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Abstract

We study the problem of clustering a set of items
based on bandit feedback. Each of the n items is
characterized by a feature vector, with a possibly
large dimension d. The items are partitioned into
two unknown groups, such that items within the
same group share the same feature vector. We con-
sider a sequential and adaptive setting in which,
at each round, the learner selects one item and
one feature, then observes a noisy evaluation of
the item’s feature. The learner’s objective is to
recover the correct partition of the items, while
keeping the number of observations as small as
possible. We provide an algorithm which relies
on finding a relevant feature for the clustering
task, leveraging the Sequential Halving algorithm.
With probability at least 1− δ, we obtain an accu-
rate recovery of the partition and derive an upper
bound on the budget required. Furthermore, we
obtain an instance-dependent lower bound, which
is tight in some relevant cases.

1. Introduction
We consider a sequential and adaptive pure exploration prob-
lem, in which a learner aims to cluster a set of items, each
represented by a feature vector in Rd. The items are par-
titioned into two unknown groups such that items within
the same group share the same feature vector. The learner
sequentially selects an item and a feature, and then observes
a noisy evaluation of the chosen feature of that item. Given
a prescribed probability δ, the learner’s objective is to col-
lect enough information to recover the partition of the items
with a probability of error at most δ.
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This problem arises in crowdsourcing platforms, where com-
plex labeling tasks are decomposed into simpler sub-tasks,
typically involving answering specific questions about an
item – see (Ariu et al., 2024). A motivating example is im-
age labeling: a platform sequentially presents an image to a
user along with a simple question such as “Is this a vehicle?”
or “How many wheels can you see?”. The learner leverages
these answers to classify the images into categories. In this
setting, the images correspond to items that must be clus-
tered, while questions correspond to features. This problem
is a special case of the model studied in (Ariu et al., 2024),
where the authors numerically demonstrate the advantage
of an adaptive sampling scheme over non-adaptive ones.
However, they do not establish the theoretical validity of
their adaptive procedure.

From a theoretical perspective, our problem consists of
clustering n items based on sequential and adaptive queries
to some of their d features. Intuitively, the difficulty of the
clustering task is driven by the differences between items
in different groups across these d features. In particular, it
depends both on the magnitude of these differences and on
their sparsity–that is, the number of features on which the
items differ significantly.

In this work, we precisely characterize the sample complex-
ity of the two-group1 clustering task, in a fully adaptive
setting. Our main contributions are as follows:

• We introduce the BanditClustering procedure –
Algorithm 4. On the one hand, it outputs the correct
partition of the items with a prescribed probability 1−δ.
On the other hand, it adapts to the unknown means of
the groups in order to sample at most the informative
features. In Theorem 3.1, we provide a tight, non-
asymptotic upper bound on its sample complexity as a
function of n, d, log(1/δ), and the difference between
the means.

• Conversely, we establish in Section 4 an information-
theoretic lower bound on the budget, which entails the
optimality of BanditClustering.

From a high-level perspective, our algorithm operates in
three steps: first, it identifies a pair of representative items

1In the core manuscript, we focus on K = 2 groups. We
discuss how to extend our ideas to K > 2 clusters in Appendix C.
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belonging to different groups; second, it selects a feature
that best discriminates between the groups; and finally, it
leverages this discriminative feature to cluster all items.

Connection to good arm identification and adaptive sens-
ing literature. One of the key challenges is to achieve the
trade-off between the budget used for identifying a good
discriminative feature, and the budget used for the clustering
task. We borrow techniques from the best-arm identification
literature, specifically employing the Sequential Halving
algorithm (Karnin et al., 2013) as a subroutine, leveraging
its strong performance in settings where multiple arms are
nearly optimal (Zhao et al., 2023; Katz-Samuels & Jamieson,
2020; Chaudhuri & Kalyanakrishnan, 2019). The first iden-
tification step — finding two items belonging to distinct
groups — is closely related to the adaptive sensing strate-
gies for signal detection, as studied in (Castro, 2014), where
the problem is framed as a sequential and adaptive hypoth-
esis testing task. Furthermore, our approach incorporates
ideas from (Castro, 2014; Saad et al., 2023) to efficiently
identify the most informative features for clustering.

Connection to dueling bandits literature. Our bandit
clustering problem is an instance of a pure bandit explo-
ration problem, where one can sample interaction between
items and features. In that respect, it is also related to rank-
ing (Saad et al., 2023) and dueling bandits in the online
literature (Ailon et al., 2014; Chen et al., 2020; Heckel et al.,
2019; Jamieson & Nowak, 2011; Jamieson et al., 2015; Ur-
voy et al., 2013; Yue et al., 2012; Haddenhorst et al., 2021)
where the goal is to recover a partition of the items based
on noisy pairwise comparisons. Some of the ranking pro-
cedures are based on estimating the Borda count (Heckel
et al., 2019), some other procedures, such as (Saad et al.,
2023), aim at adapting to the unknown form of the com-
parison matrix to reduce the total budget. In essence, our
approach is related, as it seeks to balance the trade-off be-
tween identifying relevant entries and exploiting them for
efficient comparisons.

Connection to other bandit clustering problems. Recent
works (Yang et al., 2024; Thuot et al., 2025; Yavas et al.,
2025) have investigated clustering in a bandit setting, where
items must be clustered based on noisy evaluations of their
feature vectors. However, in these settings, the entire feature
vector of the chosen item is observed at each sampling step,
whereas in our framework, only a single feature of a given
item is observed per step. Our observation scheme enables
a more efficient allocation of the budget by focusing on
the most relevant features — those that best discriminate
between groups. The trade-off between exploring relevant
features and exploiting them for classification is at the core
of our work. This allows us to cluster the items with a much
lower observation budget than in (Yang et al., 2024; Thuot
et al., 2025) — see the discussion section. Other authors

have previously introduced adaptive clustering problems
for crowdsourcing (Ho et al., 2013; Gomes et al., 2011),
although their settings does not directly relate to ours.

Connection to online clustering of bandits. We point out
another line of works (Gentile et al., 2014; Li et al., 2019;
Liu et al., 2022; Li et al., 2025) on the so-called online
clustering of bandits problem – an instance of contextual
linear bandit. This problem bears some resemblance to our
setting, as it involves exploring a bandit environment with an
underlying clustering structure among items. Still, there are
two major differences with our problem: (1) the learner has
no control over which items are presented at each time step,
and (2) the algorithms (such as the CLUB Algorithm and
its extensions) are designed and evaluated in a cumulative
regret setting.

Organization of the manuscript. The model is introduced
along with notation in the following Section 2. In Sec-
tion 3, we describe our procedure and analyze its sample
complexity. Section 4 provides matching lower bounds on
the budget that imply the optimality of our procedure. Fi-
nally,we present numerical experiments in Section 5 and
discuss possible extensions in Section 6.

2. Problem formulation and notation
Consider a set of n items, indexed by [n] = {1, . . . , n}.
Each item is characterized by a feature vector of dimension
d, where the number of features d may be large. Let M ∈
Rn×d be the n × d matrix such that the i-th row of M
contains the feature vector of item i. We denote the feature
vector of item i as Mi,· = (Mi,1, . . . ,Mi,d). We assume
that the n items are partitioned into two unknown groups,
such that items within the same group share the same feature
vector. The groups are assumed to be nonempty and non-
overlapping. The objective is to recover these two groups.

Assumption 2.1 (Hidden partition). There exist two distinct
vectors µ0 ∈ Rd and µ1 ∈ Rd, and a non-constant label
vector g ∈ {0, 1}n such that for any item i ∈ [n],

Mi,· =

{
µ0 if g(i) = 0 ,

µ1 if g(i) = 1 .

As is standard in clustering, (g, µ0, µ1) encodes the same
matrix M as (1− g, µ1, µ0). Therefore, we assume without
loss of generality that g(1) = 0 in order to make the label
vector g identifiable.

We consider a bandit setting, in which the learner sequen-
tially and adaptively observes noisy entries of the matrix
M . At each time step t, based on passed observations, the
learner selects one item It ∈ [n] and one feature Jt ∈ [d].
She then receives Xt, a noisy evaluation of MIt,Jt . Condi-
tionally on the pair (It, Jt), Xt is an independent sample
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drawn from an unknown distribution νIt,Jt
with expectation

MIt,Jt . The collection of distributions (νi,j)i,j is referred
to as the environment.

We assume that the noise in observations is 1-subGaussian.

Assumption 2.2 (1-subGaussian noise). For any pair
(i, j) ∈ [n] × [d], if X ∼ νi,j , then X − Mi,j is 1-
subGaussian, namely

E [exp(t(X −Mi,j)] ≤ exp
(
t2/2

)
∀t ∈ R .

This subGaussian assumption is standard in the bandit litera-
ture (Lattimore & Szepesvári, 2020). It covers, for example,
the emblematic case where observations follow Gaussian
distributions with variance at most 1, as well as bounded
random variables such as those following a Bernoulli distri-
bution on [0, 1]. By rescaling, the results can be extended to
the case of σ-subGaussian noise.

We tackle this pure exploration problem in the fixed con-
fidence setting, a common framework in the bandit litera-
ture (Lattimore & Szepesvári, 2020). In this setting, the
learner must decide not only which observations to make
but also when to stop. Given a prescribed error probability δ,
the learner aims to recover the correct partition of the items
with probability at least 1− δ, while minimizing the total
number of observations. The learner sequentially collects
observations until a stopping time T , after which it outputs
an estimated label vector ĝ ∈ {0, 1}n (satisfying ĝ(1) = 0).
The total number of observations, given by T , is referred to
as the budget of the procedure. Formally, T is a stopping
time with respect to the natural filtration associated to the
sequential model.

For any confidence level δ, we say then that a procedure A
is δ-PAC (Probably Approximately Correct) if

PA,ν(ĝ = g) ⩾ 1− δ ,

where PA,ν denotes the probability distribution induced by
the interaction between the environment ν and the algorithm
A.

The performance of a δ-PAC algorithm is evaluated through
its budget T , which should be as small as possible. In this
paper, we derive upper bounds on T that hold with high
probability—typically on an event of probability at least
1− δ, under which the algorithm returns a correct clustering.

We introduce two key quantities for analyzing the problem.
The gap vector is defined as

∆ := µ1 − µ0 ∈ Rd ,

which naturally captures the difficulty of the clustering task.
By assumption, we have ∆ ̸= 0 so that there is exactly two
disjoint groups. The smaller the norm of ∆ is, the more

challenging the estimation of g becomes. In particular, we
analyze the complexity of the clustering task with respect to
the entry of the gap vector ∆ ordered by decreasing absolute
value, namely

∣∣∆(1)

∣∣ ≥ ∣∣∆(2)

∣∣ ≥ · · · ≥ ∣∣∆(d)

∣∣.
Most intuitions behind our method rely on the sparse set-
ting, where the two groups differ in exactly s entries with
a constant gap h. This corresponds to the case where the
gap vector ∆ has exactly s nonzero entries equal to h > 0
and d− s entries equal to 0. The smaller the sparsity level s,
the more entries must be explored to detect a discriminative
feature. The smaller the magnitude h, the more budget is
required to distinguish between the two groups.

Besides, we define θ the balancedness of the partition g, that
is the proportion of arms in the smallest group

θ :=
1

n

n∑
i=1

1(g(i) = 0) ∧ 1

n

n∑
i=1

1(g(i) = 1) .

Intuitively, the smaller θ is, the more unbalanced the par-
tition is, and the more difficult it is to discover two items
of distinct groups. For identifiability reasons, we assumed
in Assumption 2.1 that the groups are nonempty – which
implies in particular that n ⩾ 2, but also that θ ∈ [1/n; 1/2].

3. Algorithms
3.1. Introduction to our method

We introduce briefly our method, which contains two steps.

First, we fix arbitrary the item r0 = 1 as a representative
of the first group2. Then, we aim to identify a second rep-
resentative item r1 ∈ [n] that belongs to the other group,
and a feature j ∈ [d] such that Mr1,j differs from Mr0,j

significantly, that is such that |Mr1,j −Mr0,j | is large. Our
method balances the budget spent on identifying such dis-
criminative feature, with the budget required for classifying
all items based on this feature. Improving the budget com-
pared to non-active settings requires over-sampling certain
rows , which we refer to as representatives, following (Thuot
et al., 2025). This step is crucial for accurately estimating
some entries of the vectors µ0 and µ1 and, ultimately, for
accelerating the clustering task.

Importantly, if we detect an entry (r1, j) in the matrix where
the gap |Mr1,j −Mr0,j | is sufficiently large, we obtain two
complementary pieces of information. This naturally leads
us to organize the clustering task as a two-step procedure:

1. If we can test that |Mr1,j −Mr0,j | > 0, then item r1
can serve as a representative of the second group. Algo-
rithm 2 identifies such an item r1 with high probability.
Once the two representatives r0 and r1 are known, we

2By symmetry, any randomly selected row could serve the
same purpose.
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allocate a significant portion of the budget to these
items in order to identify a discriminative feature in the
gap-vector ∆.

