matching structures, resolves them to UniProt entries, and again retrieves
their references. This pathway ensures that the system always incorporates the expert-curated literature that
UniProt associates with a protein, regardless of the initial identifier type.

The result of the literature discovery step yields a diverse set of article identifiers, including PubMed IDs,
DOIs, and PubMed Central IDs. To unify them, we normalize all entries to PubMed Central IDs (PMCIDs)
using a public conversion service. Importantly, only the subset of publications that are openly available
on PubMed Central can be downloaded and processed further; articles behind paywalls remain indexed
only by their identifiers. For each accessible PMCID, we retrieve the article in XML format, which is
efficient to fetch and preserves section and paragraph boundaries. The text is cleaned and segmented into
coherent passages that are embedded into a vector space for retrieval-augmented generation (RAG) using
LlamaIndex (Liu, 2022).

All passages for a given protein are combined into a protein-conditioned retrieval index, together with
metadata such as PMCID, DOI, and the set of matched PDB and UniProt identifiers (Table 1). The index
is cached on disk along with a list of associated protein identifiers (UniProt accessions, PDB IDs, FASTA
sequences), so future queries for the same target can reuse the corpus without repeated downloads. At
query time, the system formulates a descriptive retrieval prompt, retrieves the top-k relevant passages,
and returns them along with their citations. The retrieved text is then provided to the language model
as grounded context, either to directly answer a user’s question (e.g., “Which mutations in CDK2 affect
inhibitor binding?”) or to supply background for further analysis and additional tool calls (e.g., filtering
ChEMBL assays for compounds tested in the cited studies, or highlighting reported residues in the 3D
structural viewer).

Despite involving multiple external databases and full-text retrieval, the entire pipeline runs in real time.
Literature discovery, download, and RAG construction typically complete within one to two minutes for a
new protein, and subsequent queries on the same target are handled within seconds due to caching of the
prebuilt index.

3.3 UNIPROT: ACCESSION DISCOVERY AND RICH ENTRY INFORMATION

The UniProt MCP server provides structured access to the UniProt knowledgebase, enabling both the dis-
covery of correct accessions and the retrieval of detailed entry information. It is organized into two comple-
mentary tools. The first is a text search utility that resolves canonical entries from colloquial protein names.
This call returns a concise shortlist with entry type, primary accession, protein name, organism, annotation
score, and keywords, allowing the model to select the most relevant entry—for example, the reviewed entry
of the correct organism—without inflating context.

Once an accession has been identified, the data lookup tool retrieves the corresponding UniProt record or
resolves from a PDB identifier when structures are the starting point. The response contains identifiers and
provenance suitable for citation, descriptive and gene fields, the full amino acid sequence, span-form fea-
tures encoding domains, active and binding sites, post-translational modifications, and variants, compressed
literature references with bibliographic fields and sequence “focus” positions, and a set of cross-references
that link the UniProt entry to other databases (Table 2). These include structural repositories such as the Pro-
tein Data Bank (PDB) and AlphaFoldDB, pharmacological resources such as DrugBank and DrugCentral,
and functional annotation databases such as Gene Ontology (GO). This representation is compact but ex-
pressive, preserving direct links to external resources while making it straightforward to highlight residues,
align sequences, or connect functional information across databases.

In practice, the model first issues a name query (when necessary), selects appropriate entries, and then
performs a data lookup to obtain a comprehensive record. The sequence can, for example, be forwarded
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to the literature tool for protein-conditioned retrieval; feature spans can be used to create residue highlights
and distance measurements in the 3D viewer; and cross-references provide pivots to structures, pathways,
or pharmacology resources. The separation of discovery (name to accession) and enrichment (accession or
PDB to full entry) keeps tool contracts simple, enabling deterministic composition with other MCP servers.

3.4 CHEMBL: BIOACTIVITY AND SAR TABLES

The ChEMBL MCP server is dedicated to retrieving and organizing information about assays recorded
in the ChEMBL database. It focuses specifically on assay-level measurements of how molecules interact
with a given protein target. When invoked with a target identifier and an assay type, the tool downloads
all matching entries from the ChEMBL API to assemble a complete activity table. To reduce latency and
ensure reproducibility, the results are cached locally; repeated queries for the same target reuse this cache
until it expires.

Because raw ChEMBL activities are highly heterogeneous, mixing different units, redundant identifiers,
and free-text fields, the MCP normalizes the dataset into a streamlined representation that highlights the
essential biochemical information (Table 3). Rarely useful or inconsistent fields are removed, while values
necessary for reasoning about structure–activity relationships, such as standard measurements, molecule
identifiers, and publication context, are retained. All entries that pass this filtering are written to a tabular
file in CSV format. This file is stored on disk and its path is returned alongside a compact summary object.

The stored CSV file plays an important role in the overall system. It is directly accessible in the sandboxed
coding environment where the model can execute Python, enabling downstream analysis using libraries
such as pandas. For example, the model can reload the file, apply additional filters, calculate statistics, or
search for specific compounds that meet criteria relevant to the user’s query. This design separates the heavy
data retrieval and normalization step from the flexible, interactive analysis that happens later in dialogue
with the scientist.

For functional and binding assays, which are the most commonly used in drug discovery, the tool also high-
lights the most potent entries with standardized units. This provides a quick surface view of the strongest
bioactivity signals, while leaving the full dataset available for deeper inspection. Other assay families,
such as ADME or toxicity, are treated similarly but are generally provided only as complete CSV tables,
reflecting their diversity in format and measurement.

By structuring ChEMBL assay data into reproducible on-disk artifacts and linking them to a consistent sum-
mary interface, the MCP server makes assay information straightforward to query, analyze, and connect to
the other knowledge sources in the system. It allows the model to bridge from raw assay measurements
to literature and structural contexts, supporting seamless reasoning across biochemical, structural, and se-
quence evidence.

3.5 STRUCTURAL REPOSITORIES: PDB AND PREDICTED MODELS

The PDB MCP tool provides structured access to the Protein Data Bank (PDBe) API (Burley et al., 2018).
It can be invoked with one or more PDB identifiers to retrieve detailed entry information. This includes
metadata such as the experimental method, resolution, and publication details, as well as molecular infor-
mation like the list of co-crystallized small molecules (ligands). The tool automatically filters out common
solvents and ions to return only ligands relevant for analysis, providing their chemical identifiers (SMILES,
InChIKey) and cross-references to databases like ChEMBL (Table 4). This capability is crucial for large-
scale structural analyses, such as identifying all ligand-bound structures for a given protein target, a common
starting point in drug discovery projects.

