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TOWARDS UNDERSTANDING THE NATURE OF ATTEN-
TION WITH LOW-RANK SPARSE DECOMPOSITION
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Figure 1: (A) Low-Rank Sparse Attention (Lorsa) comprises thousands of sparsely activated attention
heads with 1D outputs, designed to extract interpretable attention units from the original Multi
Head Self Attention (MHSA). (B) Lorsa serves as a replacement model for Transformer attention,
substituting sparse interpretable components for attention modules. (C) Each Lorsa head explains an
atomic feature-feature interaction across token positions, which was originally a part of an MHSA
head or spread across multiple heads, i.e. put in attention superposition.

ABSTRACT

We propose Low-Rank Sparse Attention (Lorsa), a sparse replacement model of
Transformer attention layers to disentangle original Multi Head Self Attention
(MHSA) into individually comprehensible components. Lorsa is designed to ad-
dress the challenge of attention superposition to understand attention-mediated
interaction between features in different token positions. Lorsa helps find cleaner
and finer-grained versions of previously discovered MHSA behaviors like induction
heads, successor heads, attention sink, and a comprehensive family of arithmetic-
specific Lorsa heads. Interestingly, we identify a novel head type called subtoken
induction heads that function at character level rather than token level. Auto-
mated interpretability analysis indicates that Lorsa achieves parity with SAE in
interpretability while Lorsa exhibits superior circuit discovery properties. We
also conduct extensive experiments on architectural design ablation, correlation to
original MHSA heads and error analysis. Our early attempt to fully sparsify a toy
Transformer succeeds to reveal clean global circuits. Eventually, we hope Lorsa
would help us greatly understand attention computation and enable full sparsifica-
tion of model computation along with its MLP counterparts. Lorsa is open-sourced
at https://anonymous.4open.science/r/Lorsa-5686/.
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1 INTRODUCTION

When examining the function of individual attention heads in a Transformer model, one might
identify some of these heads implementing a specific behavior. A canonical example is induction
heads which predicts ‘Potter’ following the token ‘Harry’ when ‘Harry Potter’ is present in the
context (Olsson et al., 2022). Ablating these heads substantially prevents the model from correctly
performing corresponding tasks, which indicates causal relation of these heads and the model’s
macroscopic behaviors. These interpretable attention units constitute the basic building blocks of the
model’s inter-token information mixing algorithm.

Not all attention heads, however, exhibit clear functionality. Most heads distribute attention across
diverse contexts. Although some heads exhibit identifiable patterns, there might be inter-head
collaboration that explains the whole story. These challenges in attention head interpretation is
analogous to feature superposition in understanding individual neurons, which suggests the existence
of attention superposition (Jermyn et al., 2024) in Multi Head Self Attention (MHSA), which we
will further discuss in Section 2.

Inspired by the recent success of Sparse Autoencoders (SAEs) to extract monosemantic features
from Transformers’ hidden space (Templeton et al., 2024b) or approximate part of the network’s
computation as a sparse computation (Templeton et al., 2024a; Ge et al., 2024; Dunefsky et al.,
2024), we propose Low-Rank Sparse Attention (Lorsa) to disentangle the atomic attention units from
attention superposition (Section 3). Lorsa serves as a replacement module of the original MHSA with
an overcomplete set of attention heads featuring a single-dimensional OV circuit (Elhage et al., 2021)
and sparsity constraints.

We evaluate the reconstruction fidelity and sparsity trade-off of Lorsa in Section 4, along with
scalability analysis. In Section 5, we introduce our exploration interface following Bricken et al.
(2023), providing multifaceted information on each Lorsa head. We also quantitatively assess Lorsa
head interpretability using top activations and their attribution patterns (z pattern) with automated
interpretability (Bills et al., 2023). The results indicate that Lorsa’s monosemanticity is comparable
to SAE features.

Section 6 presents findings with Lorsa on Pythia-160M (Biderman et al., 2023) and Llama-3.1-
8B (Dubey et al., 2024). For validation, we first identify the Lorsa instantiations of known attention
mechanisms: induction heads, name mover heads (Wang et al., 2023), successor heads (Gould et al.,
2024), and attention sinks (Xiao et al., 2024). Furthermore, we characterize a family of arithmetic-
specific Lorsa heads in Llama-3.1-8B. We also identify a subset of Lorsa heads in Llama-3.1-8B that
function as theme anchors by exhibiting long-range, topic-specific attention patterns.

To the best of our knowledge, Lorsa is the first attempt to extract sparse and interpretable attentional
computation, yet still has significant room for improvement in aspects discussed in Section 9. We
hope these discussions and findings will facilitate future research along this direction.