2. If we identify a feature j such that |Mr1,j −Mr0,j |
not only differs from zero but also exceeds a certain
threshold—specified later—then feature j is deemed
sufficiently discriminative, and we concentrate the clas-
sification budget on this feature. We then estimate
|∆j | = |Mr0,j − Mr1,j | with samples from entries
(r0, j) and (r1, j), and classify the remaining items
with a budget of order O

(
n
∆2

j
log(n/δ)

)
, uniformly

allocated over items in the j-th column of M . This
second step is detailed in Algorithm 3.

3.2. Warm-up: adaptation of Sequential Halving

As a subroutine, we introduce CSH for
CompareSequentialHalving, which is detailed in
Algorithm 1. It is a variant of the Sequential Halving (SH)
algorithm, introduced in (Karnin et al., 2013), which is
very similar to Bracketing Sequential Halving described in
(Zhao et al., 2023, Alg. 3). Building on recent advances in
the analysis of SH applied to various best arm identification
problems (Zhao et al., 2023), we analyze the performance
of the method in a specific problem that we introduce – we
provide an explicit guarantee for CSH in Lemma D.1.

The algorithm takes 4 entries r0, I, L, T . Given a fixed item
r0 ∈ [n] and a subset of items I ⊂ [n] \ r0, CSH outputs
an item i ∈ I and a feature j ∈ [d] for which the absolute
difference |Mi,j −Mr0,j | is as large as possible. Each time
we run CSH, we allocate a budget T 3, that the algorithm
can fully spend. That is, CSH operates under a fixed budget
constraint.

Following the literature on best arm identification with
multiple good arms (Berry et al., 1997; Katz-Samuels &
Jamieson, 2020; Jamieson et al., 2016; De Heide et al.,
2021), we incorporate a sub-sampling mechanism. Initially,
CSH selects randomly S0, a subset of 2L entries from I × d,
where L is a parameter specifying the sub-sampling size. Se-
quential Halving is then applied exclusively to the selected
subset, rather than to the entire matrix. The optimal choice
for L balances two factors. If L is small, the algorithm
concentrates more budget per entry, enabling the detection
of smaller gaps. If L is large, we increase the likelihood of
including in S0 a significant proportion of good entries, en-
suring that the quality of the remaining entry is not limited
by an unlucky draw.

We employ CSH as a subroutine in both Algorithm 2 and

3Actually, row r0 is sampled half of the time, so that each
sample from νi,j is compared to a new one from νr0,j . Any
more refined book-keeping of samples from row r0 would at best
improve the budget by 2.

Algorithm 3. In Algorithm 2, we explore the entire matrix in
order to detect a row r1 that differs from the first row r0 = 1,
for this we use I = [n] \ r0. In Algorithm 3, we focus the
exploration on two rows r0 = 1 and r1 (I = {r1}), aiming
at detecting a feature that best separates the two groups
represented by r0 and r1.

Algorithm 1 CompareSequentialHalving (CSH)

Require: r0 an item, I ⊂ [n]\r0 subset of items, L number
of halving steps, T ≥ 2L+2 budget

Ensure: a couple (i, j) ∈ I × [d]
1: selects S0 ← {(i1, j1), (i2, j2), . . . , (i2L , j2L)} uni-

formly with replacement from I × [d]
2: for l = 1, . . . , L do
3: τl ←

⌊
T

2L−l+2L

⌋
4: for (i, j) ∈ Sl−1 do

5: draw

{
X

(1)
r0,j

, . . . , X
(τl)
r0,j
∼i.i.d. νr0,j

X
(1)
i,j , . . . , X

(τl)
i,j ∼i.i.d. νi,j

6: store D̂i,j ← 1
τl

∑τl
u=1

(
X

(u)
i,j −X

(u)
r0,j

)
7: end for
8: keep in Sl indices (i, j) ∈ Sl−1 corresponding to the

2L−l largest
∣∣∣D̂i,j

∣∣∣
9: end for

10: return (i, j) ∈ SL

3.3. First step: CandidateRow

We start our procedure by solving a sub-problem which
consists on detecting an item r1 which is not in the same
group as the prefixed representative r0 = 1. We perform
this step in the following Algorithm 2. The guarantees of
Algorithm 2 are proved in Appendix E and are gathered in
Proposition E.1.

In Algorithm 2, we perform multiple runs of the CHS sub-
routine, iteratively increasing the budget Tk = 2k+1 allo-
cated for each run. For a given run of CSH(r0, [n], L, Tk),
we obtain an entry (i, j) (Line 4). In Line 5, we use the
same amount of observations 2k+1 to estimate the gap
|Mi,j −Mr0,j |. Finally, in Line 8, we perform a test based
on a Hoeffding’s bound to decide whether |Mi,j −Mr0,j | >
0 or not. If at some point, this test concludes, Algorithm 2
outputs r1 = i. The threshold chosen in the stopping condi-
tion from Line 6 is designed to assure that with a probability
larger than δ, then the selected item r1 belongs to another
group as r0 = 1.

In Line 3, we chose Lmax as

Lmax :=

⌈
log2

(
16dn log

(
4 log(8nd)

δ

))⌉
,

which corresponds to the sub-sampling budget required,
according to Lemma D.1, when θ = 1/n takes the smallest
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Algorithm 2 CandidateRow (CR)

Require: confidence parameter δ > 0, item r0
Ensure: row index r1 ∈ [n]

1: initialize r1 ← 0, k ← 1
2: while r1 = 0 do
3: for 1 ≤ L ≤ Lmax such that L · 2L ≤ 2k+1 do
4: (i, j)←CSH([n], L, 2k+1)

5: draw

{
X

(1)
r0,j

, . . . , X
(2k)
r0,j

i.i.d.∼ νr0,j

X
(1)
i,j , . . . , X

(2k)
i,j

i.i.d.∼ νi,j

6: if
∣∣∣∑2k

t=1

(
X

(t)
i,j −X

(t)
r0,j

)∣∣∣ >√
4 · 2k log

(
( k3

0.15δ

)
then

7: r1 ← i
8: end if
9: end for

10: k ← k + 1
11: end while

possible value.

From Lemma D.1, we know that for ∆2
(s) ≤ 128L2, for

some constant c, if the condition

Tk = 2k+1 ⩾ cL3
max

d (log(1/δ) + log log(nd))

θs∆2
(s)

,

holds, then, with high probability, there exists L ⩽ Lmax

such that CHS(r0, [n], L, Tk) outputs a pair (i, j) with
|Mi,j −Mr0,j | ≥

∣∣∆(s)

∣∣ /2. Besides, under this budget
condition, the termination condition from Line 8 will be
reached w.h.p. This condition is especially true for the
sparsity s ∈ [d], where the inequality above is tightest.

As in (Jamieson et al., 2016; Saad et al., 2023), the ex-
ponential grid Tk = 2k allows us to adapt the strat-
egy, and reach a budget that scales up to log terms as

O

(
mins∈[d]

d
θs∆2

(s)

log(1/δ)

)
, even without prior knowl-

edge of this quantity by the learner.

Interestingly, we can relate this quantity to the l2 norm of
∆. For that, we define

s∗ ∈ argmaxs∈[d]s ·∆2
(s) . (1)

This quantity, s∗, appears as an effective sparsity parame-
ter, as observed in signal detection contexts. Actually, the
following bound holds

max
s∈[d]

s ·∆2
(s) ≤ ∥∆∥

2
2 ≤ log(2d)max

s∈[d]
s ·∆2

(s) . (2)

Finally, we prove that Algorithm 2 outputs an item r1 which
belongs to the second group with a probability larger than
1 − δ, using a budget that is smaller, up to logarithmic
terms, than the quantity d

θ∥∆∥2
2
log(1/δ). We will see in

Theorem 4.1 that this bound is optimal for both θ and ∆.

3.4. Second step: ClusterByCandidates

Consider the high probability event on which, after the
first step of our procedure, Algorithm 2 provides an item
r1 ∈ [n] such that Mr1,· ̸= Mr0,·. Our next goal is to select
a feature j such that |∆j | is large enough to allow a quick
classification of each of the n items. We propose the pro-
cedure Algorithm 3 which shares a similar structure with
Algorithm 2. The guarantees of Algorithm 3 are proved in
Appendix E, in Proposition F.1.

We begin by performing several runs of CSH, with I = {r1}
in order to detect large entries in the (absolute) gap vector
∆. As in Algorithm 2, we perform CSH with an increasing
sequence of budget Tk = 2k+1, and for each budget Tk, we
test all possible sub-sampling sizes L = 1, . . . , L̃max. In
Line 3, we define

L̃max :=

⌈
log2

(
16d log

(
4 log(8d)

δ

))⌉
,

as the maximum sub-sampling size needed to detect a signal
when the sparsity level s = 1 is the smallest.

In Line 4, we call CSH(r0, {r1}, L, 2k+1). We obtain a
feature j and then estimate |∆j | = |Mr0,j −Mr1,j | in
Line 6. For that, we take ⌊2k/n⌋ samples from νr0,j
and νr1,j , and compute the sum of differences D̂ =∑⌊2k/n⌋

t=1 (Xr1,j −Xr0,j). We deduce a high probability
lower bound |∆̂|j = 1

⌊2k/n⌋ (D̂ − ϵ) ⩽ |∆j |, where ϵ is

defined in Line 7. Based on |∆̂|j , we can classify (with
high probability) each item by sampling the j-th feature
O
(

1

∆̂2
log(n/δ)

)
. We can then assess whether the classi-

fication budget required for feature j is feasible given the
budget Tk. If Tk ⩽ cn

|̂∆|
2

j

log(n/δ), it seems that with fea-

ture j, the classification budget exceeds Tk, we discard this
feature and repeat CSH with larger sub-sampling size L or
budget T .

We now bound the budget of our procedure thanks to
Lemma D.1. Assume that ∆2

(s) ≤ 128L2. If it holds for
some constant c that

Tk = 2k+1 ⩾ cL3
max

d (log(1/δ) + log log(d))

s∆2
(s)

,

then, there exists L ⩽ L̃max such that CHS(r0, r1, L, Tk)
outputs a feature j such that |Mr0j −Mr1j | ≥

∣∣∆(s)

∣∣ /2.
If we also have Tk ⩾ c n

∆(s)2
log(n/δ), then the algorithm

stops, otherwise it would continue sampling.

Overall, we prove that the total budget of the procedure, up
to logarithmic factors, is no more than

min
s∈[d]

(
d

s
+ n

)(
1

∆2
(s)

+ 1

)
log(1/δ) .
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Algorithm 3 ClusterByCandidates (CBC)

Require: confidence δ > 0, representative items r0, r1 ∈
[n]

Ensure: labels ĝ ∈ {0, 1}n
1: ĝ ← (0, . . . , 0)T ∈ {0, 1}n, k ← ⌈log2(n)⌉
2: while True do
3: for 1 ≤ L ≤ L̃max such that L · 2L ≤ 2k+1 do
4: j ← CSH(r0, r1, L, 2k+1)

5: draw

{
X

(1)
r0,j

, . . . , X
(⌊2k/n⌋)
r0,j

∼i.i.d. νr0,j

X
(1)
r1,j

, . . . , X
(⌊2k/n⌋)
r1,j

∼i.i.d. νr1,j

6: D̂ ←
∑⌊2k/n⌋

t=1 (Xr1,j −Xr0,j)

7: ε←
√
4 · ⌊2k/n⌋ log(nk3/0.15δ)

8: if
∣∣∣D̂∣∣∣ ≥ 3 · ε then

9: for i ∈ [n] do

10: draw

{
X

(1)
r0,j

, . . . , X
(⌊2k/n⌋)
r0,j

∼i.i.d. νr0,j

X
(1)
i,j , . . . , X

(⌊2k/n⌋)
i,j ∼i.i.d. νi,j

11: D̂i ←
⌊2k/n⌋∑
t=1

(Xi,j −Xr0,j)

12: ĝ(i)← 1

(∣∣∣D̂i

∣∣∣ ≥ ε
)

13: end for
14: output (ĝ(1), . . . , ĝ(d))
15: end if
16: end for
17: end while

3.5. Main Algorithm

To obtain a complete clustering procedure that is adaptive
to ∆ and θ, one simply has to combine Algorithm 2 and
Algorithm 3. The overall clustering procedure is then given
in Algorithm 4.