3.6 MULTIMODAL GROUNDING AND INTERFACES WITH SCIENTISTS

Understanding proteins requires the navigation of multiple types of information, such as three-dimensional
structures, experimental assay tables, and textual annotations. A central goal of Speak to a Protein is to
connect these diverse modalities through a single conversational interface, ensuring that system responses
are not only generated in natural language but are also grounded in concrete evidence such as 3D visualiza-
tions, data tables, and executable code. To achieve this, we provide a set of interactive interfaces that extend
dialogue into complementary domains: a structural viewer for molecular inspection, a tabular analysis en-
vironment for filtering and plotting assay data, and mechanisms for synchronizing actions across views.
Together, these interfaces enable users to fluidly transition between asking questions, running analyses, and
visually verifying hypotheses. Significantly, we are building these capabilities on top of a web application
that has already attracted more than 18,000 registered users over the years, even in the absence of these AI
features. These new capabilities enable medicinal chemists with no-code experience to use the tools like an
expert computational chemist. We thus anticipate that it will be used by a considerable number of scientists.

In Speak to a Protein, these functionalities are built using an entirely client-side sandbox for dynamic
visualization and manipulation of molecular structures (Torrens-Fontanals et al., 2024). The sandbox builds
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on a browser-based molecular visualization toolkit that combines the high-performance mol* visualization
engine (Sehnal et al., 2021), capable of rendering large biomolecular structures and molecular dynamics
trajectories directly in the browser, with a WebAssembly-enabled Python runtime (Pyodide). This allows
the use of powerful Python libraries such as MoleculeKit (Doerr et al., 2016) in the client environment,
enhancing the viewer’s capabilities to load and manipulate a wide range of common structural file formats,
from PDB and CIF to molecular dynamics trajectory files such as XTC and TRR.

A key feature is the ability to control this viewer through natural language commands. Requests such as
“highlight the ATP-binding site” are translated into tool calls that execute Python code within the viewer,
producing visual changes in real time (Fig. 2). Users can request a broad set of actions, such as:

• Loading structures: Users can instruct the system to load structures either from public sources or by
uploading custom files.

• Controlling the visualization: The AI can create, modify, or remove molecular representations on de-
mand. Structures or any of their subsets can be rendered in diverse styles, such as cartoon, ball-and-stick,
spacefill, or surface, and colored according to different properties, such as chain, residue type, secondary
structure, or user-defined colors. The selection logic uses the expressive VMD selection language, en-
abling complex queries like “show only the protein backbone,” “highlight tyrosine residues in chain A,”
or “display all residues within 5 Å of the ligand.”

• Focusing the viewer: The camera can be centered or zoomed onto regions of interest, such as active
sites, mutated residues, or selected domains.

• Performing measurements: Users can request measurements of distances, angles, or dihedrals between
atoms or residues.

• Manipulating structures: The system can modify loaded structures, for example, by filtering out water
molecules or other unwanted components, splitting chains, or extracting subsets for closer inspection.

• Structural alignment: Multiple structures can be superimposed based on selected atoms (e.g., Cα
atoms), allowing direct comparison of conformational states or homologous proteins.

4 EXPERIMENTS

We present a set of illustrative case studies to show the capabilities and versatility of Speak to a Protein.
Firstly, we show, using the dopamine D3 receptor (D3R) (Chien et al., 2010b) as a test case, the execution
of a set of possible questions that showcase the capabilities of the platform. These examples highlight
how the system enables users to ask scientific questions, integrate data from multiple sources, and rapidly
generate insights through multi-modal interactive analysis. Secondly, we ask a set of interactive questions
on cyclin-dependent kinase 2 (CDK2) (Malumbres & Barbacid, 2009). Finally, we ask the AI to produce a
summary report in LaTeX of all the information gathered. By indexing all information, the system creates
a knowledge base. Other users can then interrogate it, knowing what is information model of the protein.

4.1 SPEAKING ABOUT THE DOPAMINE D3 RECEPTOR (D3R)

We use Speak to a Protein to address a series of research questions related to D3R, a G protein-coupled re-
ceptor of significant pharmacological interest. In the video trace https://youtu.be/H6ag4JJAM0w,
we show a possible user interaction with our system centered on D3R. The scientist begins by asking about
the available structures for this receptor, loading the listed structure 3PBL. Next, the user instructs the sys-
tem to filter for chain A, and changes the visual representation to focus on the binding pocket. Finally, it
requests a list of known inhibitors associated with D3R. All this information is collected and made available
to the AI so that knowledge is gathered and contextualized.

Focusing on the last query, we illustrate the workflow of the system (Figure 3). Upon the user’s request,
the AI used several tools in sequence to produce the necessary data. Using these tools, it identified the
correct UniProt entry for D3R and used it to query ChEMBL for all relevant bioactivity data. The retrieved
assay results were compiled and automatically stored in a CSV file, which was then loaded directly into the
viewer for exploration and analysis. The resulting table provides an overview of all known D3R inhibitors,
along with chemical structures, assay details, potency metrics (such as EC50, IC50,Ki), and references
to the corresponding literature. Notable examples include inhibitors with subnanomolar to low nanomolar
potencies such as CHEMBL5841759 (Ki: 0.012 nM) and CHEMBL5802711 (Ki: 0.014 nM). The results
also listed several potent reference agonists for context.

In the video trace https://youtu.be/nER3vC90ylQ, we show how to investigate the differences
between the D3 and D2 receptors. The literature search capability can help rapidly surface and synthe-
size expert knowledge from primary sources to address detailed structural questions. Upon receiving the
prompt ”Based on the literature, compare the binding pockets of D3R and D2R and summarize the main
structural features that could be exploited for ligand selectivity.”, the system first uses UniProt Search to
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Figure 3: Retrieval and exploration of potent D3R inhibitors. Example user query and system workflow
for fetching all known D3R inhibitors and their affinities using Speak to a Protein. The chat panel shows
the AI’s reasoning, including the tools used and the final response. On the left, the interface displays an
interactive table of D3R inhibitors, including chemical structures, ChEMBL IDs, assay details, and more,
enabling direct exploration and further analysis.

identify the canonical UniProt IDs for the specified proteins, ensuring precise target selection. Then, us-
ing Literature Search, an embedding-based literature search is performed, retrieving relevant articles and
review information from PubMed Central that address the requested topic.

