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ABSTRACT

Hardware-aware Neural Architecture Search (HW-NAS) has been drawing in-
creasing attention since it can automatically design deep neural networks opti-
mized in a resource-constrained device. However, existing methods may be not
optimal in terms of multi-object (accuracy, hardware-metrics). Thus, we pro-
pose a new multi-objective optimization method for searching promising archi-
tectures in HW-NAS. Our method addresses the architecture selection process in
NAS. An architecture population is divided into small cells by given hardware
cost metrics, then, top-ranked architecture is selected within each cell. The se-
lected ones guide the direction of evolution in NAS. Despite its simplicity, this
method leads to promising results, improving both accuracy and hardware met-
rics. Using latency as a hardware metric, we demonstrated that the optimized
architectures were found that run faster and achieve similar accuracy. We can also
significantly reduce cost of a search using both accuracy predictor and latency
estimator and sharing pre-trained weights of super-network. Overall searching
procedure takes under 1 minute on a single CPU. For a target hardware, we exper-
imented on both CPU and Field Programmable Gate Array (FPGA). The codes
are available at https://anonymous.4open.science/r/multi-objective-optimization-
OE27/README.md.

1 INTRODUCTION

Designing neural architecture for a Deep Neural Network (DNN) is very important because the ar-
chitecture mostly determines the performance of a DNN. However designing neural architecture is
not trivial but complex and time-consuming since the architectures could be complicated, consist-
ing of many layers which could be interconnected each other through residual connection (He et al.,
2015)), branch (Szegedy et al.,2014)), and squeeze-and-excitation (Howard et al.||2019), etc. Design-
ing of neural architecture requires repetitive experimentation and domain knowledge, thus it mainly
relied on human expertise.

Recently Neural Architecture Search (NAS), automatically designing neural network architectures
has been growing in popularity. NAS already demonstrated that the generated architectures are
competitive or even higher accuracy (Zoph & Le, [2017;|Zoph et al.|[2018; Benmeziane et al.,[2021)
compared to the traditional hand-designed ones such as AlexNet (Krizhevsky et al.,[2012)), VGGNet
(Simonyan & Zisserman), 2015), GoogleNet (Szegedy et al., 2014), ResNet (He et al., 2015)), etc.

Despite the significant success achieved to date, applying NAS to real-world applications still poses
substantial challenges and is not widely used. One of the reasons is that the generated neural network
architectures are too complex or big to be deployed in resource-constrained hardware platforms, such
as IoT, mobile device, and embedded systems.

To address the resource-constraint problems, Hardware-aware Neural Architecture Search (HW-
NAS) (Tan et al, [2019; Wu et al., 2019) has emerged as one of the most promising techniques.
HW-NAS can automate the designing process of deep neural architectures for a specific target hard-
ware. Most popular hardware cost metrics are inference latency time, power consumption, and
memory size. To adopt hardware awareness in NAS, a simple solution would be to include an addi-
tional proxy metric in existing NAS frameworks such as the number of parameters or the number of
floating-point operations (FLOPs) that describe the latency of a neural architecture on the hardware.
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Figure 1: Mono-objective optimized search with constraint. Left: Accuracy versus latency Right:
search progress of the experiment. Red dot and Blue dot are the best accuracy model under the
constraint. Top: search candidate models with accuracy by repeating for many iterations. Then, to
screen the models with latency constraints (e.g. 20ms, 10ms). Middle: search candidate models
under latency constraint 20ms. Bottom: search candidate models under latency constraint 10ms.

Applying NAS algorithms based on the proxy metrics, however, has uncertainty since the proxy
metrics do not always correlate well with measured hardware-metrics 2021). For instance,
inference latency depends on the characteristics of a specific hardware platform. To address this
issue, many hardware aware search algorithms directly retrieve latency from a given hardware plat-

form (Tan et al.,[2019; [Wu et al.} 2019} [Zhang et al.| [2020; Dong et al., 2021)), and search for optimal

architecture that can meet certain application or hardware constraints.

To satisfy such hardware constraints, for example, latency as the most dominant one, the following
two methods are typically implemented. The first method is to search candidate architectures with
accuracy by repeating for many iterations. Then, to screen only architectures satisfying the con-
straint of latency and to find the architecture with the highest accuracy within the constraint. The
other method is to apply the constraint of latency during the search process and to search candidate
architectures with accuracy under the constraint. Figure[T]illustrated the searching results for these
two methods.

