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Detection of diffusely abnormal 
white matter in multiple sclerosis 
on multiparametric brain MRI using 
semi‑supervised deep learning
Benjamin C. Musall 1,6, Refaat E. Gabr 1,6, Yanyu Yang 2, Arash Kamali 1, John A. Lincoln 3, 
Michael A. Jacobs 1,4,5, Vi Ly 2, Xi Luo 2, Jerry S. Wolinsky 3, Ponnada A. Narayana 1 & 
Khader M. Hasan 1*

In addition to focal lesions, diffusely abnormal white matter (DAWM) is seen on brain MRI of multiple 
sclerosis (MS) patients and may represent early or distinct disease processes. The role of MRI‑observed 
DAWM is understudied due to a lack of automated assessment methods. Supervised deep learning 
(DL) methods are highly capable in this domain, but require large sets of labeled data. To overcome 
this challenge, a DL‑based network (DAWM‑Net) was trained using semi‑supervised learning on a 
limited set of labeled data for segmentation of DAWM, focal lesions, and normal‑appearing brain 
tissues on multiparametric MRI. DAWM‑Net segmentation performance was compared to a previous 
intensity thresholding‑based method on an independent test set from expert consensus (N = 25). 
Segmentation overlap by Dice Similarity Coefficient (DSC) and Spearman correlation of DAWM 
volumes were assessed. DAWM‑Net showed DSC > 0.93 for normal‑appearing brain tissues and 
DSC > 0.81 for focal lesions. For DAWM‑Net, the DAWM DSC was 0.49 ± 0.12 with a moderate volume 
correlation (ρ = 0.52, p < 0.01). The previous method showed lower DAWM DSC of 0.26 ± 0.08 and 
lacked a significant volume correlation (ρ = 0.23, p = 0.27). These results demonstrate the feasibility 
of DL‑based DAWM auto‑segmentation with semi‑supervised learning. This tool may facilitate future 
investigation of the role of DAWM in MS.

Multiple sclerosis (MS) is the most common non-traumatic demyelinating disease in young adults that affects 
more than 2.8 million people  worldwide1. Treatment options include disease-modifying drugs that limit inflam-
mation associated with acute tissue destruction and clinical attacks. Many of these treatments have limited to 
moderate efficacy. Noninvasive identification of biological correlates of disease load, activity, and progression 
could allow for the development of more effective and targeted therapies and improved outcome.

Magnetic resonance imaging (MRI) plays a key role both in diagnosis and management of  MS2,3. The hallmark 
of MS is the presence of focal hyperintense lesions on T2-weighted (T2w) MRI in the central nervous system 
(CNS). In addition to focal lesions, diffusely abnormal white matter (DAWM) is observed on T2w, proton 
density-weighted (PDw), and T2w fluid-attenuated inversion recovery (FLAIR) MRI. DAWM appears as diffuse 
hyperintense regions with poorly defined margins and is predominantly observed in the periventricular and cen-
trum semiovale  regions4–7. The signal intensity of DAWM is intermediate to focal lesions and normal-appearing 
white matter (NAWM)8, often overlapping with that of normal-appearing gray matter (NAGM). DAWM is seen 
in at least 25% of MS  patients6,9 and it is also detected in patients with only a few focal  lesions10. Histological 
studies have suggested that DAWM may represent an early disease process with the potential to progress into 
focal lesions, while other studies have suggested that DAWM represents a pathologic process distinct from that 
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of focal  lesions7,11–13. Associations with DAWM have been reported for some histopathologic markers and clini-
cal  symptoms6,7,9,14–21.

Despite the potential role for DAWM as a marker of MS pathology suggested in those studies, DAWM is 
often not considered in a majority of imaging studies in MS. A major reason for this is the lack of reliable and 
automated methods to segment and quantify DAWM volume. The diffuse appearance of DAWM makes manual 
segmentation difficult and time consuming. This also introduces inter-reader variability. To our knowledge, 
inter-reader variability of DAWM segmentation has yet to be assessed. Maranzano et al. utilized automated 
intensity thresholding applied to normalized T2w images to discriminate DAWM and focal lesions (T2L) from 
 NAWM22, but the performance of this technique has not yet been assessed against manual segmentation or sup-
ported by an independent study.

