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Abstract

In this work, we study the problem of sample efficient exploration in Model-Based
Reinforcement Learning (MBRL). While most popular exploration methods in
MBRL are ‘reactive’ in nature, and thus inherently sample inefficient, we discuss
the benefits of an ‘active’ approach, where the agent selects actions to query novel
states in a data-efficient way, provided that one can guarantee that regions of high
epistemic, and not aleatoric, uncertainty are targeted. In order to ensure this, we
consider popular exploration bonuses based on Bayesian surprise, and demonstrate
their desirable properties under the assumption of a Gaussian Process model. We
then introduce a novel exploration method, Bayesian Active Exploration, where
the agent queries transitions based on a multi-step predictive search aimed at
maximizing the expected information gain. Moreover, we propose alternative
dynamics model specifications based on stochastic variational Gaussian Processes
and deep kernels that allow for better scalability with sample size and state-action
spaces, and accommodate non-tabular inputs by learning a latent representation,
while maintaining good uncertainty-quantification properties.

1 Introduction

The exploration-exploitation trade-off is a long-standing problem in Reinforcement Learning (Sutton
and Barto, 2018). Exploration in classic RL algorithms is often achieved via simple heuristics such
as ϵ-greedy policy in Q-methods (Mnih et al., 2015), action noise injection (Lillicrap et al., 2015), or
some form of policy entropy regularizers in policy gradient methods (Sutton et al., 1999; Kakade,
2001; Schulman et al., 2017). In some environments, these simple heuristics are enough to ensure
sufficient exploration and learn the optimal policy; in others, such as ‘sparse’ rewards ones, they are
prone to get stuck in sub-optimal policies instead.

Most existing methods satisfying the need for deeper exploration in such environments are reactive
in nature (Ladosz et al., 2022). This means that when the agent encounters a new state, they assign it
a higher internal, or ‘intrinsic’, exploration bonus reward rit that encourages them to visit that state
more often. Exploration bonuses can be model-based (Stadie et al., 2015; Osband et al., 2016; Pathak
et al., 2017), where the agent learns a model of the environment dynamics and uses an output from it
(prediction error, variance, etc.) to define rit, or count-based (Bellemare et al., 2016; Ostrovski et al.,
2017; Tang et al., 2017), where the intrinsic reward is defined as a function of the visitation frequency
of a certain state-action pair. While reactive exploration can be sufficient to solve sparse reward tasks,
it is intrinsically sample inefficient as it needs a large number of sampled transitions to ensure that
the agent sees, and consequently moves to, novel state-action pairs. This is especially a problem in
Markov Decision Processes (MDPs) (Puterman, 2014) where the agent is likely to be ‘trapped’ in
certain pools of positive recurrent states characterized by small expected return times (Ortner, 2020).
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Active exploration (Kamthe and Deisenroth, 2018; Shyam et al., 2019; Tarbouriech and Lazaric,
2019; Tschantz et al., 2020; Sajid et al., 2021; Ball et al., 2020) instead represents a practical
and data-efficient solution to exploration in settings characterized by expensive or budgeted data
acquisition. Some real-world applications include material design and automated chemistry (Steiner
et al., 2019; Burger et al., 2020), autonomous cybersecurity (Nguyen and Reddi, 2021; Andrew
et al., 2022; Foley et al., 2022; Bates et al., 2023; Foley et al., 2023) and healthcare (Yu et al., 2021).
Under the active exploration paradigm, the agent selects actions both for exploratory and exploitative
purposes by planning to explore unknown trajectories. This leads to significant sample efficiency
gains, provided that exploration is guided towards regions of epistemic (knowledge-based) rather
than aleatoric (inherent) uncertainty (Itti and Baldi, 2009; Houthooft et al., 2016; Nikolov et al., 2019;
Hüllermeier and Waegeman, 2021). To ensure that this requirement is met, we adopt a Bayesian view
of the problem to demonstrate the desirable properties associated with information-theoretic based
exploration bonuses (Cover, 1999; Houthooft et al., 2016; Mehta et al., 2022).

Related Work Model-based intrinsic rewards (or ‘curiosity’-based approaches) (Bellemare et al.,
2016; Osband et al., 2016; Pathak et al., 2017) are a popular class of methods that deal with sparse
rewards environments. These are typically reactive and utilize exploration bonuses derived from a
model of the dynamics, such as next-state prediction error (Stadie et al., 2015; Pathak et al., 2017) or
variance (Sorg et al., 2010; Pathak et al., 2019). In a more Bayesian fashion, Houthooft et al. (2016)
advocates for an intrinsic reward that captures ‘Bayesian surprise’ (Itti and Baldi, 2009), defined as
the relative entropy (or information gain) (Lindley, 1956), between the old and the newly updated
dynamics model’s parameters after observing the next state st+1. The notion of active exploration
is formalized in the early work of Carpentier et al. (2011) for the case of multi-armed bandits, and
later in Tarbouriech and Lazaric (2019) for the case of purely exploratory tasks in the form of (non-
Bayesian) Active Exploration MDPs. The model-based Bayesian RL literature (Ghavamzadeh et al.,
2015) have come up with a Bayes-Adaptive version of MDPs (Strens, 2000; Duff, 2002; Ross et al.,
2007) that we adopt, where exploitation and exploration are naturally balanced. Within this stream of
literature, Shyam et al. (2019) have recently developed an active exploration method that uses deep
ensembles and an information-theoretic exploration bonus, and focuses on purely exploratory tasks
Tarbouriech and Lazaric (2019). Contributions including Deisenroth and Rasmussen (2011); Kamthe
and Deisenroth (2018) advocate for the use of a Gaussian Processes (GPs) for Model Predictive
Control (MPC) in RL (Draeger et al., 1995; Chua et al., 2018), but do not specifically consider the
problem of active exploration. Similarly, Mehta et al. (2022) have recently proposed an information
theoretic approach to active MPC in RL, again coupled with a GP model of the dynamics. Tangential
to this work is also the vast literature on Bayesian Optimal Experimental Design (Pukelsheim, 2006;
Foster et al., 2019, 2021; Foster, 2021; Rainforth et al., 2023) and on Bayesian Active Learning
(Houlsby et al., 2011; Hanneke et al., 2014; Gal et al., 2017; Smith et al., 2023), that focus mostly on
iid problems.

Contributions Within the rich literature on model-based Bayesian RL only few methods consider an
active approach to exploration (Shyam et al., 2019; Mehta et al., 2022). However, these approaches
either lack scalability to high-dimensional, non-tabular, state-action spaces or they require training
deep ensemble, multi forward pass, models (Lakshminarayanan et al., 2017). In addition, none of the
works above provide theoretical guarantees as to why information-theoretic exploration bonuses are
desirable. Taking these into account, the contributions of this work can be summarized as follows.
Firstly, by defining the problem via a Bayes-Adaptive MDP (BAMDP) framework (Strens, 2000;
Duff, 2002; Ross et al., 2007; Ghavamzadeh et al., 2015), we prove that an information-theoretic
exploration bonus such as information gain (Lindley, 1956) triggers the agent’s ‘epistemic curiosity’
and has the desirable property of naturally converging to zero as the agent learns more about the
environment dynamics. This property is not guaranteed for other curiosity-based methods that employ,
e.g., prediction error or variance (Stadie et al., 2015; Pathak et al., 2017). Secondly, we present the
concept of Bayesian Active Exploration, discussing how the information-theoretic bonus approach
can be extended to settings where the agent actively queries trajectories using a surrogate, expected
measure of information gain (Bernardo, 1979) that has the same desirable properties. Lastly, we
propose two alternative, more scalable dynamics models based on: i) Stochastic Variational families
of GPs (SVGP) (Titsias, 2009), which scale better with sample size; and ii) single forward pass
deep kernels (Wilson et al., 2016a), which allows for high-dimensional state-action (and non-tabular)
inputs while maintaining a fully Bayesian Active Exploration (BAE) approach.
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2 Problem Setup

Consider the canonical definition of a Bayes-Adaptive MDP (BAMDP) (Duff, 2002; Ross et al.,
2007). A BAMDP is a tuple ⟨HS ,A, ph, p0, re, γ⟩, defined over an horizon of t ∈ {1, ..., T} time
steps where: i) HS = S × Θ is the set of hyper-states, defined as the Cartesian product of the
environment states space S and the space of parameters of the posterior transition dynamics Θ;
ii) A is the action space; iii) ph(·|hs, a) ∈ Pτ is the hyper-state transition probability function
that determines the next hyper-state (s′, θ′) given the current hyper-state (st, θt) and the action at,
and is such that ph(s′, θ′|s, θ, a) = p(s′|s, θ, a)p(θ′|s, θ, a, s′), where p(θ′|s, θ, a, s′) is the updated
posterior given the new state s′; iv) p0 ∈ P0 is the combination of the initial state probability function
s0 ∼ p0(·) and the prior probability on the dynamics parameters θ0 ∼ p(θ); v) re : S ×A → C ⊂ R
is a bounded extrinsic reward function; vi) γ ∈ (0, 1) is a discount factor. The corresponding
Bayes-optimal value function is then defined as:

V ∗
t (s, θ) = max

a∈A

[
re(s, a) + γ

∫
S

∫
Θ

p(s′|s, θ, a)V ∗
t−1(s

′, θ′) ds′dθ′
]

Any policy π∗(s, θ) that maximizes the above is a Bayes-optimal policy. Notice that a Bayes-optimal
policy is technically sub-optimal for the purely exploitative MDP task defined by the standard optimal
value function V ∗

t (s) (Ghavamzadeh et al., 2015), as it intuitively represents a principled way of
balancing out exploitation and exploration in MDPs. In a BAMDP, the transition dynamics is not
known, and the agent only has a prior belief about it. The agent starts in a belief state corresponding
to its prior on (s0, θ0), and updates his posterior belief by interacting with the environment and
transitioning to different hyper-states (s′, θ′) (where θ′ is the updated parameters).