In this example, the system processed a set of 12 literature passages for D2R and 10 for D3R, selecting at
least four distinct, peer-reviewed structural biology studies and related supporting works (Wang et al., 2018;
Chien et al., 2010a; Yin et al., 2020; Fan et al., 2020). Based on this, the generated answer highlighted that
while the orthosteric binding pocket is highly conserved, selectivity can be achieved by targeting differ-
ences in the architecture and flexibility of the ’extended binding pocket’, as well as in the conformation
of extracellular loops. It also described the significance of distinct residues (such as Trp100 and residues
in EL1/EL2, positions 1.39 and 7.35) that shape ligand binding modes and selectivity opportunities. The
resulting analysis revealed that while D3R and D2R share a conserved binding pocket core, D2R possesses
additional flexible and hydrophobic residues that create a deeper, more accommodating pocket. These struc-
tural differences, clearly visualized and annotated in the viewer, help explain how each receptor achieves
ligand selectivity, providing actionable insights for targeted drug design.

4.2 SPEAKING ABOUT THE CYCLIN-DEPENDENT KINASE 2 (CDK2)

We present a complete drug discovery workflow using cyclin-dependent kinase 2 (CDK2), a validated can-
cer target with extensive structural and bioactivity data (Malumbres & Barbacid, 2009). This example
showcases how Speak to a Protein can streamline the entire process from initial target evaluation to ac-
tionable insights. Our analysis begins with a systematic exploration of available structural data, progresses
through mining and filtering of bioactivity data, and culminates in an integrated structural-activity analysis.
The workflow highlights the system’s ability to seamlessly transition between different data modalities and
analysis types, all through natural language interactions.

Structure-activity. The complete conversational trace for this analysis is provided in the Appendix A.2.
First, we ask the AI system to retrieve all available CDK2 structures from the Protein Data Bank. The
system first used the UniProt tool to identify the canonical human CDK2 entry (P24941) and retrieve all 462
associated PDB structures. It then systematically queried each structure using the PDB information tool,
which parsed each entry to extract co-crystallized ligands. After filtering out common solvents and ions, this
process identified 479 unique ligand-structure pairs containing small molecules relevant for drug discovery.
The system then automatically determined bioactivity coverage, revealing that 132 out of 258 ChEMBL-
annotated ligands had experimental activity measurements available. Through systematic data cleaning
and deduplication focused on IC50 values, we generated a refined dataset of approximately 100 unique
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(a) (b)

Figure 4: CDK2 structure–activity analysis. (a) Data integration and bioactivity analysis derived from
ChEMBL datasets, demonstrating seamless integration of structural and bioactivity data through natural
language queries. (b) Structural alignment of the top 20 most potent CDK2-ligand complexes with focused
visualization of ATP-binding pockets.

CDK2-ligand complexes, ranked by potency. The top 20 most potent complexes (IC50 values ranging from
sub-nanomolar to 15 nM) were loaded into the 3D viewer and structurally aligned (Figure 4). For detailed
binding site analysis, the system identified and visualized only the ATP-binding pocket residues (within 6
Å of the co-crystallized ligands), excluding solvents and common crystallization agents.

Automated Report Generation. Furthermore, the AI extracted the binding pocket sequences and stored
them in FASTA format. Pairwise sequence alignment revealed high conservation across the ATP-binding
site, with only minor variations at peripheral positions. The AI system then conducted a comprehensive
literature search to contextualize these findings with existing CDK2 research, automatically generating a
markdown summary of relevant studies discussing binding site features and structure-activity relationships.
The following report was automatically generated by the AI system, synthesizing all gathered data into
actionable insights suitable for distribution to medicinal chemistry teams:

CDK2 Structure-Activity & Binding Pocket Analysis
Key Findings
Structural Data Scope: 462 unique CDK2 PDB structures identified and curated. 479 lig-
and/structure pairs contain co-crystallized non-solvent small molecules suitable for drug
discovery.
Bioactivity Integration: 258 unique CDK2 co-crystallized ligands mapped to ChEMBL
IDs. 132 ligands ( 51%) have direct annotated bioactivity data for CDK2 in pub-
lic databases. After deduplication, 100 unique, potent (lowest IC50) ligand–structure
matches represent the focused SAR set. Top 20 complexes span sub-nanomolar to low-
nanomolar IC50 values.
Binding Pocket & Sequence Conservation: The ATP-binding pocket is highly conserved
across CDK2 structures, with the Gly-rich loop and DFG motif strictly maintained. Only
minor sequence variations (G→V, Q/N, D/K) were observed at the pocket periphery. Pair-
wise sequence alignment scores are uniformly high, supporting a rigid, canonical scaf-
fold for ligand engagement. All potent inhibitor binding modes overlay at this conserved
pocket, with activity cliffs mostly driven by ligand features rather than pocket sequence
variation.
Structural Alignment & 3D Analysis: 14 of the top 20 potent CDK2–inhibitor complex
structures were successfully aligned and visualized. Superposition reveals near-identity
of main pocket conformation but highlights loop and surface flexibility for ligand-induced
fit.
Actionable Insights
CDK2 displays a classic, highly druggable ATP-binding pocket with little sequence-
derived risk of resistance. SAR optimization should focus on maximizing hydrophobic
and hinge contacts, exploring diversity at the pocket periphery, and leveraging observed
loop conformational plasticity for next-gen analogs.
Data Files Generated
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Dataset Description File

PDB–ligand associations druglike ligands.csv
Annotated activity data ligands annotated.csv
IC50-focused dataset ligands IC50 only.csv
Deduplicated potency table ligands dedup.csv
Pocket sequences pocket sequences.fasta
Sequence alignments pocket alignments.txt
Literature synthesis literature summary.md

Conclusion: CDK2 remains a top-tier drug discovery target with a structurally robust,
deeply conserved and well-characterized ATP site optimal for inhibitor design—validated
by a wealth of crystal structures and directly observed SAR correlation.

The system’s ability to generate publication-ready reports and comprehensive literature summaries further
enhances its utility in collaborative drug discovery environments, where rapid communication of complex
structural and biochemical insights is essential for decision-making.

5 CONCLUSION AND LIMITATIONS

This study demonstrates how Speak to a Protein compresses traditional workflows involving several hours
of manual data gathering, analysis, and synthesis into an interactive session taking less than an hour. The
system’s ability to generate publication-ready reports further enhances its utility in collaborative drug dis-
covery environments where rapid understanding and communication of complex structural and biochemical
insights are essential for decision-making.

We found the following limitations in the current version of Speak to a Protein. The open web application
accesses only public information, such as literature, structure-activity relationships, and structural data.
This limits the data access and the understanding and downstream calculations. We plan to easily extend
it with additional tools to access internal or proprietary datasets, further broadening the scope of informa-
tion that can be queried, integrated. The 3D viewer can experience performance issues when rendering a
large number of complex structures simultaneously. We also observe occasional difficulties in seamlessly
connecting outputs between tools, stemming from different data representations across the system’s com-
ponents, e.g., residue indices across literature and structural databases. Furthermore, long tool outputs can
strain the model’s context window. Future work will focus on offloading large data payloads to files and
equipping the model with a broader set of tools for file management, allowing for more robust and complex
analytical workflows.