The above two methods are based on mono-objective optimization and do not guarantee an optimal
solution for considering both accuracy and latency. Meanwhile, multi-objective optimization can
be applied, with the weighted sum of accuracy and latency with a fixed ratio (Elsken et al,[2019
Benmeziane et al.| as illustrated in Figure[l12|or a weighted product method (Tan et al.l 2019;
Abdelfattah et al., [2020) as illustrated in Figure% and Figure[T4] However, these approaches do
not guarantee either that the final output is optimized in terms of multi-object . Here we propose
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a simple and efficient multi-objective optimized method and redefine the terminology of optimality
from the most accurate model for a predetermined latency threshold to the most accurate models for
continuous latency thresholds instead of discrete latency thresholds.

We make the following contributions in this paper:

* We improve the efficiency of HW-NAS as multi-objective optimization. For the optimized
method, we propose a new approach based on epsilon-constraint method (Yang et al.,
2014), which divides an architecture population into many small cells based on hardware-
metrics, then for each cell, select top-ranked architectures. For instance, in the case of
latency as a hardware metric, the architectures achieving top accuracy are selected from
each cell and guide the direction of evolution in NAS.

* We significantly reduce the computational cost of the search phase in NAS. General NAS
requires huge computing costs for training and evaluating accuracy of sub-networks. We
built an accuracy predictor to predict the accuracy of a sub-network ,which correlation coef-
ficient of validation sample is 0.9635. This predictor-based approach significantly reduces
computing cost than general NAS and makes NAS more accessible.

* We developed a latency estimator, which provides accurate hardware latency value and can
be easily implemented and reproducible. Setting up measurement pipeline on a specific
hardware platform is not trivial and requires domain knowledge in a hardware inference.
Alternative way is to use pre-collected hardware cost look-up (Cai et al., 2020; |L1 et al.,
2021). However, we noticed that there is a gap between estimated value from a hardware-
latency look-up table and measured latency value. This gap could misguide HW-NAS to
suboptimal points. A latency estimator can eliminate complex data collection pipelines
for hardware devices. We built DNN-based latency estimators for both CPU and Field
Programmable Gate Array (FPGA) using thousands of (architecture, latency value) pairs.
The correlation coefficient of latency estimators is above 0.98 for validation samples. Using
both of accuracy predictor and latency estimator, we can reduce search process under 1
minute on a single CPU.

2 RELATED WORKS

A general NAS process consists of three main components: search space, search strategy, and evalu-
ation methodology. A search space is a set of neural network architectures. It determines how neural
network operators can be connected to form a valid network and which operators are allowed. A
search space is explored by a search strategy, which samples a population of neural architectures’
candidates. Then, the accuracy of the sampled architecture is evaluated using an evaluation method-
ology. Based on the measured accuracy, the search strategy guides more promising architectures for
a next generation in the search space.

Search space There are two kinds of search spaces, which are layer-wise search space and block-
based search space (Benmeziane et al., 2021). Block-based approach stacks a set of blocks to form
larger and deeper architectures, which is inspired from many state-of-arts hand-designed architec-
tures such as ResNet and Mobilenet (Howard et al., [2017). Meanwhile, Layer-wise search deter-
mines the number of layers and dimensions of each layer. A whole architecture is generated from
a pool of operators, where the first and the last layers are typically fixed by its operators, the re-
maining layers need to be optimized. Example operators are convolution, pooling, and activation
etc. Differently connecting these operators gives rise to a different architecture. A key aspect of
designing a well-performing deep neural network is deciding the type and number of neurons and
how to compose and connect them. Additionally, the architectural hyper-parameters such as stride
and the number of channels in a convolution are also needed to be optimized. We construct a layer-
wise search space with a fixed macro-architecture. In the case of Hardware-aware search space, a
restricted pool of operators is typically used. Some architectures’ operators are eliminated because
they do not perform well on a target hardware or are not supported by target hardware Intermediate
Representation (IR). In this work, we want our search space to be more hardware-friendly, therefore,
we did not include batch normalization, depth-wise convolution, squeeze-and-excitation (Howard!
et al.L[2019), and swish activation (Ramachandran et al.,|2017).
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Search strategy defines how candidate architectures are explored from the search space, either with
a generator or at random, and how the exploring strategy is updated to find promising architectures
according to an objective function. Search strategy algorithms usually fall into one of two categories:
Reinforcement Learning (RL) (Zoph & Lel 2017} Zoph et al.l [2018) and Evolutionary Algorithms
(EA) (Real et al., [2017; [2019). When using Reinforcement Learning, a recurrent neural network
(RNN) controller first samples a candidate architecture, and then trains it to convergence to measure
its performance on the task of desire, for example, accuracy on image classification. The controller
then uses the performance result as a guiding signal to find more promising architectures. This pro-
cess is repeated for many iterations. In the case of Evolutionary Algorithms, the initial population is
generated by randomly sampling architectures. Each architecture of the initial population is trained
using a train dataset and evaluated its performance on validation dataset. Based on the performance,
a small portion of architectures which are top ranked are selected. The selected architectures, called
an elite population, are applied through a series of transformations to generate a new population.
These transformations are mutations and crossover operations (Real et al.,|2017; |Benmeziane et al.,
2021). Mutation transforms one architecture into another through deletion, insertion, substitution
procedure. These mutation procedures are inspired by Genetics. Genetic mutation is a change in a
DNA sequence since deletion, insertion, substitution happen in a mistake as DNA sequence is being
copied (NIH! [a). While crossover operations merge two architectures into a new one by randomly
selecting each component of sequence from the two architectures. For search strategy, we are using
EA and transforming a neural architecture to another one using mutations and crossover operations.

