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Abstract

Many high-stakes applications require machine learning models that protect user
privacy and provide well-calibrated, accurate predictions. While Differential Pri-
vacy (DP) is the gold standard for protecting user privacy, standard DP mechanisms
typically significantly impair performance. One approach to mitigating this issue is
pre-training models on simulated data before DP learning on the private data. In
this work we go a step further, using simulated data to train a meta-learning model
that combines the Convolutional Conditional Neural Process (ConvCNP) with an
improved functional DP mechanism of Hall et al. [2013] yielding the DPConvCNP.
DPConvCNP learns from simulated data how to map private data to a DP predictive
model in one forward pass, and then provides accurate, well-calibrated predictions.
We compare DPConvCNP with a DP Gaussian Process (GP) baseline with carefully
tuned hyperparameters. The DPConvCNP outperforms the GP baseline, especially
on non-Gaussian data, yet is much faster at test time and requires less tuning.

1 Introduction

Deep learning has achieved tremendous success across a range of domains, especially in settings
where large datasets are publicly available. However, in many impactful applications such as
healthcare, the data may contain sensitive information about users, whose privacy we want to protect.
Differential Privacy [DP; Dwork et al., 2006] is the gold standard framework for protecting user
privacy, as it provides strong guarantees on the privacy loss incurred on users participating in a dataset.
However, enforcing DP often significantly impairs performance. A recently proposed method to
mitigate this issue is to pre-train a model on non-private data, e.g. from a simulator [Tang et al., 2023],
and then fine-tune it under DP on real private data [Yu et al., 2021, Li et al., 2022, De et al., 2022].

We go a step further and train a meta-learning model with a DP mechanism inside it (Figure 1). While
supervised learning is about learning a mapping from inputs to outputs using a learning algorithm,
in meta-learning we learn a learning algorithm directly from the data, by meta-training, enabling
generalisation to new datasets during meta-testing. Our model is meta-trained on simulated datasets,
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Figure 1: Meta-training (left) and meta-testing (right) using our method. We train a model on multiple
tasks with non-private (simulated or proxy) data to predict on target (t) points using the context
(c) points. Crucially, by including a DP mechanism, which clips and adds noise to the data during
training, the parameter updates (dashed arrow) teach the model to make well-calibrated and accurate
predictions in the presence of DP noise. At test time, we deploy the model on real data using the
same mechanism, which protects the context set with DP guarantees.

each of which is split into a context and target set, learning to make predictions at the target inputs
given the context set. At meta-test-time, the model takes a context set of real data, which is protected
by the DP mechanism, and produces noise-aware predictions and accurate uncertainty estimates.

Neural Processes. Our method is based on neural processes [NPs; Garnelo et al., 2018a], a model
which leverages the flexibility of neural networks to produce well-calibrated predictions in the meta-
learning setting. The parameters of the NP are meta-trained to generalise to unseen datasets, while
adapting to new contexts much faster than gradient-based fine-tuning alternatives [Finn et al., 2017].

Convolutional NPs. We focus on convolutional conditional NPs [ConvCNPs; Gordon et al., 2020],
a type of NP that has remarkably strong performance in challenging regression problems. That is
because the ConvCNP is translation equivariant [TE; Cohen and Welling, 2016], so its outputs change
predictably whenever the input data are translated. This is an extremely useful inductive bias when
modelling, for example, stationary data. The ConvCNP architecture also makes it natural to embed
an especially effective DP mechanism inside it using the functional mechanism [Hall et al., 2013] to
protect the privacy of the context set (Figure 1). We call the resulting model the DPConvCNP.

Training with a DP mechanism. A crucial aspect of our approach is training the DPConvCNP on
non-sensitive data with the DP mechanism in the training loop. The mechanism involves clipping and
adding noise, so applying it only during testing would create a mismatch between training and testing.
Training with the mechanism eliminates this mismatch, ensuring calibrated predictions (Figure 2).

Overview of contributions. In summary, our main contributions in this work are as follows.

1. We introduce the DPConvCNP, a meta-learning model which extends the ConvCNP using the
functional DP mechanism [Hall et al., 2013]. The model is meta-trained with the mechanism in
place, learning to make calibrated predictions from the context data under DP.

2. We improve upon the functional mechanism of Hall et al. [2013] by leveraging Gaussian DP
theory [Dong et al., 2022], showing that context set privacy can be protected with smaller amounts
of noise (at least 25% lower standard deviation in the settings considered in Figure 4). We
incorporate these improvements into DPConvCNP, but note that they are also of interest in any
use case of the functional mechanism.

3. We conduct a study on synthetic and sim-to-real tasks. Remarkably, even with relatively few
context points (a few hundreds) and modest privacy budgets, the predictions of the DPConvCNP
are surprisingly close to those of the non-DP optimal Bayes predictor. Further, we find that a single
DPConvCNP can be trained to generalise across generative processes with different statistics and
privacy budgets. We also evaluate the DPConvCNP by training it on synthetic data, and testing it
on a real dataset in the small data regime. In all cases, the DPConvCNP produces well calibrated
predictions, and is competitive with a carefully tuned DP Gaussian process baseline.

2 Related Work

Training deep learning models on public proxy datasets and then fine-tuning with DP on private data
is becoming increasingly common in computer vision and natural language processing applications
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Figure 2: Training our proposed model with a DP mechanism inside it, enables the model to make
accurate well-calibrated predictions, even for modest privacy budgets and dataset sizes. Here, the
context data (black) are protected with different (ϵ, δ) DP budgets as indicated. The model makes
predictions (blue) that are remarkably close to the optimal (non-private) Bayes predictor.

[Yu et al., 2021, Li et al., 2022, De et al., 2022, Tobaben et al., 2023]. However, these approaches
rely on the availability of very large non-sensitive datasets. Because these datasets would likely need
to be scraped from the internet, it is unclear whether they are actually non-sensitive [Tramèr et al.,
2024]. On the other hand, other approaches study meta-learning with DP during meta-training [Li
et al., 2020, Zhou and Bassily, 2022], but do not enforce privacy guarantees at meta-test time.

Our approach fills a gap in the literature by enforcing privacy of the meta-test data with DP guarantees
(see Figure 1), and using non-sensitive proxy data during meta-training. Unlike other approaches
which rely on large fine tuning datasets, our method produces well-calibrated predictions even for
relatively small datasets (a few hundred datapoints). In this respect, the work of Smith et al. [2018],
who study Gaussian process (GP) regression under DP for the small data regime, is perhaps most
similar to ours. However, Smith et al. [2018] enforce privacy constraints only with respect to the
output variables and do not protect the input variables, whereas our approach protects both.

In terms of theory, there is fairly limited prior work on releasing functions with DP guarantees. Our
method is based on the functional DP mechanism of Hall et al. [2013] which works by adding noise
from a GP to a function to be released. This approach works especially well when the function lies
in a reproducing kernel Hilbert space (RKHS), a property which we leverage in the DPConvCNP.
We improve on the original functional mechanism by leveraging Gaussian DP theory of Dong et al.
[2022]. In related work, Aldà and Rubinstein [2017] develop the Bernstein DP mechanism, which
adds noise to the coefficients of the Bernstein polynomial of the released function, and Mirshani
et al. [2019] generalise the functional mechanism beyond RKHSs. Jiang et al. [2023] derive Rényi
differential privacy [RDP; Mironov, 2017] bounds for the mechanism of Hall et al. [2013].

3 Background

We start by laying the necessary background. In Section 3.1, we outline meta-learning and NPs,
focusing on the ConvCNP. In Section 3.2 we introduce DP, and the functional mechanism of Hall
et al. [2013]. We keep the discussion on DP lightweight, deferring technical details to Appendix A.

3.1 Meta-learning and Neural Processes

Supervised learning. Let D be the set of datasets consisting of (x, y)-pairs with x ∈ X ⊂ Rd

and y ∈ Y ⊂ R. The goal of supervised learning is to use a dataset D ∈ D to learn appropriate
parameters θ for a conditional distribution p(y|x, θ), which maximise the predictive log-likelihood on
unseen, randomly sampled test pairs (x∗, y∗), i.e. L(θ, (x∗, y∗)) = log p(y∗|x∗, θ). Let us denote the
entire algorithm that performs learning, followed by prediction, by π, that is π(x∗, D) = p(·|x∗, θ∗),
where θ∗ = argmaxθ L(r,D). Supervised learning is concerned with designing a hand-crafted π,
e.g. picking an appropriate architecture and optimiser, which is trained on a single dataset D.

Meta-learning. Meta-learning can be regarded as supervised learning of the function π itself. In
this setting, D is regarded as part of a single training example, which means that a meta-learning
algorithm can handle different D at test time. Concretely, in meta-learning, we have πθ,ϕ(x∗, D) =
p(·|x∗, θ, rϕ(D)), where rϕ is now a function that produces task-specific parameters, adapted for D.
The meta-training set now consists of a collection of datasets (Dm)Mm=1, often referred to as tasks.
Each task is partitioned into a context set D(c) = (x(c),y(c)) and a target set D(t) = (x(t),y(t)). We
refer to x(c)and y(c) as the context inputs and outputs and to x(t) and y(t) as the target inputs and
outputs. To meta-train a meta-learning model, we optimise its predictive log-likelihood, averaged over
tasks, i.e. ED[L(θ, ϕ,D)] = ED[log πθ,ϕ(x

(t), D(c))(y(t))]. Meta-learning algorithms are broadly
categorised into two groups, based on the choice of rϕ [Bronskill, 2020].
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Gradient based vs amortised meta-learning. On one hand, gradient-based methods, such as MAML
[Finn et al., 2017] and its variants (e.g. [Nichol et al., 2018]) rely on gradient-based fine-tuning
at test time. Concretely, these let rϕ be a function that performs gradient-based optimisation. For
such algorithms, we can enforce DP with respect to a meta-test time dataset by fine-tuning with a
DP optimisation algorithm, such as DP-SGD [Abadi et al., 2016]. While generally effective, such
approaches can require significant resources for fine-tuning at meta-test-time, as well as careful DP
hyper-parameter tuning to work at all. On the other hand, there are amortised methods, such as neural
processes [Garnelo et al., 2018a], prototypical networks [Snell et al., 2017], and matching networks
[Vinyals et al., 2016], in which rϕ is a learnable function, such as a neural network. This approach
has the advantage that it requires far less compute and memory at meta-test-time. In this work, we
focus on neural processes (NPs), and show how rϕ can be augmented with a DP mechanism to make
well calibrated predictions, while protecting the context data at meta test time.

