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Abstract
While agents trained by Reinforcement Learn-
ing (RL) can solve increasingly challenging tasks
directly from visual observations, generalizing
learned skills to novel environments remains very
challenging. Extensive use of data augmentation
is a promising technique for improving general-
ization in RL, but it is often found to decrease
sample efficiency and can even lead to divergence.
In this paper, we investigate causes of instability
when using data augmentation in common off-
policy RL algorithms. We identify two problems,
both rooted in high-variance Q-targets. Based on
our findings, we propose a simple yet effective
technique for stabilizing this class of algorithms
under augmentation. We perform extensive em-
pirical evaluation of image-based RL using both
ConvNets and Vision Transformers (ViT) on a
family of benchmarks based on DeepMind Con-
trol Suite, as well as in robotic manipulation tasks.
Our method greatly improves stability and sample
efficiency of ConvNets under augmentation, and
achieves generalization results competitive with
state-of-the-art methods for image-based RL. We
further show that our method scales to RL with
ViT-based architectures, and that data augmenta-
tion may be especially important in this setting.1

1. Introduction
Reinforcement Learning (RL) from visual observations has
achieved tremendous success in various applications such
as video-games (Mnih et al., 2013; Berner et al., 2019;
Vinyals et al., 2019), robotic manipulation (Levine et al.,
2016), and autonomous navigation (Mirowski et al., 2017;
Zhu et al., 2017). However, it is still very challenging for
current methods to generalize the learned skills to novel
environments, and policies trained by RL can easily overfit
to the training environment (Zhang et al., 2018; Farebrother
et al., 2018), especially for high-dimensional observation

1All authors affiliated with UC San Diego. Project page:
https://nicklashansen.github.io/SVEA.

spaces, e.g. images (Cobbe et al., 2019; Song et al., 2020).

Increasing variability in training data via domain randomiza-
tion (Tobin et al., 2017; Pinto et al., 2017) and data augmen-
tation (Shorten & Khoshgoftaar, 2019; Laskin et al., 2020;
Kostrikov et al., 2020; Raileanu et al., 2020) has demon-
strated encouraging results for learning policies invariant
to environment changes. Specifically, recent works on data
augmentation (Laskin et al., 2020; Kostrikov et al., 2020;
Hansen & Wang, 2021) show improvements in sample effi-
ciency from simple cropping and translation augmentations,
but also conclude that stronger data augmentation in fact de-
creases sample efficiency and even cause divergence. While
these augmentations have the potential to improve gener-
alization, increasingly varied data makes the optimization
more challenging and risks instability. Unlike supervised
learning, balancing the trade-off between stability and gen-
eralization in RL requires substantial trial and error.

In this paper, we illuminate theoretically grounded causes
of instability when applying data augmentation to common
off-policy RL algorithms (Mnih et al., 2013; Lillicrap et al.,
2016; Fujimoto et al., 2018; Haarnoja et al., 2018). Based on
our findings, we provide an intuitive method for stabilizing
this class of algorithms under use of strong data augmen-
tation. Specifically, we find two main causes of instability
in previous work’s application of data augmentation: (i)
indiscriminate application of data augmentation resulting
in high-variance Q-targets; and (ii) that Q-value estimation
strictly from augmented data results in over-regularization.

To address these problems, we propose SVEA: Stabilized
Q-Value Estimation under Augmentation, a simple yet ef-
fective framework for data augmentation in off-policy RL
that greatly improves stability of Q-value estimation. Our
method consists of the following three components: Firstly,
by only applying augmentation in Q-value estimation of
the current state, without augmenting Q-targets used for
bootstrapping, SVEA circumvents erroneous bootstrapping
caused by data augmentation; Secondly, we formulate a
modified Q-objective that optimizes Q-value estimation
jointly over both augmented and unaugmented copies of the
observations; Lastly, for SVEA implemented with an actor-
critic algorithm, we optimize the actor strictly on unaug-
mented data, and instead learn a generalizable policy indi-

https://nicklashansen.github.io/SVEA
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rectly through parameter-sharing. Our framework can be
implemented efficiently without additional forward passes
nor introducing additional learnable parameters.

We perform extensive empirical evaluation on the DeepMind
Control Suite (Tassa et al., 2018) and extensions of it, in-
cluding the DMControl Generalization Benchmark (Hansen
& Wang, 2021) and the Distracting Control Suite (Stone
et al., 2021), as well as a set of robotic manipulation tasks.
Our method successfully stabilizes Q-value estimation with
ConvNets under a set of strong data augmentations, and
achieves sample efficiency, asymptotic performance, and
generalization that is competitive or better than previous
state-of-the-art methods. Finally, we show that our method
scales to RL with Vision Transformers (ViT) (Dosovitskiy
et al., 2020). We find that ViT-based architectures are es-
pecially prone to overfitting, and data augmentation may
therefore be a key component for large-scale RL.