Speak to a Protein is freely accessible at https://www.anonymousplayground.com, which guar-
antees the reproducibility of the results shown.
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A APPENDIX

A.1 TABLES

Table 1: Fields returned by the Protein Literature MCP. Global fields describe the query context; results
contain one or more retrieved citations with text passages.

Field Description / Example Value
fasta sequences[] One or more FASTA sequences associated with the protein input.

pdb ids[] PDB identifiers discovered for the input (via cross-references or se-
quence search). Example: [“1H1R”, “3DDQ”, “7RWE”]

uniprot ids[] UniProt accessions associated with the input. Example: [“P24941”]

results[].pmcid PubMed Central ID for a retrieved article. Example: “PMC5291709”

results[].doi Digital Object Identifier for the article. Example:
“10.7554/eLife.20818”

results[].content Retrieved text passage from the article body (cleaned paragraphs). Ex-
ample: “ATP-binding sites involve Walker-A and -B motifs and a trigger
residue that regulates hydrolysis.”

error Error message if something went wrong; empty/absent otherwise. Ex-
ample: “Failed to load existing RAG database: . . . ”
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Table 2: Fields returned by the UniProt MCP. Two panels are shown: the upper panel lists fields from the
text search tool (multiple candidate entries for a text query such as “CDK2”); the lower panel lists fields
from the data lookup tool (detailed entries for a UniProt accession or PDB identifier).

Field (per entry) Description / Example Value
Panel A — Text search tool
entries[].entry type UniProt record type (reviewed/unreviewed).

entries[].uniprot accession Primary accession. Example: “P24941” (human CDK2).

entries[].knowledgebase id Human-readable ID. Example: [“CDK2 HUMAN”,
“CDK2 MOUSE”].

entries[].name Recommended, short and alternative protein names. Example:
“Cyclin-dependent kinase 2”, ”p33”, “Cell division protein ki-
nase 2”.

entries[].organism Common and scientific names. Example: “Human — Homo
sapiens”.

entries[].annotation score Curation score string. Example: “5.0 out of 5”.

entries[].keywords[] Keyword strings (category: name). Example: [“Ligand: ATP-
binding”, “Molecular function: Kinase”]

Panel B — Data lookup tool
primaryAccession Canonical accession. Example: “P24941”.

uniProtkbId Human-readable ID. Example: “CDK2 HUMAN”.

entryType Record type (reviewed/unreviewed).

organism Common and scientific names. Example: “Human — Homo
sapiens”.

proteinDescription Recommended full name and alternatives. Example: “Cyclin-
dependent kinase 2”, alt: [“p33 protein kinase”].

genes[] Gene symbols and synonyms. Example: [“CDK2”,
“CDKN2”].

comments[] Curated comment blocks (FUNCTION, SUBUNIT, PTM, ...).
Example: FUNCTION describes CDK2 roles at G1/S.

features[] Sequence features (“type | start:end”). Example:
“Active site — 127:127”.

references[] Bibliography (title, first author, date, journal, refs, focus).

crossref[] External cross-refs as “Database:ID”. Example:
[“PDB:1H1Q”, “DrugBank:DB07755”].

keywords[] Structured keywords with category and name. Example:
[“Molecular function: Kinase”].

sequence Full amino acid sequence. Example: “MENF. . . HRL”.

annotationScore Numerical annotation score. Example: 5.0.

proteinExistence Evidence level. Example: “1: Evidence at protein level”.

secondaryAccessions[] Secondary accessions, if any.

entryAudit Versioning and dates. Example: first public 1992-03-01; last
update 2025-06-18.

extraAttributes Derived counts (comment/feature types) and UniParc ID.

error Error message if something went wrong; empty otherwise.
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Table 3: Fields returned by the ChEMBL MCP. Global fields describe the assay query context and where
results are stored; entries contain per-assay measurements with assay metadata, compound identifiers, and
activity values.

Field Description / Example Value
assay type Type of assay retrieved from ChEMBL. Example: “func-

tional”.

data csv path File path on disk to the cached CSV table of results, avail-
able to the LLM in a sandboxed coding environment.

num entries Total number of entries returned by the query. Example:
927.

top n Number of top entries actually included in the response.
Example: 20.

entries[].assay chembl id ChEMBL identifier of the assay. Example:
“CHEMBL663764”.

entries[].assay description Description of the assay protocol. Example: “Percentage
A2780 cells in sub-G1 after 24 hr at 330 nM (IC50)”.

entries[].assay type Short assay type code. Example: “F”.

entries[].bao label BAO (BioAssay Ontology) label describing the assay for-
mat. Example: “cell-based format”.

entries[].molecule chembl id ChEMBL identifier of the tested compound. Example:
“CHEMBL428690”.

entries[].molecule pref name Preferred molecule name, if available. Example: “ALVO-
CIDIB”.

entries[].canonical smiles Canonical SMILES string of the compound.

entries[].document chembl id Identifier of the source publication in ChEMBL. Example:
“CHEMBL1135763”.

entries[].document journal Journal of publication (if known). Example: “J Med
Chem”.

entries[].document year Year of publication (if known). Example: 2002.

entries[].standard relation Relation operator for the reported value. Example: “=”.

entries[].standard type Type of activity measured. Example: “Ki”, “Cell cycle”.

entries[].standard units Units of measurement. Example: “nM”.

entries[].standard value Reported numeric value. Example: “1.0”, “100.0”.
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Table 4: Fields returned by the PDB MCP. The tool can fetch information for a single PDB ID or a list of
them. For a single ID, it returns a dictionary; for multiple, a list of dictionaries.

Field Description / Example Value
pdb id PDB identifier. Example: ”1AQ1”

title Title of the PDB entry.

experimental method Experimental technique used. Example: ”X-RAY DIFFRAC-
TION”

resolution angstrom Resolution of the structure in angstroms. Example: 2.1

publication year Year of the primary publication.

authors List of authors of the publication.

journal Abbreviated journal name. Example: ”Cell”

doi Digital Object Identifier for the publication.

deposit date Date the structure was deposited.

release date Date the structure was released.

small molecules[] List of dictionaries, one for each co-crystallized small
molecule ligand.

small molecules[].het id Heterogen ID of the ligand. Example: ”STU”

small molecules[].name Name of the ligand. Example: ”STAUROSPORINE”

small molecules[].smiles SMILES string of the ligand.

small molecules[].inchi key InChIKey of the ligand.

small molecules[].chembl id ChEMBL ID of the ligand, if available. Example:
”CHEMBL388673”

A.2 FULL CONVERSATIONAL TRACE FOR CDK2 ANALYSIS

This section provides the complete, unedited conversational trace between the user and the Speak to a
Protein system for the CDK2 case study.