Neural Processes. Neural processes (NPs) are a type of model which leverage the flexibility of
neural networks to produce well calibrated predictions. A range of NP variants have been developed,
including conditional NPs [CNPs; Garnelo et al., 2018a], latent-variable NPs [LNPs; Garnelo et al.,
2018b], Gaussian NPs [GNPs; Markou et al., 2022], score-based NPs Dutordoir et al. [2023], and
autoregressive NPs [Bruinsma et al., 2023]. In this work, we focus on CNPs because these are ideally
suited for our purposes, but our framework can be extended to other variants. A CNP consists of
an encoder encϕ, and a decoder decθ. The encoder is a neural network which ingests a context set
D(c) ∈ D and outputs a representation r in some representation space R. Two concrete examples
of such encoders are DeepSets [Zaheer et al., 2017] and SetConv layers [Gordon et al., 2020]. The
decoder is another neural network, with parameters θ, which takes the representation r together with
target inputs x(t) and produces predictions for the corresponding y(t). In summary

πϕ,θ(x
(t), D(c)) = decθ(x(t), r), r = encϕ(D(c)). (1)

In CNPs, a standard choice, which we also use here, is to let πϕ,θ(x(t), D(c)) return a mean
µϕ,θ(x

(t), D(c)) and a variance σ2
ϕ,θ(x

(t), D(c)), to parameterise a predictive distribution that fac-
torises across the target points y(t)|x(t) ∼ N (µϕ,θ(x

(t), D(c)), σ2
ϕ,θ(x

(t), D(c))). We note that our
framework straightforwardly extends to more complicated πϕ,θ(x(t), D(c)). To train a CNP to make
accurate predictions, we can optimise a log-likelihood objective Garnelo et al. [2018a] such as

L(θ, ϕ) = ED

[
logN

(
y(t)
m |µϕ,θ(x

(t)
m , D(c)), σ2

ϕ,θ(x
(t), D(c))

)]
, (2)

Algorithm 1 Meta-training a neural process.

Input: Simulated datasets (Dm)Mm=1, en-
coder encϕ, decoder decθ, iterations T , op-
timiser opt
Output: Optimised parameters ϕ, θ
for i ∈ {1 . . . T} do

Choose D from (Dm)Mm=1 randomly
D(c), D(t) ← D
x(t),y(t) ← D(t)

µ,σ2 ← decθ(x(t), encϕ(D(c)))

L(θ, ϕ)← logN (y(t)|µ,σ2)
ϕ, θ ← opt(ϕ, θ,∇ϕ,θL)

end for
Return ϕ, θ

Algorithm 2 Meta-testing a neural process.

Input: Real context D(c), encϕ, decθ
Output: Predictive µ, σ, with domain X
µ(·), σ(·)← decθ(·, encϕ(D(c)))
Return µ, σ

where the expectation is taken over the distribution
over tasks D. This objective is optimised by present-
ing each task Dm to the CNP, computing the gradient
of the loss with back-propagation, and updating the
parameters (ϕ, θ) of the CNP with any first-order op-
timiser (see alg. 1). This process trains the CNP
to make well-calibrated predictions for D(t) given
D(c). At test time, given a newD(c), we can use πϕ,θ
which can be queried at arbitrary target inputs, to
obtain corresponding predictions (alg. 2).

Convolutional CNPs. Whenever we have useful
inductive biases or other prior knowledge, we can
leverage these by building them directly into the en-
coder and the decoder of the CNP. Stationarity is a
powerful inductive bias that is often encountered in
potentially sensitive applications such as time series
or spatio-temporal regression. Whenever the generat-
ing process is stationary, the corresponding Bayesian
predictive posterior is TE [Foong et al., 2020]. Con-
vCNPs leverage this inductive bias using TE architec-
tures [Cohen and Welling, 2016, Huang et al., 2023].

ConvCNP encoder. To achieve TE, the ConvCNP
encoder produces an r that is itself a TE function.
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Figure 3: Left; Illustration of the ConvCNP encoder encϕ. Black crosses show an example context
set D(c). The density channel r(d) is shown in purple and the signal channel r(r) is shown in red.
The representation r consists of concatenating r(d) and r(s). Right; Illustration of the DPConvCNP
encoder. Black crosses show an example context D(c), clipped with a threshold C (gray dashed).
Here, a single point (rightmost) is clipped (gray cross shows value before clipping). The density and
signal channels are computed and GP noise is added to obtain the DP representation (red & purple).

Specifically, encϕ maps the context D(c) = ((x
(c)
n , y

(c)
n ))Nn=1 to the function r : X → R2

r(x) =

[
r(d)(x)
r(s)(x)

]
=

N∑
n=1

[
1

y
(c)
n

]
ψ

(
x− x(c)n

λ

)
, (3)

where ψ is the Gaussian radial basis function (RBF) and ϕ = {λ}. We refer to the two channels of r
as the density r(d) and the signal r(s) channels, which can be viewed as a smoothed version of D(c).
The density channel carries information about the inputs of the context data, while the signal channel
carries information about the outputs. This encoder is referred to as the SetConv.

ConvCNP decoder. Once r has been computed, it is passed to the decoder which performs three
steps. First, it discretises r using a pre-specified resolution. Then, it applies a CNN to the discretised
signal, and finally it uses an RBF smoother akin to Equation (3) to make predictions at arbitrary target
locations. The aforementioned steps are all TE so, composing them with the TE encoder produces a
TE prediction map [Bronstein et al., 2021]. The ConvCNP has universal approximator properties and
produces state-of-the-art, well-calibrated predictions [Gordon et al., 2020].

3.2 Differential Privacy

Differential privacy [Dwork et al., 2006, Dwork and Roth, 2014] quantifies the maximal privacy loss
to data subjects that can occur when the results of analysis are released. The loss is quantified by two
numbers, ϵ and δ, which bound the change in the distribution of the output of an algorithm, when the
data of a single data subject in the dataset change.

Definition 3.1. An algorithmM is (ϵ, δ)-DP if for neighbouring D,D′ and all measurable sets S

Pr(M(D) ∈ S) ≤ eϵ Pr(M(D′) ∈ S) + δ. (4)

We consider D ∈ RN×d with N users and d dimensions, and use the substitution neighbourhood
relation ∼S where D ∼S D

′ if D and D′ differ by at most one row.

Gaussian DP. In Section 3.3 we discuss the functional mechanism of Hall et al. [2013], which we
use in the ConvCNP. However, the original privacy guarantees derived by Hall et al. [2013] are
suboptimal. We improve upon these using the framework of Gaussian DP [GDP; Dong et al., 2022].
Dong et al. [2022] define GDP from a hypothesis testing perspective, which is not necessary for our
purposes. Instead, we present GDP through the following conversion formula between GDP and DP.

Definition 3.2. A mechanismM is µ-GDP if and only if it is (ϵ, δ(ϵ))-DP for all ϵ ≥ 0, where

δ(ϵ) = Φ

(
− ϵ
µ
+
µ

2

)
− eϵΦ

(
− ϵ
µ
− µ

2

)
(5)

and Φ is the CDF of the standard Gaussian distribution.

Properties of (G)DP. Differential privacy has several useful properties. First, post-processing
immunity guarantees that post-processing the result of a DP algorithm does not cause privacy loss:

Theorem 3.3 (Dwork and Roth 2014). LetM be an (ϵ, δ)-DP (or µ-GDP) algorithm and let f be
any, possibly randomised, function. Then f ◦M is (ϵ, δ)-DP (or µ-GDP).
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Composition of DP mechanisms refers to running multiple mechanisms on the same data. When
each mechanism can depend on the outputs of the previous mechanisms, the composition is called
adaptive. GDP is particularly appealing because it has a simple and tight composition formula:

Theorem 3.4 (Dong et al. 2022). The adaptive composition of T mechanisms that are µi-GDP
(i = 1, . . . , T ), is µ-GDP with µ =

√
µ2
1 + · · ·+ µ2

T .

Gaussian mechanism. One of the central mechanisms to guarantee DP, is the Gaussian mechanism.
This releases the output of a function f with added Gaussian noise

M(D) = f(D) +N (0, σ2I), (6)

where the variance σ2 depends on the l2-sensitivity of f, defined as

∆ = sup
D∼D′

||f(D)− f(D′)||2. (7)

Theorem 3.5 (Dong et al. 2022). The Gaussian mechanism with variance σ2 = ∆2/µ2 is µ-GDP.

3.3 The Functional Mechanism

Now we turn to the functional mechanism of Hall et al. [2013]. Given a dataset D ∈ RN×d, the
functional mechanism releases a function fD : T → R, where T ⊂ Rd, with added noise from a
Gaussian process. For simplicity, here we only define the functional mechanism for functions in a
reproducible kernel Hilbert space (RKHS), and defer the more general definition to Appendix A.2.