2.1 Reactive Exploration

In order to achieve sufficient exploration in settings where the extrinsic rewards re are sparse, curiosity-
based methods typically augment the rewards function with some notion of intrinsic rewards bonus
ri, such that rt = ret + ηi(t)r

i
t. The intrinsic reward rit can be defined, e.g., as the next-state

prediction error rit =
η
2∥fθ(st, at) − st+1∥p, where ∥·∥p denotes the L space norm and fθ(·, ·) a

predictive model for st+1 (e.g., a neural network), or variance rit = E
[
∥fθ(st, at)−Eθ[fθ(st, at)]∥22

]
.

Consistently with the goal outlined in BAMDPs, Houthooft et al. (2016) models the dynamics via
Bayesian Neural Networks (Blundell et al., 2015) and proposes to use Information Gain (IG) (Lindley,
1956; Rainforth et al., 2023), or relative entropy, between the old and the updated models’ parameters
θ ∈ Θ as Bayesian intrinsic reward (Kolter and Ng, 2009), defined as:

IGθ(ξt, st+1) = H[p(θ|ξt)]−H[p(θ|ξt, st+1)] = (1)
= Ep(θ|ξt,st+1)[log p(θ|ξt, st+1)]− Ep(θ|ξt)[log p(θ|ξt)] ,

where ξt = (st, at) is the Markovian history and H[p(x)] = E[− log p(x)] is the Shannon entropy
(Shannon, 1948). Here p(θ|ξt) represents the prior distribution on θ at time t, such that p(θ|ξ0) = p(θ)
when t = 0, and p(θ|ξt, st+1) is instead the posterior distribution that gets updated only after the
next state st+1 is revealed to the agent.

2.2 Why Information Gain Based Exploration Bonuses?

Employing information gain as an intrinsic reward rit = IGθ(ξt, st+1) has some desirable properties
towards the solution of the BAMDP problem. Intuitively, IGθ(·) captures epistemic uncertainty
(Hüllermeier and Waegeman, 2021; Wimmer et al., 2023) associated with the dynamics parameters
θ ∈ Θ. This can be seen from the decomposition of the Shannon entropy H(θ) (Cover, 1999), which
is a measure of total uncertainty in θ, with respect to another variable Y : H(θ) = H(θ|Y ) + I(θ;Y ).
Here, the conditional entropy H(θ|Y ) quantifies the residual uncertainty after observing all the
realization of Y , H(θ|Y ) = −∑K

k=1 Yk log Yk, i.e., aleatoric uncertainty. The mutual information
component, I(θ;Y ), measuring the expected information gained about one variable by observing the
other, incorporates all the epistemic components. Conditioning everything on data Dn, we have

I(θ;Y |Dn) = H(θ|Dn)−H(θ|Y,Dn) = IGθ(Y,Dn) .

Furthermore, rit = IGθ(ξt, st+1) is guaranteed to progressively reduce as the agent visits more
(st, at) pairs and updates its model of the environment. To demonstrate this, assume for simplicity
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S,A ⊆ R and that the transition distribution pθ0(s
′|s, a) with true parameters θ0 ∈ Θ follows a

zero-mean Markov dynamics with structural equation (Pearl, 2009):

St+1 = f(St, At) + εt , where εt ∼ N (0, σ2) , (2)

where σ2 ∈ R+. From a Bayesian modeling perspective, we want to perform inference on the
parameters θ0 = (f0, σ

2
0) by placing a prior p(θ0) ∈ P and derive a posterior p(θ|Dn) ≜ p(θ|(s, a)n),

used in the IGθ formulation. Suppose we choose to model f(·) with a GP (Rasmussen et al., 2006)
prior: f |ω ∼ GP

(
0, C(·, ·|ω)

)
, where l ∈ R+ and C(·, ·|ω) is a kernel covariance function with

hyper-parameters ω. Then, under the assumptions of θ0 ∈ KL-support(p(θ)) and ‘testability’
(Schwartz, 1965; Ghosal et al., 1999) discussed in the proof, we have that:

Proposition 2.1 (Consistency). Assume true model (2) with θ0 = (f0, σ
2
0), prior p(θ) ∈ P and

posterior p(θ|(s, a)n). Given conditions for weak posterior consistency (discussed in the proof), such
that for ϵ > 0,

p
(
θ ∈ Θ : d

(
(f.σ), (f0, σ0)

)
> ϵ | (s, a)n

) Pθ0→ 0 ,

as n→ ∞, then rit = IGθ(st, at, st+1)
Pθ0→ 0 as n→ ∞.

Under the mild assumptions of Proposition 2.1, we can guarantee that the exploration incentive
rit = IGθ(·) naturally fades once the agent has sufficiently learnt θ ∈ Θ via collecting samples
of (s, a) pairs. Notice that this implies that the intrinsically sub-optimal value function V ∗,augm

defined by the augmented rewards rt = ret + ηir
i
t converges to the optimal one defined only by ret ,

V ∗,augm P→ V ∗, as shown in the appendix. We emphasize also that the conditions of Proposition 2.1
are in fact satisfied for a larger set of Bayesian models other than just GPs, but GPs are flexible enough
to leave the functional form of f unspecified. We can further derive contraction rates ϵn (Ghosal and
Van der Vaart, 2017) at which rit = IGθ(·) converges by imposing functional form restrictions on
f0 ∈ F . If we assume that: X = S × A = [0, 1]|A|+1; f0 ∈ Cα(X ) ∩Hα(X ), where Cα(·) is the
Hölder space and Hα(·) is the Sobolev space of order α; C(x, y) = ω1∥x− y∥αKα(ω2∥x− y∥) in
f |ω ∼ GP

(
0, C(·, ·|ω)

)
is the Matérn kernel, then we have (Van Der Vaart and Van Zanten, 2011):

Proposition 2.2 (Contraction Rates). Under the same assumptions of 2.1, if (f0, σ0) ∈ Cα(X ) ∩
Hα(X )× [c, d], where X = [0, 1]|A|+1, and f |ω ∼ GP

(
0, C(·, ·|ω)

)
where C(·, ·|ω) is the Matérn

kernel, then:

IGθ(st, at, st+1)
P∞

0→ 0 as n→ ∞ ,

at the optimal minimax rate ϵn = n−
1

(2+|X|/α) (Yang and Barron, 1999).

The optimal minimax rate ϵn achieved in Proposition 2.2 typically pertains to a purely ‘passive’
sampling strategy, and can potentially be improved under certain conditions through active sampling
(Willett et al., 2005; Castro and Nowak, 2008; Hanneke and Yang, 2015). We include a brief discussion
on this in the supplementary material. Also, V ∗,augm P→ V ∗ occurs at the same rate. Notice that,
e.g., convergence is not guaranteed for rit defined as prediction error rit =

η
2∥fθ(st, at) − st+1∥p

(Stadie et al., 2015; Pathak et al., 2017) in stochastic environments. This phenomenon is also known
as the “noisy TV problem” (Burda et al., 2018b), where the agent is erratically attracted by purely
aleatoric noise when it cannot distinguish between epistemic and aleatoric uncertainty.

3 Bayesian Active Exploration

In reactive curiosity, the action at time t is sampled from a policy at ∼ πψ(st) whose parameters
ψ are learnt according to updates based on the historical transitions {(sk, ak, rek + rik)}t−1

k=0. In the
active case instead (Shyam et al., 2019; Tschantz et al., 2020), at is sampled from a policy πψ(st),
whose parameters ψ are learnt using the future J transitions predicted via the dynamics model,
{(ŝk, âk, r̂ik)}t+Jk=t . This means that in our information-theoretic setting, IGθ(ξt, st+1) cannot be
computed in full form, and we have to resort to an expected value. From here onwards, we will
assume for simplicity that the parameter σ2 is fixed, i.e., estimated via maximum-likelihood, and will
focus on posterior inference on θ = f(·) only which is the main quantity of interest.
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3.1 Expected Information Gain

As a predictive surrogate for IGθ on θ = f(·), one can make use of a type of Expected Information
Gain (Bernardo, 1979; Pukelsheim, 2006; Foster, 2021; Rainforth et al., 2023) acquisition function,
for a predictive relative entropy minimization search over the candidates st+1 (Hernández-Lobato
et al., 2014). Grouping again the observable Markov history ξt = (st, at), EIGθ can be defined as:

EIGθ(ξt) = Epθ(st+1|ξt)
[
IGθ(ξt, st+1)

]
= Ep(θ|ξt)p(st+1|ξt,θ)

[
log p(θ|ξt, st+1)− log p(θ|ξt)

]
=

= Ep(θ|ξt)p(st+1|ξt,θ)
[
log p(st+1|ξt, θ)− log p(st+1|ξt)

]
=

= Ep(θ|ξt)p(st+1|ξt,θ)
[
H[p(st+1|ξt)]−H[p(st+1|ξt, θ)]