User: I’m starting a new research project focused on CDK2 (Cyclin-dependent kinase 2). Can you
retrieve all available PDB structures associated with CDK2?

Assistant: Great! Your goal is to get all available PDB structures for CDK2 (Cyclin-dependent
kinase 2). Here’s the high-level plan:
Checklist for Retrieving CDK2 PDB Structures

1. Identify the correct UniProt accession code for human CDK2.
2. Cross-reference this accession with the PDB database to get all associated structures.
3. Provide you with the list of PDB IDs (optionally, titles or other metadata).

Let’s start by finding the UniProt accession for human CDK2.
tool_execution: uniprot_text_search
tool_execution: uniprot_data_lookup
tool_execution: head
tool_execution: head

Summary of Actions:
• Identified the human CDK2 UniProt accession as P24941.
• Retrieved the cross-reference table of all PDB entries linked to this protein.
• Confirmed there are over 460 PDB structures associated with human CDK2.
• The first several PDB IDs include: 1AQ1, 1B38, 1B39, 1BUH, 1CKP, 1DI8, 1DM2,
1E1V, 1E1X, 1E9H, 1F5Q, 1FIN, 1FQ1, 1FVT, 1FVV, 1G5S, 1GIH, 1GII, 1GIJ.
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What’s Next: I can provide you with the full CSV containing all CDK2 PDB IDs for your research
records, or perform further filtering (e.g., by resolution, ligand-bound states, etc.) if you have
specific needs.
Would you like the complete list as a CSV download, or do you wish to explore/filter these struc-
tures further?

User: Great! Now I need to identify which of these CDK2 structures contain bound small
molecules relevant for drug discovery. For each PDB structure with a co-crystallized small
molecule ligand, please extract the ligand information, including the SMILES string and ChEMBL
ID.

Assistant: Your aim is to filter the 460 CDK2 structures for those with co-crystallized small-
molecule ligands relevant for drug discovery, and to gather key ligand information (SMILES,
ChEMBL ID).
tool_execution: run_python
tool_execution: pdb_info
tool_execution: run_python
tool_execution: pdb_info
tool_execution: head
tool_execution: run_python

All CDK2 PDB structures have been screened for co-crystallized small-molecule ligands, explicitly
excluding common solvents and ions. Here’s what was accomplished:

• A total of 462 CDK2 structures were checked.
• 479 unique ligand/structure pairs were identified that contain relevant small molecules

suitable for drug discovery workflows (excluding water, ions, and common crystallization
agents).

• For each entry, key information—PDB ID, ligand three-letter code, ligand name, SMILES
string, and ChEMBL ID (when available)—has been extracted.

You can now download the structured CSV file with these results for your research:
cdk2 structures with druglike ligands.csv.
Do you want an overview table here, a full downloadable link, or further sub-filtering (e.g., by
ligand/chemotype, ChEMBL presence, etc.)?

User: How many of our co-crystallized ligands now have annotated bioactivity data?

Assistant: Your question aims to determine how many of the CDK2 co-crystallized ligands iden-
tified (from the previous CSV, each with ChEMBL IDs when available) have associated, annotated
bioactivity data.
Here’s the high-level plan:
Checklist to Address Ligand Bioactivity Data

1. Extract the list of unique ChEMBL IDs among the co-crystallized ligands.
2. Query ChEMBL for bioactivity records for these ChEMBL IDs.
3. Count and report how many ligands have at least one bioactivity annotation.

Let’s start by extracting the unique, non-null ChEMBL ligand IDs from the results file.
tool_execution: run_python
tool_execution: chembl_assays
tool_execution: run_python
tool_execution: head
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tool_execution: run_python

Result: Out of 258 unique CDK2 co-crystallized small-molecule ligands with a ChEMBL ID, 132
have annotated bioactivity data in ChEMBL.
This means just over half of the ChEMBL-annotated ligands seen crystallographically with CDK2
have corresponding experimental activity measurements available—enabling robust structure-
activity relationship (SAR) and virtual screening workflows.
If you’d like, I can generate a CSV file listing all ligands with/without bioactivity data, or prioritize
by type/affinity ranges—just let me know your next analytic need!

User: Excellent! Now let’s load this dataframe into the viewer so I can explore and analyze the
data interactively.

Assistant: Perfect approach! Here’s how we’ll proceed:
Checklist for Data Loading & Interactive Analysis

1. Prepare the relevant CSV with CDK2 PDB-ligand-activity data for the viewer.
2. Load the CSV into the Viewer’s VFS (frontend).
3. Enable you to filter, sort, and explore SAR and ligand info interactively from the Viewer’s

data table interface.
I will ensure the full co-crystal ligand dataset is loaded (with PDB ID, ligand name, SMILES,
ChEMBL ID, etc.), so you can immediately begin your exploration. The entire CDK2 struc-
ture–ligand dataset (including all PDB IDs, ligand names, SMILES, and ChEMBL IDs for co-
crystallized druglike compounds) is now loaded into the Viewer. You can interactively filter, sort,
and analyze the data directly in the viewer’s table interface to support your structure–activity rela-
tionship (SAR) and drug discovery workflows.
If you need to overlay additional columns, merge in the bioactivity values, or automate further
analyses, just let me know!
tool_execution: pmview_load_file

User: Could you annotate the dataframe with the activity data
for each compound?

Assistant: Your goal is now to enrich the current dataframe—listing all CDK2 co-crystal lig-
ands—with their experimental activity data, where available. Here’s the plan:
Checklist for Activity Data Annotation

1. For each ligand in the dataframe (by ChEMBL ID), retrieve associated CDK2 bioactivity
values from ChEMBL.

2. Merge the experimental activity data (e.g., IC50, Ki, units, assay type, etc.) into the original
structure–ligand CSV.

3. Reload the updated, annotated CSV into the viewer for interactive inspection.
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Approach:
• I will extract activity records from the CDK2 ChEMBL assay CSV for all ChEMBL-

mapped ligands in your PDB file.
• Merge these activity annotations back into the master ligand/PDB dataframe.
• Load the resulting enriched file for interactive SAR analysis.