Evaluation methodology To guide Search strategy, the performance of a candidate architecture is
needed to be evaluated. To evaluate the accuracy, which is the most popular performance metric, the
architecture is needed to be trained to convergence. Training a candidate architecture to convergence
requires intensive computing and usually takes several GPU hours. One of the alternative ways to
speed up the evaluating process is to estimate an accuracy without training an architecture. For ex-
ample, once-for-all network (Cai et al.l 2020) decouples search process and training process using
over-parameterized networks as a super-network and progressive shrinking algorithm to progres-
sively fine-tune smaller sub-networks that share weights with the larger ones. BRP-NAS (Lukasz
Dudziak et al., |2021)) and ProxylessNAS (Cai et al.l [2019) binarized the architecture parameters(1
or 0). NPENAS (Wei et al., [2020) proposed accuracy predictor based on Bayesian optimization or
a graph-based neural network. Then, the accuracy predictor is implemented in Evolutionary Al-
gorithm. However, their ranking method is mono-objective and takes 2 or 3 GPU days for search.
Neural predictor (Wen et al., [2019) built Neural Predictor using a regression model. However, the
correlation coefficient of validation data is only 0.649, which is much lower than 0.9635 in this
work. For predicting performance without training, Blockswap (Turner et al., [2020) used block
substitution for neural architecture search, and choose networks with block by passing a single
minibatch of training data through randomly initialized networks and gauging their Fisher potential.
For performance, they used parameter count instead of inference time. It takes under 5 minutes on
a single GPU. Ours takes under 1 minute on a single CPU. Zero-Cost Proxies (Abdelfattah et al.,
2021) used a single mini-batch of training data to compute a model’s score as an accuracy predic-
tor. However, the correlation coefficient of validation data is only 0.82. Distilling Optimal Neural
Networks (Moons et al., 2021)) built accuracy predictor based on blockwise knowledge distillation.
The correlation coefficient of valid accuracy is 0.91. In our accuracy evaluating method, we built
an accuracy predictor using more than 2,000 of (architecture, accuracy) pairs. Then, we estimated
accuracy for a given architecture, which is 1000x less expensive in computing than general NAS
evaluation methodology. Our search procedure takes less than 1 minute using a single CPU.

Hardware cost evaluation To apply NAS on a specific hardware, the constraints should be con-
sidered. For example, uNAS (Liberis et al.| 2020) used a set of constraints of peak memory usage,
model size and latency as hardware metrics. Hardware-agnostic metrics such as number of param-
eters or FLOPs do not guarantee low inference latency on different hardware platform (Li et al.,
2021). While these metrics have been commonly used to estimate the hardware cost, many works
have pointed out that DNNs with fewer FLOPs are not necessarily faster or more efficient (Tan
et al., 2019; |Wu et al} |2019; |Zhang et al.| 2020). uNAS (Liberis et al., [2020) used the number of
multiply-accumulate operations as a proxy for model latency. However, they claimed that FLOPs is
not good proxy for latency, which conflicts each other. Hardware metrics such as inference latency
time or power consumption need to be measured by a real-time execution of each architecture on a
targeted platform. Since the measured latency or power value are not persistent but fluctuate in time,
averaging the values after measuring many times is required. To reduce the burden of the cost of
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measuring hardware metrics, once-for-all network (Cai et al., |2020) calculated hardware latency by
summing up the latency value of all operations in an architecture based on a look-up table for each
operation. However, we found that there is a gap between the calculated latency value based on a
look-up table and measured latency value. This gap is quite sensitive to input image size or batch
size. Our guess is that data loading, tiling/scheduling, data movement may additionally contribute to
real-world latency on a hardware platform. BRP-NAS (Lukasz Dudziak et al.| 2021)) also proposed
a Graph convolutional networks-based predictor for latency. However, they did not report the corre-
lation coefficient of validation data for the latency predictor. In this work, we developed a latency
estimator based on measured latency values using a DNN. The correlation coefficient of our latency
estimators are 0.9885 on AMD EPYC CPU, 0.9333 on Intel Xeon CPU and 0.9865 on Xilinx Zynq
FPGA for validation samples.