2. Related Work
Representation Learning. Learning visual invariances us-
ing data augmentation and self-supervised objectives has
proven highly successful in computer vision (Pathak et al.,
2016; Noroozi & Favaro, 2016; Zhang et al., 2016; Wu
et al., 2018; van den Oord et al., 2018; Tian et al., 2019;
Xu et al., 2020; He et al., 2020; Chen et al., 2020). For
example, Chen et al. (Chen et al., 2020) perform an exten-
sive study on data augmentation (e.g. random cropping
and image distortions) for contrastive learning, and show
that representations pre-trained with such transformations
transfer effectively to downstream tasks. While our work
also uses data augmentation for learning visual invariances,
we leverage the Q-objective of deep Q-learning algorithms
instead of auxiliary representation learning tasks.

Visual Learning for RL. Numerous methods have been
proposed with the goal of improving sample efficiency
(Jaderberg et al., 2016; Shelhamer et al., 2017; van den
Oord et al., 2018; Yarats et al., 2019; Lin et al., 2019;
Srinivas et al., 2020; Stooke et al.; Schwarzer et al., 2020;
Yarats et al., 2021) of image-based RL. Recently, using
self-supervision to improve generalization in RL has also
gained interest (Zhang et al., 2020; Pathak et al., 2019;
Sekar et al., 2020; Agarwal et al., 2021; Hansen et al., 2020;
Hansen & Wang, 2021; Wang et al., 2021). Notably, Zhang
et al. (Zhang et al., 2020) and Agarwal et al. (Agarwal et al.,
2021) propose to learn behavioral similarity embeddings via
auxiliary tasks (bisimulation metrics and contrastive learn-
ing, respectively), and Hansen et al. (Hansen & Wang, 2021)
learn visual invariances through an auxiliary prediction task.
While these results are encouraging, it has also been shown
in (Jaderberg et al., 2016; Lin et al., 2019; Hansen et al.,
2020; Yu et al., 2020; Lyle et al., 2021) that the best choice
of auxiliary tasks depends on the particular RL task, and that

joint optimization with sub-optimally chosen tasks can lead
to gradient interference. We achieve competitive sample-
efficiency and generalization results without the need for
carefully chosen auxiliary tasks, and our method is therefore
applicable to a larger variety of RL tasks.

Data Augmentation and Randomization for RL. Our
work is directly inspired by previous work on generalization
in RL by domain randomization (Tobin et al., 2017; Pinto
et al., 2017; Peng et al., 2018; Ramos et al., 2019; Cheb-
otar et al., 2019) and data augmentation (Lee et al., 2019;
Cobbe et al., 2018; Wang et al., 2020; Laskin et al., 2020;
Kostrikov et al., 2020; Raileanu et al., 2020; Stooke et al.;
Hansen & Wang, 2021). For example, Tobin et al. (Tobin
et al., 2017) show that a neural network trained for object
localization in a simulation with randomized visual augmen-
tations improves real world generalization. Similarly, Lee
et al.(Lee et al., 2019) show that application of a random
convolutional layer to observations during training improve
generalization in 3D navigation tasks. More recently, ex-
tensive studies on data augmentation (Laskin et al., 2020;
Kostrikov et al., 2020) have been conducted with RL, and
conclude that, while small random crops and translations
can improve sample efficiency, most data augmentations
decrease sample efficiency and cause divergence. We illu-
minate main causes of instability, and propose a framework
for data augmentation in deep Q-learning algorithms that
drastically improves stability and generalization.

Improving Deep Q-Learning. While deep Q-learning al-
gorithms such as Deep Q-Networks (DQN) (Mnih et al.,
2013) have achieved impressive results in image-based RL,
the temporal difference objective is known to have inher-
ent instabilities when used in conjunction with function
approximation and off-policy data (Sutton & Barto, 2018).
Therefore, a variety of algorithmic improvements have been
proposed to improve convergence (Hasselt et al., 2016b;
Wang et al., 2016; Hausknecht & Stone, 2015; Hasselt et al.,
2016a; Schaul et al., 2016; Lillicrap et al., 2016; Fujimoto
et al., 2018; Fortunato et al., 2018; Hessel et al., 2018). For
example, Hasselt et al. (Hasselt et al., 2016b) reduce over-
estimation of Q-values by decomposing the target Q-value
estimation into action selection and action evaluation using
separate networks. Lillicrap et al. (Lillicrap et al., 2016)
reduce target variance by defining the target Q-network
as a slow-moving average of the online Q-network. Our
method also improves Q-value estimation, but we specifi-
cally address the instability of deep Q-learning algorithms
on augmented data.