Definition 3.6. Let g be a sample path of a Gaussian process having mean zero and covariance
function k, and let H be an RKHS with kernel k. Let {fD : D ∈ D} ⊂ H be a family of functions
indexed by datasets, satisfying

∆Hf
def
= sup

D∼D′
||fD − fD′ ||H ≤ ∆. (8)

The functional mechanism with multiplier c and sensitivity ∆ is defined as

M(D) = fD + cg. (9)

Theorem 3.7 (Hall et al.). If ϵ ≤ 1, the mechanism in Def. 3.6 with c = ∆
ϵ

√
2 ln(2/δ) is (ϵ, δ)-DP.

4 Differential privacy for the ConvCNP

Now we turn to our main contributions. First, we tighten the functional mechanism privacy analysis
in Section 4.1 and then we build the functional mechanism into the ConvCNP in Section 4.2.

4.1 Improving the Functional Mechanism

The privacy bounds given by Theorem 3.7 are suboptimal, and do not allow us to use the tight
composition formula from Theorem 3.4. However, the proof of Theorem 3.7 builds on the classical
Gaussian mechanism privacy bounds, which we can replace with the GDP theory from Section 3.2.
As demonstrated in Figure 4, our bound offers significantly smaller ϵ for the same noise standard
deviation, compared to the existing bounds of Hall et al. [2013] and Jiang et al. [2023].

Theorem 4.1. The functional mechanism with sensitivity ∆ and multiplier c = ∆/µ is µ-GDP.

Proof. The proof of Theorem 3.7 from Hall et al. [2013] shows that any (ϵ, δ)-DP bound for the
Gaussian mechanism carries over to the functional mechanism. Replacing the classical Gaussian
mechanism bound with the GDP bound proves the claim. For details, see Appendix A.
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Algorithm 3 DPSetConv; modifications to the
original SetConv layer shown in blue.

Input: Grid x ⊆ RD, D(c), (ϵ, δ), RBF
covariance k with scale λ, threshold C, DP
accounting method noise_scales.
Output: DP representation of r(d), r(s).
ỹ
(c)
n ← clip(y(c)n , C) for n = 1, . . . , N
gd, gs ∼ GP(0, k)
gd,gs ← gd(x), gs(x)
σd, σs ← noise_scales(ϵ, δ, C)
r(d) ←

∑N
n=1 ψ((x − x(c)

n )/λ) + σdgd

r(s) ←
∑N

n=1 ỹ
(c)
n ψ((x − x(c)

n )/λ) + σsgs

Return: Density and signal r(d), r(s).
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Figure 4: Noise magnitude comparison for the clas-
sical functional mechanism of Hall et al. [2013], the
RDP-based mechanism of Jiang et al. [2023] and
our improved GDP-based mechanism. The line for
Hall et al. cuts off at ϵ = 1 since their bound has
only been proven for ϵ ≤ 1. We set ∆2 = 10 and
δ = 10−3, which are representative values from our
experiments. See Appendix A.6 for more details.

4.2 Differentially Private Convolutional CNP

Differentially Private SetConv. Now we turn to building the functional DP mechanism into the
ConvCNP. We want to modify the SetConv encoder (Eq. 3) to make it DP. As a reminder, the SetConv
outputs the density r(d) and signal r(s) channels[

r(d)(x)
r(s)(x)

]
=

N∑
n=1

[
1

y
(c)
n

]
ψ

(
x− x(c)n

λ

)
, (10)

which are the two quantities we want to release under DP. To achieve this, we must first determine
the sensitivity of r(d) and r(s), as defined in Eq. 8. Recall that we use the substitution neighbourhood
relation ∼S , defined as D(c)

1 ∼S D
(c)
2 if D(c)

1 and D(c)
2 differ in at most one row, i.e. by a single

context point. Since the RBF ψ is bounded above by 1, it can be shown (see Appendix A.4) that the
squared l2-sensitivity of r(d) is bounded above by 2, and this bound is tight. Unfortunately however,
since the signal channel r(s) depends linearly on each y(c)n (see Eq. 10), its sensitivity is unbounded.
To address this, we clip each y(c)n by a threshold C, which is a standard way to ensure the sensitivity
is bounded. With this modification we obtain the following tight sensitivities for r(d) and r(s):

∆2
Hr

(d) = 2, ∆2
Hr

(s) = 4C2 (11)

With these in place, we can state our privacy guarantee which forms the basis of the DPConvCNP. Post-
processing immunity (Theorem 3.3) ensures that post-processing r(s) and r(d) with the ConvCNP
decoder does not result in further privacy loss.

Theorem 4.2. Let gd and gs be sample paths of two independent Gaussian processes having zero
mean and covariance function k, such that 0 ≤ k ≤ Ck for some Ck > 0. Let ∆2

d = 2Ck and
∆2

s = 4C2Ck. Then releasing r(d) + σdgd and r(s) + σsgs is µ-GDP with µ =
√

∆2
s/σ2

s + ∆2
d/σ2

d.

Proof. The result follows by starting from the GDP bound of the mechanism in Theorem 4.1 and
using Theorem 3.4 to combine the privacy costs for the releases of r(d) and r(s).

Corollary 4.3. Algorithm 2 with the DPSetConv encoder from Algorithm 3 is (ϵ, δ)-DP with respect
to the real context set D(c).

Proof. The noise_scales method in Algorithm 3 computes the appropriate σd and σs values
from Theorem 4.2 and Definition 3.2 such that releasing the functional encodings r(d) + σdgd and
r(s)+σsgs is (ϵ, δ)-DP. The (ϵ, δ)-DP guarantee extends [Hall et al., 2013, Proposition 5] to the point
evaluations r(d) and r(s) over the grid x in Algorithm 3. Post-processing immunity (Theorem 3.3)
extends (ϵ, δ)-DP to Algorithm 2.

4.3 Training the DPConvCNP

Training loss and algorithm. We meta-train the DPConvCNP parameters θ, ϕ using the CNP
log-likelihood (eq. 2) within Algorithm 1, and meta-test it using alg. 2. Importantly, the encoder
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encϕ now includes clipping and adding noise (alg. 3) in its forward pass. Meta-training with the
functional in place is crucial, because it teaches the decoder to handle the DP noise and clipping.

Privacy hyperparameters. By Definition 3.2 and Theorem 4.2, each (ϵ, δ)-budget implies a µ-
budget, placing a constraint on the sensitivities and noise magnitudes, namely µ2 = ∆2

s/σ2
s + ∆2

d/σ2
d.

Since ψ is an RBF, ∆2
d = 2 and ∆2

s = 4C2, and we need to specify C, σs and σd, subject to this
constraint. We introduce a variable 0 < t < 1 and rewrite the constraint as

σ2
s =

4C2

tµ2
and σ2

d =
2

(1− t)µ2
(12)

allowing us to freely set t and C. One straightforward approach is to fix t and C to hand-picked values,
but this is sub-optimal since the optimal values depend on µ,N, and the data statistics. Instead, we
can make them adaptive, letting t : R+ ×N→ (0, 1) and C : R+ ×N→ R+ be learnable functions,
e.g. neural networks t(µ,N) = sig(NNt(µ,N)) and C(µ,N) = exp(NNC(µ,N)) where sig is
the sigmoid. These networks are meta-trained along with all other parameters of the DPConvCNP.

5 Experiments & Discussion

We conduct experiments on synthetic and a sim-to-real task with real data. We provide the exact
experimental details in Appendix E. We make our implementation of the DPConvCNP public in the
repository https://github.com/cambridge-mlg/dpconvcnp.

DP-SGD baseline. Since, we are interested in the small-data regime, i.e. a few hundred datapoints
per task, we turn to Gaussian processes [GP; Rasmussen and Williams, 2006], the gold-standard
model for well-calibrated predictions in this setting. To enforce DP, we make the GP variational
[Titsias, 2009], and use DP-SGD [Abadi et al., 2016] to optimise its variational parameters and
hyperparameters. This is a strong baseline because GPs excel in small data, and DP-SGD is a state-
of-the-art DP fine-tuning algorithm. We found it critical to carefully tune the DP-SGD parameters
and the GP initialisation using BayesOpt, and devoted substantial compute on this to ensure we have
maximised GP performance. We refer to this baseline as the DP-SVGP. For details see Appendix D.

Figure 5: Deployment-time comparison on Gaus-
sian (top) and non-Gaussian (bottom) data. We ran
the DP-SVGP for different numbers of DP-SGD
steps to determine a speed versus quality-of-fit
tradeoff. Reporting 95% confidence intervals.

General setup. In both synthetic and sim-to-
real experiments, we first tuned the DP as well
as the GP initialisation parameters of the DP-
SVGP on synthetic data using BayesOpt. We
then trained the DPConvCNP on synthetic data
from the same generative process. Last, we
tested both models on unseen test data. For the
DP-SVGP, testing involves DP fine-tuning its
variational parameters and its hyperparameters
on each test set. For the DPConvCNP, testing
involves a single forward pass through the net-
work. We report results in Figures 6 and 7, and
discuss them below.

5.1 Synthetic tasks

Gaussian data. First, we generated data from a GP with an exponentiated quadratic (EQ) covariance
(Figure 6; top), fixing its signal and noise scales, as well as its lengthscale ℓ. For each ℓ we sampled
datasets with N ∼ U [1, 512] and privacy budgets with ϵ ∼ U [0.90, 4.00] and δ = 10−3. We trained
separate DP-SVGPs and DPConvCNPs for each ℓ and tested them on unseen data from the same
generative process (non-amortised; Figure 6). These models can handle different privacy budgets
but only work well for the lengthscale they were trained on. In practice an appropriate lengthscale is
not known a priori. To make this task more realistic, we also trained a single DPConvCNP on data
with randomly sampled ℓ ∼ U [0.25, 2.00] (amortised; Figure 6). This model implicitly infers ℓ and
simultaneously makes predictions, under DP. We also show the performance of the non-DP Bayes
posterior, which is optimal (oracle; Figure 6 top). See Appendix E.1 for more details.