Multi-objective optimization HW-NAS needs to adapt optimization method to achieve its multi-
objects. We compared two state of art HW-NAS methods, which are Once-for-all networks (Cai
et al.; 2020) and MnasNet (Tan et al., 2019). We implement optimization method of once-for-all
networks in Fig.1 and a optimization method of MnasNet in Fig.13 and 14. Codesign-NAS (Ab-
delfattah et al.| [2020) defined the multi-objective problem as a sequence of multiplication of objects,
which is similar to MnasNet (Tan et al.,[2019). Then, the object sequence is treated as reward for re-
inforcement learning. MOBO (Paria et al., 2019) proposed a Multi-Objective Bayesian Optimization
algorithm for exploration of specific parts of Parent front. tNAS (Liberis et al.,2020) used Bayesian
optimization for search algorithm. Distilling Optimal Neural Networks (Moons et al., |2021) used
evolutionary search to find pareto-optimal architectures using the accuracy predictor and on-device
measurement. Pareto-optimization is another multi-objective optimization algorithm (Deb et al.,
2002; Tan et al., 2019 Dong et al., 2018). Pareto frontier is a set of Pareto optimal solutions. We
tried to apply Pareto-optimal algorithm based on distance metric in NSGA-II (Deb et al.,|[2002). The
Pareto-optimal points were located in the left bottom portion from population in the graph of accu-
racy versus latency, which is similar with Fig.3 in NSGA-II (Deb et al., 2002). However, we need
top front points over all x-axis (latency) as shown in Figure[1I] We proposed a simple alternative
method, which is based on epsilon-constraint method (Yang et al., [2014)).

3 METHODS

To demonstrate the efficiency of our proposed multi-object optimization method, we built our own
search space based on VGGNet (Simonyan & Zisserman, 2015)) and used EA as our search strategy.
We aim to discover neural architectures with high accuracy and low latency on our target device, Xil-
inx Zynq ZU9EG FPGA on ZCU102 evaluation board. FPGA has been used as an Al acceleration
platform with a high flexibility in terms of the hardware resources. The FPGA chip on the board can
be directly converted to an embedded system without extra work. In addition, we evaluated latency
on AMD EPYC 7F52 16-Core CPU as a baseline for latency evaluation.

For our search space, we imported blocks from VGGNet and stack them to form a architecture. Since
VGGNet was introduced at ILSVRC (ImageNet Large Scale Visual Recognition Competition) 2014,
the architecture has become one of the most popular architectures for many applications including
image classification and object detection. VGGNet consists of 5 blocks of convolutional layers
and one block of dense layers, where the number of convolutional layers in each block is different
depending on the sub-networks. VGGNet has 4 sub-networks, denoted as 11, 13, 16, 19 by counting
the total number of convolutional layers and dense layers in the architecture. The architectures for 4
VGG sub-networks are illustrated in Appendix.

We built a super-network based on VGG-19 architecture. The architecture of our super-network
is illustrated in Figure 2] (Top). In the super-network, the first two blocks consist of 2 convolution
layers, the next three blocks consist of 4 convolution layers, and the last block consists of 2 dense
layers. The flatten layer from original VGGNet is substituted with global average pooling layer
to reduce wide bandwidth during inference. The super-network includes the largest values for the
number of blocks, and layers, and channels. This super-network was trained only once to get the
weights of all the parameters of every sub-network. Then, we trained each sub-network using the
pre-trained weights of the parameters of the super-network instead of starting from random initial-
ization.Our approach speeds up the convergence of sub-networks and provides the consistent result
of the accuracy of the sub-network.