3. Preliminaries
Problem formulation. We formulate the interaction be-
tween environment and policy as a Markov Decision Pro-
cess (MDP) (Bellman, 1957)M = 〈S,A,P, r, γ〉, where
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S is the state space, A is the action space, P : S ×A 7→ S
is the state transition function that defines a conditional
probability distribution P (·|st,at) over all possible next
states given a state st ∈ S and action at ∈ A taken
at time t, r : S × A 7→ R is a reward function, and
γ ∈ [0, 1) is the discount factor. Because image obser-
vations only offer partial state observability (Kaelbling
et al., 1998), we define a state st as a sequence of k + 1
consecutive frames (ot,ot−1, . . . ,ot−k), o ∈ O, where
O is the high-dimensional image space, as is common
practice (Mnih et al., 2013). The goal is then to learn
a policy π : S 7→ A that maximizes discounted return
Rt = EΓ∼π[

∑T
t=1 γ

tr(st,at)] along a trajectory Γ =
(s0, s1, . . . , sT ) obtained by following policy π from an ini-
tial state s0 ∈ S to a state sT with state transitions sampled
from P , and π is parameterized by a collection of learnable
parameters θ. For clarity, we hereon generically denote
parameterization with subscript, e.g. πθ. We further aim
to learn parameters θ s.t. πθ generalizes well (i.e. obtains
high discounted return) to novel MDPs, which is generally
unfeasible without further assumptions about the structure
of the space of MDPs. In this work, we therefore consider
generalization to MDPsM = 〈S,A,P, r, γ〉, where states
st ∈ S are constructed from observations ot ∈ O, O ⊆ O
of a novel observation space O, andM∼M for a space of
MDPs M.

Deep Q-Learning. Common model-free off-policy RL
algorithms aim to estimate an optimal state-action value
function Q∗ : S × A 7→ R as Qθ(s,a) ≈ Q∗(s,a) =
maxπθ E [Rt|st = s,at = a] using function approximation.
In practice, this is achieved by means of the single-step
Bellman residual

(
r(st,at) + γmaxa′

t
Qtgt
ψ (st+1,a

′
t)
)
−

Qθ(st,at) (Sutton, 2005), where ψ parameterizes a target
state-action value function Qtgt. We can choose to minimize
this residual (also known as the temporal difference error)
directly wrt θ using a mean squared error loss, which gives
us the objective

LQ(θ, ψ) = Est,at,st+1∼B

[
1

2

[
qtgt −Qθ(st,at)

]2]
(1)

qtgt = r(st,at) + γmax
a′
t

Qtgt
ψ (st+1,a

′
t) , (2)

where B is a replay buffer with transitions collected by
a behavioral policy (Lin, 2004). From here, we can de-
rive a greedy policy directly by selecting actions at =
arg maxat Qθ(st,at). WhileQtgt = Q and periodically set-
ting ψ ←− θ exactly recovers the objective of DQN (Mnih
et al., 2013), several improvements have been proposed to
improve stability of Eq. 1, such as Double Q-learning (Has-
selt et al., 2016b), Dueling Q-networks (Wang et al., 2016),
updating target parameters using a slow-moving average of
the online Q-network (Lillicrap et al., 2016):

ψn+1 ←− (1− ζ)ψn + ζθn (3)

for an iteration step n and a momentum coefficient ζ ∈
(0, 1], and others (Hausknecht & Stone, 2015; Hasselt et al.,
2016a; Schaul et al., 2016; Fortunato et al., 2018; Hessel
et al., 2018). As computing maxa′

t
Qtgt
ψ (st+1,a

′
t) in Eq. 1

is intractable for large and continuous action spaces, a num-
ber of prominent actor-critic algorithms that additionally
learn a policy πθ(st) ≈ arg maxat Qθ(st,at) have there-
fore been proposed (Lillicrap et al., 2016; Fujimoto et al.,
2018; Haarnoja et al., 2018).

Soft Actor-Critic (SAC) (Haarnoja et al., 2018) is an off-
policy actor-critic algorithm that learns a state-action value
function Qθ and a stochastic policy πθ (and optionally a
temperature parameter), where Qθ is optimized using a vari-
ant of the objective in Eq. 1 and πθ is optimized using a
γ-discounted maximum-entropy objective (Ziebart et al.,
2008). To improve stability, SAC is also commonly im-
plemented using Double Q-learning and the slow-moving
target parameters from Eq. 3. We will in the remainder of
this work describe our method in the context of a generic off-
policy RL algorithm that learns a parameterized state-action
value function Qθ, while we in our experiments discussed
in Section 6 evaluate of our method using SAC.