DPConvCNP competes with DP-SVGP. Even in the Gaussian setting, where the DP-SVGP is
given the covariance of the generative process, the DPConvCNP remains competitive (red and
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Figure 6: Negative log-likelihoods (NLL) of the DPConvCNP and the DP-SVGP baseline on synthetic
data from a EQ GP (top two rows; EQ lengthscale ℓ) and non-Gaussian data from sawtooth waveforms
(bottom two rows; waveform period τ ). For each point shown we report the mean NLL with its 95%
confidence intervals (error bars too small to see). See Appendix C.2 for example fits.

purple in Figure 6; top). While the DP-SVGP outperforms the DPConvCNP for some N and ℓ,
the gaps are typically small. In contrast, the DP-SVGP often fails to provide sensible predictions
(see ℓ = 0.25, N ≥ 300), and tends to overestimate the lengthscale, which is a known challenge
in variational GPs [Bauer et al., 2016]. We also found that the DP-SVGP tends to underestimate
the observation noise, resulting in over-smoothed and over-confident predictions which lead to a
counter-intuitive reduction in performance as N increases. By contrast, the DPConvCNP gracefully
handles different N and recovers predictions that are close to the non-DP Bayesian posterior for
modest ϵ and N, with runtimes several orders of magnitude faster than the DP-SVGP (Figure 5).

Amortising over ℓ and privacy budgets. We observe that the DPConvCNP trained on a range
of lengthscales (green; Figure 6) accurately infers the lengthscale of the test data, with only a
modest performance reduction compared to its non-amortised counterpart (red). The ability of the
DPConvCNP to implicitly infer ℓ while making calibrated predictions is remarkable, given the DP
constraints under which it operates. Further, we observe that the DPConvCNP works well across a
range of privacy budgets. In preliminary experiments, we found that the performance loss due to
amortising over privacy budgets is small. This is particularly appealing because a single DPConvCNP
can be trained on a range of budgets and deployed at test time using the privacy level specified by the
practitioner, eliminating the need for separate models for different budgets.

Non-Gaussian synthetic tasks. We generated data from a non-Gaussian process with sawtooth
signals, which has previously been identified as a challenging task Bruinsma et al. [2023]. We
sampled the waveform direction and phase using a fixed period τ and adding Gaussian observation
noise with a fixed magnitude. We gave the DP-SVGP an advantage by using a periodic covariance
function, and truncating the Fourier series of the waveform signal to make it continuous: otherwise,
since the DP-SVGP cannot handle discontinuities in the sawtooth signal, it explains the data mostly
as noise, failing catastropically. Again, we trained a separate DP-SVGP and DPConvCNP for each τ,
as well as a single DPConvCNP model on randomly sampled τ−1 ∼ U [0.20, 1.25]. We report results
in Figure 6 (bottom), along with a non-DP oracle (blue). The Bayes posterior is intractable, so we
report the average NLL of the observation noise, which is a lower bound to the NLL.

DPConvCNP outperforms the DP-SVGP. We find that, even though we gave the DP-SVGP
significant advantages, the DPConvCNP still outperforms it, and produces near-optimal predictions
even for modest N and ϵ. Overall, our findings in the non-Gaussian tasks mirror those of the Gaussian
tasks. The DPConvCNP can amortise over different signal periods with very small performance drops
(red, green in Figure 6; bottom). Given the difficulty of this task, the fact that the DPConvCNP can
predict accurately for signals with different periods under DP constraints is especially impressive.

9



0.5
1.0
1.5
2.0
2.5

NL
L

=
1.

00 age / height age / weight

0 100 200 300 400
N

0.5
1.0
1.5
2.0
2.5

NL
L

=
3.

00
0 100 200 300 400

N

DP-SVGP
DPConvCNP

50

100

150

200

He
ig

ht
 (c

m
)

DPConvCNP
Context
Target

DP-SVGP
Context
Target

0 20 40 60 80
Age (years)

0

20

40

60

W
eig

ht
 (k

g)

DPConvCNP
Context
Target

0 20 40 60 80
Age (years)

DP-SVGP
Context
Target

Figure 7: Left; Negative log-likelihoods of the DPConvCNP and the DP-SVGP baseline on the
sim to real task with the !Kung dataset, predicting individuals’ height from their age (left col.) or
their weight from their age (right col.). For each point shown here, we partition each dataset into
a context and target at random, make predictions, and repeat this procedure 512 times. We report
mean NLL with its 95% confidence intervals. Error bars are to small to see here. Right; Example
predictions for the DPConvCNP and the DP-SVGP, showing the mean and 95% confidence intervals,
with N = 300, ϵ = 1.00, δ = 10−3. The DPConvCNP is visibly better-calibrated than the DP-SVGP.

5.2 Sim-to-real tasks

Sim-to-real task. We evaluated the performance of the DPConvCNP in a sim-to-real task, where
we train the model on simulated data and test it on the the Dobe !Kung dataset [Howell, 2009], also
used by Smith et al. [2018], containing age, weight and height measurements of 544 individuals.
We generated data from GPs with a Matérn-3/2 covariance, with a fixed signal scale of σv = 1.00,
randomly sampled noise scale σn ∼ U [0.20, 0.60] and lengthscale ℓ ∼ U [0.50, 2.00]. We chose
Matérn-3/2 since its paths are rougher than those of the EQ, and picked hyperparameter ranges via a
back-of-the envelope calculation, without tuning them for the task. We trained a single DP-SVGP
and a DPConvCNP with ϵ ∼ U [0.90, 4.00] and δ = 10−3. We consider two test tasks: predicting the
height or the weight of an individual from their age. For each N, we split the dataset into a context
and target at random, repeating the procedure for multiple splits.

Sim-to-real comparison. While the two models perform similarly for large N, the DPConvCNP
performs much better for smaller N (Figure 7; left). The DPConvCNP predictions are surprisingly
good even for strong privacy guarantees, e.g. ϵ = 1.00, δ = 10−3, and a modest dataset size (Figure 7;
right), and significantly better-calibrated than those of the DP-SVGP, which under-fits. Note we have
not tried to tune the simulator or add prior knowledge, which could further improve performance.

6 Limitations & Conclusion

Limitations. The DPConvCNP does not model dependencies between target outputs, which is a
major limitation. This could be achieved straightforwardly by extending our approach to LNPs,
GNPs, or ARNPs. Another limitation is that the efficacy of any sim-to-real scheme is limited by the
quality of the simulated data. If the real and the simulated data differ substantially, then sim-to-real
transfer has little hope of working. This can be mitigated by simulating diverse datasets to ensure
the real data are in the training distribution. However, as simulator diversity increases, predictions
typically become less certain, so there is a sweet spot in simulator diversity. While we observed
strong sim-to-real results, exploring the effect of this diversity is a valuable direction for future work.

Broader Impacts. This paper presents work whose goal is to advance the field of DP. Generally, we
view the potential for broader impact of this work as generally positive. Ensuring individual user
privacy is critical across a host of Machine Learning applications. We believe that methods such as
ours, aimed at improving the performance of DP algorithms and improve their practicality, have the
potential to have a positive impact on individual users of Machine Learning models.

Conclusion. We proposed an approach for DP meta-learning using NPs. We leveraged and improved
upon the functional DP mechanism of Hall et al. [2013], and showed how it can be naturally built into
the ConvCNP to protect the privacy of the meta-test set with DP guarantees. Our improved bounds for
the functional DP mechanism are substantial, providing the same privacy guarantees with a ≈ 30%
lower noise magnitude, and are likely of independent interest. We showed that the DPConvCNP
is competitive and often outperforms a carefully tuned DP-SVGP baseline on both Gaussian and
non-Gaussian synthetic tasks, while simultaneously being orders of magnitude faster at meta-test
time. Lastly, we demonstrated how the DPConvCNP can be used as a sim-to-real model in a realistic
evaluation scenario in the small data regime, where it outperforms the DP-SVGP baseline.
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A Differential Privacy Details

A.1 Measure-Theoretic Details

Definition 3.1 is the typical definition of (ϵ, δ)-DP that is given in the literature, but it glosses over
some measure-theoretic details that are usually not important, but are important for the functional
mechanism. In particular, the precise meaning of “measurable” is left open. Here, we make the
σ-field that “measurable” implicitly refers to explicit:

Definition A.1. An algorithmM is (ϵ, δ,A)-DP for a σ-field A if, for neighbouring datasets D,D′

and all A ∈ A,
Pr(M(D) ∈ A) ≤ eϵ Pr(M(D′) ∈ A) + δ. (13)

Hall et al. [2013] point out that the choice of A is important, and insist that A be the finest σ-field
on whichM(D) is defined for all D. When the output of the mechanism is discrete, or an element
of Rn, this corresponds with the σ-field that is typically implicitly used in such settings. When the
output is a function, as in the functional mechanism, the choice of A is not as clear [Hall et al., 2013].
Note that A is similarly implicitly present in the definition of GDP (Definition 3.2).

Next, we recall the construction of the appropriate σ-field for the functional mechanism from Hall
et al. [2013]. Let T be an index set. We denote the set of functions from T to R as RT . For
S = (x1, . . . , xn) ∈ Tn and a Borel set B ∈ B(Rn),

CS,B = {f ∈ RT | (f(x1), . . . , f(xn)) ∈ B} (14)

is called a cylinder set of functions. Let CS = {CS,B | B ∈ B(Rn)} and

F0 =
⋃

S:|S|<∞

CS . (15)

F0 is called the field of cylinder sets. (ϵ, δ,F0)-DP 2 amounts to (ϵ, δ,B(Rn))-DP for any evaluation
of f at a finite vector of points (x1, . . . , xn) ∈ Tn, of any size n ∈ N [Hall et al., 2013].

The σ-field for the functional mechanism is the σ-field F generated by F0 [Hall et al., 2013]. It turns
out that (ϵ, δ,F0)-DP is sufficient for (ϵ, δ,F)-DP.