Deep learning (DL) methods, particularly fully convolutional neural networks (CNNs) such as the U-Net23, 
have consistently shown improved performance on a variety of tasks in MS, including the segmentation of T2 
hyperintense  lesions24–26, T1 hypointense  lesions27, contrast-enhancing  lesions28, and new and enlarging  lesions29. 
These methods appear promising for automated DAWM segmentation. However, unlike focal MS lesions, there 
are currently no large datasets with DAWM labels available for supervised training of deep learning models.

In this work, we propose a new DL-based method, DAWM-Net, for segmentation of DAWM from multipara-
metric MRI using a semi-supervised training approach. The proposed approach initiates network training on a 
large set of imperfect, heuristic prior segmentations and then fine-tunes the network using a small number of 
consensus segmentations from expert raters. In this feasibility study, we evaluated the model performance on a 
withheld test set and compared its performance to a published DAWM segmentation technique.

Methods
Image dataset
The data used in this study included multiparametric MRI data accessed from the CombiRx Phase-III multi-site 
clinical trial (identifier: NCT00211887) on relapsing remitting MS (RRMS)  patients30. MRI scans were acquired 
across different scanner models and vendors (General Electric Healthcare, Milwaukee, USA; Philips Healthcare, 
Best, the Netherlands; Siemens Healthineers, Erlangen, Germany) at both 1.5-T (85%) and 3-T (15%) field 
strengths. A total of 1006 patients were enrolled at baseline and scanned using a standard MRI protocol includ-
ing 2D FLAIR and 2D dual-echo turbo spin echo images (yielding proton density weighted and T2w images of 
0.94 mm × 0.94 mm × 3 mm voxel dimensions), and pre- and post-contrast T1-weighted images with geometry 
identical to the FLAIR and dual-echo images. In addition, 3D T1-weighted images were also acquired. Baseline 
scans from the trial were used in this study.

Our analysis of this anonymized dataset was approved by our Institutional Review Board (IRB). Across all 
sites within the CombiRx trial, patients were recruited and scanned with IRB approval and written consent was 
obtained from each patient. All research was performed in accordance with the Declaration of Helsinki.

After image quality  assessment31, all images were filtered using anisotropic diffusion to reduce  noise32,33, 
and FLAIR and T1w images were registered with the T2w images. Skull stripping and bias field correction were 
performed, and image intensities were  normalized34. Brain volumes were initially segmented into 4 tissue classes 
(NAGM, white matter including both NAWM and DAWM, cerebrospinal fluid or CSF, and T2L) using MRI 
automated processing (MRIAP)35, an automated segmentation pipeline that is based on both parametric and 
non-parametric techniques. Lesion masks were manually inspected and corrected by imaging experts.

Expert evaluation
Two neuroimaging experts, a neuroradiologist and an MS neurologist, with 10+ and 15+ years of experience in 
analyzing MRI of MS, respectively (AK and JAL), independently segmented DAWM volumes from a total of 
40 randomly chosen scans. Prior to manual segmentation, the two readers had practice sessions to identify the 
best MRI contrast types and window setting for DAWM visualization and manual segmentation of DAWM. The 
manual annotation process began with prior segmentations of the brain and MS lesions as the starting point. 
Using the ITK-Snap software (version 3.8.0, www. itksn ap. org) voxels were reclassified as DAWM based on their 
appearance on the FLAIR and T2w images (Fig. 1).