]
where we use the fact that p(θ|ξt, st+1) ∝ p(θ|ξt)p(st+1|ξt, θ) by Bayes rule and p(st+1|ξt) =
p(st+1|ξt, θ) by marginalization. Full derivation is provided in the appendix. In the active learning
literature, EIG, in the form of the third equivalence above, is also known as Bayesian Active Learning
by Disagreement (BALD) (Houlsby et al., 2011; Gal et al., 2017; Kirsch et al., 2019; Smith et al.,
2023), and is often used as an acquisition function for new iid data batches. Notice that if IGθ(·) P→ 0

as per results in Section 2.2, then trivially EIGθ(·) P→ 0. We highlight also that in cases where
pθ(st+1|st, at) is approximated via a (multivariate) Gaussian distribution, as with a GP model
(and differently than Shyam et al. (2019)), EIG can be further simplified for faster computation.
This is because the entropy of a (multivariate) Gaussian distribution N (µ,Σ) can be reduced to
H[p(x)] = 0.5 |S| (1 + log(2π)) + 0.5 log(det(Σ)). Thus, if p(st+1|ξt), where ξt = (st, at), is
Gaussian, EIGθ(ξt) can be simplified to:

EIGθ(ξt) = Epθ(st+1|ξt)
[
IGθ(ξt, st+1)

]
= Ep(θ|ξt)p(st+1|ξt,θ)

[
H[p(st+1|ξt)]−H[p(st+1|ξt, θ)]

]
=

1

2

(
log det(V[p(st+1|ξt)])− Ep(θ|ξt)

[
log det(V[p(st+1|ξt, θ)])

])
, (3)

where V[p(·)] denotes the variance of distribution p(·). Full derivation is provided in the supplemen-
tary material.

3.2 Predictive Multi-Step Search

One outstanding issue with the use of EIGθ as a transition acquisition function (Kearns et al., 2002)
lies in the fact that computing EIGθ in relation to the next state st+1 only might result in short-term
‘myopic’ exploration, i.e., only looking at one-step-ahead predictive uncertainty potentially makes the
agent miss out on higher uncertainty regions that are located further away from the current state st.
One way to overcome this problem is via a multi-step predictive search (or a predictive Monte-Carlo
Tree Search (Browne et al., 2012; Ghavamzadeh et al., 2015; Shyam et al., 2019; Fountas et al.,
2020)). In our case, the predictive multi-step procedure consists in sampling trajectories from the
posterior predictive pθ(st+1|st, at) obtained from the dynamics model and compute the associated
predicted intrinsic rewards r̂it = EIGθ(·). This procedure can be summarized as follows:

1. A sample of K actions is drawn from the current policy a(k)t ∼ πυ(st) (or initially at random)
2. Given st and each sampled action a

(k)
t , a sample of J-length trajectories τt =

{(st+j , a(k)t+j , st+1+j}Jj=0 is drawn from the model’s posterior pθ(st+1|st, at)
3. Cumulative

∑T+J
t=T r̂iτt =

∑T+J
t=T EIGθ(τ

(k)
t ) is computed for the K sampled trajectories τ (k)t

and the extrinsic rewards reτ
4. Update policy πυ using the trajectories τ (k)t via any policy gradient method (Sutton et al., 1999;

Kakade, 2001; Schulman et al., 2017)

In denser reward environment, the procedure can also be coupled with a (extrinsic) reward model
(Hafner et al., 2019; Sekar et al., 2020) ret = fψ(st, at), so that we can use fψ(s, a) to predict
also the future rewards ret+j associated with the planning trajectories (st+j , a

(k)
t+j)

J
j=0. To ease the

computational burden of this multi-step procedure, we can control the predictive horizon J and/or
introduce a decaying parameter ζ(t) to progressively diminish it. A pseudo-code algorithm of the full
Bayesian Active Exploration procedure is given in the appendix.
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4 Scalable Bayesian Dynamics Models

It is well-known that GPs tend to scale poorly both with sample size n and number of predictors
p = |S ×A| (in the dynamics model). The typical computational costs amount to O(n3|S ×A|3) for
training and O(n2|S × A|2) for test points (Quinonero-Candela and Rasmussen, 2005; Rasmussen
et al., 2006). Thus, in order to make GPs scalable to larger samples and higher dimensional input, we
propose two alternative models for the dynamics.

Stochastic Variational GP Dynamics Model We first consider using a Stochastic Variational GP
approximation (SVGP) (Titsias, 2009; Hensman et al., 2015). The main idea behind SVGP is that
instead of using the whole sample n, one can learn an optimal, lower size, subset of m < n inducing
points, {zi}mi=1, where {zi}mi=1 = {(si, ai)}mi=1, with the minimum decrease in performance and
similar uncertainty quantification and generalization properties. The way these inducing points,
together with the other GP parameters, are learnt is by introducing some associated variational
parameters ϕ ∈ Φ and a variational distribution qϕ(z) ≜ N (µz,Σz) (Titsias, 2009), such that the GP
prior p(f) becomes p(f |z;ϕ)p(z|ϕ), and an approximation to the true posterior on f is then given
by:

p(f |s, a) ≈ qϕ(f |s, a) =
∫
Z
p(f |z)qϕ(z) dz ,

which is obtained by marginalizing over the inducing points z. One can then derive a variational
Evidence Lower Bound (ELBO) loss on the model’s marginal likelihood p(s′|s, a; f), which reads:

LELBO = E
[
Eqϕ(z)

[
Ep(f |z)[log p(s′|s, a; f)]

]
− β KL

(
qϕ(z) || pθ(z)

)]
, (4)

where KL is the Kullback-Leibler divergence. The parameters of the SVGP are learnt by minimizing
the surrogate loss in (4). SVGP is much more scalable than standard GP in that it scales by construction
with a O(m3|S ×A|3) and O(m2|S ×A|2) training and test cost respectively (Hensman et al., 2013;
Jankowiak et al., 2020), and still allows taking advantage of the computational simplification in (3).
Moreover, we can prove that the convergence results pertaining to the ‘reactive’ use of rit = IGθ(·)
presented in Section 2.2 still hold for the SVGP case. Suppose we have variational SVGP posterior
qϕ(θ|(s, a)n), full-sample covariance matrix Cf (·, ·), covariance matrix on the m inducing points
Qf (·, ·) = CfzC

−1
zz Czf , and ∥A∥2 which denotes the spectral norm of matrix A. Then we can derive

that (Nieman et al., 2022):
Proposition 4.1. (Contraction SVGP) Assume that conditions such that p(θ|ξnt ) → δθ0 at rate ϵn
hold. If additionally the following holds:

Ex∥Cff −Qff∥ ≤ c, and Ex tr(Cff −Qff ) ≤ cnϵ2n

then the IGθ,q(·) associated with qϕ(θ|(s, a)n) is such that IGθ,q(·) P→ 0 at the same rate ϵn.

Additionally, as a corollary result from the equation above (Nieman et al., 2022), we can also show
that:
Proposition 4.2. (Matérn SVGP Contraction) Given f0 ∈ Cα(X ) ∩ Hα(X ) and f ∼
SVGP

(
0, Q(·, ·)

)
where Q(·, ·) is a Matérn kernel on X = [0, 1]|S×A|. The SVGP variational

posterior’s IGθ,q(ξt, st+1) → 0 at the optimal rate n−
1

(2+p/α) , for inducing points growing as
m = mn ≥ np/(p+2α).
Proofs and detailed assumptions are discussed in the appendix. There is one main drawback in the
use of SVGPs, i.e., they still scale poorly with high-dimensional S × A and they do not allow for
non-tabular inputs (e.g., images, graphs).

Deep Kernel Dynamics A way of coping with high dimensional |S ×A| whilst keeping a Bayesian
modeling approach and a Gaussian dynamics is via deep kernels (Wilson et al., 2016a). With deep
kernels we can model the dynamics pθ(st+1|st, at) by first mapping st, to a lower dimensional
latent representation space ht, fh : S → H, through a deep learning architecture. Then, the
function to predict the next state, fs : H × A → S, can be assigned a SVGP prior, such that
pθ(st+1|st, at) = pθ2(st+1|ht)pθ1(ht|st, at); where θ1 ∈ Θ1 and θ2 ∈ Θ2 are the neural network
and SVGP parameters, respectively (Bohn et al., 2019). The deep kernel parameters (θ1, θ2) are
learnt through an end-to-end pipeline by minimizing a unique final ELBO loss on st+1 similar
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Figure 1: Results over 20 replications on the L = 50 states noisy unichain environment, depicting the
median and 75th-25th error bands of cumulative fraction of states visited (left plot) and of cumulative
rewards Gt =

∑T
t=0 r

e
t (middle plot). The tables report mean and 90% Monte Carlo standard error

of the cumulative fraction of states visited and cumulative rewards at termination.

to (4) (Wilson et al., 2016b). Deep kernels necessitate only one forward pass, contrary to deep
ensembles (Lakshminarayanan et al., 2017; Shyam et al., 2019), which require as many passes as the
ensemble’s dimension. In order to ensure that in the deep kernels architecture the desirable uncertainty
quantification properties of GPs are not hindered by the over-confidence of neural nets (Guo et al.,
2017; Ober et al., 2021) we incorporate a bi-Lipschitz constraint via spectral normalization on fh(·),
which we choose to be a fully-connected ResNet, that avoids feature collapse as in van Amersfoort
et al. (2021). The last SVGP layer in the deep kernel model now scales at a O(m3|H|3) training
and O(m2|H|2) test cost, where |H| is directly controllable. Contraction rates for deep kernels are
notoriously difficult to prove due to the non-linearities introduced by the deep learning architecture,
and thus present a challenging open research question.