A.2 General Definition of the Functional Mechanism

Definition A.2. Let g be a sample path of a Gaussian process having mean zero and covariance
function k. Let {fD : D ∈ D} ⊂ RT be a family of functions indexed by datasets satisfying the
inequality

sup
D∼D′

sup
n<∞

sup
(x1,...,xn)∈Tn

∣∣∣∣∣∣∆(x1,...,xn)
D,D′

∣∣∣∣∣∣
2
≤ ∆, (16)

with

∆
(x1,...,xn)
D,D′ =M−1/2(x1, . . . , xn)

fD(x1)− fD′(x1)
...

fD(xn)− fD′(xn)

 ,
where M(x1, . . . xn)ij = k(xi, xj). The functional mechanism with multiplier c and sensitivity ∆ is
defined as

M(D) = fD + cg. (17)

If f is a member of a reproducible kernel Hilbert space (RKHS) H with the same kernel k as the
noise process g, the sensitivity bound of Definition A.2 is much simpler:

Lemma A.3 (Hall et al. 2013). For a function f in an RKHSH with kernel k,

∆Hf
def
= sup

D∼D′
||fD − fD′ ||H ≤ ∆. (18)

implies (16).
2This is a small abuse of notation, as F0 is not a σ-field.
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A.3 Proof of Theorem 4.1

To prove Theorem 4.1, we need a GDP version of a lemma from Hall et al. [2013]:

Lemma A.4. Suppose that, for a positive definite symmetric matrix M ∈ Rd×d, the function
f : D → Rd satisfies

sup
D∼D′

||M−1/2(f(D)− f(D′))||2 ≤ ∆. (19)

Then the mechanismM that outputs (Gaussian mechanism)

M(D) = f(D) + cZ, Z ∼ Nd(0,M)

is µ-GDP with c = ∆
µ .

Proof. We can write

M(D) =M1/2c

(
M−1/2

c
f(D) + S

)
, S ∼ Nd(0, I).

DenoteM′(D) = M−1/2

c f(D) + S.M′ is a Gaussian mechanism with variance 1. Because of (19),
M−1/2

c f(D) has sensitivity

∆∗ = sup
D∼D′

∣∣∣∣∣∣∣∣M−1/2

c
f(D)− M−1/2

c
f(D′)

∣∣∣∣∣∣∣∣
2

≤ ∆

c

soM′ is µ-GDP by Theorem 3.5.M is obtained by post-processingM′, so it is also µ-GDP.

Theorem 4.1. The functional mechanism with sensitivity ∆ and multiplier c = ∆/µ is µ-GDP.

Proof. Let T be the index set of the Gaussian process G, and let S = (x1, . . . , xn) ∈ Tn.
Then (G(x1), . . . , G(xn)) has a multivariate Gaussian distribution with mean zero and covariance
Cov(G(xi), G(xj)) = K(xi, xj). Then the vector obtained by evaluatingM(D) at (x1, . . . , xn) is
µ-GDP by Lemma A.4, as (16) implies the sensitivity bound (19). Theorem 3.5 gives a curve of
(ϵ, δ(ϵ))-bounds for all ϵ ≥ 0 from µ.

This holds for any S ∈ Tn and any n ∈ N, so M is (ϵ, δ(ϵ),F0)-DP for all ϵ ≥ 0, which
immediately implies (ϵ, δ(ϵ),F)-DP. This curve can be converted back to µ-GDP (with regards to F )
using Theorem 3.5.

A.4 Functional Mechanism Sensitivities for DPConvCNP

To bound the sensitivity of r(d) and r(s) for the functional mechanism, we look at two neighbouring
context sets D(c)

1 = ((x
(c)
n,1, y

(c)
n,1))

N
n=1 and D(c)

2 = ((x
(c)
n,2, y

(c)
n,2))

N
n=1 that differ only in the points

(x1, y1) ∈ D(c)
1 and (x2, y2) ∈ D(c)

2 . Let r(d)
D

(c)
i

for i ∈ {1, 2} denote r(d) from (10) computed from

D
(c)
i , and define r(s)

D
(c)
i

similarly.

Denote the RKHS of the kernel k byH. The distance inH between the functions kx1
= k(x1, ·) and

kx2
= k(x2, ·) is given by

||kx1
− kx2

||2H = ⟨kx1
− kx2

, kx1
− kx2

⟩H (20)
= k(x1, x1)− 2k(x1, x2) + k(x2, x2) (21)
≤ 2Ck. (22)

For the RBF kernel, this is a tight bound without other assumptions on x, as k(x, x) = 1 = Ck for
all x and k(x1, x2) can be made arbitrarily small by placing x1 and x2 far away from each other.
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The sensitivity of r(d) for the functional mechanism can be bounded with (22): for ,

∆2
Hr

(d) = sup
D

(c)
1 ∼SD

(c)
2

∣∣∣∣∣∣∣∣r(d)D
(c)
1

− r(d)
D

(c)
2

∣∣∣∣∣∣∣∣2
H

(23)

= sup
D

(c)
1 ∼SD

(c)
2

∣∣∣∣∣
∣∣∣∣∣

N∑
n=1

(k
x
(c)
n,1
− k

x
(c)
n,2

)

∣∣∣∣∣
∣∣∣∣∣
2

H

(24)

= sup
x1,x2

||kx1
− kx2

||2H (25)

≤ 2Ck, (26)

where the second to last line follows from the fact that D(c)
1 and D(c)

2 only differ in one datapoint.
This is a tight bound for the RBF kernel, because when x = x1, kx1(x) = 1 and kx2(x) = 1 can be a
made arbitrarily small by moving x2 far away from x.

For r(s) and any function ϕ with |ϕ(y)| ≤ C, we first bound

||ϕ(y1)kx1
− ϕ(y2)kx2

||2H (27)

= ϕ(y1)
2k(x1, x1)− 2ϕ(y1)ϕ(y2)k(x1, x2) + ϕ(y2)

2k(x2, x2) (28)

≤ 4C2Ck. (29)

Again, these are tight bounds for the RBF kernel if we don’t constrain x or y further.

TheH-sensitivity for r(s) is then derived in the same way as the sensitivity for r(d), giving

∆2
Hr

(s) ≤ 4C2Ck. (30)

A.5 Gaussian Mechanism for DPConvCNP

A naive way of releasing r(x) under DP is to first select discretisation points x1, . . . , xn, in some
way, and release r(x1), . . . , r(xn) with the Gaussian mechanism. The components of r, r(s) and
r(d), have the following sensitivities:

∆2r(d)(x) = sup
D

(c)
1 ∼SD

(c)
2

∣∣∣∣∣∣∣∣r(d)D
(c)
1

(x)− r(d)
D

(c)
2

(x)

∣∣∣∣∣∣∣∣2
2

(31)

= sup
D

(c)
1 ∼SD

(c)
2

∣∣∣∣∣
N∑

n=1

(k
x
(c)
n,1

(x)− k
x
(c)
n,2

(x))

∣∣∣∣∣
2

(32)

= sup
x1,x2

|kx1
(x)− kx2

(x)|2 (33)

≤ C2
k . (34)

Line (33) follows from the fact that D(c)
1 and D(c)

2 only differ in one datapoint.

For r(s)(x), we have
|ϕ(y1)kx1

(x)− ϕ(y2)kx2
(x)|2 ≤ 4C2C2

k . (35)
Then we get

∆2r(s)(x) ≤ 4C2C2
k (36)

following the derivation of ∆2r(d)(x). For the RBF kernel, this is again tight without additional
assumptions on y or x.

These sensitivities give the following privacy bound:
Theorem A.5. Let ∆2

s = 4C2C2
k and ∆2

d = C2
k . Releasing n evaluations of r(x) =

(r(d)(x), r(s)(x)) with the Gaussian mechanism with noise variance σ2 is µ-GDP for

µ =

√
n
∆2

s +∆2
d

σ2
. (37)
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Proof. Releasing n evaluations of r(x) is simply an n-fold composition of Gaussian mechanisms
that release r(x) for one value. Releasing r(x) for one value is a composition of releasing r(d)(x)
and r(s)(x), which have the sensitivities ∆s and ∆d. Now Theorems 3.5 and 3.4 prove the claim.

As µ scales with n, this method must add a large amount of noise for even moderate numbers of
discretisation points.

The difference between having a factor of C2
k in the L2-sensitivities and Ck in the H-sensitivities

is explained by the fact that the kernel also directly affects the noise variance for the functional
mechanism, but it does not directly affect the noise variance with the Gaussian mechanism. This can
be illustrated by considering what happens when the kernel is multiplied by a constant u > 0. This
multipliesCk by u, and multiplies the L2-sensitivities by u2. For the Gaussian mechanism, this means
multiplying the noise standard deviation by u, but simultaneously multiplying all released values by
u, which does not change the signal-to-noise ratio. For the functional mechanism, multiplying the
kernel values effectively multiplies c by

√
u and the squared sensitivities by u, which then cancel

each other in µ.

For the RBF kernel and clipping function ϕ with threshold C = 1, we see that ∆2
Hr

(d) = 2 while
∆2

2r
(d) = 1, and ∆2

Hr
(s) = 4, while 2∆2

2r
(s) = 4, so the functional mechanism adds noise with

slightly more variance as releasing a single value with the Gaussian mechanism, so the functional
mechanism adds noise of less variance when 2 or more discretisation points are required. However, the
functional mechanism adds correlated noise, which is not as useful for denoising as the uncorrelated
noise that the Gaussian mechanism adds.

A.6 Details on Figure 4

In this section, we go over the details of the calculations behind Figure 4. The “classical” line of the
figure is computed from Theorem 3.7. The GDP line uses Definition 3.2 to convert the (ϵ, δ)-pair
into a GDP µ bound by numerically solving for µ in Eq.(5). σ is then found with Theorem 4.1.