Note on Terminology: While prior work refers to the atomic computational units we aim to
independently understand as attentional features (Jermyn et al., 2024; Ameisen et al., 2025), we
adopt attention units to avoid conflating with activation-space features (which denote 1D linear
features in representation spaces (Elhage et al., 2022)). The term head flexibly denotes either MHSA
heads or Lorsa heads as context dictates. The proposed replacement model is not designed for
immediate surrogate for underlying attention layers as they are overparameterized and may introduce
reconstruction errors that compound across layers and token positions. We recommend readers to
view Lorsa as an interpretability tool instead.

2 ATTENTION SUPERPOSITION

Analogous to how post-ReLU neurons in Transformer MLPs learn to represent more features than
they have dimensions (Elhage et al., 2022), a similar phenomenon may occur in Multi-Head Self
Attention (MHSA). We hypothesize MHSA may comprise multiple attention units in attention
superposition, each attending between certain token pairs with interpretable read/write operations on
the residual stream. Under this hypothesis, we would expect (1) an atomic attention unit is spread
across multiple MHSA heads. (2) One MHSA head includes multiple units. We list three points of
evidence of attention superposition in Transformer language models.
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1. A Few Neurons (Heads) Are Polysemantic. Gurnee et al. (2023) discovered compound word
neurons activating across diverse unrelated n-grams, while Bricken et al. (2023) reported neurons
responding to mixed stimuli including academic citations and Korean text. (link). Similarly, successor
heads (Gould et al., 2024) which increment ‘Monday’ into ‘Tuesday’ and ‘1’ into ‘2’ simultaneously
exhibit Acronym behavior, Copying behavior and Greater-than behavior.

2. Most Neurons (Heads) Exhibit Uninterpretable Activating (Attention) Patterns. Multiple
studies report the predominance of MLP neurons lacking clear activation patterns (Arora et al., 2018;
Bricken et al., 2023). Likewise, Krzyzanowski et al. (2024) reports failed interpretation attempts for
more than 90% heads in GPT-2.

3. Attention Superposition in the Wild. He et al. (2024a) and Kissane et al. (2024) both found
attention output SAE features collectively contributed by multiple attention heads. If we consider
SAE features to represent monosemantic directions, such distribution provides evidence for attention
superposition. Furthermore, Jermyn et al. (2024) directly demonstrate this through a toy model where
5 ground-truth attention units are put in superposition over 2 attention heads. We also show that about
25% of our learned attention units are spread across multiple MHSA heads (Appendix E.2).

Why Does Attention Superposition Matter? Practically, attribution-based circuit tracing (Ge
et al., 2024; Ameisen et al., 2025) becomes challenging when features are computed collectively:
individual QK patterns do not explain the full mechanism and may be misleading due to interference
from other features’ computations within the same heads. The structure of attention superposition
may relect intriguing motifs of model biology. For example, what makes some privileged attention
units like induction heads mostly implemented by a single MHSA head (Olsson et al., 2022) while
others are put in superposition? This parallels privileged bases in MLP neurons (Elhage et al., 2023).

3 LOW-RANK SPARSE ATTENTION

3.1 LORSA ARCHITECTURE

Algorithm 1: Low-Rank Sparse Attention (MHSA Lorsa)

Input: X ∈ Rn×d: Input sequence (n tokens, d dimensions)
Wh

q ,W
h
k ∈ Rd×dh : Query/Key weights for head h. We adopt a QK sharing strategy so QK

weights are not independent. See details below.
Wh

v ∈ Rd×dh wh
v ∈ Rd×1: 1-Dim Value weights

Wh
o ∈ Rdh×d wh

o ∈ R1×d: 1-Dim Output weights
HMHSA HLorsa ∈ Z+: Number of Lorsa heads
K ∈ Z+: Max number of activated Lorsa Heads
Output: Ŷ ∈ Rn×d: Output sequence

1 for h← 1 to HLorsa do
2 Qh = XWh

q ∈ Rn×dh ; // Query projection for head h

3 Kh = XWh
k ∈ Rn×dh ; // Key projection

4 vh = Xwh
v ∈ Rn×1 ; // dh-Dim 1-Dim Value projection

5 Ah = softmax
(

Qh(Kh)T√
dh

)
∈ Rn×n ; // Attention patterns (Causal Mask)

6 zh = Ahvh ∈ Rn×1 ; // dh-Dim 1-Dimensional Weighted sum of values

7 Ŷh = zhwh
o ∈ Rn×d ; // Output of a single Lorsa head

8 S ← TopKIndices({zh | h = 1, . . . ,HLorsa},K) ; // Select top K heads by z

9 Ŷ =
∑

h∈S Ŷh ; // Add up all selected heads

10 return Ŷ

We detail Lorsa’s architectural designs in this section, with Algorithm 1 highlighting how Lorsa
architecture differs from a standard MHSA layer. Lorsa takes in the same inputs of MHSA and is
trained to predict MHSA outputs. The training objective is simply minimizing the mean square error
(MSE): L = Ex∈D||Lorsa(x)−MHSA(x)||2.