Algorithm 4 BanditClustering
Require: confidence parameter δ > 0
Ensure: labels ĝ ∈ {0, 1}n

1: Fix r0 = 1
2: r1 ← CR(δ/2, r0)
3: ĝ ← CBC(δ/2, r0, r1)

Theorem 3.1. For δ ∈ (0, 1/2e), consider Algorithm 4 with
entry δ. Define

H :=
d

θ

(
1

∥∆∥2
+

1

s∗

)
+min

s∈[d]

(
d

s
+ n

)(
1

∆2
(s)

+ 1

)
,

(3)
where s∗ is the effective sparsity defined in (2).

With a probability of at least 1 − δ, Algorithm 4 returns

ĝ = g with a budget of at most

T ⩽ C̃ · log
(
1

δ

)
·H,

where there exists a numerical constant C, and an index
s̃ = s∗ ∨ (⌈d/n⌉ ∧ |{j ∈ [d] ,∆j ̸= 0}|), such that C̃ is a
logarithmic factor smaller than

C · (log log(1/δ) ∨ 1)
4

· log(dn)5 log(d)(log+ log(1/∆2
(s̃)) ∨ 1) .

In order to understand the motivation behind our complexity
H , we write our main theorem in the sparse setting – ∆ is
s-sparse with constant magnitude h.

Corollary 3.2. For δ ∈ (0, 1/e) and ∆ ∈ {0, h}d with
0 < h < 1, with a probability of at least 1− δ, Algorithm 4
returns ĝ = g with a budget of at most

C̃ · log(1/δ) ·
(

d

θ∥∆∥2
+

n

h2

)
,

where C̃ is a logarithmic factor smaller than

C · (log log(1/δ) ∨ 1)
4 · log(dn)5(log+ log(1/h2) ∨ 1) ,

with a numerical constant C > 0.

Compared to the lower bound in Theorem 4.1, we prove
that our procedure is optimal when the gap vector is s-sparse
with a constant magnitude h. For a general gap vector
∆, we have good reasons to think that understanding the
optimality of this trade-off for this simple example allows us
to understand (at least intuitively) the optimality for general
vectors.

We interpret H in (3) as a non asymptotic sampling com-
plexity, which depends on the instance-specific parameters
of our model θ, ∆, n, and d. The complexity H can be
decomposed as two terms:

First Term: d
θ∥∆∥2 log(1/δ), which correspond to the

budget used to identify an item belonging to the second
group. In the sparse setting, it scales as d

θs ×
1
h2 , which is

necessary, as we need to explore at least d
θs entries to find

a non-zero entry, and we need at least 1/h2 samples from
each of these entries to decide if it is equal to 0 or not with
a constant probility of error.

Second Term: mins∈[d]

(
d
s + n

)(
1

∆2
(s)

+ 1

)
. This term

represents the best trade-off between the exploration of the
gap vector ∆ and its exploitation for clustering. Indeed,
the term n

∆2
(s)

log(1/δ) is the price for clustering if we use

a feature with a gap |∆(s)| whereas d
s∆2

(s)

log(1/δ) corre-

sponds to the price for identifying a feature with a gap at
least |∆(s)|.
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Define the effective sparsity s̃ for which the minimum holds,
and define the effective magnitude as ∆(s̃). In the sparse
setting, this is exactly the sparsity level. Intuitively, we can
argue that entries significantly larger than ∆(s̃) are too rare
to be detected (otherwise, s̃ would be smaller), and entries
much smaller than ∆(s̃) are too weak to be used for classifi-
cation with a budget H . Our insight is that the problem is as
hard as if the gap vector were s̃-sparse with a constant mag-
nitude ∆(s∗), a setting where we have matching lower and
upper bounds (see Corollary 3.2 and Theorem 4.1), leading
to our complexity.

Finally, we mention that the remaining term d/(θs∗) in
H only dominates in the very specific setting where the
non-zero entries of ∆ are really large so that ∥∆2∥ ≥ s∗.

4. Lower bounds
In this section, we provide a lower bound on the budget
of any δ-PAC algorithm. The bound is instance-dependent,
meaning it holds for a specific problem instance defined by
the matrix M . We establish this result by constructing a
family of alternative environments, each obtained by slightly
modifying the original matrix M . We then prove that any
algorithm with a budget that is too small cannot perform
well simultaneously across all these environments. For the
lower bound, we consider Gaussian environments, for which
Assumption 2.2 holds.

We define Eper(M) as the set of Gaussian environments
constructed from M by permuting its rows and columns.
Without loss of generality, we assume that µ0 = 0 and µ1 =
∆. Formally, an environment ν̃ ∈ Eper(M) is defined using
a permutation σ of [n] and a permutation τ of [d] as follows:

ν̃i,j =

{
N (0, 1) if g(σ(i)) = 0
N (∆τj , 1) if g(σ(i)) = 1

, (4)

where g ∈ {0, 1}n denotes the unknown labels associated
to matrix M . Intuitively, permuting the rows and columns
of M accounts for the fact that (a) the target labels g are
not available to the learner, and (b) the structure of the gap
vector ∆ is also unknown.

Theorem 4.1. Fix δ ∈ (0, 1/4). Assume that A is δ-PAC
for the clustering task, then, there exists ν̃ ∈ Eper(M) such
that the (1 − δ)-quantile of the budget of algorithm A is
bounded as follows

PA,ν̃

(
T ⩾

2(n− 2)

∆2
(1)

log

(
1

4.8δ

)
∨ 2d

θ∥∆∥22
log

1

6δ

)
⩾ δ

(5)

The lower bound contains two terms. The first term scales
as d

θ∥∆∥2 log(1/δ), and can be interpreted as the budget re-
quired to identify one item from each group, while adapting

to the unknown structure of the gap vector ∆. This term
matches, up to logarithmic factors, the budget incurred in
the first step of our algorithm for identifying a relevant item.
In particular, it implies that the first step from Algorithm 2
is optimal.

The second term scales as n
∆2

(1)

log(1/δ), and take into ac-

count the difficulty of clustering all items once a discrim-
inative feature is identified. Specifically, if the most in-
formative feature is provided by an oracle—i.e., a feature
index j ∈ [d] such that |∆j | = ∆(1) is maximal—then
the problem reduces to performing n independent Gaussian
hypothesis tests of the form H0 : X ∼ N (0, 1) versus
H1 : X ∼ N (∆(1), 1).

In the case where the gap vector ∆ takes two values, this
lower bound matches, up to poly-logarithmic terms, the
upper bound from Corollary 3.2. In summary, when ∆ only
takes two values, our budget is optimal with respect to d, n,
θ and log(1/δ). For more general ∆, we conjecture that the
trade-off in H in (3) is optimal and unavoidable.

5. Experiments
We support our theoretical results with numerical exper-
iments on synthetic data. In the first experiment, we in-
vestigate the sample complexity of our algorithm in sparse
regimes. We compare its performance to a uniform sam-
pling baseline, where each of the n× d entries of the matrix
M is sampled an equal number of times, and the resulting
data is clustered using the K-means algorithm. In the sec-
ond experiment, we evaluate the BanditClustering
algorithm under fixed sparsity while simultaneously in-
creasing the parameters n and d, and we compare dif-
ferent choices of the confidence parameter δ > 0. In
a third experiment, we compare BanditClustering
to Adaptive Clustering (Ariu et al., 2024) and see
how a growing number of features impacts both algo-
rithms performances. We defer a fourth experiment to Ap-
pendix B, which illustrates the influence of θ on the budget
of BanditClustering. As shown in Corollary 3.2, the
effect of 1/θ is comparable to that of the sparsity s discussed
in the first experiment.

The code we used for the simulations is available in a
GitHub repository4.

Experiment 1 In this experiment, we consider a small
number of items (n = 20) and a large number of features
(d = 1000). For s ∈ 1, . . . , d, define the vector ∆s =
(hs, . . . , hs︸ ︷︷ ︸

s times

, 0, . . . , 0), where hs = 15/
√
s. This choice

ensures that ∆s is s-sparse and satisfies ∥∆s∥2 = 15 for any

4https://github.com/grafmaxi/bandit_two_
clusters

7

https://github.com/grafmaxi/bandit_two_clusters
https://github.com/grafmaxi/bandit_two_clusters


Clustering Items through Bandit Feedback: Finding the Right Feature out of Many

1026 × 101 2 × 102 3 × 102 4 × 102

sparsity

102

103

104

105

av
er

ag
e 

bu
dg

et

BanditClustering
CBC
CR
K-means
(5%, 95%)-confidence interval
for BanditClustering
s

Figure 1. Different budgets for Experiment 1, depending on the
sparsity of ∆s.

s. We construct the matrix Ms with half of its rows equal to
0 and the other half equal to ∆s, and sample observations
as νi,j ∼ N (Ms

i,j , 1). We examine the behavior of our
algorithms as s varies, which causes the magnitude hs to
vary accordingly.

We report separately the budgets required by the two steps of
our algorithm. For δ = 0.8, we run each of the algorithms
CR(δ/2), CBC(δ/2, i∗) and BanditCluster(δ) a total
of κ = 5000 times. We provide to CBC a representative item
i∗ in the second group as an oracle. In this setting, the ob-
served error rate of BanditClustering remains close
to 0.01 for all values of s. We depict the average budgets re-
quired by BanditClustering(δ), considering only the
runs where the first step CR returns a valid candidate row
(otherwise, we emergency stop the algorithm). We also show
the average budget required by CR(δ/2) and CBC(δ/2, i∗)
in Figure 1. The figure includes the (0.05, 0.95) quantiles
across simulations.

As a benchmark, we compare our algorithm to a strategy
that samples uniformly all entries of Ms, and then ap-
plies the KMeans algorithm from the Scikit-learn library
(Pedregosa et al., 2011). Given a budget T , we sample
τ = ⌊T/nd⌋ observations X(t)

i,j ∼i.i.d. N (Ms
i,j , 1) per en-

try, and compute X̄i,j = 1
τ

∑τ
t=1 X

(t)
i,j . We then cluster

the items by performing the K-means algorithm with the
vectors (X̄1j)j=1,...,d, . . . , (X̄nj)j=1,...,d. For each sparsity
s, the budget T is turned by an oracle, with a grid search,
so that the observed error rate after κ = 5000 runs is below
0.01. The resulting budgets are reported in Figure 1.

From Figure 1 we observe that in the sparse regime, our
algorithm requires fewer observations than the uniform sam-
pling approach used as baseline. Moreover, the budget
required for CR appears to be mostly independent of the
sparsity level s. In this setting, the overall sample com-
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Figure 2. Different budgets for Experiment 2, depending on the
dimensionality of the problem n and d = 10 · n.
plexity of BanditClustering is mainly driven by the
cost of the CBC step, which grows approximately linearly
with s. These empirical dependencies on s align with our
theoretical results, where the budget of CR in this case is,
up to polylogarithmic factors, of order d/θ∥∆∥22, which is
constant in s for fixed ∥∆∥2, while CBC requires a budget
of order n/(∆s

i )
2 ∼ n · s.

Experiment 2 In this experiment, we consider matrices of
increasing size, with n ∈ 100, 200, 500, 1000, 2000, 5000
and d = 10 · n, so that the number of features grows
proportionally with the number of items. For each value
of n, we define the vector ∆̃(n) ∈ Rd as ∆̃(n) =
(5, . . . , 5︸ ︷︷ ︸

10 times

, 0, . . . , 0︸ ︷︷ ︸
d−10 times

) ∈ Rd. We construct a matrix M (n)

with n/2 rows equal to 0 and n/2 rows equal to ∆̃(n),
and we add Gaussian noise with unit variance. For each
δ ∈ 0.8, 0.5, 0.2, 0.05, we run BanditClustering(δ)
over κ = 5000 independent trials. In Figure 2, we report
the average budget required by BanditClustering for
each configuration. For δ = 0.05, we additionally report
the 5th and 95th percentiles across the simulations.

If we allocate a budget smaller than 5n2 = nd/2 uniformly
at random across the nd entries of M , then on average, each
item i will have d/2 unobserved features. As both n and d
increase, the probability that some item i is only sampled
on coordinates j such that ∆̃(n)

j = 0 tends to one, rendering
accurate clustering impossible. By contrast, Figure 2 shows
that the budget required by our algorithm scales linearly
with n. This matches the bounds from Corollary 3.2, which
implies that when d = 10 · n and the parameters θ, s, and h
are fixed, the total budget required (up to polylogarithmic
factors) is of order n.

Experiment 3 In this third experiment, we compare
our algorithm BanditClusteringwith the Adaptive
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Figure 3. Comparison of the performance of
BanditClustering and Adaptive Clustering in
Experiment 3, depending on the number of features dγ .