4. Pitfalls of Data Augmentation in Deep
Q-Learning

In this section, we aim to illuminate the main causes of
instability from naı̈ve application of data augmentation inQ-
value estimation. Our goal is to learn aQ-functionQθ for an
MDPM that generalizes to novel MDPsM∼M, and we
leverage data augmentation as an optimality-invariant state
transformation τ to induce a bisimulation relation (Larsen
& Skou, 1989; Givan et al., 2003) between a state s and its
transformed (augmented) counterpart saug = τ(s, ν) with
parameters ν ∼ V .

Definition 1 (Optimality-Invariant State Transformation
(Kostrikov et al., 2020)). Given an MDPM, a state trans-
formation τ : S × V 7→ S is an optimality-invariant state
transformation if Q(s,a) = Q(τ(s, ν),a) ∀ s ∈ S, a ∈
A, ν ∈ V , where ν ∈ V parameterizes τ .

Following our definitions of M,M from Section 3, we
can further extend the concept of optimality-invariant trans-
formations to MDPs, noting that a change of state space
itself can be described as a transformation τ : S × V 7→ S
with unknown parameters ν ∈ V . If we choose the set of
parameters V of a state transformation τ to be sufficiently
large, we can therefore expect to improve generalization
to state spaces not seen during training. However, while
naı̈ve application of data augmentation as in (Laskin et al.,
2020; Kostrikov et al., 2020; Stooke et al.; Schwarzer et al.,
2020) may potentially improve generalization, it can be
harmful to Q-value estimation. We hypothesize that this
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Figure 1. Mean difference in Q-value estimation on aug-
mented vs. non-augmented data. We measure the mean absolute
error in Q-value estimation from converged DrQ (Kostrikov et al.,
2020) agents (trained with shift augmentation) on the same obser-
vations before and after augmentation. Averaged across 5 seeds of
DrQ for each of the 5 tasks from DMControl-GB.

is primarily because it dramatically increases the size of
the observed state space, and consequently also increases
variance Var [Q(τ(s, ν))] ≥ Var [Q(s)] , ν ∼ V when V is
large. Concretely, we identify the following two issues:

Pitfall 1: Non-deterministic Q-target. For deep Q-
learning algorithms, previous work (Laskin et al., 2020;
Kostrikov et al., 2020; Stooke et al.; Schwarzer et al.,
2020) applies augmentation to both state saug

t , τ(st, ν)
and successor state saug

t+1 , τ(st+1, ν
′) where ν, ν′ ∼

V . Compared with DQN (Mnih et al., 2013) that uses
a deterministic (more precisely, periodically updated) Q-
target, this practice introduces a non-deterministic Q-target
r(st,at) + γmaxa′

t
Qtgt
ψ (saug

t+1,a
′
t) depending on the aug-

mentation parameters ν′. As observed in the original DQN
paper, high-variance target values are detrimental to Q-
learning algorithms, and may cause divergence due to the
“deadly triad” of function approximation, bootstrapping, and
off-policy learning (Sutton & Barto, 2018). This motivates
the work to introduce a slowly changing target network,
and several other works have refined the Q-target update
rule (Lillicrap et al., 2016; Fujimoto et al., 2018) to fur-
ther reduce volatility. However, because data augmentation
is inherently non-deterministic, it greatly increases vari-
ance in Q-target estimation and exacerbates the issue of
volatility. This is particularly troubling in actor-critic al-
gorithms such as DDPG (Lillicrap et al., 2016) and SAC
(Haarnoja et al., 2018), where theQ-target is estimated from
(st+1,a

′), a′ ∼ π(·|st+1), which introduces an additional
source of error from π that is non-negligible especially when
st+1 is augmented.

Pitfall 2: Over-regularization. Data augmentation was
originally introduced in the supervised learning regime as a
regularizer to prevent overfitting of high-capacity models.
However, for RL, even learning a policy in the training en-
vironment is hard. While data augmentation may improve
generalization, it greatly increases the difficulty of policy
learning, i.e., optimizing θ forQθ and potentially a behavior
network πθ. Particularly, when the temporal difference loss
from Eq. 1 cannot be well minimized, the large amount of
augmented states dominate the gradient, which significantly

impacts Q-value estimation of both augmented and unaug-
mented states. We refer to this issue as over-regularization
by data augmentation. Figure 1 shows the mean difference
in Q-predictions made with augmented vs. unaugmented
data in fully converged DrQ (Kostrikov et al., 2020) agents
trained with shift augmentation. Augmentations such as
affine-jitter, random convolution, and random overlay incur
large differences in estimated Q-values. While such differ-
ence can be reduced by regularizing the optimization with
each individual augmentation, we emphasize that even the
minimal shift augmentation used throughout training incurs
non-negligible difference. Since ψ is commonly chosen
to be a moving average of θ as in Eq. 3, such differences
caused by over-regularization affect Qθ and Qtgt

ψ equally,
and optimization may therefore still diverge depending on
the choice of data augmentation. As such, there is an in-
herent trade-off between accurate Q-value estimation and
generalization when using data augmentation. In the follow-
ing section, we address these pitfalls.