3
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Rank-1 Output-Value Circuits. Each MHSA head reads from and writes to a residual stream
subspace via its OV circuit (Elhage et al., 2021), whose rank is decided by its head dimension
dh. Under the linear representation hypothesis that unidimensional features are encoded in the
residual stream, we design Lorsa heads with rank-1 OV circuits. This offers the advantage of
restricting read/write operations to one or few residual stream features (directions). Although ideal
implementations would use rank-1 QK and OV circuits, we restrict dimensionality reduction to OV
circuits for practical reasons.

Query and Key Weights with Parameter Sharing. We observe significant performance drop as
rank of QK circuits DLorsa

QK decreases, which is severer when DLorsa
QK < DMHSA

QK . This may suggest
QK circuits for attention units are multidimensional. In result, we choose DLorsa

QK = DMHSA
QK and

implement parameter sharing for QK weights across every G heads. Unless otherwise specified, we
set G = DLorsa

QK so that each head maintains a parameter count of 4Dmodel in average - equivalent to
setting DLorsa

QK to 1 without parameter sharing, which is crucial for Lorsa scalability.

Our parameter binding strategy renders Lorsa QK circuit strikingly similar to MHSA - a QK-sharing
group of Lorsa heads is almost identical to an original MHSA head except the sparsity constraints
applied on each OV dimension. We describe Lorsa heads as individual heads with shared QK circuits
rather than a sparse dimension in MHSA architecture because they often exhibit correlated yet distinct
interpretable functionalities, as we will show in Section 6. And there are cases where a QK-sharing
group of Lorsa heads show no clear semantic correlation (Appendix C).

We also show in Appendix B.3 that Lorsa QK circuits are not solely learning to copy the original
QK circuits. This distinguishes Lorsa from only applying sparse dictionary learning or Independent
Component Analysis on OV circuits (Ameisen et al., 2024).

Orders of Magnitudes More Heads and Sparsity. To capture numerous underlying attention
units, Lorsa employs an overcomplete architecture with HLorsa ≫ HMHSA heads per layer, activating
only K ≪ HLorsa heads per token. This parallels learning more features than the input dimension
while enforcing sparsity in SAEs.

For a given token position, Lorsa’s output aggregates the Top-K heads with largest z’s, where z is
the scalar activation value of a Lorsa head1. The active head subset dynamically varies across token
positions. This sparsity mechanism resembles TopK-SAEs (Gao et al., 2024), as both select the K
most salient linear components.

Connection to Sparse Autoencoders. Lorsa shows notable resemblance to attention SAEs (Kissane
et al., 2024) for its rank-1 OV circuits. Lorsa learns an overcomplete linear basis of the attention output
space {wh

o | h = 1, . . . ,HLorsa} with sparsely activated scalar components {zhi | h = 1, . . . ,HLorsa}
at the i-th position, which is analogous to SAE decoder and sparse feature activations.

However, whereas SAE features are computed via single linear encoders with ReLU, Lorsa head
activation at a given position zhi derives from attention patterns Ah

i and vh of previous tokens.
Moreover, SAEs take in and predict the same activations while Lorsa, like Transcoders (Ge et al.,
2024; Dunefsky et al., 2024) , learns to predict downstream activations. It is more similar to a
Gated (Rajamanoharan et al., 2024) Transcoder taking in activations from multiple positions, where
the QK circuit resembles the gate with a non-linearity and wv is simply a linear encoder.

3.2 LORSA TRAINING

The Low-Rank Sparse Attention modules we are studying throughout this work are trained on all
layers of Pythia-160M and Llama-3.1-8B. The training data is sampled from 800 million tokens for
each model. The prompts are collected from SlimPajama (Soboleva et al., 2023) truncated to 256
tokens for Pythia and 1024 tokens for Llama.

Best practices for Lorsa training (e.g. Adam optimizer, warm-stable-decay schedule, optimal lr
scaling law, etc.) largely complies with ones adopted in Templeton et al. (2024b). Training one Lorsa

1Conceptually, a Lorsa head’s activation on a sequence should be zh||wh
o ||2 rather than zh. For analytic

simplicity and clarity, we construct a model with identical predictions but set wh
v ← wh

v ||wh
o ||2, bhv ← bhv ||wh

o ||2
and wh

o ← wh
o /||wh

o ||2. This operation isolates activation zh from output direction wh
o .

4
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module with settings described in Table 1 takes 2 Nvidia A100 GPU hours for Pythia (batch size =
4,096 tokens) and 24 hours for Llama (batch size = 16,384 tokens).

Target Model # Heads Head Dimension # Active Heads
per Token

# Params
Per Layer

MHSA Independent
Lorsa QK

Lorsa
QK

Lorsa
OV MHSA Lorsa

QK
Lorsa
OV MHSA Lorsa MHSA Lorsa

Pythia-160M 12 96 6K 6K 64 64 1 12 64 2.25M 18M
Llama-3.1-8B 32 256 32K 32K 128 128 1 32 128 64M 512M

Table 1: Architectural setups for both target models. We primarily focus on Lorsa modules with
500-1,000 times more heads than the original MHSA. For instance, we have 6K Lorsa heads for an
MHSA layer in Pythia-160M, with every DLorsa

QK = DMHSA
QK = 64 heads sharing QK weights. This

gives us 96 independent QK weights.