Under review as a conference paper at ICLR 2022

Directly applying NAS to a large-scale ImageNet dataset (Deng et al.| 2009) is computationally
too expensive or impossible using a single GPU. To reduce the training time, we choose 20 classes
from the original 1000 classes to train the super-network and sub-networks. The 20 classes are
chosen with the least number of images per class in the training dataset. Our architecture search
framework is implemented in keras (Chollet et al., 2015). We applied transfer learning to train
the super-network. Using the pre-trained weight for the original 1000 classes from keras library,
we fine-tuned the super-network of the 20 classes for 60 epochs with learning rate as 0.001 and
stochastic gradient descent (SGD) optimizer.

We built a search space based on the super-network. The architecture of search space is illustrated
in Figure [2] (Bottom). In the search space, the number of layers of each block and channels of each
layer need to be optimized with a given input image size. The kernel size of convolution operators is
fixed in this work, but can be optimized further. The input image size can be chosen from [128, 160,
192, 224, 256]; the number of layers of each block (denoted as depth) can be chosen from [1,2] for
the first two convolutional blocks, [1,2,3,4] for the next three convolutional blocks, [0,1,2] for the
last dense block; Each block has its own number of channels as [64, 128, 256, 512, 512, 4096]. The
number of channels in each layer (denoted as width) can be chosen from the ratio of [0.25, 0.5, 0.75,
1] to the original number; for the kernel size, we fixed it as 3x3 convolution. Therefore, the size of
the search space is roughly ((42 +4)2 x (4* +4%+42+4)3 x (42 +4+41)) x 5 ~ 10'2. Each neural
network architecture is encoded as a numerical sequence vector like the string of a DNA sequence.
Then the sequence vector is transformed to a new vector by mutating the sequence or crossing over
two sequences as described in Section [2] The new sequence vector is decoded as a new neural
architecture. Applying these transformations many times, a new population is generated.
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Figure 2: Top: the architecture of super-network in this work Bottom: Search space in this work,
where s is input image size in [128, 160, 192, 224, 256], x is width ratio in [0.25, 0.5, 0.75, 1], the
number of layer in each block (depth) is needed to be optimized.

To address the huge computing cost and speed up the evaluating procedure of accuracy and latency,
we built an accuracy predictor for any architecture in the search space and a latency estimator with a
given target hardware. We collected more than 2,000 of (architecture, accuracy) pairs after training
architectures and measuring accuracy against the validation dataset. Based on the pairs, we built
an accuracy predictor using a DNN. The 2,000s of architectures were generated using EA and fine-
tuned using the pre-trained weight of the super-network for 10 epochs with learning rate 0.001 and
SGD optimizer. Training with the pre-trained weight from the super-network produces consistent
accuracy of sub-networks, which makes it possible to build an accuracy predictor. The collected
(architecture, accuracy) pairs were used to train an accuracy predictor. We used two hidden layers of
a neural network that has 800 neurons in each layer as the accuracy predictor. Given an architecture,
we encode input image size, the number of layers in each block, the number of channels in each
layer into a one-hot vector, respectively. Then, we concatenate these vectors into one large vector
that represents a whole architecture. The one-hot vector is then fed to the multi-layer neural network
to predict accuracy. The architecture of the accuracy predictor and the correlation between predicted
accuracy and actual one are shown in Appendix. Our predictor-based approach accelerates the NAS
search process by significantly reducing heavy search cost.
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Since model size or FLOPs does not guarantee high inference speed on a hardware platform, mea-
suring real-world latency is required. However deploying a model on a certain hardware platform
and directly measuring latency hundred times can be another complicated data collection pipeline.
Therefore, we built a latency estimator based on real-world latency values. In the case of CPU, we
measured 100 times latency values after warming up 50 times for each architecture on AMD EPYC
7TF52 processor. Then, we averaged them for thousands of architecture. In the case of FPGA, we
measured 30 times latency values for each architecture on Xilinx Zynq ZU9EG after quantization,
compiling, and runtime with Xilinx Intermediate Representation (XIR) and Deep-Learning proces-
sor Unit (DPU) (Xilinx| ja)). Our latency estimator provides more reliable latency data without a
complicated hardware measurement pipeline.