5. Method
We propose SVEA: Stabilized Q-Value Estimation under
Augmentation, a general framework for generalization by
data augmentation in RL. SVEA applies data augmentation
in a novel learning framework leveraging two data streams –
with and without augmented data, respectively. Our method
is compatible with any standard off-policy RL algorithm
without changes to the underlying neural network that pa-
rameterizes the policy, and it requires no additional forward
passes, auxiliary tasks, nor learnable parameters. While
SVEA does not make any assumptions about the structure
of states st ∈ S , we here describe our method in the context
of image-based RL.

5.1. Architectural Overview

An overview of the SVEA architecture is provided in Fig-
ure 2. Our method leverages properties of common neu-
ral network architectures used in off-policy RL without
introducing additional learnable parameters. We subdi-
vide the neural network layers and corresponding learn-
able parameters of a state-action value function into sub-
networks fθ (denoted the state encoder) and Qθ (denoted
the Q-function) s.t qt , Qθ(fθ(st),at) is the predicted Q-
value corresponding to a given state-action pair (st,at). We
similarly define the target state-action value function s.t.
qtgt
t , r(st,at) + γmaxa′

t
Qtgt
ψ (f

tgt

ψ (st+1),a′) is the target
Q-value for (st,at), and we define parameters ψ as an ex-
ponential moving average of θ as in Eq. 3. Depending on
the choice of underlying algorithm, we may choose to addi-
tionally learn a parameterized policy πθ that shares encoder
parameters with Qθ and selects actions at ∼ πθ(·|fθ(st)).

To circumvent erroneous bootstrapping from augmented
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Figure 2. Overview. An observation st is transformed by data augmentation τ(·, ν), ν ∼ V to produce a view saug
t . The Q-function Qθ

is then jointly optimized on both augmented and unaugmented data wrt the objective in Eq. 8, with the Q-target of the Bellman equation
computed from an unaugmented observation st+1. We illustrate our data-mixing strategy by the ⊗ operator.

data (as discussed in Section 4), we strictly apply data aug-
mentation in Q-value estimation of the current state st,
without applying data augmentation to the successor state
st+1 used in Eq. 1 for bootstrapping with Qtgt

ψ (and πθ if
applicable), which addresses Pitfall 1. If πθ is learned (i.e.
SVEA is implemented with an actor-critic algorithm), we
also optimize it strictly from unaugmented data. To mitigate
over-regularization in optimization of fθ and Qθ (Pitfall 2),
we further employ a novel Q-objective that leverages both
augmented and unaugmented data, which we introduce in
the following section.

5.2. Learning Objective
Our method redefines the temporal difference objective from
Eq. 1 to better leverage data augmentation. First, recall that
qtgt
t = r(st,at) + γmaxa′

t
Qtgt
ψ (f

tgt

ψ (st+1),a′). Instead of
learning to predict qtgt

t only from state st, we propose to min-
imize a linear combination of LQ over two individual data
streams, st and saug

t = τ(st, ν), ν ∼ V , which we define as
the objective

LSVEA
Q (θ, ψ) , αLQ

(
st, q

tgt
t

)
+ βLQ

(
saug
t , qtgt

t

)
(4)

= Est,at,st+1∼B

[
α
∥∥Qθ(fθ(st),at)− qtgt

t

∥∥2

2
(5)

+ β
∥∥Qθ(fθ(saug

t ),at)− qtgt
t

∥∥2

2

]
, (6)

where α, β are constant coefficients that balance the ratio
of the unaugmented and augmented data streams, respec-
tively, and qtgt

t is computed strictly from unaugmented data.
LSVEA
Q (θ, ψ) serves as a data-mixing strategy that oversam-

ples unaugmented data as an implicit variance reduction
technique. As we will verify empirically in Section 6, data-
mixing is a simple and effective technique for variance
reduction that works well in tandem with our proposed mod-
ifications to bootstrapping. For α = β, the objective in
Eq. 5 can be evaluated in a single, batched forward-pass by

rewriting it as:

gt = [st, τ(st, ν)]N , ht =
[
qtgt
t , q

tgt
t

]
N , (7)

LSVEA
Q (θ, ψ) = Est,at,st+1∼B, ν∼V (8)[
(α+ β) ‖Qθ(fθ(gt),at)− ht‖22

]
, (9)

where [·]N is a concatenation operator along the batch di-
mension N for st, s

aug
t ∈ RN×C×H×W and qtgt

t ∈ RN×1,
which is illustrated as ⊗ in Figure 2. Empirically, we find
α = 0.5, β = 0.5 to be both effective and practical to imple-
ment. If the base algorithm of choice learns a policy πθ, its
objective Lπ(θ) is optimized solely on unaugmented states
st without changes to the objective, and a stop-grad
operation is applied after fθ to prevent non-stationary gra-
dients of Lπ(θ) from interfering with Q-value estimation,
i.e. only the objective from Eq. 5 or optionally Eq. 8 up-
dates fθ using stochastic gradient descent. As described in
Section 5.1, parameters ψ are updated using an exponen-
tial moving average of θ and a stop-grad operation is
therefore similarly applied after Qtgt

ψ . We summarize our
method for α = β applied to a generic off-policy algorithm
in Algorithm 1.