5 Experiments

In this section we empirically validate some of the properties of Bayesian Active Exploration outlined
in earlier sections. The environments we consider are generally characterized by sparse rewards,
and thus would benefit from applying model-based exploration strategies and planning ahead. We
employ Proximal Policy Optimization (PPO) (Schulman et al., 2017) as a common baseline RL
algorithm underlying all the exploration methods we compare. The extensive pool of methods we
compare throughout the experiments include: i) Purely random action exploration (Random); ii)
Policy entropy H(πψ(st)) regularizer that upweights more stochastic policies, as part of the PPO loss
function (π-Entropy); iii) Reactive ℓ2 prediction error as intrinsic reward (Stadie et al., 2015; Pathak
et al., 2017) (ℓ2 Error); iv) Reactive IGθ(·) intrinsic reward, coupled with a Bayesian Neural Network
dynamics model, as originally proposed in Houthooft et al. (2016) (VIME); v) Bayesian Active
Exploration, coupled with an underlying deep ensemble dynamics model, as proposed by Shyam et al.
(2019) (BAE DeepEns); vi) Bayesian Active Exploration coupled with SVGP prior described in
Section 4 (Titsias, 2009; Hensman et al., 2013) (BAE GP); vii) Bayesian Active Exploration coupled
with SV deep kernels, as described in Section 4 (Wilson et al., 2016b) (BAE DK). Note that in the
case of BAE DeepEns, the inferred dynamics pθ(st+1|st, at) is no longer Gaussian, but rather a
mixture of Gaussians p(m)

θ (st+1|st, at) indexed by the ensemble dimension m ∈ {1, ...,M}. As we
can no longer use the simplification derived in Section 3.1, we need to resort to the non-parametric
Jensen-Rényi Divergence to approximate EIGθ(·) (Shyam et al., 2019). Further information about
the models employed can be found in the appendix.

5.1 Unichain Environment

The first environment we consider is a simple Markov unichain sequence of L = 50 states (Puterman,
2014), that allows us to showcase the properties of BAE. Versions of the unichain environment
can also be found in other works (Osband et al., 2016; Shyam et al., 2019). We define the action
space to be A = {0, 1, 2}, where the discrete actions are {go-left, stay, go-right}. We
use a two variables continuous representation for the discrete S and also introduce noise in the
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Figure 2: Results on the discrete Mountain Car environment, over 20 replications. The plots report
the median cumulative fraction of the car’s visited positions per time step, together with the 75th and
25th error bands. The table reports the mean cumulative rewards at termination (T = 400), with the
90% Monte Carlo standard errors.

dynamics as εt ∼ N (0, 0.01). The agent is initially spawned in state s0 = 2, and the reward function
re : S ×A → R is sparse, with state 1 paying off 0.001 (representing a ‘reward trap’), last state 50
paying off 1, and the rest of the states 0. We provide more details about the unichain environment
in the supplementary material, with with a visual representation and an additional experiment on
L = 100 states. We set termination at T = 200 time steps or once the agent has reached the final
state. We compare the pool of models detailed above. The BAE methods are run for Twarm = 10
steps at random initially, in order to gather enough data to estimate the posterior p(θ|(st, at)) and
consequently be able to compute the posterior predictive pθ(st+1|st, at). For the predictive multi-step
search, a collection of K = 10 different trees are grown, with a predictive horizon of J = 200

steps, to generate the trajectories {τ (k)J }Kk=1. Performance is measured via returns Gt =
∑T
t=0 r

e
t ,

and the cumulative fraction of states covered by the agent. Results on both these measures over 20
seeded replications of the experiment are reported in Figure 1’s plots, where we plot the median plus
75th-25th error bands, and tables indicating the mean and 90% Monte Carlo standard errors of the
two measures at termination. BAE methods are demonstrated to be able to solve the Unichain L = 50
task (indicated by ret = 1) in just around 100 time steps, single episode, while reactive methods
struggle due to their sample inefficiencies.

5.2 Mountain Car

The second environment we consider is the discrete version of Mountain Car (Towers et al., 2023),
where (S ⊆ R2,A = {0, 1, 2}). Rewards are equal to ret = −1 for each step t taken, while ret = 100
is assigned when the agent reaches the top-right of the mountain. Using this setup we measure
cumulative fraction of coverage of the possible positions of the car, at each time step t. In addition
we also measure final cumulative rewards Gt =

∑T
t=0 r

e
t at termination, which we set to T = 400,

or when the car reaches the top of the mountain as the intended solution to the task. The warm up
period for active methods is set to be the first Twarm = 50 of the total T = 400 steps.

Myopic Horizon. Beside the default set of methods detailed above, we also compare two sets of
different BAE methods specifications. Namely, one specification where we set predictive horizon
J = 100 (100h), and a more ‘short-sighted’ one where the horizon is reduced to just J = 5 steps
ahead (5h). The number of predictive trees/independent trajectories sampled {τ (k)J }Kk=1 is kept equal
instead (K = 10).

Results over B = 20 replications on cumulative coverage fraction of the car’s position are reported
in Figure 2’s plots on the left, while the table on the right reports cumulative rewards Gt =

∑T
t=0 r

e
t

at termination. As demonstrated already in the unichain experiment, BAE methods outperform
reactive ones. However, this is true only for the sufficiently deep predictive horizon of J = 100.
The short-sighted J = 5 horizon specification, whilst more computationally appealing, fails to reach
epistemic uncertainty regions further apart from the spawn location, s0 ∼ Uniform([−0, 6,−0.4]).
Note that BAE methods with J = 100 solve the task in approximately 250-300 time steps in a single
episode which demonstrates their high sample efficiency.
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Figure 3: Results on the U-Maze continuous control environment over 15 seeded replications. The
plots report the median cumulative fraction of the agent’s (green ball) visited positions per time step,
together with the 75th and 25th error bands. In the table we report the mean cumulative fraction of
maze coverage at termination (T = 4000), with the 90% Monte Carlo standard errors. The top right
corner features a visual rendition of the U-Maze structure, where the red ball is the task objective.

5.3 Maze Environments

The last set of experiments features two different types of 2D Gymnasium Robotics maze structures
(Fu et al., 2020; de Lazcano et al., 2023), where the agent’s task is to explore the maze environment
and collect a goal object located somewhere in the maze. These are continuous control environments
with (S ⊆ R4,A ⊆ R2). The reward function is sparse, as the agents receive ret = 1 only when they
reach the objective, otherwise they receive ret = 0. As these maze environments are considerably
more complex, termination is set to T = 4000, or once the agent collects the goal, and the warm-up
period for active methods is set to Twarm = 500. The number of predictive multi-step trajectories is
set to K = 10, and their length to J = 20, to ease the computational burden.

U-Maze. The first maze is a simple U-shaped maze, where the agent (green ball) is spawned at one
end of the maze and must reach the other end of the maze to collect the goal item (red ball) (see
Figure 3). Similarly to the previous experiments, we measure cumulative fraction of maze coverage
at every time step and at termination. These results, computed over 15 seeded replications, are
reported in Figure 3. Again, we observe how reactive methods are orders of magnitude slower in
exploring the maze as they barely reach 40% cumulative maze coverage approximately at termination
T = 4000. BAE methods all approach nearly 90% of the maze coverage at termination even with a
‘medium-sighted’ predictive horizon of J = 20.

Medium Maze. We consider a second 2D medium-size, squared open maze featuring random
obstacles in the space (i.e., columns and wall ledges). The agent starts in one of corners and has to
reach the opposite corner to gather the objective (see Figure 8 in the appendix). Results over 10 runs
are reported in Table 1, where performance is measured as the average number of steps required to
reach the goal and the end-state rewards, where sT = 1.0 indicates task is solved (termination is at
T = 5000). BAE methods (with J = 20) again outperform reactive ones, as they are able to solve
the task in all the different runs, with BAE DK being on average the first methods to reach the goal.

6 Conclusions

In this work, we studied the problem of data-efficient explo-
ration in MBRL, by formalizing the paradigm of Bayesian
Active Exploration. We proved, both theoretically and em-
pirically, the associated benefits in environments where
exploration is costly and where rewards are sparse. We also
proposed two alternative models for the dynamics, SVGP
and DK, that guarantee better scalability. We note that BAE
trades off extremely data-efficient exploration and planning
with higher computational costs. While, as our results show,
this is incredibly beneficial in settings where exploration
is costly, other less sample efficient methods may be better
suited for cases where data acquisition is cheap.