Special care was taken in areas with possible ambiguity between DAWM and other tissues. Delineation of 
DAWM from adjacent gray matter structures is especially challenging due to overlap in signal intensity such 
as in white matter lying along the superior margins of the basal ganglia or in the cortex. Segmentation in these 
regions was avoided, and the central deep white matter of the brain was taken as the focus of this study. The 
signal intensity of the large ascending/descending white matter bundles of the brain may also mimic the DAWM 
signal intensity, such as in the white matter of the corona radiata. To avoid this mimic, only areas with discrete 
signal changes from the adjacent white matter bundles were segmented.

After initial independent segmentation, the two readers generated a set of consensus segmentations using 
their previous independent segmentation as a prior. Maps displaying overlap and disagreement of DAWM 
segmentations were generated, and regions of disagreement were reviewed and either eliminated or accepted to 
create consensus segmentation maps.

Of the 40 cases assessed by the two readers, 15 were randomly selected for fine-tuning the segmentation model 
(described in the next section) and the remaining 25 were withheld as an independent test set.

DAWM‑Net segmentation
Figure 2 provides a flowchart summarizing the DAWM segmentation process, which consists of three stages. In 
this study, 2D U-Nets were used as the DL segmentation model in all experiments.

http://www.itksnap.org
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In the first development stage, the heuristic U-Net-based segmentation algorithm was developed based on 
the observations that DAWM has signal intensity (1) intermediate to NAWM and T2L and (2) similar to that 
of NAGM. First, a 4-class (4 tissues and background) U-Net was trained for brain segmentation based on the 
validated MRIAP segmentation on the CombiRx anonymized imaging dataset. Based on the histogram of the 
U-Net class scores, heuristic thresholds were identified such that voxels meeting observations (1) and (2) were 
reclassified as  DAWM36. Additional information on this technique can be found in the Supplementary Material.

In the second stage, the brain segmentation maps, now augmented with the heuristic DAWM segmentation, 
were used as the target labels to train another 5-class U-Net with weak supervision, with a similar architecture 
to that of the 4-class U-Net.

In the third stage, a subset of 15 cases with corresponding consensus segmentations by the two expert readers 
were used for further fine-tuning of the U-Net (10 cases for training, 5 cases for validation). This resulted in the 
final trained network referred to as DAWM-Net, which segments the brain into background and 5 tissue classes: 
NAGM, NAWM, CSF, T2L, and DAWM.

To assess the contribution of different image contrasts (FLAIR, T2w, T1w, or proton-density weighted) to 
the segmentation performance, a sensitivity analysis was performed. In this experiment, a separate set of models 
were trained with omission of one image contrast and their segmentation performance was evaluated on the 
test set.

Finally, an intensity thresholding method for automated DAWM and T2L segmentation was applied to the 
test set for  comparison22. In that method, an initial tissue segmentation of the brain was performed, and DAWM 
and focal lesions were detected using two intensity thresholds based on the mode of the NAWM signal on the 
T2w images. Our implementation of this technique is described in the Supplementary Materials.

Statistical analysis
DAWM volumes were extracted, and the mean and standard deviation were calculated across the 25 patients 
in the held-out test set. Inter-reader agreement was assessed using the Dice Similarity Coefficient (DSC) and 
Spearman correlation of DAWM volumes. Segmentation performance of the proposed DAWM-Net and the auto-
mated intensity thresholding method was assessed against consensus segmentations using DSC and Spearman 
correlation. DSC scores were compared between segmentation methods using a paired t-test. Finally, Bland–Alt-
man analysis was used to determine bias and the 95% confidence limits of agreement (95% LOA) between the 

Figure 1.  Examples of DAWM presentation on FLAIR and T2-weighted images in three MS patients. On 
zoomed FLAIR images, focal lesions are labeled with red arrows, and DAWM is labeled with yellow arrows. 
A consensus segmentation by two expert physicians (five tissues—NAGM = grey, NAWM = white, CSF = teal, 
T2L = salmon pink, DAWM = sky blue) is shown in the middle column.
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segmentation  methods37. Descriptive statistics, t-tests, and correlations were calculated using the Python NumPy 
module (version 1.19.5). Two-sided p values below 0.05 were considered statistically significant.