Clustering algorithm introduced as Algorithm 2 in
(Ariu et al., 2024). We fix the number of items to n = 30 and
vary the number of features as dγ = 2γ with γ = 1, . . . , 5.
We set θ = 0.5, and for each dγ , we define sγ = dγ/2
features j such that Mi,j = 0.25 for items in the first cluster
and Mi,j = 0.75 for items in the second cluster, yielding
h = 0.5. For the remaining features, we set Mi,j = 0.5,
independent of the item’s cluster. Observations are sampled
from Bernoulli distributions: νi,j = Bern(Mi,j). We apply
BanditClustering with δ = 0.8 over κ = 500 runs.
We then ran the Adaptive Clustering algorithm us-
ing the MATLAB code provided by (Ariu et al., 2024), under
the same setting and a fixed budget of T = 400,000, also
with κ = 500 runs. In Figure 3, we compare this fixed bud-
get to the average budget used by BanditClustering,
and report the corresponding error rates as a function of dγ .

As the number of features increases, we observe that
the error of the fixed-budget algorithm Adaptive
Clustering also increases. In contrast, the fixed-
confidence algorithm BanditClustering maintains a
consistently low error, and its average required budget re-
mains largely unchanged. This behavior aligns with Corol-
lary 3.2, as both dγ/θ∥∆∥2 and n/h2 are constant in our
experimental setup. While our algorithm performs better in
this specific scenario, it is important to note that the prob-
lem addressed in (Ariu et al., 2024) is more complex than
the clustering task we consider. We believe their algorithm
could be adapted to our setting; however, it remains unclear
whether the influence of the number of features on the error
rate can be mitigated.

6. Discussion
Comparison to other active clustering settings and batch
clustering. In this work, we consider a bandit clustering
setting where the learner can adaptively sample each item-

feature pair. This contrasts with (Yang et al., 2024; Thuot
et al., 2025; Yavas et al., 2025) where the authors have
to sample all the features for each item and cannot focus
on most relevant features. Rewriting their results in our
setting, the optimal budget for the latter problem is, up to
poly-logarithmic terms, of the order of

nd log(1/δ)

∥∆∥2
+

d3/2
√

n log(1/δ)

∥∆∥2
.

Comparing this with our main result (Theorem 3.1), we
first observe that the ability to adaptively select features
allows to remove the so-called high-dimensional terms

d3/2
√
n log1/2(1/δ)/∥∆∥2 that occurs when the number

of features is large - d ≥ n log(1/δ). Second, the adaptive
queries allow to drastically decrease the budget in situation
where the vector ∆ contains a few large entries so that a
few feature are especially relevant to discriminate. To illus-
trate this, consider e.g. a setting as in Corollary 3.2 where
∆ ∈ {0, h}d takes s non-zero values where the partition is
balanced so that θ = 1/2. Then, our budget is of the order
of

log(1/δ)

[
d

sh2
+

n

h2

]
,

which represents a potential reduction by a factor n ∧ d
s

compared to (Yang et al., 2024; Thuot et al., 2025).

Extension to a larger number of groups. Throughout
this work, we have assumed that the items are clustered into
K = 2 groups. However, our algorithms can be used as sub-
routines to address the case where K > 2. In Appendix C,
we provide an algorithm that handles this extension, along
with a (non-optimal) budget that scales with K2. A key
challenge in achieving optimality in this setting is determin-
ing whether the algorithm should focus on all K(K − 1)/2
pairwise discriminative features or on a smaller, more infor-
mative subset. It is significantly more difficult to devise a
strategy that adapts optimally to the relative positions of the
centers of the K groups. We leave this question for future
work.

Extension to heterogeneous groups. We also assumed
throughout this work that all items within a group are per-
fectly similar, meaning their corresponding mean vectors
µi are equal. This assumption could be relaxed by allow-
ing the µi’s within a group to be close, but not necessarily
identical. For instance, suppose we have prior knowledge
that, for any feature j ∈ [d], the within-group variation satis-
fies, maxg(i)=g(i′) |Mi,j−Mi′,j | ⩽ cming(i)̸=g(i′) |Mi,j−
Mi′,j |. If c < 1/4, our algorithm remains correct since the
search for a single discriminative feature is still meaningful
and enables classification. However, if the within-group
heterogeneity becomes comparable to or larger than the
inter-group differences in some features, our method could
fail, and further investigation would be required. Note also
that if c = 1/2, the problem becomes unidentifiable.
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Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Li, S., Chen, W., Li, S., and Leung, K.-S. Improved algo-
rithm on online clustering of bandits. In Proceedings of
the 28th International Joint Conference on Artificial In-
telligence, IJCAI’19, pp. 2923–2929. AAAI Press, 2019.
ISBN 9780999241141.

Li, Z., Liu, M., Dai, X., and Lui, J. Demystifying on-
line clustering of bandits: Enhanced exploration under
stochastic and smoothed adversarial contexts. In ICLR
2025. PMLR, 2025.

Liu, X., Zhao, H., Yu, T., Li, S., and Lui, J. C.
Federated online clustering of bandits. In Cussens,
J. and Zhang, K. (eds.), Proceedings of the Thirty-
Eighth Conference on Uncertainty in Artificial Intelli-
gence, volume 180 of Proceedings of Machine Learn-
ing Research, pp. 1221–1231. PMLR, 01–05 Aug
2022. URL https://proceedings.mlr.press/
v180/liu22a.html.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Saad, E. M., Verzelen, N., and Carpentier, A. Active ranking
of experts based on their performances in many tasks.
In International Conference on Machine Learning, pp.
29490–29513. PMLR, 2023.

Thuot, V., Carpentier, A., Giraud, C., and Verzelen, N. Clus-
tering with bandit feedback: breaking down the computa-
tion/information gap. In Kamath, G. and Loh, P.-L. (eds.),
Proceedings of The 36th International Conference on Al-
gorithmic Learning Theory, volume 272 of Proceedings
of Machine Learning Research, pp. 1221–1284. PMLR,
24–27 Feb 2025. URL https://proceedings.
mlr.press/v272/thuot25a.html.
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A. Notation
To ease the reading, we gather the main notation below

• n number of items, d number of features

• µ0 ̸= µ1 ∈ Rd feature vectors of the two groups

• Mi,· ∈ {µ0, µ1}, i ∈ [n] feature vector of item i

• M matrix with rows (Mi,·) (with size n× d)

• g ∈ {0, 1}n true labels (fixing g(1) = 0)

• X ∼ νi,j for (i, j) ∈ [n]× [d]: E[X] = Mi,j with X −Mi,j 1-sub-Gaussian

• δ ∈ (0, 1) prescribed probability of error

• θ :=
∑n

i=1 1(g(i)=0)∧
∑n

i=1 1(g(i)=1)

n balancedness

• ∆ := µ1 − µ0 ̸= 0 gap vector

• s∗ ∈ argmaxs∈[d]s ·∆2
(s) effective sparcity

Moreover, as we repeatedly compare the entries of M with some row r0 of our choice, we consider a fixed row r0 for the
following proofs and define

• Di,j := Mi,j −Mr0,j , for (i, j) ∈ [n]× [d].

B. Experiment 4: Varying θ

In this experiment we consider matrices with dimensions n = d = 1000. The gap vector ∆′ is defined as

∆′
j =

{
1.5 if j ≤ 100 ,

0 else.

The following simulations are run in κ = 5000 trials: For different values θγ = 2γ/n, γ = 0, 1, . . . , ⌊log2(n)⌋ − 1, we run
CR and CBC with confidence parameter δ = 0.4 and BanditClustering with δ = 0.8, analogously to experiment 1.
The respective budgets are plotted in Figure 4. We also compare our procedure to the K-means algorithm by uniformly
allocating budgets Tι =

2ι−1
220−1 (10

10 − 106) + 106, ι = 0, . . . , 20, by looking for each θγ for the smallest Tι such that at
most 0.01 (again, approximately the error rate of BanditCLustering(0.8) for all θγ) respective Monte Carlo iterations
returned an incorrect cluster. We also illustrate these times in Figure 4.

Again, one can see that the budget of BanditClustering is mainly spent on the CBC part of the algorithm. For small
values of θ, our algorithm requires less budget than an equally accurate version of the K-means algorithm. We can see that
the budget of CBC is not effected by θ, while the budget of CR seems to be almost proportional to 1/θ. Since n, d and ∆′

are fixed, this is in line with the results in Corollary 3.2.

C. Extension to K > 2 clusters
In the main part of this manuscript, we focused on the case of two groups as it serves as an informative baseline for
understanding the optimal trade-offs in clustering with bandit feedback. We introduce in this section an algorithm that
extends our method to the general case where K > 2.

Building on the the ideas of Algorithm 3, we aim to identify a set of representative items (r1, . . . , rK) ∈ [n]K , with one item
from each cluster. Given these representatives, the algorithm learns a discriminative feature for each pair of clusters, enabling
perfect clustering in the general case with K > 2 groups. The algorithm is described in pseudo-code in Algorithm 5.
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Figure 4. Different budgets for Experiment 4, depending on θγ .

Setting with K > 2 groups. In this section, we assume that the items are partitioned into exactly K ⩾ 2 clusters, such that
items within the same cluster share the same mean-vector. Specifically, there exists K centers in Rd, denoted as µ1, . . . , µK

such that, for any i ∈ [n] then Mi,· ∈ {µ1, . . . , µK}. We further assume that all the centers µ1, . . . , µK are pairwise distinct.
For each k ∈ [K], we denote as G∗

k := {i ∈ [n] ; Mi,· = µk}, and we assume that each cluster G∗
k is non-empty. As before,

we consider sub-Gaussian noise and aim to identify the true partition G∗ = G∗
1, . . . , G

∗
K in the δ-PAC setting.

Note that the partition G∗ = G∗
1 ⊔ · · · ⊔G∗

K is defined only up to a permutation of the cluster labels.

Description of Algorithm 5. The algorithm uses the subroutines CR (Algorithm 2) and CBC (Algorithm 3), applied to
subset of items.

For any δ ∈ (0, 1), r ∈ [n] and G ⊂ [n], we denote as CR(δ, r;G) the call of Algorithm 2 where the search of representatives
is restricted to a given set of items G (instead of [n]). We recall that CR(δ, r,G) is designed, to identify, if it exists, an item
s ∈ G such that Ms,· ̸= Mr,·.

For any δ ∈ (0, 1), r ∈ [n], s ∈ [n] and G ⊂ [n], we write CBC(δ, r, s;G) for the run of CBC restricted to the set of items G.
As we will prove later, with high probability 1− δ, CBC(δ, r, s;G) will output a partition of G into two groups, such that
the items with mean Mr,· and Ms,· are well-separated. When calling CBC(δ, r, s;G), the items from the clusters of r and s
within G are separated in two distinct sets, while other items might be split anywhere.

The algorithm takes as input the confidence parameter δ and the number of clusters K. It is important to note that, in the
δ-PAC setting, the number of clusters K must be known in advance. Indeed, even in the simpler case where there are only
two items with means µ1 and µ2, there is no finite time testing procedure that can decide between the hypotheses µ1 = µ2

(i.e., K = 1) and µ1 ̸= µ2 (i.e., K = 2) without any prior knowledge on the separation µ1 − µ2.

First, we start with a partition G(1) = [n], where all items are grouped together, and we fix an arbitrary item r1 ∈ G(1) as
the first representative.

The algorithm proceeds in K − 1 epochs, indexed by e = 1, . . . , (K − 1). In each epoch e, the algorithm identifies a new
representative re+1 and isolates all items sharing the same mean-vector Mre+1,· into a new cluster.

At the beginning of the e-th epoch, the algorithm has access to a partition of [n] into e groups [n] = ∪ek=1Ĝ
(e)
k together

with e representatives r1, . . . , re. If all the previous epochs were successful, then the representatives r1, . . . , re belong to
different clusters, and the intermediate cluster Ĝ(e)

k will contain all items with the same mean-vector as rk. The remaining
items (i.e., those from unrepresented clusters) may be mixed in the current partition Ĝ

(e)
1 , . . . , Ĝ

(e)
e .

To identify a new representative, the algorithm calls CR with the representative rk restricted to the group Ĝ
(e)
k , for each

13
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k = 1, . . . , e, using confidence level δe. These e calls — denoted CR(δe, rk; Ĝ
(e)
k ) — are run in parallel. The first returned

item from any successful call is selected as the new representative re+ 1.

Next, for each k ∈ [e], the algorithm runs CBC(δe, rk, re+1; Ĝ
(e)
k ) to split the group Ĝ

(e)
k based on the new representative.

With high probability, rk and re+1 come from different clusters. In that case, CBC will divide Ĝ
(e)
k into two subgroups:

Ĝ
(e+1)
k , containing all items with mean Mrk,·, and R̂

(e+1)
k , containing all items with mean Mre+1,·. We then define the new

group Ĝ
(e+1)
e+1 :=

⋃e
k=1 R̂

(e+1)
k , which should contain all items with mean Mre+1,·.