Using EA as a search strategy, the typical searching procedure is described as follows. The initial
population is generated with random sampling. We fixed the population size as 100. The architec-
tures of the initial population are evaluated for their accuracy and latency. Then, the architectures
which accuracy are within the top 25 percentile are selected as elite population. From the elite pop-
ulation, new architectures are constructed by applying transformation procedures such as mutation
and crossover, which cause a random modification of the architecture and are described in detail in
Section [2| The new architectures are added to the next generation of population. Once the next gen-
eration is constructed with its fixed population size, the architectures inside of the next generation
are evaluated for their accuracy and latency for selecting elite population. This procedure is repeated
many cycles as illustrated in Figure [5]to evolve and get improved architecture in terms of accuracy
and latency. For each cycle, a new elite population is selected by competing the next generation of
population with the previous elite population. This process is called tournament evolution (Gold-
berg & Debl [1991; |Real et al., [2017). Meanwhile, if the new elite population is selected directly
from the next population without competing with the previous elite population, it is called aging
evolution (Real et al.| 2019).

As an architecture selection process in EA, we propose upfront, a simple and efficient method to se-
lect the elite population based on epsilon-constraint method (Yang et al., |2014). Upfront algorithm
divides current population by small cell based on hardware constraint Threshold AT grid. The grid
can be one-dimensional if there is only one hardware constraint such as latency or power consump-
tion, or two-dimensional if there are two hardware constraints. Then, Upfront selects a top accuracy
architecture within each cell. The selected architectures would be promising candidates in terms of
accuracy and hardware constraints. The detailed implementation is described in Appendix.

General NAS can be mathematically described as an optimization problem to find an architecture a
with the highest accuracy acc(a) on the validation dataset within the search space A.

arg max acc(a) (1)
acA

Meanwhile, HW-NAS seeks to find an architecture a that achieves the highest accuracy acc(a) while
the inference latency lat(a, h) is under Threshold T for a given hardware platform h.

arg max acc(a)
acA )
s.t. lat(a,h) <T

To implement HW-NAS by mono-objective optimization, there are typically two approaches. One
is to search candidate architectures with accuracy like equation [T| by repeating for many iterations.
Then, to screen the models by applying latency constraint. The other is to search candidate archi-
tectures under latency constraint like equation 2]

To get an optimal point, we should consider multi-objective optimization. When we apply multi-
objective optimization on HW-HAS, we should satisfy the following two conditions at the same
time.

arg max acc(a) N arg minlat(a, h) 3)
acA acA

The multi-objective optimization can be practically implemented using the weighted sum of accu-
racy and latency with fixed weight ratio, wq and ws.
w2

argmaxa € Alwyacc(a) + m] )



Under review as a conference paper at ICLR 2022

Accuracy
Accuracy
L]

0 5 10 15 20 25 30 35 40 0 200 400 600 800 1000
Latency(ms) Number of Modesl| searched

'
06 bos (S |
L)

Accuracy
Accuracy

0 10 20 30 40 50 60 o 200 400 600 800 1000
Latency(ms) Number of Modesl| searched

Figure 3: Multi-objective optimized search using this work. Left: accuracy versus latency Right:
search progress of the experiment, where green points are the architectures with the optimal trade-
offs between accuracy and inference latency. Top: Target hardware is Xilinx Zynq ZU9EG FPGA
Bottom: Target hardware is AMD EPYC 7F52 CPU.

There is another way to implement multi-objective optimization using a customized weighted prod-

uct method (Tan et al, 2019). Given an architecture a, accuracy acc(a), latency lat(a, h), and

latency Threshold T, the optimization is defined as:

lat(a, h
arg max acc(a) X [M
acA T

I ®)

where w is the weight factor defined as:

w=q, if lat(a,h)<T ©)

= (3, otherwise
In the case of hard constraint, the suggested weight factor values are & =0, 5 = -1. In the case of
soft constraint, the weight factor values are o = 5 = -0.07.

In the case of upfront, our multi-object optimization method, we divided hardware performance
range as a small cell. Then, we seek max accuracy within each cell AT;;.

arg max acc(a) | ATy, 7
a€A

4 EXPERIMENTAL RESULTS

Figure [T| shows evolutionary search results through mono-objective optimized procedure for 10 cy-
cles, and inference latency constraint as 10ms or 20ms. As expected, the validation accuracy im-
proves as search progresses for all the cases. However, the best selected architecture is not guaran-
teed as the optimal point in terms of accuracy and latency.