Model # Steps to Goal sT Rewards
π-Entropy 3371.0 ± 508.3 0.60 ± 0.21
ℓ2 Error 2821.6 ± 566.4 0.64 ± 0.20
VIME 3662.0 ± 481.9 0.36 ± 0.20

BAE DeepEns 1211.9 ± 334.4 1.00 ± 0.00
BAE GP 1304.2 ± 606.4 1.00 ± 0.00
BAE DK 863.8 ± 360.8 1.00 ± 0.00

Table 1: Results over 10 runs on Medium
Maze, in terms of average number of
steps needed to reach the goal object and
end state sT rewards, with 90% standard
errors.
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A Proofs of Propositions

In order to prove the convergence properties of IGθ(·) presented in the main body’s propositions, we
need to define a couple of necessary building blocks concepts (Ghosal and Van der Vaart, 2017). For
this section, let us rename the prior distribution as π(θ), or shortly π, and the posterior as π

(
θ|(ξt)n

)
for simplicity, where ξnt is a sequence of samples n ∈ {1, 2, ...} following likelihood distribution
ξn ∼ p(ξn|θ) with θ ∈ Θ and θ ∈ π(θ). The posterior distribution associated with n-th sample,
πn (B | Dn), is obtained via Bayes theorem as

πn (B | ξn) =
∫
B
pn (ξ

n | θ) dπn(θ)∫
Θ
pn (ξn | θ) dπn(θ)

, where B ⊂ Θ,

as we assume that with increasing n, the data ξn provide more information about θ ∈ Θ.
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A.1 Proof of Proposition 2.1

We start with the notion of posterior consistency. Posterior consistency loosely means that for n→ ∞,
the posterior π

(
θ|(ξt)n

)
converges weakly to the Dirac measure δθ0 in Θ, and this depends on the

topology of Θ. More formally, let us assume that Θ is a metric space equipped with metric d(·, ·),
then:
Definition A.1 (Posterior Consistency). Given a prior distribution π(θ) ∈ Π, a posterior distribution
π
(
θ|(ξt)n

)
is said to be consistent w.r.t. a true parameter θ0 ∈ (Θ, d) if

π
(
θ ∈ Θ : d(θ, θ0) > ϵ | ξnt

) Pθ0→ 0 as n→ ∞ .

One important consequence of posterior consistency that we are going to make use of relates to the
consistency of estimators θ̂n = T (ξn) defined from the posterior, and it is stated as follows:
Proposition A.2 (Estimators Consistency). Assume Θ∗ ⊂ Θ is a subset such that posterior consis-
tency holds for θ0 ∈ Θ∗. The following facts are true:

i) There exists ∃ θ̂n = T (ξn) an estimator that is consistent for θ0 ∈ Θ∗, i.e., d(θ̂n, θ0)
Pθ0→ 0

when ξn ∼ p(ξn|θ0)
ii) If Θ is convex and d(·, ·) is a bounded and convex distance function, then θ̂n = T (ξn) can be

the posterior mean θ̂n = T (ξn) =
∫
θdπn(θ|ξn)

iii) If g : Θ → Θ is a function continuous at θ0, then d
(
g(θ̂n), g(θ0)

) Pθ0→ 0.

Convexity of Θ indeed holds for the non-parametric regression problem defined by Yi = θ(Xi) + εi,
where f = θ ∈ Θ = C(X ) and X ∈ X . As for what requirements are needed for posterior
consistency, we need intuitively that prior π(θ) do not exclude θ0 from its support. Define the ‘model’
as the likelihood density function that generates samples ξnt ∼ p0 ∈ P , where P is a probability
measure, and p0 ∈ P being the true density. Schwartz (1965) derived conditions for posterior
consistency based on whether the true data generating model p0 belongs to the KL support of the
prior π. In particular, we define
Definition A.3 (KL-support of p(θ)). By denoting as dKL(p, q) the KL-divergence between dis-
tributions p and q, p0 is said to belong to the KL support of the prior π, written p0 ∈ KL(π),
if

∀ϵ > 0, π
(
p : dKL(p0, p) < ϵ

)
> 0 .

Now, define U ⊂ P as a open neighborhood of p0 according to metric d(·, ·), then we intuitively
have that the posterior π(·|ξnt ) is also consistent if and only if for every open neighborhood U
of p0, π(U c|ξnt ) → 0 (i.e., if all neighborhood around p0 collapse to 0). This is formalized as
follows (Schwartz, 1965; Ghosal and Van der Vaart, 2017). Given a neighborhood U ⊂ P , then
we can test hypotheses H0 : p = p0 versus H1 : p ∈ U . Assume these exist a real function
φn = φ(ξ1, ..., ξn) : Ξ → [0, 1], representing the probability of rejecting H0, such that Ep0 [φn] → 0
and supp∈U Ep[1− φn] → 0 (i.e., probability of rejecting H0 goes to zero if p = p0, and conversely
probability of rejecting H1 goes to zero when p ̸= p0). The idea of Schwartz (1965) theorem is that
posterior consistency is guaranteed if the prior π assigns mass that is ‘arbitrarily close’ to the true
model p0 ∈ P and as n grows we can more correctly classify H0 vs H1. In addition, define P∞

0
as the joint density of ξn = (ξ1, ξ2, ...) under data generating model p0. In full form then the weak
consistency theorem reads:
Theorem A.4 (Schwartz (1965)). Assume that p0 ∈ KL(π), and that for neighborhoods Un ⊂ P of
p0 there are test functions φn satisfying the following requirements:

Ep0φn ≤ Be−bn, sup
p∈Uc

n

Ep (1− φn) ≤ Be−bn

for some constants b, B > 0, then π(Un|ξn)
P∞

0→ 0, or equivalently, π(θ|ξnt )
P∞

0→ δθ0 via corollary
result.

Now we revert back to our specific dynamics model case, having true parameters θ0 = (f0, σ
2
0) ∈

(Θ, d). Assuming the data generating model p0 described by equation (2), and assuming that
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p0 ∈ KL(π), we have by Schwartz’s theorem that π(θ|ξnt )
Pθ0→ δθ0 . As stated in Proposition 2.1 this

translate into

p
(
θ ∈ Θ : d

(
(f.σ), (f0, σ0)

)
> ϵ | (s, a)n

) Pθ0→ 0 as n→ ∞,

in our case. As per Proposition A.2 reported above then we know that we can construct an estimator
g(θ̂n) = T (ξn) from the posterior π(θ|ξn)) that is consistent for the parameter g(θ0) ∈ Θ. Arbitrarily,
we can pick g(θ̂n) to be exactly T (ξn) = IGθ(ξn, st+1). Then, according to Proposition A.2, we

have d
(
IGθ(ξn, st+1), IGθ0(ξ

n, st+1)
) Pθ0→ 0 or

Pr
(
θ ∈ Θ : d

(
IGθ(ξn, st+1), IGθ0(ξ

n, st+1)
)
> ϵ

) Pθ0→ 0 as n→ ∞ .

However, since at convergence we have π(θ|ξnt )
P∞

0→ δθ0 , then the equivalence p(θ|ξt) = p(θ|ξt, st+1)
holds (i.e., new datum st+1 does not convey any additional information on θ ∈ Θ). This im-
plies that IGθ0(ξ

n, st+1)
)
= H[δθ0 ] − H[δθ0 ] = 0, thus the convergence result is H[p(θ|ξt)] −

H[p(θ|ξt, st+1)]
Pθ0→ H[δθ0 ]−H[δθ0 ] = 0, or similarly d

(
IGθ(ξn, st+1), 0

) Pθ0→ 0.

A.1.1 Convergence to Optimal Value Function

As a corollary of Proposition 2.1 proved above, we can straightforwardly show that the value function
V ∗,augm defined by the augmented rewards rt = ret + ηir

i
t is such that V ∗,augm P→ V ∗. More

formally, we define V ∗,augm as follows

V ∗,augm
t (s, θ) = max

a∈A

[
re(s, a) + ηir

i(s, a; θ) + γ

∫
S,Θ

p(s′|s, θ, a)V ∗
t−1(s

′, θ′)ds′dθ′
]

(5)

while the optimal value function associated with the original MDP’s extrinsic rewards only is
simplified to

V ∗
t (s; θ0) = max

a∈A

[
re(s, a) + γ

∫
S
p(s′|s, a; θ0)V ∗

t−1(s
′; θ0)ds

′
]

Wrapping this up in a corollary statement:

Corollary A.5 (V ∗,augm Convergence). Under the conditions for posterior consistency of Proposition

2.1, it is easy to see from Eq. (5) that we have V ∗,augm
t (s, θ)

Pθ0→ V ∗
t (s; θ0), as rit = IGθ(·)

Pθ0→ 0 and

θ
Pθ0→ θ0.

A.2 Proof of Proposition 2.2

The intuition behind Proposition 2.2 is simply that, following the statement of Proposition 2.1, if
we can prove a contraction rate ϵn holds for posterior convergence π(θ|ξn) → δθ0 , then in light of

the proves in the above section, both d
(
IGθ(ξn, st+1), 0

) Pθ0→ 0 and d(V augm,∗, V ∗)
Pθ0→ 0 happen at

the same rate ϵn. To prove Proposition 2.2, we begin by defining contraction rates for a consistent
posterior π(θ|ξnt ), where the true θ0 ∈ (Θ, d). Notice that posterior consistency always implies a
contraction rate ϵn (Ghosal and Van der Vaart, 2017). We define

Definition A.6 (Contraction Rate). A posterior π(θ|ξnt ) is said to contract to δθ0 at the rate ϵn → 0,
if for every constant ∀M > 0:

π
(
θ ∈ Θ : d(θ, θ0) > Mϵn | ξn

) Pθ0→ 0 when ξn ∼ pn(ξ|θ0) .