At the end of the (K − 1)-th epoch, the partition [n] = ∪Kk=1Ĝ
(K)
k is the output of the algorithm. With high probability, it

should be exact.

Algorithm 5 K-BanditClustering

Require: confidence parameter δ > 0, number of clusters K
Ensure: Clusters Ĝ1, . . . , ĜK

1: set Ĝ(1)
1 ← [n]

2: pick a first representative r1 uniformly at random from [n]
3: for 1 ⩽ e ⩽ K − 1 do
4: set δe ← δ

e(K−1)

5: Run in parallel CR(δe, rk;G
(e)
k ) for k ∈ [r] until one new representative re+1 is identified

6: for k ∈ [e] do
7: call CBC(rk, re+1, δe;G

(e)
k ) to cluster G(e)

k into two groups Ĝe+1
k , R̂e+1

k (swith rk ∈ Ĝe+1
k )

8: end for
9: gather Ĝe+1

e+1 = ∪ek=1R̂
e+1
k

10: end for
11: return Ĝ

(K)
1 . . . , Ĝ

(K)
K partition of the items

Theorem C.1. Let ν be an environment with n items. Assume that there exists [n] =
⊔K

k=1 G
∗
k a partition of the items into

K nonempty and disjoint groups such that all items in G∗
k share the same mean-vector µk. For any k ∈ [K], denote as

θk =
|{i∈[n] ; Mi,·=µk}|

n as the proportion of items with mean-vector µk.

Define, for any 0 ̸= ∆ ∈ Rd,

H̃(∆) := min
s∈[d]

[(
d

s
+ n

)(
1

∆2
(s)

+ 1

)]
.

For δ ∈ (0, 1/e), consider Algorithm 5 with entry δ and K.

With probability larger than 1− δ, Algorithm 5 returns a partition Ĝ of [n] equal to G∗ (up to labelization of the clusters),
with a budget of at most

C̃ log

(
1

δ

) ∑
k∈[K]

max
k′ ̸=k

Kd

θk∥µk − µk′∥2
+
∑
k ̸=k′

H̃(µk − µk′)

 ,

where there exists a numerical constant C, such that C̃ is a logarithmic factor smaller than

C · (log log(1/δ) ∨ 1)
4

· log(dn)5 log(d)(log+ log(d/min
k ̸=k′
∥µk − µ′

k∥2) ∨ 1) .

The proof of Theorem C.1 is postponed to Appendix G. The proofs simply exploit the results obtained in the next section
of this Appendix about subroutines CR and CBC.

Comments on Algorithm 5 and Theorem C.1 In Algorithm 5, we extend our clustering approach to the general case with
K > 2 clusters by reducing the problem to a sequence of binary classification tasks. This allows us to reuse the subroutines
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CR and CBC, originally designed for the case where there two groups, in a pipeline fashion. As shown in Theorem C.1, this
reduction yields a δ-PAC algorithm for the general clustering problem.

The resulting sample complexity scales as K2, since the algorithm performs one binary classification for each pair of
clusters. This quadratic dependency is unavoidable in the worst case—for example, when the cluster means µ1, . . . , µK are
positioned in such a way that each pair of clusters must be treated independently. However, this approach may be suboptimal
in general settings. For instance, if certain features allow simultaneous discrimination among all K clusters, then the sample
complexity should not need to scale quadratically in K.

In other words, while our extension to K > 2 is straightforward and functional, it remains naive in terms of adaptivity. A
more refined approach would aim to capture instance-dependent complexity, leveraging the joint geometry of the cluster
centers µ1, . . . , µK to potentially reduce the overall budget. Developing such adaptive strategies remains an open and
interesting direction for future work.

D. Analysis of Algorithm 1
We analyze here the performance of CSH.
Lemma D.1. Consider δ ∈ (0, 1), s ∈ [d] and h > 0 such that

∣∣∆(s)

∣∣ ≥ h. Consider I ⊂ [n] and define the relative
proportion of items in the second group as α = |{i∈I; g(i)=1}|

|I| . Consider Algorithm 1– CSH(r0, I, L, T ) –with input
r0, I, L, T such that

L =

⌈
log2

(
16

d

αs
log

(
4 log(8|I|d)

δ

))⌉
, (6)

T ≥ 516
L3 · 2L

h2
∨ 2L+1L . (7)

Then CSH(r0, I, L, T ) outputs a pair (̂i, ĵ) such that
∣∣∣Mî,ĵ −Mr0,ĵ

∣∣∣ ≥ h/2 with probability ≥ 1− δ.

Remark that for I = [n], then α ⩾ θ. If I = {r1} where g(r1) ̸= g(r0), then α = 1.

Throughout this section, we will prove Lemma D.1 with I = [n]. The general result directly follows from the case where I
contains all items. To see that, we just have to see that α is equal to the balancedness of the matrix M |I restricted to the
rows in I , and we would replace n by |I|, and θ by α.

Therefore, we consider Algorithm 1 with input r0, I = [n], L =
⌈
log2

(
16 d

θs log
(

4 log(8nd)
δ

))⌉
and T = 516L3·2L

h2 ∨
2L+1L. For simplicity in notation, we also fix r0 = 1 for the proofs.

We recall that we use for the proofs the notation Di,j := Mi,j −Mr0,j = Mi,j −M1,j for any couple (i, j) ∈ [n]× [d] as
the gap between the entries of M compared to the mean-vector of the fixed item r0 = 1.

For the following proofs, define γ := h/2L, and for any halving step l = l = 0, 1, . . . , L, we define Ul as the set of
remaining entries (i, j) in Sl such that the gap |Di,j | exceeds h− lγ

Ul := {(i, j) ∈ Sl : |Di,j | ≥ h− lγ} .

Lemma D.1 is a direct consequence of following statement:
Lemma D.2. With probability of at least 1− δ, it holds

|Ul|
|Sl|
≥ 2−L+3 log

(
4 log(8nd)

δ

)
∀ l = 0, 1, . . . , L .

Proof of Lemma D.1. The first statement follows by Lemma D.2. Indeed, at the last halving step, SL contains only one pair
of indices (̂i, ĵ). Lemma D.2 implies that UL ⊆ SL is nonempty with probability at least 1− δ, so that (̂i, ĵ) ∈ UL, that is,
Dî,ĵ ⩾ h− Lγ = h/2.

Proof of Lemma D.2. We will prove via induction over l, that

|Uk|
|Sk|

≥ 2−L+3 log

(
4 log(8nd)

δ

)
∀ k = 0, 1, . . . , l
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holds with probability at least

1− (l + 1)

(
δ

4 log(8nd)

)2

.

The statement follows then from

(L+ 1) ·
(

δ

4 log(8nd)

)2

≤
(
2 log

(
16

d

θs
log

(
4 log(8nd)

δ

))
+ 1

)
·
(

δ

4 log(8nd)

)2

≤ 3 log

(
8
d

θs

)
·
(

δ

4 log(8nd)

)2

+ 2 log log

((
4 log(8nd)

δ

)2
)
·
(

δ

4 log(8nd)

)2

≤ 3

4

δ2

log(8nd)
+

δ

4 log(8nd)
≤ δ ,

where we used that ⌈log2(x)⌉ ≤ 2 log(x) for x > 5, and the last line is obtained by 8d/θs ≤ 8nd and 2x·log log(1/x) ≤
√
x

for x ∈ (0, 1).

The base case l = 0 The initial set S0 = {(i1, j1), . . . , (i2L , j2L)} is constructed by picking 2L entries uniformly at
random (with replacement) from [n] × [d]), as described in Line 1 in Algorithm 1. In the context of Lemma D.2, the
parameter α reduces to θ, since we consider I = [n] for the proof, and s, h are such that |∆(s) ⩾ h. Consequently, the
matrix M contains at least θn · s entries such that |Di,j | ≥ h. Then, the random variables

X
(0)
t := 1 (|Dit,jt | ≥ h) , t = 1, . . . , 2L

are i.i.d. Bernoulli random variables with P(X(0)
t = 1) ≥ θ s

d . In particular, we have

E

 2L∑
t=0

X
(0)
t

 = 2Lθ
s

d
≥ 16 log

(
4 log(8nd)

δ

)
.

Applying the second inequality in Lemma I.1 (a standard Chernoff bound for Bernoulli distributions), we obtain:

P

 2L∑
t=0

X
(0)
t ≤ 8 log

(
4 log(8nd)

δ

) ≤ P

 2L∑
t=0

X
(0)
t ≤ 1

2
µ(0)

 ≤ exp
(
−
µ(0)

8

)
≤
(

δ

4 log(8nd)

)2

.

So we have

|U0| =
2L∑
t=0

X
(0)
t > 8 log

(
4 log(8nd)

δ

)
= |S0|2−L+3 log

(
4 log(8nd)

δ

)
with probability at least 1−

(
δ

4 log(8nd)

)2
.

Induction step: from l to l + 1 Consider the event ξl, defined as

|Uk|
|Sk|

≥ 2−L+3 log

(
4 log(8nd)

δ

)
∀ k = 0, 1, . . . , l .

We want to show

P (ξl) ≥ 1− (l + 1)

(
δ

4 log(8nd)

)2

⇒ P (ξl) ≥ 1− (l + 2)

(
δ

4 log(8nd)

)2

Note that ξl+1 ⊆ ξl, so showing

P (ξl+1 | ξl) ≥ 1−
(

δ

4 log(8nd)

)2
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suffices to conclude

P (ξl+1) = P (ξl) · P (ξl+1 | ξl) ≥

(
1− (l + 1)

(
δ

4 log(8nd)

)2
)(

1−
(

δ

4 log(8nd)

)2
)

≥ 1− (l + 2)

(
δ

4 log(8nd)

)2

.

When we condition on the event ξl, this implies the condition

|Ul| ≥ 2−L+3|Sl| log
(
4 log(8nd)

δ

)
.

Recall that in line 5 of Algorithm 1, we first sample

X
(1)
1,j , . . . , X

(τl+1)
1,j ∼i.i.d. ν1,j , X

(1)
i,j , . . . , X

(τl+1)
i,j ∼i.i.d. νi,j

for each (i, j) ∈ Sl and store

D̂i,j =
1

τl+1

τl+1∑
u=1

X
(u)
i,j −X

(u)
1,j .

Since we assumed that X(u)
i,j −Mi,j ∈ SG(1) and X

(u)
1,j −M1,j ∈ SG(1), this implies

τl+1∑
u=1

(
X

(u)
i,j −X

(u)
1,j −Di,j

)
∈ SG(2τl+1)

and we obtain

P
(
D̂i,j −Di,j ≥ γ/2

)
=

(
τl+1∑
u=1

(
X

(u)
i,j −X

(u)
1,j −Di,j

)
≥ τl+1γ/2

)
≤ exp

(
−τl+1γ

2

16

)
=: pl , (8)

and likewise

P
(
Di,j − D̂i,j ≥ γ/2

)
≤ pl ,

For (i, j) ∈ Ul, this implies that

P
(∣∣∣D̂i,j

∣∣∣ ≤ h− (l + 1/2)γ
)
≤ pl .

So we can construct i.i.d. Bernoulli random variables Bi,j with

P(Bi,j = 1) = pl

and ∣∣∣D̂i,j

∣∣∣ ≤ h− (l + 1/2)γ ⇒ Bi,j = 1

for (i, j) ∈ Ul. By Lemma I.1 it follows (by letting κ = 1
2pl
− 1)

P

 ∑
(i,j)∈Ul

Bi,j ≥ |Ul|/2 | |Ul| = η

 ≤ exp (κplη − (1 + κ)pln log(1 + κ))

≤ exp

(
η

(
1/2− pl −

log(1/pl)− log(2)

2

))
≤ exp

(
η

(
1/2− exp(−τl+1γ

2/16)− τl+1γ
2/16− log(2)

2

))
≤ exp(−2l−2η) .
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The last inequality follows, since we assumed

T ≥ 516 · 2L · L3/h2 ∨ 2L+1L ≥ 128 · 2L · L/γ2 ∨ 2L+1L ,

such that

τl+1 =

⌊
T

2L−l+1L

⌋
≥
⌊
32

2l+1

γ2
∨ 2l−1

⌋
≥ 16

2l+1

γ2

(by ⌊x⌋ ≥ x/2 for x ≥ 1), from where we can conclude

1/2− exp(−τl+1γ
2/16)− τl+1γ

2/16− log(2)

2
≤ −2l−2

for l ≥ 0. For

η ≥ 2−L+3|Sl| log
(
4 log(8nd)

δ

)
= 2−l+2 log

((
4 log(8nd)

δ

)2
)

,

this implies

P

 ∑
(i,j)∈Ul

Bi,j ≥ |Ul|/2 | |Ul| = η

 ≤ ( δ

4 log(8nd)

)2

and therefore

P

 ∑
(i,j)∈Ul

Bi,j ≥ |Ul|/2 | ξl

 ≤ ( δ

4 log(8nd)

)2

(9)

Next, define
Vl := {(i, j) ∈ Sl : |Di,j | < h− (l + 1)γ} .