Results
In the withheld test set of 25 patients, the average DAWM volume detected by DAWM-Net was 10.0 ± 8.1  cm3 
(median [range]: 7.4 [1.7–34  cm3]), and the average DAWM volume delineated the two readers was 11.5 ± 5.6 
 cm3 (median [range]: 11.4 [3.6–26  cm3]). The automated intensity thresholding method overestimated the 
DAWM volume, yielding an average of 29 ± 7.1  cm3 (median [range]: 28 [16–44  cm3]). Examples of input images 
and DAWM segmentation are shown in Figs. 3, demonstrating the good segmentation quality obtained with 
DAWM-Net.

The DSC and Spearman correlation comparing readers and the automated segmentation methods are reported 
in Table 1. Correlation plots and Bland–Altman plots are shown in Fig. 4. Compared to the consensus seg-
mentations, the DSC of the detected DAWM was 0.49 ± 0.12 for DAWM-Net, significantly higher than DSC 
of 0.26 ± 0.08 with the automated intensity thresholding method (P < 0.0001, paired t-test). DAWM-Net also 
segmented T2L, obtaining a DSC of 0.81 ± 0.08, which is also higher than the DSC = 0.30 ± 0.12 obtained with 
the automated intensity thresholding method (P < 0.0001, paired t-test).

When compared to the expert consensus segmentation, Spearman correlation of extracted DAWM volumes 
from DAWM-Net segmentations was moderate (ρ = 0.52, P = 0.009). This correlation was not significant for the 
automated intensity thresholding method (ρ = 0.23, P = 0.27). Bland–Altman analysis showed DAWM-Net to 
have a small negative bias (bias: − 0.76  cm3, 95% LOA: − 6.2, 4.7  cm3). The automated intensity thresholding 
method had a larger, positive bias and wider 95% LOA (bias: 8.7  cm3, 95% LOA: 1.6, 15.8  cm3). Sensitivity analysis 
revealed that model performance was most impacted by the omission of the FLAIR image series. Additional 
details are reported in the Supplementary Material.

Figure 2.  Segmentation approach for DAWM. (Stage 1) Development of heuristic DAWM segmentation based 
on class score thresholds from a 2D U-Net trained for 4-class segmentation, (Stage 2) generation of imperfect 
DAWM segmentations for weakly-supervised training of a 2D U-Net, and (Stage 3) fine-tuning on a small set of 
reader cases to create a final DAWM-Net. Segmentations by algorithm and readers (dark blue) were compared 
on a withheld test set of 25 patients. Segmentations from an automated intensity thresholding  method22 were 
also tested and their performance was compared to DAWM-Net.



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17157  | https://doi.org/10.1038/s41598-024-67722-2

www.nature.com/scientificreports/

Comparison between automated techniques (DAWM-Net VS automated intensity thresholding methods) 
showed the following: DAWM DSC of 0.22, a Spearman correlation of DAWM volumes of 0.53 (P = 0.007) and 
a Bland–Altman bias and 95% LOA (bias: 9.5  cm3, 95% LOA: 1.8, 17.2  cm3) similar to the comparison between 
the consensus VS automated intensity thresholding method.

Inter-reader analysis showed DAWM DSC of 0.34 ± 0.16 between the two independent readers, with a weak 
Spearman correlation of DAWM volumes (ρ = 0.23, P = 0.026) and Bland–Altman bias [95% LOA] of − 1.6 
[− 8.9, 5.6]  cm3.

Figure 3.  Examples of DAWM segmentation for three patients (P1, P2, and P3) by reader consensus, the 
proposed DAWM-Net, and the automated intensity thresholding technique. Zoomed regions are marked with a 
yellow box.
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Discussion
In this work, we developed a DL approach using semi-supervised training to segment DAWM, focal lesions, 
and all brain tissues in MS patients from multiparametric MRI. By training with a combined large dataset of 
imperfect priors and a small dataset of expert segmentations, the DAWM-Net segmentations showed spatial 
overlap and volume correlation that were comparable to human readers. This tool could support further studies 
to investigate the clinical significance of DAWM in MS and its contribution to disease burden and progression.