Figure [12] shows the search result by applying equation ] with different weight ratio of w; and
wy. When the wy is larger than w;, where the impact of latency is dominant, the accuracy does
not improve but decreases as search is in progress. The best accuracy model came from random
sampling, not evolutionary search. When the ws is much smaller than w;, where the factor of
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latency is minor, the accuracy is improved as searching is in progress. But the evolution progress is
quite similar to the case of the mono-objective optimization in Figure [lI|without hardware constraint.
Weighted product method (Tan et al., 2019) can be an alternative, whose result is shown in detail in
Appendix. It turns out that it is very hard to optimize the multi-object using the weighted sum or
weighted product.

Figure [3|shows the search result using equation([7] In this work, we used latency as a hardware con-
straint. The first generation is the initial population from random sampling. After that, accuracy is
improved every generation. We highlighted the architectures with optimal trade-offs between accu-
racy and inference latency as green dots. The green dots are mainly distributed in recent generations.
From the highlighted architectures, we have freedom to choose an optimal architecture depending
on hardware constraint of inference latency as one-shot.

We compare typical mono-objective search results and multi-objective search results using upfront
in Figure The data points came from the optimal architectures by considering both accuracy
and latency from Figure [I| and Figure [3] We also include the results from VGGNet 11/13/16/19
sub-networks with 20 classes and global average pooling layer. The VGGNet sub-networks were
fine-tuned with the same hyper-parameters for the other sub-networks. They were trained with the
pre-trained weight of the super-network for 10 epochs, learning rate as 0.001 and SGD optimizer.
The VGGNet sub-networks show a typical trade-off between accuracy and latency. Meanwhile, the
optimized architectures using EA can keep its good accuracy even with very low latency regimes.
The benefit of EA in a low latency regime is much obvious in the case of multi-objective optimization
search using upfront.
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Figure 4. Comparison between mono-objective search and multi-objective search in Accuracy ver-
sus latency. Target hardware is Xilinx Zynq ZU9EG FPGA. The gray dots are mono-objective search
result and green dots are multi-objective search result using upfront algorithm. The brown dots are
VGGNet 11/13/16/19 sub-networks.

5 CONCLUSIONS

This work presents a simple and efficient approach for multi-objective optimization for neural ar-
chitecture search targeting a certain hardware platform. Our main contribution is implementing
epsilon-constraint based multi-objective optimization algorithm, selecting an architecture whose ac-
curacy is the top within each cell of hardware cost metrics. This produces optimized architectures
which run faster and achieve similar accuracy. We also were able to significantly reduce computing
cost of the architecture search process by building both accuracy predictor and latency estimator
with high correlation coefficient of validation samples. Searching procedure takes under 1 minute
on a single CPU in this work.
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A SEARCHING PROCEDURE

Our overall searching procedure in EA is illustrated in Figure [5]

B VGG SUB-NETWORKS

We illustrated the architectures of 4 VGG sub-networks in Figure[§] Each sub-network consists of
5 convolutional blocks and 1 dense block. The size of the feature map is decreased by half for each
block due to the pooling layer. The number of layers in each convolutional block varies depending
on the VGG sub-networks.
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Figure 5: Searching procedures in Evolutionary Algorithms. The procedure of selecting elite popu-

lation and generating next population is repeated many cycles.
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Figure 6: The architecture of VGGNet sub-networks; VGGNet-11,13,16,19 from top to bottom
racy predictor. The accuracy predictor is a Deep Neural Network(DNN) with two hidden layers

and predicts accuracy with a given architecture. The architecture of the predictor is illustrated in

Figure[7(Right). The input format is a one-hot vector to represent the architecture of a sub-network.
The Pearson correlation coefficient of train and validation data is 0.9978 and 0.9635 respectively.

This high correlation is available since the sub-networks are trained with the weight parameters from

Figure [/(Left) shows correlation between predicted accuracy and actual accuracy using our accu-
the super-network.

C PREDICTING ACCURACY
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Figure 7: Left: Predicted accuracy versus Actual accuracy. The Pearson Correlation Coefficient of
valid data is 0.9635. Right: the architecture of accuracy predictor

D PREDICTING LATENCY

Figure 8| Top) shows the relationship between actual latency and FLOPs on AMD EPYC 7F52 CPU.
Figure %Bottom) shows correlation between predicted latency and actual latency on AMD EPYC
7F52 CPU using our latency predictor. The latency estimator is a DNN with two hidden layers and
predicts CPU latency with a given architecture. The architecture of the estimator is the same as
illustrated in Figure [7(Right). The input format is a one-hot vector to represent the architecture of a
sub-network. The Pearson correlation coefficient of train and validation data is 0.9998 and 0.9885
respectively.