Note that Sl+1 \ Ul+1 ⊆ Vl. So if

|Vl| < 2−L+3|Sl| log
(
4 log(8nd)

δ

)
,

this implies

|Ul+1| = |Sl+1| − |Sl+1 \ Ul+1|
≥ |Sl+1| − |Vl|

> |Sl+1| − 2−L+3|Sl| log
(
4 log(8nd)

δ

)
=
(
1− 2−L+2

)
|Sl+1| log

(
4 log(8nd)

δ

)
≥ 2−L+3|Sl+1| log

(
4 log(8nd)

δ

)
, (10)

since we have L ≥ log2(16) = 4. Therefore, consider the nontrivial case

|Vl| ≥ 2−L+3|Sl| log
(
4 log(8nd)

δ

)
,

Like before, we have from (8) that

P
(∣∣∣D̂i,j

∣∣∣ ≥ h− (l + 1/2)γ
)
≤ pl

for (i, j) ∈ Vl. Note that we can again define Bernoulli random variables Ci,j with

P(Ci,j = 1) = pl
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and
|Di,j | ≥ h− (l + 1/2)γ ⇒ Ci,j = 1

for all (i, j) ∈ Vl. We can again show that conditional |Vl| = η with

η ≥ 2−L+3|Sl| log
(
4 log(8nd)

δ

)
,

it holds ∑
(i,j)∈Vl

Ci,j ≥ η/2 (11)

with probability 1−
(

δ
4 log(8nd)

)2
.

Now if ∆ is the median of the D̂i,j , (i, j) ∈ Sl, it is either ∆ < h − (l + 1/2)γ or ∆ ≥ h − (l + 1/2)γ. In the case
∆ < h− (l + 1/2)γ, the bound (9) tells us that Ul+1 contains at least half of the indices of Ul, in other words,

|Ul+1|
|Sl+1|

≥ |Ul|
2|Sl+1|

=
|Ul|
|Sl|

,

with probability at least 1− δ. In the case ∆ ≥ h− (l + 1/2)γ, we either directly conclude the induction step from (10), or
we know from (11) that the number of (i, j) ∈ Sl+1 with |Di,j | ≤ h− (l + 1)γ is less than half the number of arms in Vl,
and in particular,

|Ul+1|
|Sl+1|

≥ 1− |Vl|
2|Sl+1|

= 1− |Vl|
|Sl|

=
|Ul|
|Sl|

,

with probability at least 1−
(

δ
4 log(8nd)

)2
. Combining both cases yields the claim.

E. Analysis of Algorithm 2
Using the results of Lemma D.1, we can now determine theoretical guarantees for Algorithm 2, CR(δ, r0).

We present the individual guarantees offered by Algorithm 2 in the following proposition.

Proposition E.1. Let δ ∈ (0, 1/e). Then, with probability larger than 1− δ, Algorithm 2– CR(δ, r0) –returns an index r1,
such that it holds that Mr1,· ̸= Mr0,·, and moreover the total budget is upper bounded by

C̃ · log
(
1

δ

)
· d
θ

(
1

∥∆∥2
+

1

s∗

)
,

where C̃ is a logarithmic factor smaller than

C · (log log(1/δ) ∨ 1)
4 · log(dn)5 log(d)(log+ log(1/∆2

(s∗)) ∨ 1) ,

with a numerical constant C > 0 and log+(x) := log(x ∨ 1) for x ∈ R.

Proof of Proposition E.1. Consider s ∈ [d] and k ≥ 1 minimal, such that for

L =

⌈
log2

(
16

d

θs
log

(
16 log(8nd)

δ

))⌉
it holds

516
L32L

∆2
(s)

∨ 2L+1L ≤ 2k (12)

and

3714 ·
log(1/δ) + log+ log

(
1/∆2

(s)

)
∆2

(s)

∨ 2 < 2k . (13)

The proof consists of three parts:
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1. CSH(r0, [n], L, 2k) returns (r1, j) with |Dr1,j | ≥
∣∣∆(s)

∣∣ /2, with probability at least 1− δ/2,

2. for |Dr1,j | ≥
∣∣∆(s)

∣∣ /2, if we sample

X
(1)
r0,j

, . . . , X
(2k)
r0,j
∼i.i.d. νr0,j and X

(1)
r1,j

, . . . , X
(2k)
r1,j
∼i.i.d. νr1,j ,

it holds with probability of at least 1− δ
0.3k3 that∣∣∣∣∣∣ 12k
2k∑
t=1

X
(t)
r1,j
−X

(t)
r0,j

∣∣∣∣∣∣ >
√

4

2k
log

(
k3

0.15δ

)
,

3. for any k′ ≥ 1, if Di,j′ = 0 and we sample

X
(1)
r0,j′

, . . . , X
(2k

′
)

r0,j′
∼i.i.d. νr0,j′ and X

(1)
i,j′ , . . . , X

(2k
′
)

i,j′ ∼
i.i.d. νi,j′ ,

it holds with probability of at least 1− δ
0.3k′3 that∣∣∣∣∣∣ 1

2k′

2k
′∑

t=1

X
(t)
i,j′ −X

(t)
r0,j′

∣∣∣∣∣∣ ≤
√

4

2k′ log

(
k′3

0.15δ

)
.

From point 1 and 2 one can conclude that Algorithm 2 terminates in the Lth step of the kth iteration at the latest with
probability at least 1 − δ/2 − δ/0.3k3. If it has not terminated before, by point 1, we obtain in line 4 (r1, j) with
|Dr1,j | ≥

∣∣∆(s)

∣∣ /2 and by point 2, that for such (r1, j), the algorithm terminates in line 6, returning r1.

If the algorithm terminates for some k′ < k or in the kth round, but for some other L′, by line 6 this means that the algorithm
returns some i such that for some j′ it holds∣∣∣∣∣∣ 1

2k′

2k
′∑

t=1

X
(t)
i,j′ −X

(t)
r0,j′

∣∣∣∣∣∣ >
√

4

2k′ log

(
k′3

0.15δ

)
.

So point 3 implies for each iteration k′ and each L′ we iterate over, that we do not return an index i with Mi,· = Mr0,·, with
probability at least 1− δ/0.3k3.

So by the union bound, Algorithm 2 returns r1 with Mr1,... ̸= Mr0,... with probability at least

1− δ/2−
∑
k′≤k

∑
1≤L≤Lmax

L2L≤2k
′

δ/(0.3k′
3
) ≥ 1− δ/2− δ · 0.3

∑
k≥1

1

k2
≥ 1− δ/2− 0.3

π2

6
δ > 1− δ .

So we are left with proving the three points.

Proof of 1 By Lemma D.1 and inequality (12), calling CSH(r0, [n], L, 2k) in line 4 of Algorithm 2 yields a pair (r1, j)
with |Dr1,j | ≥ |∆(s)|/2 with probability at least 1− δ/2.

Proof of 2 Note that for

D̂r1,j :=
1

2k

2k∑
t=1

X
(t)
r1,j
−X

(t)
r0,j

, (14)

by an application of Hoeffding’s inequality we know

D̂r1,j ∈

[
Dr1,j −

√
4

2k
log

(
k3

0.15δ

)
, Dr1,j +

√
4

2k
log

(
k3

0.15δ

)]
(15)
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with a probability of at least 1− 0.3δ/k3. Note that from inequality (13) we know by the monotonicity of log log(x)/x for
x ≥ e2 that

16

2k
log

(
k3

0.15δ

)
=

16

2k

(
log(1/δ) + 3 log log(2k) + 3 log

(
1

log(2)

)
+ log(20/3)

)
≤ 80

log(1/δ) + log log
(
2k
)

2k
.

We want to prove the bound

16

2k
log

(
k3

0.15δ

)
≤ ∆2

(s)/4 . (16)

Let us first consider the case ∆2
(s) ≥ 1/e. We can bound

80
log(1/δ) + log log(2k)

2k
≤ 80

log(1/δ) + log(2k)

2k

= 80
log(1/δ) + log(2k∆2

(s))− log(∆2
(s))

2k∆2
(s)

∆2
(s)

≤ 80
2 log(1/δ) + log log(2k∆2

(s))

2k∆2
(s)

.

From inequality (12), we know

2k∆2
(s) ≥ 3714 log(1/δ) ,

and we can therefore use that x 7→ log(x)/x is decreasing for x ≥ e to obtain

80
log(1/δ) + log log(2k)

2k
≤ 80

2 log(1/δ) + log(3714 log(1/δ))

3714 log(1/δ)
∆2

(s)

≤ 80
3 + log(3714)

3714
∆2

(s) ≤ ∆2
(s)/4 .

Next, consider the case ∆2
(s) ≤ 1/e. Then we know from inequality(13) that

2k ≥ 3714
log(1/δ) + log log(1/∆2

(s))

∆2
(s)

.

Because x 7→ log log(x)/x is decreasing for x ≥ e2, we can bound

80
log(1/δ) + log log(2k)

2k
≤ 80

log(1/δ) + log log

(
3714

log(1/δ)+log log(1/∆2
(s))

∆2
(s)

)
3714

(
log(1/δ) + log log

(
1/∆2

(s)

)) ∆2
(s) .

For a, b ≥ e it holds log log(ab) ≤ log(2) + log log(a) + log log(b), so we can bound

log log

(
3714

log(1/δ) + log log(1/∆2
(s))

∆2
(s)

)
≤ log(2) + log log(1/∆2

(s)) + log log
(
3714

(
log(1/δ) + log log

(
1/∆2

(s)

)))
≤ log(2 · 3714) + 2 log log

(
1/∆2

(s)

)
+ log(1/δ) .

This allows us to bound

80
log(1/δ) + log log(2k)

2k
≤ 80

(2 + log(2 · 3714)) log(1/δ) + 3 log log
(
1/∆2

(s)

)
3714

(
log(1/δ) + log log

(
1/∆2

(s)

)) ∆(s)2

≤ 80(2 + log(2 · 3714))
3714

∆2
(s) ≤ ∆2

(s)/4 .
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For |Dr1,j | ≥
∣∣∆(s)

∣∣ /2, we have with high probability according to (15) that

∣∣∣D̂r1,j

∣∣∣ ≥√ 4

2k
log

(
k3

0.15δ

)
.

Proof of 3 Analogously to (14) and (15) we can use Hoeffding’s inequality to show that for

D̂i,j :=
1

2k′

2k
′∑

t=1

X
(t)
ij −X

(t)
1j

it holds ∣∣∣D̂i,j

∣∣∣ ≤
√

4

2k′ log

(
k′3

0.15δ

)
with probability at least 1− δ

0.3k′3 .

Bounding the budget: First, we can bound

Lmax ≤ 2 log

(
16nd log

(
16 log(8nd)

δ

))
≤ 10 log

(
nd log

(
16 log(8nd)

δ

))
≤ 10

(
log(nd) + log log

(
16 log(8nd)

δ

))
≤ 10

(
log(nd) + log

(
(nd)4 + log(1/δ)

))
≤ 70 (log(nd) + log log(1/δ)) .

At the same time, we have that

2L ≤ 32
d

θs
log

(
16 log(8nd)

δ

)
≤ 32

d

θs
(log log(nd) + log(64/δ))

≤ 192
d

θs
(log log(nd) + log(1/δ)) .

So, if we define C := 156 · 703 · 192 and k∗ the minimal k ≥ 1 such that

2k+1 ≥ C min
s∈[d]

(
(log(nd) + log log(1/δ))3(log log(nd) + log(1/δ))d

θs∆2
(s)

+
d(log(nd) + log log(1/δ))(log log(nd) + log(1/δ))

θs
+

d

θs

log(1/δ) + log+ log(1/∆2
(s))

∆2
(s)

+

)
,

we can see that by (12) and (13) Algorithm 2 terminates and returns r1 such that Mr1,... ̸= Mr0,... with a probability of at
least 1− δ. Moreover, on this event of high probability, the algorithm terminates after at most

k∗∑
k=1

∑
1≤L≤Lmax: L·2L≤2k+1

2 · 2k+1 ≤ 8Lmax2
k∗

≤ C ′ · Lmax min
s∈[d]

(
(log(nd) + log log(1/δ))3(log log(nd) + log(1/δ))d

θs∆2
(s)

+
d(log(nd) + log log(1/δ))(log log(nd) + log(1/δ))

θs
+

d

θs

log(1/δ) + log+ log(1/∆2
(s))

∆2
(s)

)
,
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by minimality of k∗, where C ′ > 0 is some numerical constant that might change. To obtain the claimed upper bound, note
that by (2) we know 1/s∗∆2

(s∗) ≤ log(2d)/∥∆∥22 and therefore

C ′Lmax min
s∈[d]

(
(log(nd) + log log(1/δ))3(log log(nd) + log(1/δ))d

θs∆2
(s)

+
d(log(nd) + log log(1/δ))(log log(nd) + log(1/δ))

θs
+

d

θs

log(1/δ) + log+ log(1/∆2
(s))

∆2
(s)

+

)

≤ C ′′(log(nd) + log log(1/δ))4(log(nd) + log(1/δ)(log+ log(1/∆2
s∗) ∨ 1)

d

θ

(
1

∥∆∥2
+

1

s∗

)
,

where C ′′ > 0 is some numerical constant. Reassembling the logarithmic terms yields the claim.