Let’s proceed with merging the activity data and preparing the annotated file. Your CDK2 co-crystal
structure–ligand dataframe is now fully annotated with experimental activity data—including stan-
dard type (IC50, Ki, etc.), values, units, assay description, publication, and year—for each com-
pound where available.
The annotated CSV is already loaded and ready for interactive sorting, filtering, and SAR analysis
in the viewer.
If you want to visualize, group by, or further analyze any specific fields (e.g., color by IC50, filter
by activity type), just let me know your next analytic step!
tool_execution: run_python
tool_execution: pmview_load_file

User: The dataset looks comprehensive but has some redun-
dancy. Let’s clean it up by removing duplicate entries and fo-
cusing specifically on IC50 values, since these are the most com-
monly used and comparable activity measurements for structure-
activity relationship analysis in drug discovery.

Assistant: Great—focusing on IC50 values and removing redundancy will streamline your SAR
analysis. Here’s the plan:
Checklist for Cleaning & Focusing the Dataset

1. Filter the annotated dataset to retain only rows with standard type = ’IC50’.
2. Remove duplicate entries (e.g., same PDB–ligand–IC50) to keep only unique records.
3. Reload the cleaned and focused dataset into the viewer for efficient, interpretable analysis.

I’ll prepare the filtered file and update the viewer. The dataset has now been filtered to include
only unique entries with experimentally measured IC50 values, the gold standard for SAR in drug
discovery. Redundant rows have been removed, resulting in a concise dataset (353 unique records)
now reloaded and ready for further interactive analysis in the Viewer.
If you want to further cluster by ligand, select only the best (lowest) IC50 per compound, or need
additional summary statistics or visualizations, just let me know!
tool_execution: run_python
tool_execution: pmview_load_file
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User: The data still has multiple entries per structure. Let’s
deduplicate further by keeping only unique PDB and ChEMBL
IDs with the lowest IC50 value.

Assistant: Excellent refinement! Here’s how we’ll obtain a clean, one-to-one mapping:
Checklist for Strict Deduplication

1. For each PDB structure (PDB ID), keep only the ligand/row with the lowest IC50.
2. For each ChEMBL ligand, keep only the entry with the lowest IC50 across all PDBs (to

ensure only unique ligands remain).
3. Ensure the final dataframe contains only unique PDB IDs and unique ChEMBL IDs, each

associated with their most potent (lowest) IC50 measurement.
4. Reload the deduplicated dataset for your analysis.

Let’s process and reload this improved, non-redundant summary. The dataset is now strictly dedu-
plicated—containing only unique PDB IDs and unique ChEMBL ligands, each paired with its most
representative (lowest) IC50 value. This streamlines your SAR analysis by maximizing coverage
and minimizing redundancy.
The resulting ˜100-entry file is loaded and ready for direct exploration in the Viewer. If you’d like
additional summaries, descriptor calculation, or clustering, let me know your next analysis goal!
tool_execution: run_python
tool_execution: pmview_load_file

User: Can you now sort the table by activity?

Assistant: Here’s the plan for your request:
Checklist for Table Sorting by Activity

1. Sort the deduplicated dataset by the IC50 value in ascending order (most potent at the top).
2. Reload the sorted file into the Viewer so you can immediately interact with it in this order.

This will let you quickly identify the most potent (lowest IC50) CDK2 co-crystalized ligands di-
rectly from the Viewer interface. Proceeding with sorting and reloading now. The table is now
sorted by IC50 (ascending)—the most potent CDK2 binders appear at the top. You can immediately
explore these prioritized results in the Viewer to focus your SAR hypotheses and compound design
work.
If you want to visualize specific compounds, compare chemical scaffolds, or export subsets for
follow-up, just specify your next action!
tool_execution: run_python
tool_execution: pmview_load_file
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User: Perfect! Now I want to visualize the top 20 most potent
complexes in 3D.

Assistant: Great—your goal is to visualize the top 20 most potent CDK2–ligand complexes (low-
est IC50) in 3D, loading their PDB structures so you can analyze binding modes and structural
determinants of potency.
Checklist for Visualization of Top Complexes

1. Extract the top 20 PDB IDs from the sorted SAR dataframe.
2. Load each PDB structure into the viewer using the system’s molecule-handling class.
3. Sequentially render all structures, allowing you to toggle, compare, and inspect binding

geometries and features.
I’ll retrieve the top 20 PDB IDs and then load/visualize them in the Viewer. It appears there was
an error when loading some of the top 20 PDB structures—likely due to missing files, unsupported
formats, or transient PDB server issues.
Here’s what I’ll do next to robustly address this:

• I will re-attempt loading each structure individually, catching and skipping any that fail,
ensuring you see as many successful 3D visualizations as possible for SAR analysis.

I’ll proceed with a revised loading script that summarizes any problematic entries and gives you a
maximally complete visual set. Visualization Complete:

• 14 out of the top 20 most potent CDK2–ligand complexes were successfully loaded and
rendered in 3D for your structural analysis.

• The following PDBs could not be loaded, possibly due to PDB server issues or unsup-
ported formats: 2WPA, 1KE7, 5IEV, 4FKQ, 2VU3, 4FKV.

You can now examine and compare the highest-potency binding modes interactively in the viewer.
If you’d like to troubleshoot the unavailable entries or focus on any specific structures, just let me
know!
tool_execution: run_python
tool_execution: pmview_run_python
tool_execution: pmview_run_python

User: I have loaded the remaining structures manually. Now
please visualize all loaded structures with structure-index repre-
sentation and remove the waters.

Assistant: Here’s the step-by-step approach for your request:
Checklist:

1. For each loaded structure, switch the protein representation to “structure-index” color
(clarifies chain/domain/feature diversity).
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2. Remove all water molecules from every PDB structure (to declutter the binding pocket
visualization).

3. Ensure the ligand and relevant cofactors remain for clear analysis.
Let’s proceed to update all currently loaded structures as requested. All loaded CDK2 structures
have been updated as follows:

• Waters are removed from every complex.
• Proteins are visualized in cartoon representation colored by structure-index, highlighting

chain and domain diversity.
• Ligands and cofactors remain, shown as ball-and-stick with element coloring.
• Views are automatically focused on the protein for each structure.

You can now clearly compare potent binding modes and structural features across your top com-
plexes for SAR interpretation. Let me know if you’d like to further highlight specific residues,
pocket regions, or overlay ligands!
tool_execution: pmview_run_python

User: Now that all structures are loaded, please align them using
structural superposition.