Both models adopt Rotary Embedding (RoPE) (Su et al., 2021) and Llama uses Grouped Query
Attention (GQA) (Ainslie et al., 2023). We show how Lorsa fits these modifications in Appendix A.

4 EVALUATING LORSA FIDELITY-SPARSITY PERFORMANCE

4.1 L(N,K) SCALING LAWS

We explore Lorsa scaling laws with respect to both
number of learnable parameters N and their sparsity
K (i.e. number of active Lorsa heads per token) as
shown in Figure 2, compared to Top-K SAEs (Gao
et al., 2024). Despite similar scaling trends, there is a
notable gap between Lorsa and SAE under the same
parameter budget and sparsity, especially when K is
large. Such comparison in terms of reconstruction
fidelity and sparsity is in favor of SAEs since Lorsa
learns QK and OV circuits to predict attention output
with hundreds of activations, while SAE adopts a
standard dictionary learning setting with the same
input and output.

4.2 PER-LAYER EVALUATION

Figure 3 shows Lorsa’s per-layer reconstruction er-
ror on Pythia-160M and Llama-3.1-8B in terms of
fraction of variance unexplained (FVU).
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Figure 2: Scaling laws of FVU against num-
ber of parameters and fixed L0 for SAEs and
Lorsas trained on layer 3 in Pythia-160M.

We would like to highlight the notable correlation between trends of FVU across layers yielded
by Lorsa and SAE in both models. We also observe strong correlation between these two sparse
dictionary learning methods in terms of per-token error norm and direction (Appendix G).
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(a) Pythia-160M (12 Layers)
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(b) Llama-3.1-8B (32 layers)

Figure 3: Per-layer reconstruction FVU for Top-K SAEs and Lorsas. All Pythia modules (left)
comprises 18M learnable parameters and K = 64. Llama modules (right) have 512M parameters and
K = 128. We evaluate the mean and standard deviation (shown as shaded areas) with 64K tokens.
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5 ASSESSING LORSA INTERPRETABILITY

5.1 INTERPRETING INDIVIDUAL LORSA HEADS

Top Activations. With Lorsa heads’ output restricted to a single direction, their activation strength
at a given position i can be described with a scalar zhi (Section 3.1). Similar to SAE interpretation
methods (Bricken et al., 2023; Templeton et al., 2024b), we iterate over 100M activations from a
held-out dataset to identify the 16 highest-activating tokens for each Lorsa head.

z Pattern. According to Algorithm 1, the top activations zhi decompose linearly into token-wise
contributions from preceding positions: zhi = Ah

i v
h =

∑i
j=1 A

h
i,jv

h
j , where Ah

i,j denotes attention
weight from token i to token j and vhj = wh

vxj . Conceptually this tells from which previous tokens
the activation zhi is computed. Thus we call it the z pattern. This is analogous to direct feature
attribution (DFA) analysis for attention SAEs (Kissane et al., 2024; He et al., 2024a). An SAE
feature’s activation at the i-th token fi can be decomposed along heads and sequence position, i.e.,
fi =

∑
j≤i

∑
h∈H W enc

f ohj , where ohj is a linear component of MHSA output at token j from head h.
The DFA from token j is then defined as

∑
h∈H W enc

f ohj . In comparison, Lorsa’s attribution includes
only one rank-1 OV circuit and a single, though shared, QK circuit without multi-head aggregation.
This enables QK circuit attribution for attention units distributed across multiple MHSA heads.

5.2 VISUALIZATION INTERFACE

Figure 4: Visualization dashboard for a “you”-specific induction Lorsa head. We provide an example
interpretation of each item below.

Our visualization interface provides multifaceted information on Lorsa head interpretation. We
illustrate our dashboards with the example in Figure 4, which visualizes to an induction Lorsa head
specifically firing for the token “you”. The methods used to identify correlated MHSA heads and
SAE features are described in Appendix E and F.

• Correlation to SAE features / Logits via OV: It mainly reads from current token is “you”/“your”
features via its wh

v ; It strongly activates a say “you” feature (i.e., a feature amplifying the logit of
“you” via the logit lens (nostalgebraist, 2020)); It amplifies the logits of a variety of “you” tokens.

• Correlation to SAE features via QK: Its QK attention pattern is mainly computed by current
token is “X” features on the query position and previous token is “X” & current token is “you”
features on the key side, where “X” can be a number of tokens that often precedes “you”, such as
“with”, “thank” or “do”.

• Correlation to MHSA heads: This Lorsa head is almost equally distributed in MHSA.5.0 and
MHSA.5.7. Both MHSA heads exhibit induction functionality, as shown in Appendix E.