6. Experiments
We evaluate both sample efficiency, asymptotic perfor-
mance, and generalization of our method and a set of strong
baselines in tasks from DeepMind Control Suite (DMCon-
trol) (Tassa et al., 2018) as well as a set of robotic manip-
ulation tasks. DMControl offers challenging and diverse
continuous control tasks and is widely used as a benchmark
for image-based RL (Hafner et al., 2019; 2020; Yarats et al.,
2019; Srinivas et al., 2020; Laskin et al., 2020; Kostrikov
et al., 2020). To evaluate generalization of our method
and baselines, we test methods under challenging distribu-
tion shifts (as illustrated in Figure 3) from the DMControl
Generalization Benchmark (DMControl-GB) (Hansen &
Wang, 2021), the Distracting Control Suite (DistractingCS)
(Stone et al., 2021), as well as distribution shifts unique
to the robotic manipulation environment. Code is avail-
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Algorithm 1 Generic SVEA off-policy algorithm (I naı̈ve augmentation, I our modifications)

θ, θπ, ψ: randomly initialized network parameters, ψ ←− θ B Initialize ψ to be equal to θ
η, ζ: learning rate and momentum coefficient
α, β: loss coefficients, default: (α = 0.5, β = 0.5)

1: for timestep t = 1...T do
act:

2: at ∼ πθ (·|fθ(st)) B Sample action from policy
3: s′t ∼ P(·|st,at) B Sample transition from environment
4: B ← B ∪ (st,at, r(st,at), s

′
t) B Add transition to replay buffer

update:
5: {si,ai, r(si,ai), s′i | i = 1...N} ∼ B B Sample batch of transitions
6: si = τ(si, νi), s

′
i = τ(s′i, ν

′
i), νi, ν

′
i ∼ V I Naı̈ve application of data augmentation

7: for transition i = 1..N do
8: θπ ←− θπ − η∇θπLπ (si; θπ) (if applicable) B Optimize πθ with SGD
9: qtgt

i = r(si,ai) + γmaxa′
i
Qtgt
ψ (f tgt

ψ (s′i),a
′
i) B Compute Q-target

10: saug
i = τ(si, νi), νi ∼ V I Apply stochastic data augmentation

11: gi =
[
si, s

aug
i

]
N , hi =

[
qtgt
i , q

tgt
i

]
N I Pack data streams

12: θ ←− θ − η∇θLSVEA
Q (gi, hi; θ, ψ) I Optimize fθ and Qθ with SGD

13: ψ ←− (1− ζ)ψ + ζθ B Update ψ using EMA of θ

test

training colors natural videos camera poses

Figure 3. Experimental setup. Agents are trained in a fixed envi-
ronment (the training environment) and are expected to generalize
to novel environments with e.g. random colors, backgrounds, and
camera poses.

able at https://github.com/nicklashansen/
dmcontrol-generalization-benchmark.

Setup. We implement our method and baselines using SAC
(Haarnoja et al., 2018) as base algorithm, and we apply ran-
dom shift augmentation to all methods by default, which
makes our base algorithm equivalent to DrQ (Kostrikov
et al., 2020). Network architecture and hyperparameters are
adopted from (Hansen & Wang, 2021), and observations
are stacks of 3 RGB frames of size 84 × 84 × 3. In our
DMControl-GB and DistractingCS experiments, all meth-
ods are trained for 500k frames2 and evaluated on the full
set of tasks proposed in DMControl-GB. For simplicity, we
adopt the same experimental setup for robotic manipulation.

Baselines and data augmentations. We benchmark our
method against the following strong baselines: (1) CURL
(Srinivas et al., 2020), a contrastive learning method for
RL; (2) RAD that applies a random crop; (3) DrQ that
applies a random shift; (4) PAD (Hansen et al., 2020)

2Note that some works using DMControl evaluate after a num-
ber of simulation steps, which is comparably less frames for a
frame skip > 1. We follow previous work on generalization
(Hansen et al., 2020; Hansen & Wang, 2021; Wang et al., 2021).

that adapts to test environments using self-supervision; (5)
SODA (Hansen & Wang, 2021) that applies data augmenta-
tion in auxiliary learning; as well as a number of ablations.
We experiment with a diverse set of data augmentations pro-
posed in previous work on RL and computer vision, namely
random shift (Kostrikov et al., 2020), random convolution
(denoted conv) (Lee et al., 2019), random overlay (Hansen
& Wang, 2021), random cutout (Cobbe et al., 2018), Gaus-
sian blur, random affine-jitter, and random rotation (Laskin
et al., 2020; Gidaris et al., 2018).