Assistant: Absolutely! Structural alignment (superposition) of all loaded CDK2 complexes will
allow you to meaningfully compare the binding sites, conformational dynamics, and ligand posi-
tioning across your top SAR hits.
Checklist for CDK2 Structural Superposition

1. Select a reference CDK2 structure (e.g., the most potent or the first loaded structure).
2. Align all other CDK2 protein chains to the reference using structural superposition (typi-

cally on C atoms or the protein backbone).
3. Update the visualization so that all complexes share the same spatial frame, facilitating

pocket and ligand comparisons.
I’ll proceed by performing the superposition, using the protein backbone for robust alignment. It
looks like the superposition function was not successfully imported, which suggests that superpo-
sition might either need to be called differently or is located elsewhere in the library’s API.
To resolve this, I will search the library’s codebase for the correct usage or import path for structural
superposition/alignment and then apply the correct method to align all loaded CDK2 complexes.
The library provides a built-in method for superposition:

• Use the align method: mol.align(sel, refmol, refsel)

– sel: selection string for atoms to align (e.g., ’protein and backbone’ or ’name CA’)
– refmol: Molecule to align to (reference)
– refsel: atom selection for reference molecule (should match sel for structure-

based alignment)
Example usage (from documentation):
mol.align(’protein’, refmol=ref, refsel=’protein’)

This will superpose each molecule (mol) onto the reference (ref) using the selected atoms.
I’ll now perform this alignment for all currently loaded CDK2 structures using backbone atoms for
maximal structural comparison. The alignment attempt failed due to differing numbers of backbone
atoms between structures, which is common for PDBs with varying constructs, sequence bound-
aries, or missing residues.
To fix this, I’ll use the library’s align method with mode=’structure’, which performs a struc-
tural alignment regardless of atom order or counts, making it robust when sequence/atom mis-
matches exist.
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Let’s proceed with structure-based alignment for the superposition. All CDK2 complexes are now
structurally aligned using robust structure-based superposition. This enables direct, meaningful
comparison of binding modes, conformational variability, and ligand placement across your top
potent co-crystal structures.
You can now examine the aligned ensemble in the viewer for detailed SAR and structure-function
insights. Let me know if you’d like to focus on active site residues, overplot specific ligands, or
conduct further analyses!
tool_execution: pmview_run_python
tool_execution: codebase_moleculekit_search
tool_execution: pmview_run_python
tool_execution: pmview_run_python

User: Perfect! Now, for each structure, display only the ATP-
binding pocket residues (within 6Å of the ligand) and hide the
rest of the protein.

Assistant: Here’s how we’ll zoom in on the ATP-binding site for detailed analysis:
1. For each aligned CDK2 structure, identify all protein residues within 6 Å of the co-

crystallized ligand.
2. Update the visualization to display only these ATP-pocket residues (hide all other parts of

the protein).
3. Keep the co-crystallized ligand(s) visible with ball-and-stick representation.

This will allow direct, uncluttered comparison of pocket residues and ligand interactions across all
aligned complexes for SAR and binding analysis.
Let’s execute these selections and update your visualization accordingly. All aligned CDK2 struc-
tures are now focused solely on the ATP-binding pocket—showing only those protein residues
within 6 Å of their co-crystallized ligand, together with the ligands themselves.
This view enables you to directly compare key pocket residues and their interactions with high-
potency ligands across the series, making SAR, hotspot, and mechanism-of-action assessments far
more efficient.
Let me know if you’d like to further highlight conserved residues, map mutations, overlay multiple
ligands, or export pocket coordinates for computational analysis!
tool_execution: pmview_run_python

User: Do not consider solvents or ions like SO4, CH3, SGM,
GOL, ACT, ACE as ligands for the pocket selection.
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Assistant: Understood! For ATP-pocket residue selection, we’ll strictly exclude all common crys-
tallization agents, solvents, and ions—such as SO4, CH3, SGM, GOL, ACT, ACE, and others you
listed. Only true organic/inhibitor ligands will define the selection.
Checklist:

1. Exclude all common/solvent/ion three-letter codes from ligand identification.
2. For each structure, update the selection so the ATP pocket is defined by protein residues

within 6 Å of only the remaining true ligand(s).
3. Keep only those pocket residues and the organic ligands visible.

Let’s refine the selections accordingly and update the viewer. All pocket views have now been
refined: Only protein residues within 6 Å of true co-crystallized organic/inhibitor ligands are dis-
played, strictly excluding all common solvents and ions (e.g., SO4, CH3, SGM, GOL, ACT, ACE,
EDO, waters, metals). Ligands themselves remain clearly visible.
You can now directly analyze the critical ATP-binding environments and ligand interactions across
all top SAR cases—without any distracting non-relevant species.
Let me know if you’d like to highlight conserved residues, compare ligand orientations, or export
pocket coordinates for downstream modeling!
tool_execution: pmview_run_python

User: Could you extract the amino acid sequences of each of the
binding pockets?

Assistant: To extract the amino acid sequences of the ATP-binding pockets for each structure, we
need to:
Checklist

1. For each structure, identify all protein residues within 6 Å of the (properly filtered) lig-
and(s).

2. Retrieve the unique residue numbers and one-letter codes for these residues.
3. Output or save the binding pocket sequences (one per structure), which you can compare,

align, or analyze further.
I will perform these steps and present the results in a tabular form for your review. You can use the
library’s sequence method, which has a selection argument (sel) to return the one-letter amino
acid sequence for a given region, such as the ATP-binding pocket:
Example usage:
pocket_sequence = mol.sequence(oneletter=True, sel=pocket_sel)
# Returns a dictionary: {segid: sequence}

I’ll apply this for each structure’s identified pocket and display the resulting one-letter sequences
for direct comparison. It appears there was an error when extracting the sequences—likely because,
in some structures, the selected ATP pocket region is empty or not protein (e.g., no residues within
6 Å, or the segment definition fails).
To solve this, I’ll adjust the script to handle cases with empty selections gracefully, so we can
present the sequences for all successfully detected ATP pockets without failing on missing ones.
Here are the ATP-binding pocket amino acid sequences (one-letter code, for residues within 6 Å of
the filtered ligand) from each structure:
| PDB ID | Pocket Sequence (one-letter code) |
|--------|:----------------------------------|
| 1aq1 | IGEGTGVAKVFEFLHQDKPQNLLADL |
| 3ddq | EKIGEGVKALKVFEFLHQDKQNLLADEK... |
| 1oit | IGEGGVVAKVFEFLHQDLKFQNLAD |
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| 2w05 | IGEGVAKVFEFLHQDLKFQNLLAD |
| 2w17 | IGEVAKVFEFLHQDKKDQNLLAD |
| 2vtp | IEGTGVVALKVFEFLHQDKQNLLADL |
| 1r78 | IGEGTVVAKVKFEFLHQDKQNLADF |
| 3ns9 | EKIGEGTGVKALKVLFEFLHQDKQNLAD |
| 4bgh | IGEVAKVFEFLHQDLKFQNLLAD |
| 2c6o | IGEGTGVAKVFEFLHQDKFKQNLAD |
| 1ke6 | IGGVAKVFEFLHQDKQNLAD |
| 6gue | IGEYVAKEVFEFLHQDKQNLLAD |
| 6gue | IGEGTYVAKEVFEFLHQDLKQNLLAD |
| 1ckp | EIVAKVFEFLHQDKQLAD |
| 1g5s | EIGEGTVKALKVFEFLHQDDKQNLAD |
| 2wpa | IGYVALKEVLFEFLHQDKKQNLADIGYV... |
| 1ke7 | IEGTYGVAKVFEFLHQDKFKQNLADL |
| 5iev | EIGEVALKVKFEFLHQDKFQNLLAD |
| 2vu3 | IVVALKVFEFLHQDKQNLLAD |