A corollary of Proposition A.2 then straightforwardly holds, with respect to posterior estimators
θ̂n = T (ξn) convergence rate, and states:

Corollary A.7 (Estimator Contraction). If posterior π(θ|ξnt ) contracts at rate ϵn (or faster) to
θ0 ∈ Θ0 ⊂ Θ, then there exists an estimator θ̂n = T (ξn) that is consistent for θ ∈ Θ0 and converges
at least as fast as ϵn.
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Assume now the dynamics model presented in Section 2.2 holds, that is:

St+1 = f(St, At) + εt , where εt ∼ N (0, σ2) , and σ2 ∈ R+

and assume that (f0, σ0) ∈ Cα(X )× [c, d], where: X = S × A is a compact subset of R; Cα(·) is
the class of continuous functions with finite Hölder norm of order α; and [c, d] ⊂ R+. Notice that we
assumed that S,A ⊆ R, so that the target variable st+1 is single-task continuous St+1 ∈ R, but the
following would hold also for multi-task settings, just individually and independently for each task.
Finally, assume that f ∼ GP

(
0, C(·, ·)

)
, a GP prior where C(·, ·) is the isotropic squared exponential

kernel, i.e., C(x, y) = exp{−l2∥x− y∥2} with length parameter l ∈ R+. Then, one can prove that
posterior π(f, σ|ξn) contracts at the optimal minimax rate up to a log constant, that is:
Theorem A.8 (van der Vaart and van Zanten (2008)). Assume (f0, σ0) ∈ Cα(X )× [c, d], where X is
a compact subset of R, the dynamics model in (2), and f ∼ GP

(
0, C(·, ·)

)
prior where C(·, ·) is the

squared exponential kernel. Then, denoting p = |S × A|:

π
(
{(f, σ) : d

(
(f.σ), (f0, σ0)

)
> ϵn} | ξnt

) P∞
0→ 0 as n→ ∞

where ϵn = n−
1

(2+p/α) (log n)t with t = 1− 1
(2+4α/p) .

Notice that with (log n)t = 1, the above is equal to the minimax rate (best rate of estimation)
for functions in the class Cα(X ) (Yang and Barron, 1999). Since posterior consistency implies
the existence of a contraction rate ϵn, then given that conditions for posterior consistency hold
in Proposition 2.1, and given result in Corollary A.7, we have that IGθ(ξn, st+1) → 0 at the
same rate ϵn. Same hold for V ∗,augm

t (s, θ) → V ∗
t (s; θ0), by extending Corollary A.5. Thus, this

implies that under the condition of Theorem A.8 above, we have that IGθ(ξn, st+1) → 0 and
V ∗,augm
t (s, θ) → V ∗

t (s; θ0) at same rate ϵn = n−
1

(2+p/α) (log n)t.

Moreover, Van Der Vaart and Van Zanten (2011) show that the optimal minimax rate ϵn = n−
1

(2+p/α)

(Yang and Barron, 1999) for posterior contraction can be also achieve instead by imposing a further
restriction on f0 and assuming the covariance function C(·, ·|·) is a Matérn kernel. Define Hα(X ) as
the Sobolev space, then:
Theorem A.9 (Van Der Vaart and Van Zanten (2011)). Given f0 ∈ Cα(X ) ∩ Hα(X ) and f ∼
GP

(
0, C(·, ·|·)

)
where C(·, ·|·) is a Matérn kernel on X = [0, 1]p, then the posterior π(f |·) contracts

at rate ϵn = n−
1

(2+p/α) .

Thus, under the assumptions specified by Theorem A.9, also IGθ(ξn, st+1) → 0 and
V ∗,augm
t (s, θ) → V ∗

t (s; θ0) happen at the same rate ϵn = n−
1

(2+p/α) .

A.3 Proof of Proposition 4.1 and 4.2

Results of Proposition 2.1 and 2.2 above pertains to exact GP models of the dynamics, but these
can be shown to hold also for Stochastic Variational GPs and their implied variational posterior
qϕ(θ|ξn), given assumptions on how well this approximate the full posterior π(θ|ξn). In particular,
as recently shown by Nieman et al. (2022), one does not necessarily need that qϕ(θ|ξn) → π(θ|ξn),
or equivalently d

(
qϕ(θ|ξn), π(θ|ξn)

)
→ 0, as implied by when number of inducing points m→ n.

Instead, we need conditions on how ‘distant’ are the true covariance matrix Cf (·, ·) = covπ(f, f) and
the inducing points one Qf (·, ·) = CfuC

−1
uuCuf . Suppose the quantity Cf (·, ·)−Qf (·, ·) determines

how well the sub-sample of inducing points approximate the prior distribution. Let ∥A∥2 be the
spectral norm of matrix A and tr(A) the trace of A.
Theorem A.10 (Nieman et al. (2022)). Suppose that, under the necessary assumptions seen above
(i.e., minimally f0 ∈ Cα(X )), the posterior distribution contracts π(θ|ξnt ) → δθ0 at rate ϵn. Then if
the following hold

Ex∥Cff −Qff∥ ≤ C, and Ex tr(Cff −Qff ) ≤ Cnϵ2n

the variational posterior contracts qϕ(θ|ξnt ) → δθ0 at the same rate ϵn.

Denote with IGθ,ϕ(·), V ∗,augm
t (s, θ, ϕ) and V ∗

t (s, θ, ϕ) the IG and optimal value functions associated
with the variational SVGP posterior qϕ(θ|ξn). Assuming again the same dynamics of Eq. (2), but this

18



time placing a f ∼ SVGP
(
0, C(·, ·|·)

)
prior, then given Proposition 2.1 and 2.2 and the conditions

detailed by Thm A.10, we have that riϕ = IGθ,ϕ(·) → 0 and V ∗,augm
t (s, θ, ϕ) → V ∗

t (s; θ0, ϕ) at the
full posterior convergence rate ϵn. Now, one can show that the conditions onCff−Qff can essentially
be translated into conditions on the rate of growth on the number of inducing points (to keep the
approximation Qff arbitrarily close to Cff ). In particular Nieman et al. (2022) have shown that, for
example, in the case described by Proposition 2.2 above (Matèrn kernel and f0 ∈ Cα(X ) ∩Hα(X )),
the optimal minimax contraction rate (Yang and Barron, 1999) is achieved if the number of inducing
variables m scales at least as np/(p+2α) with full sample size. That is
Corollary A.11 (Nieman et al. (2022)). Given f0 ∈ Cα(X ) ∩Hα(X ) and f ∼ SVGP

(
0, C(·, ·|·)

)
where C(·, ·|·) is a Matérn kernel on X = [0, 1]p. The variational posterior Ψ(θ|ξnt ) → δθ0 contracts
at the optimal rate n−

1
(2+p/α) , for inducing points growing as m = mn ≥ np/(p+2α).

This again implies that, under the same assumptions, riϕ = IGθ,ϕ(·) → 0 and V ∗,augm
t (s, θ, ϕ) →

V ∗
t (s; θ0, ϕ) contracts at the same rate n−

1
(2+p/α) .

A.4 Brief Discussion on Active vs Passive Learning Rates

The posterior contraction rates ϵn derived in the results above all pertains to the classical case
of ‘passive’ learning (Yang and Barron, 1999). We note that these can be improved under some
conditions with an active sampling strategy (Hanneke et al., 2014; Hanneke and Yang, 2015), which
is what the work ultimately advocates for the realm of data-efficient exploration in MBRL. In Willett
et al. (2005), the authors show that the minimax convergence rates for regression cases where f0 is a
piecewise constant function can be strictly reduced from ϵn = n−1/|X | (passive) to ϵn = n−1/(|X |−1)

(active). Castro and Nowak (2008) instead show that for classification problems with similar Hölder
smooth decision boundaries the minimax lower bound convergence rate can be tightly improved
from ϵn = nκ/(κ+ρ−1) (passive) to ϵn = nκ/(κ+ρ−2) (active), where ρ = (|X | − 1)/α and κ is the
highest integer such that κ < α. As a final example, results in Wang et al. (2018) show that if f0 is
strongly smooth and convex (e.g., as in Example 2 in their paper), with α = 2, one can achieve a
much better rate of ϵn = n−1/2 compared to the passive minimax, which in that example’s case is
ϵn = n−2/4+|X |.

B Information Gain Derivations

In this second appendix section we include the full derivations of the Expected Information Gain
(EIG) (Lindley, 1956; Bernardo, 1979; Rainforth et al., 2023) and the simplified version of EIG under
a Gaussian dynamics model, encountered in Section 3.1. We assume the setup is the one described
in the MDP definition of Section 2 in the main paper. We group again the Markovian history of the
time step t→ t+ 1 in the transition τ ∈ T , represented by the current (st, at) pair, in the auxiliary
variable ξt = (st, at) for simplicity. The Information Gain (IG) of the full transition t → t + 1
composed by (st, at, st+1) is defined as

IGθ(ξt, st+1) = H[p(θ|ξt)]−H[p(θ|ξt, st+1)] = (6)

= Ep(θ|ξt,st+1)[log p(θ|ξt, st+1)]− Ep(θ|ξt)[log p(θ|ξt)] ,
where p(θ|st+1, ξt) ∝ p(θ)p(st+1|θ, ξt), and whereH[p(x)] = E[− log p(x)] is the Shannon entropy
(Shannon, 1948) and θ ∈ Θ the set of dynamics parameters. As stated in main paper, the issue
associated with computing IGθ(ξt, st+1) is that it can be done only in a reactive setting where st+1

is actually revealed to the agent. Thus in an active setting, we have to resort to an expected value
surrogate version of it, EIGθ(·).

B.1 Expected Information Gain

As st+1 is not revealed to the agent at time t, we can use EIGθ(ξt) = Epθ(st+1|ξt)
[
IGθ(ξt, st+1)

]
,

which essentially marginalizes over possible next st+1 ∈ S, defined in full form as:

EIGθ(ξt) = Ep(st+1|ξt)
[
IGθ(ξt, st+1)

]
=

= Ep(st+1|ξt)
[
Ep(θ|ξt,st+1)[log p(θ|ξt, st+1)]− Ep(θ|ξt)[log p(θ|ξt)]

]
. (7)
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Now we note that we can re-write p(st+1|ξt) =
∫
p(st+1|ξt, θ)p(θ|ξt) dθ by marginalization, and

that following Bayes theorem:

p(θ|ξt) =
p(st+1|ξt, θ)p(ξt, θ)∫

Θ
p(st+1|ξt, θ)p(ξt, θ) dθ

=

=
p(st+1|ξt, θ)p(ξt|θ)p(θ)∫

Θ
p(st+1|ξt, θ)p(ξt|θ)p(θ) dθ

.