F. Analysis of Algorithm 3
Now, we prove the correctness and we upper bound the budget of Algorithm 3.

Proposition F.1. Let δ ∈ (0, 1/e), let r1 ∈ [n] such that Mr1,· ̸= Mr0,·. Then Algorithm 3– CBC(δ, r0, r1) –returns ĝ = g
(fixing arbitrary g(r0) = 0), with probability at least 1− δ, with a budget of at most

C̃ · log(1/δ) · min
s∈[d]

[(
d

s
+ n

)(
1

∆2
(s)

+ 1

)]
,

where C̃ is a logarithmic factor smaller than

C · (log log(1/δ) ∨ 1)
4 · log(d)5 · log+ log

(
1/∆2

(s̃)

)
,

with a numerical constant C > 0, and s̃ = ⌈d/n⌉ ∧ |{j ∈ [d] ,∆j ̸= 0}|.

The proof of Proposition F.1 does not differ much from the proof of Proposition E.1. Again, we have to bound the time
where CSH returns an index pair for which the stopping condition is fulfilled with high probability. The main difference is,
that we also need a guarantee for correct clustering using these indices, which also leads to a change of the stopping rule.

Proof. Consider s ∈ [d] and k ∈ N, k > log2(n) minimal, such that for

L =

⌈
log2

(
16

d

s
log

(
16 log(8d)

δ

))⌉
it holds

516
L32L

∆2
(s)

∨ 2L+1L ≤ 2k (17)

and

34423 ·

(
log(1/δ) + log+ log

(
1/∆2

(s)

)
+ log n

)
· n

∆2
(s)

∨ 2n ≤ 2k . (18)

The proof relies on the two following facts:

1. CSH(r0, [n], L, 2k) returns (r1, j) with |Dr1,j | ≥
∣∣∆(s)

∣∣ /2, with probability at least 1− δ/2,

2. we have that jointly for all iterations k′ ≥ 1 and 1 ≤ L ≤ L̃max with 2LL ≤ 2k+1, for some j′ ∈ [d] (chosen each
time in line 4) and all 1 < i ≤ n, when we draw

X
(1)
r0,j′

, . . . , X
(⌊2k

′
/n⌋)

r0,j′
∼i.i.d. νr0,j′ and X

(1)
i,j′ , . . . , X

(⌊2k
′
/n⌋)

i,j′ ∼i.i.d. νi,j′
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holds ∣∣∣∣∣∣
⌊2k

′
/n⌋∑

t=1

(
X

(t)
i,j′ −X

(t)
1,j′ −Di,j′

)∣∣∣∣∣∣ ≤
√

4 · ⌊2k′/n⌋ log
(

nk′3

0.15δ

)
,

uniformly with probability at least 1− δ/2.

Point 1 is a direct consequence of Lemma D.1 and (17). Point 2 follows directly from Hoeffding’s inequality and a union
bound over all k ≥ 1, L ≤ Lmax such that L2L ≤ 2k+1 and i ∈ [n]. Indeed, each inequality for itself holds with probability
at least 1− 0.3δ/nk′

3, so the intersection must hold with a probability of at least

1−
∑
k′≥1

∑
1≤L≤Lmax

L2L≤2k
′+1

n∑
i=2

0.3δ/nk′
3 ≥ 1− 0.3δ

∑
k′≥1

1

k′2
≥ 1− δ/2 .

We will prove that Algorithm 3 terminates at the latest in the Lth round of the kth iteration and clusters correctly with
probability at least 1− δ, namely on the intersection of the high probability events of point 1 and 2 which we will call ξcbc.

Algorithm 3 terminates at the latest in the kth iteration Assume we are on ξcbc. By point 1, we know that at round L
of iteration k it holds |Dr1,j | ≥

∣∣∆(s)

∣∣ /2 for j obtained in line 4. We want to prove

64⌊
2k

n

⌋ log( nk3

0.15δ

)
≤ ∆2

(s)/4 . (19)

Note that by (18), it holds

64⌊
2k

n

⌋ log( nk3

0.15δ

)
≤ 128n

2k
(
log n+ 3 log log 2k + log(20/3) + log(1/δ)

)
≤ 640n

log(1/δ) + log n+ log log 2k

2k
.

Again, consider first the case ∆2
(s) ≥ 1/e. In this case, we know from (18) that

34423 (log(1/δ) + log n) · n ≤ 2k∆2
(s) .

We can use that x 7→ log(x)/x is decreasing for x ≥ e and obtain

640n
log(1/δ) + log n+ log log(2k)

2k
≤ 640n

log(1/δ) + log n+ log(2k)

2k

= 640n
log(1/δ) + log n+ log(2k∆2

(s))− log(∆2
(s))

2k∆2
(s)

∆2
(s)

≤ 640n
2 log(1/δ) + log n+ log(2k∆2

(s))

2k∆2
(s)

∆2
(s)

≤ 640

34423
· 2 log(1/δ) + log n+ log (34423n(log(1/δ) + log n)

log(1/δ) + log n
∆2

(s)

≤ 640

34423
· 2 log(1/δ) + 2 log n+ log 34423 + log(log(1/δ) + log n)

log(1/δ) + log n
∆2

(s)

≤ 640 · (3 + log(34423))

34423
∆2

(s) ≤ ∆2
(s)/4 .

This proves (19) in the case ∆2
(s) ≥ 1/e.
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Consider ∆2
(s) ≥ 1/e. Then, by (18), we know

2k ≥ 34423n
log(1/δ) + log n+ log log

(
1/∆2

(s)

)
∆2

(s)

.

We can apply that x 7→ log log(x)/x is decreasing for x ≥ e2 and obtain

640n
log(1/δ) + log n+ log log 2k

2k
≤ 640

34423

log(1/δ) + log n+ log log

(
34423n

log(1/δ)+logn+log log(1/∆2
(s))

∆2
(s)

)
log(1/δ) + log n+ log log

(
1/∆2

(s)

) ∆2
(s) .

Note, that

log log

34423n
log(1/δ) + log n+ log log

(
1/∆2

(s)

)
∆2

(s)


≤ log(2) + log log

(
1/∆2

(s)

)
+ log log

(
34423n

(
log(1/δ) + log n+ log log

(
1/∆2

(s)

)))
≤ log(2 · 34423) + log log

(
1/∆2

(s)

)
+ log(n) + log

(
log(1/δ) + log n+ log log

(
1/∆2

(s)

))
≤ (log(2 · 34423) + 1) log(1/δ) + 2 log log

(
1/∆2

(s)

)
+ 2 log(n) ,

where we used log log(a · b) ≤ log(2) + log log(a) + log log(b) for a, b ≥ e. Thus, it holds

640n
log(1/δ) + log n+ log log(2k)

2k
≤ 640

34423

(2 + log(2 · 34423)) log(1/δ) + 2 log n+ 2 log log
(
1/∆2

(s)

)
log(1/δ) + log n+ log log(1/∆2

(s))
∆2

(s)

≤ 640(2 + log(2 · 34423))
34423

∆2
(s) ≤ ∆2

(s)/4 ,

which proves (19).

Inequality (19) implies

|Dr1,j | ≥
∣∣∆(s)

∣∣ /2 ≥ 4 ·

√√√√ 4⌊
2k

n

⌋ log( nk3

0.15δ

)

and by points 1 and 2 we have a guarantee that

∣∣∣D̂r1,j

∣∣∣ ≥ 3 ·

√√√√ 4⌊
2k

n

⌋ log( nk3

0.15δ

)
.

By line 8 of Algorithm 3, this is sufficient for the algorithm to terminate after the Lth round of iteration k.

Algorithm 3 clusters correctly Consider the first k′ ∈ N with k′ > log2(n) such that for the samples

X
(1)
r0,j

, . . . , X
(⌊2k

′
/n⌋)

r0,j
∼i.i.d. νr0,j and X

(1)
r1,j

, . . . , X
(⌊2k

′
/n⌋)

r1,j
∼i.i.d. νr1,j

we have that

1

⌊2k′/n⌋

∣∣∣∣∣∣∣
⌊
2k

′
/n

⌋∑
t=1

X
(t)
r1,j
−X

(t)
r0,j

∣∣∣∣∣∣∣ > 3 ·

√√√√ 4⌊
2k′

n

⌋ log( nk′3

0.15δ

)
.
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Then by line 8, we know that after completing the iteration Algorithm 3 terminates. From point 2 we know that on ξcbc it
holds

|Dr1,j | > 2 ·

√√√√ 4⌊
2k′

n

⌋ log( nk′3

0.15δ

)
.

So if for each i ≥ 2 we sample again

X
(1)
r0,j

, . . . , X
(⌊2k

′
/n⌋)

r0,j
∼i.i.d. νi,j and X

(1)
i,j , . . . , X

(⌊2k
′
/n⌋)

i,j ∼i.i.d. νi,j ,

then for the averages holds again by point 2 that

1

⌊2k′/n⌋

∣∣∣∣∣∣∣
⌊
2k

′
/n

⌋∑
t=1

X
(t)
i,j −X

(t)
r0,j

∣∣∣∣∣∣∣ >
√√√√ 4⌊

2k′

n

⌋ log( nk′3

0.15δ

)

if and only if Di,j ̸= 0. So on ξcbc, the labeling in line 12 yields to a perfect clustering ĝ = g.

Bounding the budget: Similar to the proof of Theorem E.1, we can bound

L̃max ≤ 70(log(d) + log log(1/δ)) .

and

2L ≤ 192
d

s
(log log d+ log(1/δ)) .

So again by defining C := 156 · 703 · 192 and letting k∗ being minimal such that

2k+1 ≥ C min
s∈[d]

(
(log d+ log log(1/δ))3(log log d+ log(1/δ))d

s∆2
(s)

+
(log d+ log log(1/δ))(log log d+ log(1/δ))d

s

+

(
log(1/δ) + log+ log

(
1/∆2

(s)

)
+ log n

)
· n

∆2
(s)


we know from (17) and (18) that with probability at least 1− δ, Algorithm 3 terminates and clusters correctly, spending a
budget of at most

k∗∑
k=1

∑
1≤L≤L̃max: L·2L≤2k+1

2 · 2k+1 ≤ 8L̃max2
k∗

≤ C ′(log d+ log log(1/δ)) min
s∈[d]

[(
(log d+ log log(1/δ))3(log log d+ log(1/δ))

∆2
(s)

+ 1

)
d

s

+

 log(1/δ) + log+ log
(
1/∆2

(s)

)
+ log n

∆2
(s)

+ 1

n

 ,

where C > 0 is a numerical constant. Inserting s̃ in the right hand side and gathering the logarithmic terms like in the proof
of Proposition E.1 yields the claim.
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G. Proof of Theorem C.1 on the extension to K > 2

Come-back on sub-routines CR and CBC. We can reformulate Proposition E.1 in the following corollary.

Corollary G.1. Let δ ∈ (0, 1/e), r ∈ [n] and G ⊂ [n]. There exist an event of probability larger than 1− δ such that

1. If Mi,· = Mr,· ∀i ∈ G, then CR(δ, r,G) does not stop.

2. If ∃i ∈ G such that Mi,· ̸= Mr,·, then CR(δ, r,G) returns an item s such that Mr,· ̸= Ms,·, with a budget T smaller
than

C̃ log

(
1

δ

)
min
h>0

[
d|G|

|{(i, j) ∈ G× [d] ; |Mr,j −Mi,j | ⩾ h}|

(
1

h2
+ 1

)]
,

with C̃ a poly-logarithmic term defined in Proposition E.1.

Proposition F.1 can be formulated as follows:

Corollary G.2. Let δ ∈ (0, 1/e), r ∈ [n], s ∈ [n] and G ⊂ [n]. Assume that Mr,· ̸= Ms,·, then there exists an event of
probability larger than 1− δ such that CBC(δ, r, s;G) outputs a partition of G, G = R ⊔ S with a budget T such that

1. {i ∈ G ; Mi,· = Mr,·} ⊂ R and {i ∈ G ; Mi,· = Ms,·} ⊂ S

2. the budget T is smaller than

C̃ log

(
1

δ

)
min
h

[(
d

|{j ∈ [d] ; |Mr,j −Ms,j | ⩾ h}|
+ n

)(
1

h2
+ 1

)]
,

with C̃ a poly-logarithmic term defined in Proposition F.1.