For the RDP line, we get an RDP guarantee from Corollary 2 of Jiang et al. [2023], which we convert
to (ϵ, δ) with Proposition 3 of Jiang et al. [2023]. These give the equation

ϵ =
α∆2

2σ2
− ln δ

α− 1
, (38)

where α > 1 is a parameter of RDP that can be freely chosen. The α value that minimises ϵ is

α∗ =

√
−2σ2 ln δ

∆2
+ 1. (39)

Plugging α∗ into Eq. (38) gives the quadratic equation

−ϵσ2 + 2

√
−∆2 ln δ

2
σ +

∆2

2
= 0 (40)

that can be solved for σ.

To see that choosing the α that minimises ϵ also leads to the smallest σ that satisfies a given (ϵ, δ)-
bound, let

ϵ(α, σ) =
α∆2

2σ2
− ln δ

α− 1
, (41)

and let σ∗ be the solution to Eq. (40). Let α, σ be another pair that satisfies the (ϵ, δ)-bound. Since
α∗ is chosen to minimise ϵ, ϵ(α∗(σ), σ) ≤ ϵ(α, σ). We can assume that ϵ(α, σ) = ϵ(α∗(σ), σ) = ϵ,
since otherwise we could reduce σ further. Now

ϵ(α∗(σ∗), σ∗) = ϵ = ϵ(α∗(σ), σ) (42)

so ϵ(α∗(σ∗), σ∗) = ϵ(α∗(σ), σ). By manipulating Eq. (40), we can see that ϵ(α∗(·), ·) is strictly
decreasing, so this implies that σ = σ∗.
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Algorithm 4 Efficient sampling of GP noise on a D-dimensional grid.

Input : Dimension-wise grid location ud ∈ R, spacing γd ∈ R and number of points Nd ∈ N,
Product kernel k : RD × RD → R with factors kd : R× R→ R.

Output: Sample fn1...nD
from GP with kernel k on grid inputs xn1...nD

defined by ud, γd, Nd.

Sample fn1...nD
∼ N (0, 1) for each 1 ≤ nd ≤ Nd, d = 1, . . . , D {Sample Gaussian noise}

for d = 1 to D do
Kdnm ← kd(ud + nγd, ud +mγd) for 0 ≤ n,m ≤ Nd − 1 {Compute covariance}
Ld ← CHOLESKY(Kd) {Compute Cholesky factor}
f ← MATMULALONGDIM(Ld, f, d) {Matmul f by Ld along dimension d}

end for

B Efficient sampling of Gaussian process noise

In order to ensure differential privacy within the DPConvCNP, we need to add GP noise (from a GP
with an EQ kernel) to the functional representation outputted by the SetConv. In practice, this is
implemented by adding GP noise on the discretised representation, i.e. the data and density channels.

While sampling GP noise is typically tractable if the grid is one-dimensional, the computational and
memory costs of sampling can easily become intractable for two- or three-dimensional grids. This
is because the number of grid points increases exponentially with the number of input dimensions
and, in addition to this, the cost of sampling increases cubically with the number of grid points.
Fortunately, we can exploit the regularity of the grid and the fact that the EQ kernel is a product
kernel, to make sampling tractable. Proposition B.1 illustrates how this can be achieved.

Proposition B.1. Let x ∈ RN1×···×ND be a grid of points in RD given by

xn1... nD
= (u1 + (n1 − 1)γ1, . . . , uD + (nD − 1)γD) , (43)

where ud ∈ R, γd ∈ R+ and 1 ≤ nd ∈ N ≤ Nd for each d = 1, . . . , D. Also let k : RD ×RD → R
be a product kernel, i.e. a kernel that satisfies

k(z, z′) =

D∏
d=1

kd(zd, z
′
d), (44)

for some univariate kernels kd : R→ R, for every z, z′ ∈ RD, let

Kdnm = kd(ud + (n− 1)γd, ud + (m− 1)γd), (45)

and let Ld be a Cholesky factor of the matrix Kd. Then if ϵn1... nD
∈ R ∼ N (0, 1) is a grid of

corresponding i.i.d. standard Gaussian noise, the scalars fn1...nD
∈ R, defined as

fn1... nD
=

N1∑
k1=1

L1n1k1 · · ·
ND∑

kD=1

LDnDkD
ϵk1... kD

, (46)

are Gaussian-distributed, with zero mean and covariance

C[fn1... nD
, fm1... mD

] = k(xn1... nD
, xm1... mD

). (47)

Before giving the proof of Proposition B.1, we provide pseudocode for this approach in Algorithm 4
and discuss the computation and memory costs of this implementation compared to a naive approach.
Naive sampling on a grid of N1 × · · · × ND points requires computing a Cholesky factor for the
covariance matrix of the entire grid and then multiplying standard Gaussian noisy by this factor. We
discuss the costs of these operations, comparing them to the efficient approach.

Computing Cholesky factors. The cost of computing a Cholesky factor for covariance matrix of
the entire N1 × · · · × ND grid incurs a computation cost of O(N3

1 × · · · × N3
D) and a memory

cost of O(N2
1 × · · · × N2

D). By contrast, Algorithm 4 only ever computes Cholesky factors for
Nd ×Nd covariance matrices, so it incurs a computational cost of O

(∑D
d=1N

3
d

)
and a memory cost

of O
(∑D

d=1N
2
d

)
, which are both much lower than those of a naive implementation. For clarity, if
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N1 = · · · = ND = N , naive factorisation has O(N3D) computational and O(N2D) memory cost,
whereas the efficient implementation has O(DN3) computational and O(DN2) memory cost.

Matrix multiplications. In addition, naively multiplying the Gaussian noise by the Cholesky factor
of the entire covariance matrix incurs a O(N2

1 × · · · ×N2
D) computation cost. On the other hand,

in Algorithm 4 we perform D batched matrix-vector multiplications, where the dth multiplication
consists of

∏
d′=dNd′ matrix-vector multiplications, where a vector with Nd entries is multiplied

by an Nd ×Nd matrix. The total computation cost for this step is only O
(∑D

d=1N
2
d

∏
d′ ̸=dNd′

)
.

For example, if N1 = · · · = ND = N , naive matrix-vector multiplication has a computation cost of
O(N2D), whereas the efficient implementation has a computation cost of O(ND+1).

In Algorithm 4, CHOLESKY denotes a function that computes the Cholesky factor of a square positive-
definite matrix. MATVECALONGDIM(Ld, f, d) denotes the batched matrix-vector multiplication of
an array f by a matrix Ld along dimension d, batching over the dimensions d′ ̸= d. Specifically,
given a D-dimensional array b with dimension sizes N1, . . . , ND and an Nd × Nd matrix A, the
matrix-vector multiplication of b by A along dimension d outputs the D-dimensional array

MATVECALONGDIM(A, b, d)n1...nD
=

Nd∑
j=1

Andjbn1...nd−1 j nd+1...nD
. (48)

From the above equation, we can see that initialising f with standard Gaussian noise, and batch-
multiplying f by Ld along dimension d for each d = 1, . . . , D, amounts to computing the nested
sum in Equation (46). Note that the order with which these batch multiplications are performed does
not matter: it does not change neither the numerical result nor the computation or memory cost of the
algorithm.

Proof of Proposition B.1. From the definition above, we see that fn1... nD
is a linear transformation

of Gaussian random variables with zero mean, and therefore also has zero mean. For the covariance,
again from the definition above, we have

C [fn1... nD
, fm1... mD

] = (49)

C

[
N1∑

k1=1

L1n1k1
· · ·

ND∑
kD=1

LDnDkD
ϵk1... kD

,

N1∑
l1=1

L1m1l1 · · ·
ND∑
lD=1

LDmDlD ϵl1... lD

]
= (50)

C

[
N1∑

k1=1

· · ·
ND∑

kD=1

L1n1k1 . . . LDnDkD
ϵk1... kD

,

N1∑
l1=1

· · ·
ND∑
lD=1

L1m1l1 . . . LDmDlD ϵl1... lD

]
= (51)

E

[(
N1∑

k1=1

· · ·
ND∑

kD=1

L1n1k1
. . . LDnDkD

ϵk1... kD

)(
N1∑
l1=1

· · ·
ND∑
lD=1

L1m1l1 . . . LDmDlD ϵl1... lD

)]
,

(52)

where we have used the fact that the expectation of f is zero. Now, expanding the product of sums
above, taking the expectation and using the fact that ϵn1... nD

are i.i.d., we see that all terms vanish,
except those where kd = ld for all d = 1, . . . , D. Specifically, we have

C [fn1... nD
, fm1... mD

] = (53)

= E

[
N1∑

k1=1

· · ·
ND∑

kD=1

N1∑
l1=1

· · ·
ND∑
lD=1

L1n1k1
. . . LDnDkD

L1m1l1 . . . LDmDlD ϵk1... kD
ϵl1... lD

]
(54)

=

N1∑
k1=1

· · ·
ND∑

kD=1

N1∑
l1=1

· · ·
ND∑
lD=1

L1n1k1 . . . LDnDkD
L1m1l1 . . . LDmDlD E [ϵk1... kD

ϵl1... lD ] (55)

=

N1∑
k1=1

· · ·
ND∑

kD=1

N1∑
l1=1

· · ·
ND∑
lD=1

L1n1k1
. . . LDnDkD

L1m1l1 . . . LDmDlD 1k1= l1,..., kD= lD (56)

=

N1∑
k1=1

· · ·
ND∑

kD=1

L1n1k1
. . . LDnDkD

L1m1k1
. . . LDmDkD

(57)
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Figure S1: DPConvCNP performance on the GP modelling task, where the data are generated using
an EQ GP with lengthscale ℓ. We train three models per ϵ, ℓ combination, keeping δ = 10−3 fixed
as well as the clipping threshold C = 2.00 and noise weight t = 0.50 fixed. Specifically, we train
one model where only noise to the signal channel (red; no clip, no density), one model where noise
and clipping are applied to the signal channel (orange; clip, no density noise) and another model
where noise and clipping to the signal channel as well as noise to the density channel are applied
(green; clip, density noise). We also show the NLL of the oracle, non-DP, Bayesian posterior, which
is the best average NLL that can be obtained on this task (blue). Lastly, we show a bound to the
functional mechanism (black), which is a lower bound on the NLL that can be obtained with the
functional mechanism with C = 2.00, t = 0.50 on this task. We used 512 evaluation tasks for each
N, ℓ, ϵ combination, and report mean NLLs together with their 95% confidence intervals. Note that
the error bars are plotted but are too small to see in the plot.