For focal pathologies in neuroradiology, such as lesions or tumors, DSCs from 0.6 to 0.8 are frequently 
 reported29,38–40. DAWM-Net was able to segment DAWM and T2L with DSCs of 0.49 and 0.81, respectively, which 
was more accurate compared to the automated intensity thresholding method that attained DSCs of 0.26 and 
0.30, respectively. However, our implementation of the automated intensity thresholding method was optimized 
for DAWM segmentation, which may have affected the T2L segmentation accuracy.

DAWM segmentation presents unique challenges when compared to focal pathologies. Segmentation perfor-
mance depends on the size of the segmented tissue and the level of image contrast relative to adjacent  tissue38. 
DAWM segmentation faces some specific difficulties: diffuse appearance with weak and variable contrast rela-
tive to its surroundings, confounders such as partial volume artifacts, differential appearance of white matter 
across levels of the brain (such as hyperintensity of white matter bundles in the centrum semiovale), and spatial 
inhomogeneities inherent in MRI. Therefore, it was expected that the inter-reader variability of DAWM segmen-
tations would be higher than that of focal, high-contrast T2L. The low inter-reader DSC and weak inter-reader 
correlation of DAWM volumes in our study reflect these challenges. This challenge of accurate and consistent 
DAWM segmentation was to some extent ameliorated through the consensus segmentation. Both measures of 
segmentation performance (spatial overlap and volume correlation) showed better agreement between DAWM-
Net and the consensus segmentation than the agreement between the two independent readers.

Assessing inter-reader variability in DAWM segmentation was another goal of this study. A previous study by 
Maranzano et al. using a semi-automated method reported inter-reader DSC of 0.72–0.79. However, unlike our 
study, there was no comparison to manual segmentation of DAWM. Instead, that study assessed reproducibility of 
segmentation by automated intensity thresholding to separate DAWM and T2L from  NAWM22. These differences 
in technique might underly the bias that was observed in Bland–Altman analysis for the automated intensity 
thresholding method in our study. Using global T2w signal intensity thresholds to separate DAWM across the 
entire brain volume may introduce errors in regions with the aforementioned confounders. In particular, this 
strategy may produce false positives in large ascending/descending white matter bundles, which may explain the 
over-segmentation observed as a positive bias in the Band-Altman analysis. In contrast, readers in the current 
study performed manual DAWM segmentation on FLAIR images. DAWM-Net showed a small negative bias in 
comparison to consensus segmentations. While DAWM-Net considers slices individually, it can learn a spatially 
varying threshold which depends on local image context. This likely led to better performance of DAWM-Net in 
terms of spatial overlap and volume correlation, which was comparable to that of human readers.

There is currently no standard method to measure DAWM volume. Several prior studies have relied on 
qualitative assessment of DAWM in lieu of volume  quantitation6,9,20. Other studies have used a region of interest 
approach to sample DAWM but did not assess its  volume10,41. Previous reports relying on visual assessment have 
seen DAWM in more than a quarter of MS  patients6,9. In our test set of 25 baseline scans, randomly selected from 
the CombiRx trial, DAWM was segmented in all patients (minimum DAWM volume: 3.6  cm3). The reported 
prevalence of DAWM in previous studies may be affected by a subjective threshold considering what volume of 
DAWM is substantial enough to be considered a visual indication of DAWM presence. On the other hand, with 
automated, voxel-wise segmentation techniques such as those considered here, DAWM is detected regardless of 
its  volume22. Thus, comparing prevalence of DAWM between studies with differing techniques is not straight-
forward. The 25-patient set in this study is not sufficiently powered to measure the prevalence of DAWM. We 
will investigate the prevalence of DAWM in an upcoming study with a large patient population.