Using these two facts and applying them to (7) we get:
Ep(st+1|ξt)

[
Ep(θ|ξt,st+1)[log p(θ|ξt, st+1)]− Ep(θ|ξt)[log p(θ|ξt)]

]
=

= Ep(θ)p(st+1|θ,ξt)

log p(st+1|ξt,θ)p(ξt|θ)p(θ)∫
Θ
p(st+1|ξt,θ)p(ξt|θ)p(θ) dθ

p(ξt|θ)p(θ)
p(ξt)

 =

= Ep(θ)p(st+1|θ,ξt)

log p(st+1|ξt,θ)p(ξt|θ)p(θ)
p(st+1|ξt)p(ξt)
p(ξt|θ)p(θ)
p(ξt)

 =

= Ep(θ)p(st+1|ξt,θ)
[
log p(st+1|ξt, θ)− log p(st+1|ξt)

]
= Ep(θ)p(st+1|ξt,θ)

[
H[p(st+1|ξt)]−H[p(st+1|ξt, θ)]

]
,

by cancelling terms out and re-ordering. Thus, we have now obtained an equivalent specifica-
tion of EIGθ(ξt) that can computed using only the posterior predictive distribution pθ(st+1|st, at),
which marginalizes over parameters θ ∈ Θ according to their posterior, i.e., pθ(st+1|st, at) =∫
Θ
pθ(st+1|st, at, θ)p(θ|st, at) dθ. EIGθ(ξt) in this form can be interpreted as follows: it represents

the expected reduction in the predictive uncertainty over the next state st+1 obtained from observing
a different set of parameters θ.

B.2 EIG under Gaussian dynamics

If the predictive posterior distribution is a (multivariate) Gaussian, we can simplify EIGθ(ξt) calcula-
tions even more, as stated at the end of Section 3.1. This is because if p(x) ≜ N (µ,Σ), the entropy
H[p(x)] can be simplified (Cover, 1999) as:

H[p(x)] = −
∫ ∞

−∞
N (µ,Σ) logN (µ,Σ) dx =

=
D

2
log 2π +

1

2
log det(Σ) +

1

2
E
[
(x− µ)⊤Σ−1(x− µ)

]
=

=
D

2
log 2π +

1

2
log det(Σ) +

1

2
D =

=
1

2
log det(Σ) +

D

2
(1 + log 2π) ,

where D is the dimensionality of the multivariate normal, that in our case corresponds to D = |S|,
and where the term E

[
(x− µ)⊤Σ−1(x− µ)

]
is simplified as follows:

E
[
(x− µ)⊤Σ−1(x− µ)

]
= E

[
tr((x− µ)⊤Σ−1(x− µ))

]
=

= E
[
tr(Σ−1(x− µ)(x− µ)⊤)

]
=

= tr(E
[
Σ−1(x− µ)⊤(x− µ)

]
) =

= tr(Σ−1Σ) =

= tr(ID) =

= D

Taking this simplification into account, we can in turn reduce EIGθ(ξt) calculations to the following:
Ep(θ)p(st+1|ξt,θ)

[
H[p(st+1|ξt)]−H[p(st+1|ξt, θ)]

]
=

= Ep(θ)p(st+1|ξt,θ)

[
1

2
log det(V[p(st+1|ξt)])−

1

2
log det(V[p(st+1|ξt, θ)])

]
=

=
1

2

(
log det(V[p(st+1|ξt)])− Ep(θ)

[
log det(V[p(st+1|ξt, θ)])

])
,
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Figure 4: Comparison of uncertainty quantification models on a simple one dimensional regression
example. The sample size of generated data points is n = 100. The models considered are, starting
from the top left corner towards the bottom right corner: i) Exact GP, trained on the whole sample; ii)
Exact DKL, trained on the whole sample; iii) Stochastic Variational GP, trained on the ELBO loss
over a subset of 20 data points; iv) SV DKL, trained the same way as SVGP; v) SV DKL coupled
with dropout fully-connected ResNet structure and Bi-Lipschitz constraints to avoid feature collapse;
vi) Deep ensembles made of 5 neural networks models.

where V[p(·)] denotes the variance of distribution p(·).

C Additional Information on the BAE procedure

This section is intended to clarify some of the main components featuring in the Bayesian Active
Exploration procedure that we introduce in the main paper. In particular, we describe the choice
of the environment dynamics model and the predictive MCTS algorithm, with posterior predictive
sampling.

C.1 Models for the Environment Dynamics

As for the first fundamental component of the BAE algorithm, that is, a Bayesian model for the
environment dynamics, we have primarily considered three classes of models, namely (Stochastic
Variational) Gaussian Processes (Quinonero-Candela and Rasmussen, 2005; Rasmussen et al., 2006;
Hensman et al., 2013, 2015), Deep Kernels (Wilson et al., 2016a,b; Ober et al., 2021) and deep
ensembles (Lakshminarayanan et al., 2017; Rahaman et al., 2021).
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C.1.1 Gaussian Processes

GPs place a prior on the functional form of f(·) ∼ GP
(
m(·), k(·, ·)

)
, such that p(f) ≜

N (f |m(·), k(·, ·)
)
, where m(·) is a mean function (e.g., constant, linear, etc.) and k(·, ·) a ker-

nel function (e.g., linear, squared-exponential, matérn, etc.). Prior knowledge about f ∈ F can be
efficiently conveyed through the choice of m(·) and especially k(·, ·), which governs main features
of the function approximator f̂(·) such as smoothness and sparsity. The joint density of (y, f) and
the marginal likelihood, which is used for training, in a GP take the following form

p(y, f |X) = p(y|f , σ2)p
(
f |X;m(·), k(·, ·)

)
and p(y|X) =

∫
F
p(y|f , σ2)p(f |X) df ,

where all the quantities of interest can be computed analytically as the distributions are Gaussian.
From this point of view, GPs have the advantage of being complementary to the simplified version of
EIGθ(ξt) derived above, as their predictive posterior distribution on st+1 is in fact Gaussian as well.
Besides GPs are well-known for their excellent uncertainty quantification properties. Their main
drawback lies in their poor scalability, which is why we consider a Stochastic Variational approach
where we learn a sub-sample of inducing points u = {ui}mi=1 (Hensman et al., 2013, 2015). We
also considered using multitask/multioutput kernel learning (Alvarez et al., 2012) but did not notice
any significant improvements, while training costs were higher for the higher number of parameters
involved in the multi-task kernels.

Throughout the experiments presented in the work, we utilize a GP with constant prior mean function,
m(·) = 0 and with base squared exponential kernel k(x, y) = Cff (x, y) = exp{−l2∥x− y∥2}.

C.1.2 Deep Kernels

Deep kernels (Wilson et al., 2016a,b) are a generalization of GPs where inputs (st, at), or just st, are
first mapped to a (potentially lower dimensional) latent representation space ht, fh : S × A → H
or fh : S → H, through a deep learning architecture. Then, the function to predict the next state,
fs : H → S or fs : H × A → S, can be assigned any GP prior (e.g., SVGP). The advantage
of using deep kernels lies in the fact that they are better suited for dealing with high-dimensional
state-action spaces thanks to their deep architecture, while they retain good function approximation
and uncertainty quantification properties of GPs. On this matter, we specifically employ a version of
deep kernels that uses a fully-connected ResNet neural net architecture (with dropout) for fh(·) and
incorporates a bi-Lipschitz constraint on the transformations in fh(·) van Amersfoort et al. (2021), in
order to avoid the tendency of neural nets of exhibiting feature collapse (Guo et al., 2017; Ober et al.,
2021). Note that the last GP layer in a deep kernel model scales by construction at a O(m3|H|3)
training and O(m2|H|2) test cost, where |H| is directly controllable. Lastly, notice that a (SV) deep
kernel still allow one to use the simplified version of EIGθ(ξt) on the latent space H, i.e., EIGθ(ht),
as p(st+1|ht) is modelled as a Gaussian, as any component coming after the neural network block
that models p(st+1|ht) behaves exactly as a Gaussian Process.

We have also considered implementing the MC dropout (Gal and Ghahramani, 2016) technique
and apply it to the deep neural network layers of deep kernels in order to get better generalization
properties, but did not notice any further improvement. MC Dropout consists in re-sampling a
pre-trained neural network with dropout layers (Srivastava et al., 2014) K times, at test time, such
that each prediction {(y|X)}Ki=1 represents a sample from the predictive distribution q(· | ·), with
different weights ω = {W}Li=1 and biases b = {b}Li=1:

q(y∗ | x∗) =

∫
p(y∗ | x∗,W,b) p(W,b) dWdb.

MC Dropout approximates sampling from the Bayesian posterior predictive distribution, marginaliz-
ing out W,b. Perhaps the fact that MC dropout does not improve uncertainty quantification has to do
with the fact that using a sub-sample of input points through the SV inducing points procedure already
prevents the deep kernels model from being over-confident and collapsing to the mean (Rahaman
et al., 2021), resulting into better generalization properties than standard deep kernels. However, we
leave this topic to be investigated as part of future research.