=

N1∑
k1=1

L1n1k1
L1m1k1

· · ·
ND∑

kD=1

LDnDkD
LDmDkD

(58)

=

D∏
d=1

Kdndmd
(59)

= k(xn1... nD
, xm1... mD

). (60)

which is the required result.

C Additional results

C.1 How effectively does the ConvCNP learn to undo the DP noise?

Quantifying performance gaps. In this section we provide some additional results on the per-
formance of the DPConvCNP and the functional mechanism. Specifically, we investigate the
performance gap between the DPConvCNP and the oracle (non-DP) Bayes predictor. Assuming the
data generating prior is known, which in our synthetic experiments it is, the corresponding Bayes
posterior predictive attains the best possible average log-likelihood achievable. We determine and
quantify the sources of this gap in a controlled setting.

Sources of the performance gaps. Specifically, the performance gap can be broken down into two
main parts: one part due to the DP mechanism (specifically the signal channel clipping and noise,
and the density channel noise) and another part due to the fact that we are training a neural network
to map the DP representation to an estimate of the Bayes posterior. To assess the performance gap
introduced by each of these sources, we perform a controlled experiment with synthetic data from a
Gaussian process prior (see Figure S1).

Gap quantification experiment. We fix the clipping threshold value at C = 2.00, which is a sensible
setting since the marginal confidence intervals of the data generating process are ±1.96. We also fix
the noise weighting at t = 0.50, which is again is a sensible setting since it places roughly equal
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importance to the noise added to the density and the signal channels. We consider three different
settings for the prior lenghtscale (ℓ = 0.25, 0.71, 2.00) and two settings for the DP parameters
(ϵ = 1.00, 3.00 and fixed δ = 10−3). For each of the six combinations of settings, we train three
different DPConvCNPs, one with just signal noise (red; no clip, no density noise), one with signal
noise and clipping (orange; clip, no density noise) and one with signal noise and clipping and also
density noise (green; clip, density noise). Note, only the last model has DP guarantees. We compare
performance with the non-DP Bayesian posterior oracle (blue).

Lower bound model. When we only add signal noise to the ConvCNP representation (and do not
apply clipping or add density noise), and the true generative process is a GP such as in this case, the
predictive posterior (given the noisy signal representation and the noiseless density representation) is
a GP. That is because the data come from a known GP, and the signal channel is a linear combination
of the data (since we have turned off clipping) plus GP noise, so it is also a GP. Therefore, we can
write down a closed form predictive posterior in this case. We refer to this as the lower bound model
(black) in Figure S1, because for a given C and t, the performance of this model is a lower bound
to the NLL of any model that uses this representation as input. Note however that different lower
bounds can be obtained for different C and t.

Conclusions. We observe that the DPConvCNP with no clipping and no density noise (red) matches
the performance of the lower bound model. This is encouraging as it suggests that the model is
able to undo the effect of the signal noise perfectly. We also observe that applying clipping (orange)
does not reduce performance substantially, which is also encouraging as it suggests that the model
is able to cope with the effect of clipping on the signal channel, when it is trained to do so. Lastly,
we observe that there is an additional gap in performance is introduced due to noise in the density
channel (green). This is expected since the density noise is substantial and confounds the context
inputs. This gap reduces as the number of context points increases, which is again expected. From
the above, we conclude that in practice, the model is able to make predictions under DP constraints
that are near optimal, i.e. there is likely not a significant gap due to approximating the mapping from
the DP representation to the optimal predictive map, with a neural network.

C.2 Supplementary model fits for the synthetic tasks

We also provide supplementary model fits for the synthetic, Gaussian and non-Gaussian tasks. For
each task, we provide fits for three parameter settings (ℓ and τ ), two privacy budgets, four context
sizes and two dataset random seeds. See Figures S2 to S5, at the end of this document, for model fits.

D Differentially-Private Sparse Gaussian Process Baseline

Here, we provide details of the differentially-private sparse variational Gaussian process (DP-SVGP)
baseline.

Let D = (x,y) denote a dataset consisting of inputs N inputs x ∈ XN and N corresponding outputs
y ∈ YN . We assume the observations are generated according to the probabilistic model:

f ∼ GP(0, kθ1(x, x′))

y|f,x ∼
N∏

n=1

pθ2(yn|f(xn)),
(61)

where kθ denotes the GP kernel from which the latent function f is sampled from, with hyperparame-
ters θ, and θ2 denotes the parameters of the likelihood function. Computing the posterior distribution
pθ(f |x,y) is only feasible when the likelihood is Gaussian. Even when this is true, the computational
complexity associated with this computation is O(N3).

Sparse variational GPs [Titsias, 2009] offer a solution to this by approximating the true posterior with
the GP

qθ,ϕ(f) = pθ(f ̸=u|u)qϕ(u) (62)

with u = f(z), where z ∈ XM denote a set of M inducing locations, and qϕ(u) = N (u;m,S).
The computational complexity associated with this posterior approximation is O(NM2), which
is significantly lower if M ≪ N . We can optimise the variational parameters ϕ = {m,S, z} by
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optimisation of the evidence lower bound, LELBO:

LELBO(θ, ϕ) = Eqθ(f) [log pθ(y|f(x))]− KL [qϕ(u)∥pθ(u)] . (63)

Importantly, LELBO also serves as a lower bound to the marginal likelihood pθ(y|x), and so we
can optimise this objective with respect to both θ and ϕ. Since the likelihood factorises, we can
obtain an unbiased estimate to the LELBO by sampling batches of datapoints. This lends itself
to stochastic optimisation using gradient based methods, such as SGD. By replacing SGD with
a differentially-private gradient-based optimisation routine (DP-SGD), we obtain our DP-SVGP
baseline.

A difficulty in performing DP-SGD to optimise model and variational parameters of the DP-SVGP
baseline is that the test-time performance is a complex function of the hyperparameters of DP-SGD
(i.e. maximum gradient norm, batch size, epochs, learning rate), the initial hyperparameters of the
model (i.e. kernel hyperparameters, and likelihood parameters), and the initial variational parameters
(i.e. number of inducing locations M ). Fortunately, we are considering the meta-learning setting, in
which we have available to us a number of datasets that we can use to tune these hyperparameters.
We do so using Bayesian optimisation (BO) to maximise the sum of the LELBO’s for a number of
datasets. To limit the number of parameters we optimise using BO, we set the initial variational mean
and variational covariance to the prior mean and covariance, m = 0 and S = k(z, z).

In Table S1, we provide the range for each hyperparameter that we optimise over. In all cases, we
fix the number of datasets that we compute the LELBO for to 64 and the number of BO iterations to
200. We use Optuna [Akiba et al., 2019] to perform the BO, and Opacus [Yousefpour et al., 2021] to
perform DP-SGD using the PRV privacy accountant.

Hyperparameter Min Max

Max gradient norm 1 20
Epochs 200 1000

Batch size 10 128
Learning rate 0.001 0.02

Lengthscale 0.1 2.5
Period 0.25 4.0
Scale 0.5 2.0

Observation noise 0.05 0.25

Table S1: The ranges of DP-SGD hyperparameter settings (upper half) and initial model hyperparam-
eters (lower half) over which Bayesian optimisation is performed for the DP-SVGP baseline.

E Experiment details

In this section we give full details for our experiments. Specifically, we describe the generative
processes we used for the Gaussian, non-Gaussian and sim-to-real tasks.

E.1 Synthetic tasks

First, we specify the general setup that is shared between the Gaussian and non-Gaussian tasks.
Second, we specify the Gaussian and non-Gaussian generative processes used to generate the outputs.
Lastly we give details on the parameter settings for the amortised and the non-amortised models.

General setup. During training, we generate data by sampling the context set size N ∼ U [1, 512],
then sample N context inputs uniformly in [−2.00, 2.00] and 512 target inputs in the range
[−6.00, 6.00]. We then sample the corresponding outputs using either the EQ Gaussian process
or the sawtooth process, which we define below. For the DPConvCNP we use 6,553,600 such tasks
with a batch size of 16 at training time, which is equivalent to 409,600 gradient update steps. We
do note however that this large number of tasks, which was used to ensure convergence across all
variants of the models we trained, is likely unnecessary and significantly fewer tasks (fewer than half
of what we used) suffices. Throughout optimisation, we maintain a fixed set of 2,048 tasks generated
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in the same way, as a validation set. Every 32,768 gradient updates (i.e. 200 times throughout the
training process) we evaluate the model on these held out tasks, maintaining a checkpoint of the
best model encountered thus far. After training, this best model is the one we use for evaluation.
At evaluation time, we fix N to each of the numbers specified in Figure 6, and sample N context
inputs uniformly in [−2.00, 2.00] and 512 target inputs in the range [−2.00, 2.00]. We repeat this
procedure for 512 separate tasks, and report the mean NLL together with its 95% confidence intervals
in Figure 6. For all tasks, we set the privacy budget with δ = 10−3 and ϵ ∼ U [0.90, 4.00].
Gaussian generative process. For the Gaussian task, we generate the context and target outputs
from a GP with the exponentiated quadratic (EQ) covariance, which is defined as

k(x, x′) = σ2
v exp

(
− (x− x′)2

2ℓ2

)
+ σ2

n.