6.1. Stability and Generalization on DMControl
We evaluate sample efficiency, asymptotic performance, and
generalization of SVEA, DrQ, and a set of ablations across
all 5 tasks from DMControl-GB, and report training and
test curves in Figure 4. SVEA outperforms all baselines
on the test environment – often by a large margin – and
maintains a sample efficiency comparable to DrQ trained
without strong augmentation, while DrQ degrades substan-
tially when using the additional conv augmentation. We
examine the reason for SVEA’s success with the following
two ablations: a data-mixing only variant that applies our
data-mixing strategy in both Qθ, Qtgt

ψ , and πθ, as well as a
variant of SVEA that only applies augmentation in Qθ but
does not apply data-mixing. We find that both components
of SVEA are necessary to achieve both stability and the
generalization benefits of strong data augmentation. We
further evaluate the stability of SVEA and DrQ under 6
common data augmentations; results are shown in Figure 5.
While the sample efficiency of DrQ degrades substantially
for most augmentations, SVEA is relatively unaffected by
the choice of data augmentation and improves sample effi-

https://github.com/nicklashansen/dmcontrol-generalization-benchmark
https://github.com/nicklashansen/dmcontrol-generalization-benchmark
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Figure 4. Training and test performance. We compare SVEA to DrQ with and without random convolution augmentation, as well as
a set of ablations. Data-mixing only indiscriminately applies our data-mixing strategy to all data streams, and (α = 0, β = 1) only
augments Q-predictions but without data-mixing. We find both components to contribute to SVEA’s success. Top: episode return
on the training environment during training. Bottom: generalization measured by episode return on the color hard benchmark of
DMControl-GB. Mean of 5 seeds, shaded area is ±1 std. deviation.
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Figure 5. Data augmentations. Training performance of SVEA
(top) and DrQ (bottom) under 6 common data augmentations.
Mean of 5 seeds. Red line for visual guidance.

ciency in all 18 instances. See supplementary material for a
per-augmentation comparison. Because we empirically find
the conv augmentation to be particularly difficult to opti-
mize, we provide additional stability experiments in Section
6.2 and 6.3 using this augmentation.

To benchmark the generalization ability of SVEA, we com-
pare its test performance to 5 recent state-of-the-art meth-
ods for image-based RL on the challenging color hard
and video easy benchmarks from DMControl-GB, and
report results in Table 1. All methods use the same architec-
ture and hyperparameters whenever applicable, and we here
use conv and overlay augmentations for fair comparison to
SODA. SVEA outperforms all methods considered in 9 out
of 10 instances, and at a significantly lower computational
cost than CURL, PAD, and SODA that learn auxiliary tasks.
We further evaluate generalization on DistractingCS, an ex-
tremely challenging benchmark for generalization where
camera pose, background, and colors are continually chang-
ing throughout an episode. Figure 6 (top) shows a compari-

Table 1. Comparison to state-of-the-art. Test performance
(episode return) of methods trained in a fixed environment and
evaluated on: (top) randomized colors; and (bottom) natural video
backgrounds as visual distraction. Results for CURL, RAD, PAD,
and SODA are obtained from (Hansen & Wang, 2021) and we
report mean and std. deviation of 5 seeds. SVEA achieves compet-
itive results in all tasks.

DMControl-GB CURL RAD DrQ PAD SODA SODA SVEA SVEA
(random colors) (conv) (overlay) (conv) (overlay)

walker, 445 400 520 468 697 692 760 749
walk ±99 ±61 ±91 ±47 ±66 ±68 ±145 ±61

walker, 662 644 770 797 930 893 942 933
stand ±54 ±88 ±71 ±46 ±12 ±12 ±26 ±24

cartpole, 454 590 586 630 831 805 837 832
swingup ±110 ±53 ±52 ±63 ±21 ±28 ±23 ±23

ball in cup, 231 541 365 563 892 949 961 959
catch ±92 ±29 ±210 ±50 ±37 ±19 ±7 ±5

finger, 691 667 776 803 901 793 977 972
spin ±12 ±154 ±134 ±72 ±51 ±128 ±5 ±6

DMControl-GB CURL RAD DrQ PAD SODA SODA SVEA SVEA
(natural videos) (conv) (overlay) (conv) (overlay)