Throughout the experiments, we consider a deep kernel model where the neural network architecture
consists of two hidden layers of [32, 32] units, and a GP with constant mean and squared exponential
kernel.
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Algorithm 1 Bayesian Active Exploration

Initialize: Transition Buffer D, Bayesian Dynamics Model p(f)

while Not Done do

AgentM ← PPO(S,A, ϵclip, γ) ▷ γ = learning rate

if t > t̄ then ▷ t̄ = warm-up

Sample {â(k)t }Kk=1 ∼ πexplore,ψ and

Sample J-length trajectories τ̂t = {(st+j , â(k)t+j , ŝt+1+j}Jj=0

Compute ut(st, â
(k)
t ) = EIGθ(st, â

(k)
t )

Solve πexplore,ψ ← PPO.update(τ̂t, ut)

Sample actual at+1 ∼ πexplore,ψ

end if

Add Dnew ← D ∪ {st, at, st+1} ▷ πexplore,ψ(at) random if t < t̄

Train dynamics model p(f |Dnew)
Get new posterior pθ′(st+1|st, at)

end while

1

Figure 5: Pseudo-code representation of the Bayesian Active Exploration (BAE) algorithm. With the
·̂ sign we denote estimated quantities, sampled from parametrized models (policy and environment),
e.g., â(k).

C.1.3 Deep Ensembles

Deep ensembles (Lakshminarayanan et al., 2017) are arguably the most popular standard tool for
uncertainty quantification in neural networks, thanks to their very good generalization properties
compared to other sampling techniques such as MC dropout. The main difference with MC dropout
is that deep ensembles requires to separately train (so they operate at train time) a pool of different
neural network independently on the same data. Deep ensembles have been shown to have good out
of sample uncertainty coverage (Wilson and Izmailov, 2020) in some examples, although they rarely
match that of Gaussian Processes.

Some of the models, and their variations, considered for the environment dynamics are compared in
the one dimensional regression example depicted in Figure 4. We use this simple example to depict
each candidate model’s generalization and uncertainty quantification properties. Description of each
model is enclosed in the figure’s caption. We can see how the best models emerging from this small
scale study are the Exact GP, SVGP and SVDKL. In particular, SV DKL trains over 15 times faster
than Exact DKL, and we notice that reducing the training sample to the 20 inducing points result in
better uncertainty coverage in SV DKL versus Exact DKL.

Throughout the experiments in this work, we consider a deep ensemble of 10 neural networks made
of two-hidden layer of [32, 32] units.

C.2 Posterior predictive MCTS sampling

In this section we briefly discuss the posterior predictive MCTS sampling procedure and provide a
high-level pseudo-code representation of the Bayesian Active Exploration algorithm, in Figure 5.

The fundamental difference between the posterior MCTS sampling we use and the standard random
MCTS, is that we use the posterior predictive distribution over the next state pθ(st+1|st, at) that we
obtain from our agent’s Bayesian model of the environment to sample trajectories (Ghavamzadeh
et al., 2015). This leads to more efficient trajectories sampling as we take into account more likely
agent’s moves, a posteriori.

There is a connection between the predictive MCTS procedure described in BAE (and in other
methods such as in Shyam et al. (2019)) and the concept of agent’s ‘imagination’, as in Hafner
et al. (2019). The trajectories sampled via this predictive MCTS procedure can be referred to as
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Figure 6: Example of unichain environment made of L = 7 states. Arrows represent the possible
actions in each state, state one is shaded to indicate that the agent is spawned there as s0 = 1.
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Noiseless Unichain L = 100

Model States Fraction

π-Expl 0.36 ± 0.07
ℓ2 Error 0.22 ± 0.05
VIME 0.34 ± 0.05

BAE DeepEns 0.99 ± 0.01
BAE GP 0.97 ± 0.04
BAE DK 0.99 ± 0.01

Figure 7: Results on the L = 100 states unichain environment exploration task. The plots show
the median cumulative fraction of states visited (solid line) together with the 75th and 25th error
bands, computed over 20 replications. The table instead reports the average fraction of states visited
at termination (i.e., after 400 steps), together with the 95% confidence intervals.

‘imaginary’, and the resulting collection of K trajectories is used to solve a so-called ‘ImaginaryMDP’
with .

C.2.1 Exploit-to-Explore

In the predictive MCTS procedure, a policy gradient (Kakade, 2001) algorithm is employed to solve
the ‘ImaginaryMDP’, formed by the trajectories obtained via the predictive posterior pθ(st+1|st, at).
In this work, we choose the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017),
but note that any other policy gradient algorithm serves the purpose (e.g., SAC). As in BA(L)E we
are already learning an exploration policy, we modify the PPO algorithm to make it fully exploitative
by removing any exploration bonus heuristics. Recall that the standard PPO loss reads:

LPPO
t (ψ) = E

[
LClip
t (ψ)− c1LValue

t (ψ) + c2H[πψ(st)]
]

where LClip
t is the clipped surrogate objective, LValue

t is a squared loss on the value function V (·)
and H[πψ(st)] is a policy entropy term used to ensure sufficient exploration (for more details see
Schulman et al. (2017)). Thus, to make PPO fully exploitative we remove the policy entropy bonus
term, c2 = 0, which is only needed when learning exploitative policies.

D Additional Experiments

D.1 The Unichain Environment

In this last supplementary material section we include a brief description of the Unichain enviroment,
plus additional results on it where we consider a longer chain of L = 100 states, without noise this
time.

As outlined in the main paper, the unichain environment consists in a simple sequence of L Markov
sequentially connected states, where the goal is usually to explore all the possible states and reach
the final one (Puterman, 2014; Osband et al., 2016). We consider a discrete action space defined as
A = {go left, stay, go right}, where each action’s consequence is self-explanatory. If the agent is in
the first or last state and tries to go left or right, it automatically hit a wall and remains in that state.
The agent is initially spawned in the second state s0 = 1 (state counter starting from 0). The reward

24



Model # Steps to Goal sT Rewards

π-Entropy 3371.0 ± 508.3 0.60 ± 0.21
ℓ2 Error 2821.6 ± 566.4 0.64 ± 0.20
VIME 3662.0 ± 481.9 0.36 ± 0.20

BAE DeepEns 1211.9 ± 334.4 1.0 ± 0.0
BAE GP 1304.2 ± 606.4 1.0 ± 0.0
BAE DK 863.8 ± 360.8 1.0 ± 0.0

Figure 8: On the left, a visual 3D rendition of a type of Medium Maze with wall ledges only. On the
right, a table reporting results of the different exploration methods in terms of average number of
steps required to reach the goal object and average reward at terminal state (st = 1.0 indicates that
the task is solved for all the runs), together with 90% Monte Carlo standard errors.

function re : S ×A → R is sparse and assigns 0.001 to visiting the first state, 1 to visiting the last
state, and 0 otherwise, i.e.:

re(st, at) =


0.001 if st = 0

1 if st = L

0 otherwise .

The sub-optimal reward associated with state 0 represents a ‘reward trap’ for algorithms based solely
on extrinsic reward exploitation, as it acts as disincentive for the agent to move elsewhere and explore.
Thus, strong exploration bonus is needed to move it away from there. A simple visual representation
of a L = 7 state unichain environment, together with the possible actions is depicted in Figure 6. The
shaded state s0 = 1 represents the spawning location.

D.2 Additional Experiments on the 100 States Unichain Environment

In this subsection, we present the additional results on the L = 100 unichain environment, but
without added noise this time. The task is again purely exploratory, and the methods compared are a
subset of those compared in the main paper: i) PPO policy entropy H(πψ(st)) regularizer (Schulman
et al., 2017) (pi-Entropy); ii) PPO with ℓ2 prediction error as reactive intrinsic reward (Stadie et al.,
2015; Pathak et al., 2017) (ℓ2 Error); iii) PPO with VIME, i.e., IGθ(·) as a reactive intrinsic reward
coupled with Bayesian Neural Network dynamics (Houthooft et al., 2016) (VIME); iv) Bayesian
Active Exploration with Deep Ensembles (Shyam et al., 2019); v) Bayesian Active Exploration with
SVGP (BAE GP); vi) Bayesian Active Exploration with Deep Kernels (BAE DK).

We measure performance of the methods again via the cumulative fraction of visited states at each
time step t, and the final fraction of coverage at episodic termination, which we set to be after 400
steps in this case, as the Markov chain of states is longer. Active methods are left running for 10 steps
initially in order to gather enough data to estimate pθ(st+1|st, at). Results over 20 seeded replication
of the experiment are reported in Figure 7’s plots and table. Similarly to the unichain L = 50 states
environment results presented in the main paper, active methods consistently outperform reactive
ones, as they require approximately 150 steps only to reach complete coverage of the environment
and solve the task.

D.3 Additional Details on the Medium Sized Maze

Finally, we report here a few extra information on the Maze environments, and results on the Medium
Maze version of it. The Maze environments are 2D, and their state space S features x and y
coordinates of the agent and x and y coordinates linear velocity of the agent. The continuous action
space A instead include coordinate’s linear force in the x and y directions.

Figure 8 above reports a visual 3D rendition of a prototypical type of open medium maze (with wall
ledges only); while the table reports results of the different exploration methods in terms of average
number of steps required to reach the goal object and average reward at terminal state (sT = 1.0
indicates that the agent has solved the task in all the different runs), together with 90% Monte Carlo
standard errors.
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