5.3 QUANTITATIVE EVALUATION WITH AUTOMATED INTERPRETABILITY

To quantify the interpretability of Lorsa heads in terms of its top activations and z pattern, we
perform automated interpretability (autointerp) (Bills et al., 2023) with GPT-4o to estimate how

6
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Figure 5: Automated interpretability scores of Lorsa heads and SAE features. Each distribution is
estimated with 100 heads / features. The average score of each group is represented by a horizontal
dash line. We highlight distributions with larger mean value suggested by t-tests with α = 0.05.

comprehensible each Lorsa head is. We apply standard autointerp on max activating samples and
extend to Lorsa z-patterns and direct feature attribution of attention output SAEs (Kissane et al.,
2024). Prompt design, scoring method and choice of few-shot examples are detailed in Appendix I.
All results are obtained with Pythia-160M Lorsa and SAEs of the same size.

As shown in Figure 5, Lorsa achieves a higher score in 6 cases, with 3 losses and 15 ties at
α = 0.05 significance across 24 layer-wise comparisons, suggesting comparable interpretability
to SAE features. Both methods exhibit descending scores in deeper layers. Potential explanations
include: (1) increased polysemanticity in later layers, or (2) limited capacity of current autointerp
pipelines to capture long-range dependencies.

6 SEARCHING FOR SPECIFIC LORSA HEADS

We use path patching (Wang et al., 2023; Conmy et al., 2023) to find the Lorsa heads involved in
specialized tasks. For a given Lorsa head, path patching ablates its output and allows the influence to
propagate only through residual connections and MLPs (but not through other attention heads). This
measures the head’s counterfactual influence on the model’s behavior.

6.1 LORSA RE-DISCOVERS PREVIOUSLY REPORTED HEADS

Figure 6: Examples of Lorsa heads re-discovering finer-grained or cleaner versions of previously
reported heads. Lorsa.5.1025: A subtoken induction head for names, see details below. Lorsa.6.2814:
A successor head attending to the previous arabic numeral token (almost exclusively 1, 2, and 3)
and predicts its successor. Lorsa.8.5963: A copy suppression head attending to the previous token
(almost exclusively ‘poly’ and ‘mix’) and suppresses its copy. Lorsa.10.4066: An attention sink head
almost exclusively attending to the ‘<|beginoftext|>’ token.

Previous works have documented attention heads with specific functionalities in well-characterized
contexts (Section 7.1). We demonstrate that Lorsa rediscovers more specialized units of these

7
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attention behaviors due to its rank-1 OV circuit. Lorsa also isolates an important phenomenon called
attention sink (Xiao et al., 2024) from other semantically meaningful heads. Figure 6 showcases four
such heads, with their visualization dashboards provided in Appendix D.2. A representative selection
of interpretable Lorsa heads is presented in Table 2.

We want to highlight an interesting variant of induction heads we call subtoken induction heads where
the prediction operates at the subtoken level. When the sequence contains “[ Marion] . . . [M]”, the
head predicts “[arion]”, despite involving three distinct tokens ([A] [B] . . . [C]). This occurs because
the leading space in “[ Marion]” causes tokenization misalignment, splitting what would otherwise
be a single token into subcomponents.

Lorsa Head ID Manual Interpretation
Lorsa.5.3955 Induction for “ve”
Lorsa.5.4010 Induction for last names
Lorsa.7.4203 Induction for abbreviations
Lorsa.9.132 Induction after “and”/“with”
Lorsa.9.1622 Induction in Italian
Lorsa.4.32 “define”/“include” in PHP

Lorsa.4.3013 “public static” in Java
Lorsa.5.4035 Say “Four”/“Five”
Lorsa.8.142 Apple Inc. and products (iPhone etc.)
Lorsa.4.5167 Previous token is “can”/“could”

Lorsa.11.6084 Previous token is “make”
Lorsa.4.487 Abbreviations (parentheses/quotes)
Lorsa.6.1491 Abbreviations in parentheses
Lorsa.6.1787 Abbreviations in parentheses
Lorsa.6.5499 Abbreviations in parentheses
Lorsa.4.1420 Russian contexts
Lorsa.9.1622 Induction in Italian
Lorsa.4.4388 Attention sinks
Lorsa.7.862 Attention sinks
Lorsa.6.2592 “the other”/“another”

Lorsa.10.1232 Year of birth and death

Table 2: A non-exhaustive collection of inter-
pretable Lorsa heads we have found, which are
grouped by color from top to bottom: induc-
tion heads, specific token heads, previous token
heads, acronym heads, language-specific heads,
attention sink heads, and miscellaneous heads.

Figure 7: For the prompt “36 + 62 =”, Lorsa
moves two operands to the last position with 3
heads each. The first operand (36) is attended
in terms of z pattern by an “op1 ∈ 27 − 43”,
an “op1 % 10 ∈ [4, 5, 6]” and an “op1 % 10 ∈
[6, 7, 8]” head, which uniquely determines “op1
= 36”. The same applies to op2.