Proof of Theorem C.1. We use the notation from the pseudo-code Algorithm 5 and from Appendix C. The correction of
the algorithm is a direct consequence of the following lemma, which states that, with high probability, all epochs behave as
expected. The bound on the total budget given in Theorem C.1 follows directly by summing the sample complexities of all
CR and CBC calls across the K − 1 epochs. These individual complexities are provided in Corollaries G.1 and G.2.

Lemma G.3. There exists an event of probability larger than 1− δ such that for each epoch 1 ⩽ e ⩽ K − 1,

1. Epoch e terminates using a finite budget.

2. The item re+1 selected is a new representative: Mre+1,· ̸∈ {Mr1,·, . . . ,Mre,·}

3. For all k ∈ [e+ 1], {i ∈ [n]; Mi,· = Mrk,·} ⊂ Ĝ
(e+1)
k

Let E denote the event that, for all epochs e = 1, . . . ,K − 1, each call to CR and CBC behaves correctly — i.e., satisfies
Points 1 and 2 of Corollaries G.1 and G.2. In epoch e, the algorithm makes e calls to CR and e calls to CBC, each with a
confidence level δe = δ

e(K−1) . By a union bound over all calls across all epochs, the probability of event E is at least 1− δ.

We prove by induction on e ∈ [K − 1] that the three points of Lemma G.3 hold on E .

Initially, we have a trivial partition G(1) = [n], and a representative r1 is arbitrarily selected. Points 1–3 trivially hold at
e = 1.

Assume that, at epoch e, (r1, . . . , re) are representatives from e distinct clusters, and for each k ∈ [e], the set Ĝ(e)
k contains

all items with mean Mrk,·.

Since e < K, there exists at least one cluster not yet represented, and therefore, there exists some i ∈ Ĝ
(e)
k and some k ∈ [e]

such that Mi,· ̸= Mrk,·. On event E , CR(δe, rk;G
(e)
k ) will return an item in finite time, and Line 5 of the corresponding

algorithm terminates. Denote re+1 the item returned from this call. Then, by Corollary G.1, we know that Mre+1,· ̸= Mrk,·.

Moreover, for k′ ̸= k, G(e)
k′ contains all items with mean Mr′k,· so that Mre+1,· ̸∈ {Mr1,· . . . ,Mre,·}, and Point 2 also holds

for the e-th epoch. Since all calls terminate in finite time on E , Point 1 also holds.

27



Clustering Items through Bandit Feedback: Finding the Right Feature out of Many

Now, for each k ∈ [e], Mre+1,· ̸= Mrk,·, so that on E , the partition of Ĝe
k into two groups Ĝe+1

k ⊔ R̂e+1
k will perfectly

separate the items with mean Mrk,· and Mre+1,·. By assumption, the partial cluster Ĝe
k already contains all items with mean

Mrk,·, so {i ∈ [n] ; Mi,· = Mrk,·} ⊂ Ĝe
k. Similarly, as Ĝe

1, . . . , G
(e)
e is a partition of [n], any item i with mean Mre+1,·

will be set in one of the sets R̂e+1
k so that {i ∈ [n] ; Mi,· = Mre+1,·} ⊂ ∪ek=1R̂

e+1
k = Ĝe+1

e+1. Thus, Point 3 also holds for
epoch e.

By induction, all three points in the lemma hold for all e ∈ [K − 1] on event E , which concludes the proof. □

H. Proof of the lower bounds
The lower bound in Theorem 4.1 consists of two terms, which we prove separately. In the proofs, we use Ti,j as the number
of time a procedure selects the pair (i, j) ∈ [n]× [d].

Lemma H.1. The (1− δ)-quantile of the budget of any δ-PAC algorithm A is bounded as follows

max
ν̃∈Eper(M)

Pν̃,A

(
T ⩾

2d

θ∥∆∥22
log

1

6δ

)
⩾ δ . (20)

Proof of Lemma H.1. Fix an algorithm A, and let Eper(M) denote the set of Gaussian environments obtained by permuting
the rows and columns of M . For the purpose of the proof, we define Pσ, τ as the probability distribution induced by the
interaction between algorithm A and the environment defined in (4), where σ and τ are permutations of the rows and
columns of M , respectively.

We permute the rows of M to reflect the fact that the learner has no access to the label vector g. In addition, we permute the
columns of M to account for the algorithm’s ignorance of the structure of the gap vector ∆, in particular, the identity of the
feature with the largest gap.

Without loss of generality, we assume that µ0 = 0 and µ1 = ∆, with the group associated with mean vector ∆ being the
smaller of the two.

Define χ as the smallest integer such that for all permutations σ and τ of 1, . . . , n and 1, . . . , d, respectively, the following
inequality holds:

Pσ,τ (T > χ) ⩽ δ . (21)

Our goal is to derive a lower bound on χ. Intuitively, we show that for small χ, there exists a permutation of M for which it
is impossible to detect a nonzero entry.

Introduce P0 as the probability distribution induced by A, in an environment where all items belong to a single cluster, i.e.,
each Xt ∼ N (0, 1). We will prove that under this ”null” environment, the algorithm A requires more than χ samples with
probability at least 1− 2δ.

To this end, consider an environment ν(g, µ) consisting of two clusters with means 0 and µ, and let µ → 0. Since A is
δ-PAC, there exist two distinct partitions g ̸= g′ and an event A such that

Pν(g,µ)(A, T ⩽ χ) + Pν(g′,µ)(A
c, T ⩽ χ) ⩽ 2δ .

For example, take g(1) = 0, g(2) = 1, and g′(1) = 0, g′(2) = 0, the event {ĝ(1) = ĝ(2)} suffices. Then, conditionally on
T ⩽ χ, Pν(g,µ) and Pν(g′,µ) converge in total variation to P0 as µ→ 0. consider an environment ν(g, µ) consisting of two
clusters with means 0 and µ, and let µ→ 0.

P0(T ⩽ χ) ⩽ 2δ . (22)

Applying the Bretagnolle–Huber inequality (see Lattimore & Szepesvári, 2020, Thm. 14.2), and combining (21) and (22),
we obtain

1

2
exp (−KL(P0,Pσ,τ )) ⩽ P0(T ⩽ χ) + Pσ,τ (T > χ) ⩽ 3δ ,

which implies

log
1

6δ
⩽ KL(P0,Pσ,τ ) . (23)
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Next, using the decomposition of KL divergence for bandit models (see Lattimore & Szepesvári, 2020, Lemma. 15.1), and
the Gaussian assumption, we have

KL(P0,Pσ,τ ) =
∑
i,j

E0[Ti,j ] KL(Pi,j
0 ,Pi,j

σ,τ ) =
∑
i,j

E0[Ti,j ]1g(σ(i))=1

∆2
τ(j)

2
. (24)

Averaging both sides of (23) over all permutations σ, τ , and using Equations (23) and (24), we get

log
1

6δ
⩽

1

n!

1

d!

∑
σ,τ

E0[Ti,j ]1g(σ(i))=1

∆2
τ(j)

2
. (25)

Now, observe that each element in i ∈ {1, . . . , n} (resp. j ∈ {1, . . . , d}) appears exactly (n− 1)! (resp. (d− 1)!) times in
the multi-set {σ(i)}σ (resp. {τ(j)}τ ), so that

1

n!

1

d!

∑
σ,τ

∑
i,j

E0[Ti,j ]1g(σ(i))=1

∆2
τ(j)

2
=

(n− 1)!

n!

(d− 1)!

d!

∑
k,l

∑
i,j

E0[Ti,j ]1g(k)=1
∆2

l

2

=
1

n

∑
k∈[n]

1g(k)=1
∥∆∥22
2d

E0[T ] .

Since the group associated with ∆ is the smallest, 1
n

∑
k∈[n] 1g(k)=1 = θ. Using a modified algorithm A′ that stops at

T ∧ χ, we can bound E0[T ] ⩽ χ. Finally, it follows that:

χ ⩾
2d

θ∥∆∥22
log

1

6δ
.

Since χ is the maximum over all permuted environments constructed with M of the (1− δ)-quantile of the budget, this
inequality concludes the proof of Lemma H.1.

Lemma H.2. Assume that δ < 1/2. If A is δ-PAC for the clustering problem, then for any environment ν,

EA,ν [T ] ⩾
2(n− 2)

∆2
(1)

log

(
1

2.4δ

)
, (26)

where |∆(1)| = maxj∈[d] |∆j |.

Proof of Theorem 4.1. Observe that Lemma H.2 does not directly provide a high-probability lower bound on the budget.
We now show how the expectation bound given by Lemma H.2 implies a lower bound on the (1− δ)-quantile of the budget.

Let A be any δ-PAC algorithm. Assume, by contradiction, that

Pν,A

(
T ⩾

2(n− 2)

∆2
(1)

log

(
1

4.8δ

))
< δ.

We modify A such that it stops at time

T ′ := T ∧ 2(n− 2)

∆2
(1)

log

(
1

4.8δ

)
.

If A reaches time 2(n−2)
∆2

(1)

log
(

1
4.8δ

)
, it stops sampling and outputs an error. The resulting algorithm A′ is 2δ-PAC, with a

budget satisfying

EA′,ν [T
′] ⩽

2(n− 2)

∆2
(1)

log

(
1

2.4δ

)
.

However, this contradicts Lemma H.2, applied toA′ with δ′ = 2δ. Thus, we have Pν,A

(
T ⩾ 2(n−2)

∆2
(1)

log
(

1
4.8δ

))
⩾ δ .
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Proof of Lemma H.2. LetA be any δ-PAC algorithm for the clustering problem, and consider the matrix M that parametrizes
the Gaussian environment ν. We fix for all environments in this proof that g(1) = 0 and g(2) = 1. It implies intuitively that
we assume that the algorithm knows one item from each group via an oracle.

For the Gaussian environment ν, let i, j ∈ [n]× [d]. The observations follow a Gaussian distribution:

νi,j =

{
N (0, 1), if g(i) = 0,

N (∆j , 1), if g(i) = 1 .

We aim to show that with a budget smaller than cn
∆2

(1)

log(1/δ), a δ-PAC algorithm cannot distinguish the environment ν

from another environment where one item from ν has been switched to the other group. We construct now this alternative
environment.

For any k ∈ {3, . . . , n}, define gk as the vector of labels obtained from g by flipping the label of row k, and let νk denote
the corresponding Gaussian environment. The lower bound follows from the information-theoretic cost of distinguishing ν
from any νk.

To handle multiple environments, let Pgk (resp. Pg) denote the probability distribution induced by the interaction between
algorithm A and environment νk (resp. ν).

For any k ∈ {3, . . . , n}, note that environments ν and νk differ only on row k. By decomposing the KL divergence and
using the Gaussian KL formula, we have:

KL(Pg,Pgk) =

d∑
j=1

Eg[Tk,j ]
∆2

j

2
⩽

d∑
j=1

Eg[Tk,j ]
∆2

(1)

2
, (27)

where we use that |∆(1)| = maxj∈[d] |∆j |, and Tk,j denotes the number of samples taken from row k and column j.

Since A is δ-PAC for the clustering task, we have:

Pg(ĝ ̸= g) ⩽ δ, Pgk(ĝ ̸= gk) ⩽ δ .

Now, if δ ∈ (0, 1/2), by the monotonicity of the binary KL divergence kl, and using the data-processing inequality, we
obtain:

kl(δ, 1− δ) ⩽ kl
(
Pg(ĝ = gk),Pgk(ĝ = gk)

)
⩽ KL(Pg,Pgk) . (28)

Combining Equation (27) and Equation (28), and summing over k ∈ {3, . . . , n}, we get:

(n− 2) kl(δ, 1− δ) ⩽
n∑

k=3

d∑
j=1

Eg[Tk,j ]
∆2

(1)

2
⩽ Eg[T ]

∆2
(1)

2
. (29)

Finally, Lemma H.2 follows by combining Equation (29) with the inequality kl(δ, 1− δ) ⩾ log
(

1
2.4δ

)
.

I. Technical Results
Lemma I.1 (Chernoff-Bound for Binomial random variables). For i = 1, . . . , n, consider X1, X2, . . . , Xn ∼i.i.d. Bern(p)
with p ∈ (0, 1), denote µ := np and consider κ > 0. We have

P

(
n∑

i=1

Xi ≥ (1 + κ)µ

)
≤ eκµ

(1 + κ)(1+κ)µ
.

If κ ∈ (0, 1), we also have

P

(
n∑

i=1

Xi ≤ (1− κ)µ

)
≤ exp

(
−κ2µ

2

)
.
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