Only a few previous studies have estimated DAWM volumes. In consecutive studies applying the auto-
mated intensity thresholding technique, DAWM averaged around 20  cm3 in volume for MS patients (range: 
1.82–43.87  cm3)18,19,22. This is similar to our results from the T2w image automated intensity thresholding tech-
nique. Although the automated segmentation methods showed moderate correlation, our measurements from 
the reader consensus and DAWM-Net were closer to 10  cm3. This difference is likely due to the more conservative 

Table 1.  Dice similarity coefficients (DSCs) of all tissue classes for DAWM-Net and the automated intensity 
thresholding method in an independent test set of 25 compared to the expert consensus segmentations. † Both 
the consensus segmentations and automated intensity thresholding method overlaid DAWM segmentations 
onto the same set of prior segmentation of NAGM, NAWM, and CSF. Significant values are in bold.

Tissue

Spatial overlap of tissue segmentations with reader consensus
DSC (Average ± SD)

DAWM-Net Automated intensity thresholding Paired t-test

NAGM 0.95 ± 0.01 1.00 ± 0.00 †NA

NAWM 0.93 ± 0.02 0.96 ± 0.01 †NA

CSF 0.98 ± 0.01 1.00 ± 0.00 †NA

T2L 0.80 ± 0.08 0.30 ± 0.12 P < 0.0001

DAWM 0.49 ± 0.12 0.26 ± 0.08 P < 0.0001



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17157  | https://doi.org/10.1038/s41598-024-67722-2

www.nature.com/scientificreports/

Figure 4.  Correlation (a,c,e) and Bland–Altman plots (b,d,f) comparing the following DAWM volumes: 
DAWM-Net vs. the reader consensus (a,b), the automated intensity thresholding method vs. the reader 
consensus (c,d), and the automated intensity thresholding method vs. DAWM-Net (e,f). The dotted red line is 
the line of identity.
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manual segmentation strategy used by our readers, which was imparted to DAWM-Net through semi-supervised 
training. Another possible reason for this difference may be due to the different primary image contrast used 
(T2w vs. FLAIR), warranting further investigation. DAWM-Net included both T2w and FLAIR images as inputs, 
but its performance was shown to be most strongly dependent on the FLAIR series in the sensitivity analysis.

One limitation of our study is that the CombiRx dataset only included early relapsing–remitting MS patients. 
Generalization of the DAWM-Net model to other MS phenotypes should be explored in the future. A second 
limitation of DAWM-Net is the requirement for normalized, multiparametric data as input, which may not be 
immediately available. We evaluated our method in a relatively small withheld set of 25 MRI volumes. Valida-
tion in larger external datasets, possibly with different imaging parameters, will be required to fully determine 
the generalizability of the proposed algorithm. Data used in this study were acquired in a large multi-site trial, 
thus are not highly specific and contribute to a wider range of a-priori information for the training of the DL 
pipeline, which would potentially be in favor of the system’s generalizability. To improve DAWM segmentation 
consistency, readers avoided ambiguous white matter regions, focusing on the central deep white matter of the 
brain. This focus was likely imparted to DAWM-Net during training and could potentially result in underestima-
tion of DAWM volume. A final limitation is that our manual segmentation data, used for both development and 
evaluation, is generated by only two expert readers. Addition of more expert readers could potentially improve 
segmentation performance and better assess inter-reader agreement. An independent study would most accu-
rately and efficiently evaluate the efficacy of DAWM-Net in the face of these limitations.

In conclusion, we have demonstrated that a DL model combined with semi-supervised training can perform 
comprehensive segmentation of all brain tissues, including DAWM, on data from a large multi-center study of 
RRMS. Accurate and automated segmentation of DAWM will facilitate research efforts focused on enhancing 
our understanding of DAWM and its potential as an imaging biomarker of disease progression.

Data availability
Supporting code and the trained DAWM-Net model will be available at the following location: https:// github. 
com/ uthmri.
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