6.2 A FAMILY OF ARITHMETIC LORSA HEADS IN LLAMA-3.1-8B

We identify a group of arithmetic-specific Lorsa heads in Llama-3.1-8B that activate during simple
arithmetic operations following the template [op1][operator][op2][=]. One observation
is that each head fetches certain operands with a number of unrelated heuristics, consistent to
prior findings at neuron level on arithmetic mechanisms (Nikankin et al., 2024), despite Lorsa’s
architectural differences.

Figure 7 demonstrates an example of the prompt “36 + 62 =”. Similar to Ameisen et al. (2025), we
visualize the function of each Lorsa head with an operand plot, displaying its activity on the 100 ×
100 grid of potential inputs of the template “op1+op2=”.

These six Lorsa heads exhibit consistent interpretations in terms of their operand plots and z patterns
sampled from natural language prompts like “The price went up by 27% from $100 to”. We exemplify
this in Appendix D.3, along with more examples of arithmetic-specific Lorsa heads. We also conduct
very preliminary pertubation experiments in arithmetic tasks to validate Lorsa’s causal influence on
the model’s behavior, as described in Appendix D.4.

6.3 LORSA HEADS AS THEME ANCHORS

While exploring through Lorsa heads in Llama-3.1-8B, we notice a distinctive subset of Lorsa heads
attending to keywords with remarkable theme consistency from all subsequent tokens in a sentence.
Figure 12 in Appendix D.5 illustrates two representative cases which exhibit relatively selective,
long-range attention to tokens related to presidency and dynamical systems as evidenced by z pattern.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Through manual inspection we also find Lorsa heads activating on topics like alcohol addiction,
dynamic system, medication instructions and terms of service.

An intuitive hypothesis of these heads’ function is serving as theme anchors to maintain persistent
topic representations to bias subsequent token predictions toward domain-appropriate vocabulary and
syntactic structures. We believe these heads to be closely related to SAE features “smeared” across
token positions, as mentioned in Lindsey et al. (2025) (link) (example).

7 RELATED WORK

7.1 EXPLAINING INDIVIDUAL ATTENTION HEADS

With the help of activation patching (Meng et al., 2022; Zhang & Nanda, 2024) or path patching (Wang
et al., 2023; Conmy et al., 2023), the literature has discovered a number of heads that exhibit certain
functionality in pre-defined contexts. This line of research starts from a composition of previous token
heads and induction heads (Olsson et al., 2022) which is closely related to in context learning. More
work on this line includes name mover heads (Wang et al., 2023), number comparison heads (Hanna
et al., 2023), copy suppression heads (McDougall et al., 2023), successor heads (Gould et al., 2024)
and long context retrieval heads (Wu et al., 2024).

7.2 SUPERPOSITION HYPOTHESIS AND SPARSE AUTOENCODERS

The superposition hypothesis (Arora et al., 2018; Olah et al., 2020; Elhage et al., 2022) assumes that
neurons are related to multiple non-orthognal underlying features. Sparse Autoencoders (Cunningham
et al., 2023; Bricken et al., 2023) are proposed to extract an overcomplete set of the sparse and linear
comprehensible features. Importantly, the success of the technique also sheds light on universality of
superposition across model size (Templeton et al., 2024b; Lieberum et al., 2024; He et al., 2024b),
model architectures (Wang et al., 2024) and modality (Abdulaal et al., 2024).

7.3 SPARSE AUTOENCODER VARIANTS

We see SAEs to have developed multiple forms along with the rapid evolution of SAEs in the past
year. Some of them improve initialization (Conerly et al., 2024), loss function (Conerly, 2024;
Bussmann et al., 2024) or sparsity constraints (Gao et al., 2024) to solve specific issues such as
shrinkage (Wright & Sharkey, 2024) and massive inactive features (Bricken et al., 2023).

Another direction of improvement is the SAE architecture. For instance, Gated SAEs (Rajamanoharan
et al., 2024) are proved effective in mitigating shrinkage. Transcoders (Ge et al., 2024; Dunefsky
et al., 2024) aims to simplify sparse circuit analysis by replacing MLPs, whose non-linear nature
makes causal attribution intractable.

8 DISCUSSION AND LIMITATIONS

We report a number of intriguing findings and limitations of Low-Rank Sparse Attention. Despite
early sign of life with the current Lorsa design and training strategy, a number of key challenges
remain. We believe there remains significant room for improvement for future work in each of these
following aspects.

Unbinding QK circuits. One significant limitation of our approach is that we do not get completely
independent or low rank Lorsa heads. The shared QK circuit of Lorsa heads raises concerns on
whether they can be independently understood, despite our current positive findings with z patterns
which is a mixed artifact of Q, K and V. Especially in circuit tracing, there might be a risk of
mis-attributing the QK circuit to the ‘true’ components of other Lorsa heads sharing the same QK
circuit.