Sawtooth generative process. For the non-Gaussian task, we generate the context and target outputs
from a the truncation of the Fourier series of the sawtooth waveform

f(x) =
2

π

2∑
m=1

sin(2mπ(dx/τ) + ϕ)

m

where d ∼ U [−1, 1] is a direction sampled uniformly from {−1, 1}, τ is a period and ϕ ∈ [0, 2π] is
a phase shift. In preliminary experiments, we found that the DPConvCNP worked well with the raw
sawtooth signal (i.e. the full Fourier series) but the DP-SVGP struggled due to the discontinuities of
the original signal, so we truncated the series, giving an advantage to the DP-SVGP.

Non-amortised and amortised tasks. For the non-amortised tasks, we train and evaluate a single
model for a single setting of the generative parameter ℓ or τ. Specifically, for the Gaussian tasks, we
fix ℓ = 0.50, 0.71 or 2.00 and train a separate model for each one, that is then tested on data with
the same value of ℓ. Similarly, for the non-Gaussian tasks, we fix τ−1 = 0.25, 0.50 or 1.00 and train
a separate model for each one, that is again then tested on data with the same value of τ. For the
amortised tasks, we sample the generative parameter ℓ or τ at random. Specifically, for the Gaussian
tasks, we sample ℓ ∼ U [0.20, 2.50] for each task that we generate, and train a single model on these
data. We then evaluate this model for each of the settings ℓ = 0.50, 0.71 or 2.00. Similarly, for the
non-Gaussian tasks, we sample τ−1 ∼ U [0.20, 1.25] for each task that we generate, and train a single
model on these data. We then evaluate this model for each of the settings τ−1 = 0.25, 0.50 or 1.00.
The results of these procedures are summarised in Figure 6.

E.2 Sim-to-real tasks

For the sim-to-real tasks we follow a training procedure that is similar to that of the synthetic
experiments. During training, we generate data by sampling the context set size N ∼ U [1, 512], then
sample N context inputs uniformly in [−1.00, 1.00] and 512 target inputs in the range [−1.00, 1.00].
We then generate data by sampling them from a GP with covariance

k(x, x′) = k3/2,ℓ(x, x
′) + σ2

n, (64)

where k3/2,ℓ is a Matern-3/2 covariance with lengthscale ℓ ∼ U [0.50, 2.00] and noise standard
deviation σn ∼ U [0.30, 0.80]. For all tasks, we set the privacy budget at δ = 10−3 and ϵ ∼
U [0.90, 4.00]. The Dobe !Kung dataset is publicly available in TensorFlow 2 [Abadi et al., 2016],
specifically the Tensorflow Datasets package. Note that we rescale the ages to be between −1.0 and
1.0 and normalise the heights and weights of users to have zero mean and unit standard deviation. We
assume that the required statistics for these normalisations are public, but they could be released with
additional privacy budget. Inaccurate normalisations would only increase the sim-to-real gap and
reduce utility, but not affect the privacy analysis. At evaluation time, we fix N to each of the numbers
specified in Figure 7. We then sample N points at random from the normalised !Kung dataset and
use the remaining points as the target set. We repeat this procedure for 512 separate tasks, and report
the mean NLL together with its 95% confidence intervals in Figure 7.

E.3 Optimisation

For all our experiments with the DPConvCNP we use Adam with a learning rate of 3× 10−4, setting
all other options to the default TensorFlow 2 settings.
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E.4 Compute details

We train the DPConvCNP on a single NVIDIA GeForce RTX 2080 Ti GPU, on a machine with 20
CPU workers. Meta-training requires approximately 5 hours, with synthetic data generated on the fly.
Meta-testing is performed on the same infrastructure, and timings are reported in Figure 5.

F DPConvCNP architecture

Here we give the details of the DPConvCNP architecture used in our experiments. The DPConvCNP
consists of a DPSetConv encoder, and a CNN decoder followed by a SetConv decoder. We specify
the details for the parameters of these layers below.

DPSetConv encoder and SetConv decoder. For all our experiments, we initialise the DPSetConv
and SetConv lengthscales (which are also used to sample the DP noise) to λ = 0.20, and allow this
parameter to be optimised during training. For the learnable DP parameter mappings t(µ,N) =
sig(NNt(µ,N)) and C(µ,N) = exp(NNC(µ,N)) we use simple fully connected feedforward
networks with two layers of 32 hidden units each. For the discretisation step in the encoder, we use a
resolution of 32 points per unit for all our experiments. We also use a fixed discretisation window
of [−7, 7] for the synthetic tasks and [−2, 2] for the sim-to-real tasks. We did this for simplicity,
although our implementation supports dynamically adaptive discretisation windows.

Decoder convolutional neural network. Most of the computation involved in the DPConvCNP
happens in the CNN of the decoder. For this CNN we used a bare-bones implementation of a UNet
with skip connections. This UNet consists of an initial convolution layer processes the signal and
density channels, along with two constant channels fixed to the magnitudes σs, σd of the DP noise
used in these two channels, into another set of Cin channels. The result of the initial layer is then
passed through the UNet backbone, which consists of N convolutional layers with a stride of 2 and
with output channels C = (C1, . . . , CN ), followed by N transpose convolutions again with a stride
of 2 and output channels C = (CN , . . . , C1). Before applying each of these convolution layers, we
create a skip connection from the input of the convolution layer and concatenate this to the output of
the corresponding transpose convolution layer. Finally, we pass the output of the UNet through a
final transpose convolution with Cout = 2 output channels, which are then smoothed by the SetConv
decoder to obtain the interpolated mean and (log) standard deviation of the predictions at the target
points. For all our experiments, we used Cin = 32, N = 7 and Cn = 256. We used a kernel size of 5
for all convolutions and transpose convolutions.
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Figure S2: Example model fits for the DPConvCNP on the EQ GP task. For all the above fits,
a single amortised DPConvCNP is used, that is a DPConvCNP that has been trained on EQ GP
data with randomly chosen lengthscales ℓ ∼ U [0.20, 2.50] and random privacy budgets, specifically
ϵ ∼ U [0.90, 4.00] and δ = 10−3. The first four rows correspond to ϵ = 1.00 and the last four to
ϵ = 3.00. We have fixed δ = 10−3. Note that column-wise the datasets are fixed, and we are varying
the context set size N.
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Figure S3: Same as Figure S2, but with a different dataset seed. Example model fits for the
DPConvCNP on the EQ GP task. For all the above fits, a single amortised DPConvCNP is used,
that is a DPConvCNP that has been trained on EQ GP data with randomly chosen lengthscales
ℓ ∼ U [0.20, 2.50] and random privacy budgets, specifically ϵ ∼ U [0.90, 4.00] and δ = 10−3. The
first four rows correspond to ϵ = 1.00 and the last four to ϵ = 3.00. We have fixed δ = 10−3. Note
that column-wise the datasets are fixed, and we are varying the context set size N.
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Figure S4: Example model fits for the DPConvCNP on the sawtooth task. For all the above fits,
a single amortised DPConvCNP is used, that is a DPConvCNP that has been trained on sawtooth
data with randomly chosen periods τ−1 ∼ U [0.20, 1.25] and random privacy budgets, specifically
ϵ ∼ U [0.90, 4.00] and δ = 10−3. The first four rows correspond to ϵ = 1.00 and the last four to
ϵ = 3.00. We have fixed δ = 10−3. Note that column-wise the datasets are fixed, and we are varying
the context set size N.
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Figure S5: Same as Figure S4, but with a different dataset seed. Example model fits for the
DPConvCNP on the sawtooth task. For all the above fits, a single amortised DPConvCNP is
used, that is a DPConvCNP that has been trained on sawtooth data with randomly chosen periods
τ−1 ∼ U [0.20, 1.25] and random privacy budgets, specifically ϵ ∼ U [0.90, 4.00] and δ = 10−3. The
first four rows correspond to ϵ = 1.00 and the last four to ϵ = 3.00. We have fixed δ = 10−3. Note
that column-wise the datasets are fixed, and we are varying the context set size N.
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Figure S6: Additional results using the DPConvCNP on the EQ and sawtooth synthetic tasks with
stricter DP parameters, namely all combinations of ϵ = {1/3, 1} and δ = {10−5, 10−3}. The overall
setup in this figure is identical to that in Figure 6, except the amortised DPConvCNP is trained on
randomly chosen ϵ ∼ U [1/3, 1] and fixed δ = 10−5 or 10−3, and the non-amortised DPConvCNP
models are trained on ϵ and δ values as indicated on the plots. Then, both amortised and non-amortised
models are evaluated with the parameters shown on the plots. The DP-SVGP baseline was not run
due to time constraints in the rebuttal period: it is significantly slower and more challenging to
optimise than the DPConvCNP. We note that the amortisation gap, due to training a model to handle
a continuous range of ϵ values, is negligible. We also note that as the number of context points N
increases, the performance of the DPConvCNP approaches that of the oracle predictors.
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Figure S7: Illustrations of model fits on the synthetic EQ and sawtooth tasks, using stricter DP
paramters, for different context sizes N. Left: model fits of amortised DPConvCNPs trained on
EQ data using ϵ ∼ U [1/3, 1] and fixed δ = 10−3 (first column) or δ = 10−5 (second column) and
evaluated on the DP parameters shown in the plots. Right: same as the left plot, except the data
generating process is the sawtooth waveform rather than an EQ Gaussian process. We observe that
the DPConvCNP produces sensible predictions even under strict privacy settings.
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms to the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts are discussed in Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
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Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:
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safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
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faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: License for the Dobe !Kung dataset [Howell, 2009] is mentioned in the
bibliography.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Documentation is included in the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not include crowdsourcing experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not include crowdsourcing experiments or research with human
subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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