walker, 556 606 682 717 635 768 612 819
walk ±133 ±63 ±89 ±79 ±48 ±38 ±144 ±71

walker, 852 745 873 935 903 955 795 961
stand ±75 ±146 ±83 ±20 ±56 ±13 ±70 ±8

cartpole, 404 373 485 521 474 758 606 782
swingup ±67 ±72 ±105 ±76 ±143 ±62 ±85 ±27

ball in cup, 316 481 318 436 539 875 659 871
catch ±119 ±26 ±157 ±55 ±111 ±56 ±110 ±106

finger, 502 400 533 691 363 695 764 808
spin ±19 ±64 ±119 ±80 ±185 ±97 ±86 ±33

son of SVEA with conv and overlay augmentations to DrQ
over a range of gradually increasing intensity of distractions,
averaged across all 5 tasks from DMControl-GB. SVEA im-
proves generalization by 42% at low intensity, and degrades
significantly slower than DrQ for high intensities.

6.2. RL with Vision Transformers
Vision Transformers (ViT) (Dosovitskiy et al., 2020) have
recently achieved impressive results on downstream tasks in
computer vision. We replace all convolutional layers from
the previous experiments with a 4-layer ViT encoder that
operates on raw pixels in 8 × 8 space-time patches, and
evaluate our method using data augmentation in conjunction
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Figure 6. (Top) DistractingCS. Mean return as a function of ran-
domization intensity, aggregated across 5 seeds and all 5 tasks from
DMControl-GB. SVEA improves generalization at all intensities.
(Bottom) RL with Vision Transformers. Training and test per-
formance (color hard) of SVEA and DrQ using ViT encoders.
Mean of 5 seeds, shaded area is ±1 std. deviation. SVEA is stable
under augmentation and dramatically improves generalization.

with ViT encoders. Results are shown in Figure 6 (bottom).
We are, to the best of our knowledge, the first to successfully
solve image-based RL tasks without CNNs. We observe
that DrQ overfits significantly to the training environment
compared to its CNN counterpart. SVEA achieves com-
parable sample efficiency and improves generalization by
706% and 233% on Walker, walk and Cartpole, swingup,
respectively, over DrQ, while DrQ + conv remains unstable.
Interestingly, we observe that our ViT-based implementa-
tion of SVEA achieves a mean episode return of 877 on the
color hard benchmark of the challenging Walker, walk
task (vs. 760 using a CNN). SVEA might therefore be a
promising technique for future RL studies with CNN-free
architectures, where data augmentation appears to be espe-
cially important.

6.3. Robotic Manipulation

We additionally consider a set of goal-conditioned robotic
manipulation tasks using a simulated Kinova Gen3 arm: (i)
reach, a task in which the robot needs to position its gripper
above a goal indicated by a red mark; (ii) reach moving tar-
get, a task similar to (i) but where the robot needs to follow
a red mark moving continuously in a zig-zag pattern at a
random velocity; and (iii) push, a task in which the robot
needs to push a cube to a red mark. The initial configuration

test

training randomized environments

Figure 7. Robotic manipulation. Agents are trained in a fixed
environment and evaluated on challenging environments with ran-
domized colors, lighting, background, and camera pose.
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Figure 8. Stability. Training performance (episode return) of
SVEA and DrQ in 3 robotic manipulation tasks. Mean and std.
deviation of 5 seeds. Success rates are shown in Table 2.

Table 2. Generalization in robotic manipulation. Task success
rate in 25 different test environments with randomized camera
pose, colors, lighting, and background. Mean of 5 seeds.

Robotic reach reach mv.trg. mv.trg. push push
manipulation (train) (test) (train) (test) (train) (test)

DrQ 1.00 0.60 1.00 0.69 0.76 0.26
DrQ + conv 0.59 0.77 0.60 0.89 0.13 0.12
SVEA w/ conv 1.00 0.89 1.00 0.96 0.72 0.48

of gripper, object, and goal is randomized, the agent uses
2D positional control, and policies are trained using dense
rewards. Observations are stacks of RGB frames with no ac-
cess to state information. Training and test environments are
shown in Figure 7. Results are shown in Figure 8 and Table
2. SVEA trained with conv augmentation exhibits similar
stability and sample efficiency as DrQ trained without, while
DrQ + conv is found to have poor sample efficiency and
fails to solve the challenging push task. SVEA outperforms
both baselines in terms of generalization. Interestingly, we
find that naı̈ve application of data augmentation has a higher
success rate in test environments than the DrQ baseline,
despite being less successful in the training environment,
which we conjecture is because it is optimized only from
augmented data. Conversely, SVEA achieves high success
rates during both training and testing.

Conclusion. SVEA is found to greatly improve both stabil-
ity and sample efficiency under augmentation, while achiev-
ing competitive generalization results. Our experiments
indicate that our method scales to ViT-based architectures,
and it may therefore be a promising technique for large-
scale RL experiments where data augmentation is expected
to play an increasingly important role.
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