Dynamically Reducing QK Rank. One solution to unbind QK circuits is to reduce QK rank for
each Lorsa head. If we could overcome the performance degradation of low-dimensional QK circuits,
it is possible to scale up Lorsa with more independent QK circuits and fewer residual stream features
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interacting via QK2. This is also crucial for circuit tracing methods to have a clearer attribution of
QK circuits with fewer features involved.

Moreover, our current design of Lorsa QK circuits assumes that all attention units have the same rank
(i.e., dQK

head). In Appendix C we show that Lorsa QK rank can be varied across heads by visualizing
the singular values of WQ and WK . A mechanism to dynamically determine the rank of QK circuits
for each Lorsa head would be a promising direction for future work.

Dark Matters. We find non-trivial correlation between Lorsa error and SAE errors trained on the
same attention layer in terms of (1) average loss per layer (2) loss per token on the same context
and (3) error direction, as shown in Appendix G. This may suggest the existence of universal dark
matters (Olah & Jermyn, 2024; Engels et al., 2024) for sparse dictionary learning methods like SAE
and Lorsa. Any progress along this direction to reduce or understand SAE / Lorsa dark matters should
reveal many interesting behaviors of neural networks.

Inactive Attention SAE Features and Lorsa Heads. Despite efforts on hyperparameter search,
we find that attention SAE and Lorsa both contains a majority of inactive feature / heads (i.e. not
activated once in 1e6 tokens). This phenomenon renders most computation wasted and raises a
question about the difference between structure of attention output space and MLP output space or
residual streams, where SAEs of the same size only have few dead features if configured properly.

Cross Layer Attention Superposition. If certain inter-token feature interaction is performed in
more than one layer, our current method which decomposes only one MHSA layer does not suffice to
find such relation. This parallels the problem of cross-layer superposition (Templeton et al., 2024b)
for residual stream features. A cross-layer variant of Lorsa (Lindsey et al., 2024) might be tractable.

Global Weights and Systematic Q/K/V Composition. To better understand the global attention
behavior of Transformers, one important research direction is to identify systematic Q/K/V compo-
sition like induction heads and previous token heads. Since Lorsa reveals finer-grained versions of
MHSA heads, we can expect to find more of such cross-layer collaboration behavior. However, we
failed in our early attempts to find Lorsa heads with Q/K composition.

9 CONCLUSION

In this work, we introduced Low-Rank Sparse Attention (Lorsa) to disentangle atomic attention
units from attention superposition in Transformer models. Our experiments validated that Lorsa
can recover known attention mechanisms and uncover novel interpretable behaviors. The scalability
and quantitative autointerp results suggest the potential of Lorsa to adapt to real-world applications,
especially unveiling the nature of attention computation in systematic end-to-end circuit tracing.

Eventually, we hope Lorsa would help build a sparse replacement model of Transformer attention
modules, along with its MLP counterparts to enable full sparsification of model computation. Our
initial attempt gives promising results in a two layer Transfomer and unveil an easy yet clean induction
circuit at feature level. We report this in Appendix H since induction circuits have been well studied.

2It might also be the case that attention units must be described in multidimensional QK circuits, like
induction heads requiring attending to multiple “the previous token is X” features.
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A APPLYING LORSA TO MHSA VARIANTS

Modern transformer-based models commonly employ variants of multi-head self-attention (MHSA),
such as those incorporating rotary position embeddings (RoPE) (Su et al., 2021) and grouped-query
attention (GQA) (Ainslie et al., 2023). Lorsa demonstrates compatibility with these MHSA variants
through straightforward adaptations.

• For RoPE-based MHSA layers, we apply the same rotary transformations to Lorsa’s computed
queries and keys before computing attention scores, maintaining the positional information encod-
ing.

• In GQA implementations, Lorsa operates without modification—specifically, we intentionally
avoid introducing grouped queries within the Lorsa framework.

Empirical results on both Pythia-160M and Llama-3.1-8B demonstrate that this design choice does
not adversely affect performance. We apply these architectural variants based on the TransformerLens
library (Nanda & Bloom, 2022).

B ABLATION STUDY ON CRUCIAL ARCHITECTURAL DESIGNS

We conduct ablation studies on two crucial architectural designs: (1) the query and key dimension
and (2) the binding ratio. Our experiments validate the necessity of maintaining both the QK
dimension and the binding mechanism in our proposed architecture. Additional ablation tests on
other implementation details further validate our decisions.

Furthermore, we derive two hard constraints for parameter selection (violating these constraints
leads to significant performance degradation):

• The QK dimension must not be smaller than the head dimension in MHSA

• The number of QK pairs must not be fewer than the number of attention heads in MHSA

B.1 ABLATION STUDY ON QK DIMENSION
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(b) Context Length: 1024

Figure 8: Ablation study on the QK dimension using Pythia-160M under different context lengths
(K = 64). We fix the parameter budget across all settings and observe that reducing the QK
dimension below the original MHSA head dimension (dhead = 64) results in significant performance
degradation, highlighting the importance of maintaining a high QK dimension.