Figure [9(Top) shows the relationship between actual latency and FLOPs on Intel Xeon(R) Gold
6252 CPU. It is interesting that the relationship of latency versus FLOPs are not linear in the case
of Intel CPU. Figure [(Bottom) shows correlation between predicted latency and actual latency on
Intel Xeon(R) Gold 6252 CPU using our latency predictor. The architecture of the latency estimator
is the same as illustrated in Figure [/(Right). The input format is a one-hot vector to represent the
architecture of a sub-network. The Pearson correlation coefficient of train and validation data is
0.9748 and 0.9333 respectively.

In the case of FPGA, we could not collect actual FPGA latency for thousands of sub-networks
since the sub-networks are required to be quantized, compiled, and deployed on a FPGA board to
measure latency. Instead, we counted FLOPs of thousands of sampled sub-networks. Then, based
on its FLOPs, hundreds of sub-networks were selected, so FPGA latency values would be evenly
distributed over a wide range. Then, we executed the selected sub-networks on a FPGA board after
quantization, compiling, and runtime with Xilinx Intermediate Representation (XIR) and Deep-
Learning processor Unit (DPU) (Xilinx, [a). The DPU is a programmable engine optimized for deep
neural networks and a group of parameterizable IP cores pre-implemented on the hardware. The
DPU defines which operators to support depending on the DPU types. The XIR is a graph-based
intermediate representation of the machine learning algorithms which is designed for compilation
and efficient deployment of the DPU on the FPGA platform. After all, we measured actual inference
time of the selected sub-networks on a FPGA board and calculated latency as the mean value for the
inference times with 30 different input images.

Figure [T0] (Top) shows the correlation between the measured FPGA latency versus FLOPs. The
Pearson Correlation coefficient is 0.9939, which shows very strong correlation between the actual
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Figure 8: Hardware: AMD EPYC 7F52 CPU, Top: CPU latency versus FLOPs Bottom: Predicted
latency versus Actual latency

latency and the FLOPs. Thus, FPGA latency is calculated based on the FLOPs of an architecture
using a linear regression model.

Using the calculated latency values and its architecture, we built an latency estimator. The archi-
tecture of FPGA latency estimator is same as illustrated in Figure [J{Right). The input format is
one-hot vector to represent the architecture of a sub-network. Figure[I0](Bottom) shows the correla-
tion between predicted latency and actual latency on Xilinx Zynq ZU9EG FPGA using our latency
predictor. The Pearson correlation coefficient of train, validation, test data is 0.9996, 0.9892, and
0.9865 respectively.

E UPFRONT IMPLEMENTATION

We propose upfront, an algorithm to select top candidates from a population in terms of accuracy
with a given hardware constraints. The hardware constraints can be one variable such as latency or
two variables consisting of latency and power consumption. In this illustration, we show latency
as the hardware constraint. The algorithm divides current population into small cells based on
hardware-metric grid. Then, the algorithm selects a top accuracy architecture within each cell. The
selected architectures would be promising candidates in terms of accuracy and hardware constraints
as illustrated in Figure[TT].
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Figure 9: Hardware: Intel Xeon(R) Gold 6252 CPU, Top: CPU latency versus FLOPs Bottom:
Predicted latency versus Actual latency

F MULTI-OBJECTIVE OPTIMIZED SEARCH BY A WEIGHTED SUM METHOD

Figure [I2] shows the searching result for the weighted sum of accuracy and latency with different
weight ratios.

G MULTI-OBJECTIVE OPTIMIZED SEARCH BY A WEIGHTED PRODUCT
METHOD

Figure [[3] and Figure [T4] show the searching results for the weighted product method with hard and
soft constraint respectively. The accuracy is improved as searching is in progress. But the evolution
progress is quite similar to the case of the mono-objective optimization as shown in Figure [T} This
approach does not guarantee that the final output is optimized in terms of multi-object.
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Figure 11: Example of selecting top accuracy architecture within each cell based on latency grid.
The red dot is the selected architecture from each cell.
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Figure 12: Multi-objective optimized search by applying the weighted sum of accuracy and latency.
Left: accuracy versus latency Right: search progress of the experiment, Red dot is the best accu-
racy model under the latency constraint 20ms. Top: the weight ratio of accuracy and latency is 1/5.
Middle: the weight ratio is 1/1. Bottom: the weight ratio is 1/0.5.
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