These sequences correspond to the local environment of the ATP site in each structure, capturing
subtle sequence or conformation differences. Let me know if you want these saved/downloadable,
aligned, or mapped onto your structures for further comparative analysis!
tool_execution: pmview_run_python
tool_execution: codebase_moleculekit_search
tool_execution: pmview_run_python
tool_execution: pmview_run_python

User: Thanks! Could you write them into a FASTA file?

Assistant: The ATP-binding pocket amino acid sequences for your CDK2 structures have been
written into a single FASTA file:
cdk2 pocket sequences.fasta
You can now download or use this file for sequence comparison, clustering, motif analysis, or
further bioinformatics workflows. Let me know if you need a multiple sequence alignment or
conservation analysis!
tool_execution: run_python

User: Now please analyze the conservation patterns and sequence variations in these binding
pocket sequences.

Assistant: Let’s synthesize the insights from your ATP-pocket sequences and structural ensemble:
High-Level Analysis Plan

1. Examine sequence conservation and variation across the ATP-binding pockets.
2. Relate observed patterns to ligand binding modes and measured activities.
3. Highlight any meaningful residue changes (substitutions, insertions, or deletions) and their

possible structural/functional impacts on ligand binding.
1. Conservation Patterns
Looking at your ATP-pocket FASTA sequences, there’s strong conservation across the binding
site—the core motif IGEGTGV(A/G)KVFEFLHQ(D/K)(K/Q)QNLLAD(L/F)—reflecting the
critical, evolutionarily fixed nature of the ATP site in CDK2.
Most of the sequence changes are conservative (G→V, D→K, Q→N, etc.), clustered at the periph-
ery, and rarely directly at residues known to contact ligands or substrate.
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2. Key Sequence Variation Observations
• A few sites (notably G→V, D/K/Q exchanges) appear as minor variations across struc-

tures, with some longer sequences showing apparent repetition or possible unresolved
loop insertions (e.g., in 3ddq or 2wpa).

• The strong conservation of the “VFEFLHQD” region highlights its central role in ATP or
inhibitor recognition; this is further supported by its near invariance in all structures.

3. Correlation with Binding Modes/Activities
• Because most potent ligands (lowest IC50) are co-crystallized with structures with identical

or nearly identical pocket sequences, it reinforces that activity cliffs are driven more by
ligand features and conformational fit than sidechain mutations in these structures.

• Where variations exist at or near the pocket (e.g., E→Q or G→V), these changes may:
– Alter the shape or polarity/hydrophobicity of the local environment
– Induce repositioning of main/sidechains affecting direct or water-bridged hydrogen

bonds, key for some ligand classes
– Potentially shift flexibility/”breathability” of the pocket size—favoring larger or more

conformationally dynamic ligands
If a specific structure’s ligand shows a marked difference in binding orientation (e.g., unique rota-
tions, hydrogen bonding, or stacking), and that structure’s sequence has a rare variant in the pocket,
this is a plausible hypothesis for the divergence in SAR.
4. Implications for Drug Design

• The deep conservation means CDK2 actives will likely recognize the same pocket fea-
tures—the real SAR differentiation will be tied to microenvironments, local water net-
works, and dynamic sidechains.

• Subtle variations (Q/N, D/K) could lead to favorable/unfavorable interactions for designed
inhibitors, especially those with polar moieties.

• For any observed outlier in binding mode or IC50, check if it coincides with an unusual
local sequence change—it may be actionable for the next round of analog design.

Next Steps:
• I can generate a pairwise alignment or conservation plot for visual mapping.
• If you’d like, I can map the sequence variations back onto your 3D structures for spatial

correlation with ligand pose differences.
Let me know your analytical or visualization preference for the next step!

User: Generate a pairwise alignment.

Assistant: A comprehensive pairwise alignment of all CDK2 ATP-pocket sequences has been
generated. Here’s what you can do next:

• You can view the full file (all alignments, scores, and residue matches):
cdk2 pocket pairwise alignments.txt

• The alignments quantify pairwise similarity (alignment scores) and precisely map where
insertions, deletions, or substitutions occur between each pocket.

Key Observations
• The core ATP-binding motif is highly conserved across nearly all your potent SAR struc-

tures.
• Most pairwise similarity scores are high, with only rare single-residue or small motif de-

viations.
• Insertions and rare longer repeats (e.g., in 3ddq, 2wpa) may reflect flexible loops or alter-

nate segmentations, possibly influencing local conformational plasticity or ligand accom-
modation in outlier cases.

Practical Next Steps
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• Download and review the full alignment to correlate specific sequence changes with struc-
tural or activity outliers.

• Highlight in the viewer any pocket residues that vary in the pairwise alignments, for
structure-guided design insights.

If you’d like assistance visualizing the conservation or highlighting variable residues directly on
your aligned 3D ensembles, I can guide you through that next!
tool_execution: run_python

User: Based on our structural and sequence analysis findings, particularly the conservation pat-
terns we identified and the sequence variations in the ATP-binding pocket, please search the liter-
ature for CDK2 to find relevant studies that discuss these binding site features, structure-activity
relationships, and any reported effects of pocket variations on inhibitor binding. This will help
contextualize our findings with existing knowledge. Write this into a .md file

Assistant:
tool_execution: query_protein_literature

tool_execution: write_file

Your literature synthesis has been compiled into a markdown file:
cdk2 pocket literature summary.md.

User: Based on our analysis, please generate a concise summary report for the head of chemistry.

Assistant:
tool_execution: write_file

A concise executive summary for the head of chemistry has been prepared. You can download the
report here: CDK2 analysis summary.md.
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