We conduct ablation studies on the QK dimension using Pythia-160M, evaluating performance under
different context lengths (256 and 1024 tokens). To ensure fair comparison, we fix the parameter
budget at 4Dmodel per attention head and maintaining a total parameter count equivalent to 4× the
original MHSA configuration throughout all experiments. As shown in Figure 8, reducing the QK
dimension below the original MHSA’s head dimension (dhead = 64) leads to severe performance
degradation. This empirical evidence supports our design choice to maintain a high QK dimension.
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B.2 ABLATION STUDY ON BINDING RATIO
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Figure 9: Ablation study on the binding ratio. We vary the number of independent Lorsa QK heads
and evaluate model performance under different settings. Appropriate binding maintains performance
while reducing QK circuit cost, whereas overly aggressive binding (below the number of original
MHSA heads) leads to substantial degradation.

We conduct a systematic study on the impact of the number of independent Lorsa QK heads (i.e., the
number of Lorsa heads divided by the binding ratio) across a range of configurations, as illustrated in
Figure 9. Our experimental results highlight two key observations:

• Appropriate binding effectively preserves model performance while substantially reducing both
the parameter count and the computational cost of the QK circuit (scaling proportionally with the
binding ratio).

• Model performance deteriorates significantly when the number of independent QK heads falls
below the original MHSA head count, establishing this threshold as a critical lower bound for
binding ratio selection.

B.3 ABLATION STUDY ON QK INITIALIZATION

Given that our QK matrices maintain high dimensionality and adopt a binding strategy, a natural
question arises: can we directly reuse the original MHSA QK parameters in Lorsa? To investigate
this, we evaluate three settings: (1) randomly initializing the QK parameters of Lorsa, (2) initializing
the QK parameters of Lorsa with the original MHSA QK parameters and allowing them to be updated
during training, and (3) fixing the QK parameters to the original MHSA QK parameters throughout
training. The results, summarized in Table 3, show that directly fixing the QK parameters to those
of MHSA leads to worse performance compared to the other two setups. This suggests that during
optimization, Lorsa learns QK parameters that capture information not present in the original MHSA
parameters.

Initialization Strategy Fraction Variance Unexplained (FVU)

Random Initialization 11.3%
Initialization with Original QK (Trainable) 11.2%
Initialization with Original QK (Fixed) 12.4%

Table 3: Comparison of different QK initialization strategies for Lorsa.

B.4 DOES (TOP-K) LORSA NEED RELU NON-LINEARITY TO GUARANTEE NON-NEGATIVE
OUTPUTS?

To align with the superposition hypothesis and the architectural design of the SAE, we apply a
ReLU to ensure that the activations z are non-negative. However, we observe that this modification
has negligible impact on training dynamics, as the top-k activations are almost always positive for
reasonable choices of k. This is consistent with findings reported in Gao et al. (2024).
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Figure 10: Sorted relative singular values of WQ and WK for each QK circuit at pythia-160m layer
5. Each circuit shows strong alignment between the spectra of WQ and WK , suggesting similar
structural properties. Circuits 4 and 15 have relatively high effective rank, while Circuits 16 and 17
exhibit significantly lower rank.

C DOES QK RANK VARY ACROSS ATTENTION UNITS?

We analyze the structure of 24 independent QK projections trained at layer 5 of Pythia-160M.
Specifically, we estimate the effective rank of each pair of WQ and WK by sorting their relative
singular values in descending order, as shown in Figure 10. Among these QK circuits, Circuit 4
exhibits subtoken induction, previous-token, and successor attention patterns; Circuit 15 also shows
clear induction behavior. These circuits tend to have relatively high ranks. In contrast, Circuit 16
attends to itself on certain special tokens, and Circuit 17 functions as an attention sink while also
attending to itself on specific inputs. Both of these circuits exhibit lower effective ranks.

D ADDITIONAL CASE STUDIES

D.1 ATTRIBUTION ALGORITHM FOR IDENTIFYING LORSA HEADS WITH SPECIFIC
FUNCTIONALITIES

In addition to the path patching method discussed in Section 6.1 , we employ an attribution algorithm,
inspired by the approach for detecting important features with attribution in Batson et al. (2024), to
identify Lorsa heads associated with specific functionalities.

The attribution score for a given Lorsa head h, is defined as:

attrh := Oh · ∇xL

Here, ∇xL is the gradient of the logit on the prediction of the target token with respect to the
attention output Oh of the Lorsa head. For different prompt, we also try logit difference or probability
difference to calculate ∇xL.

quantifies the contribution of Lorsa head h to the prediction of the correct token.

D.2 EXAMPLES OF LORSA’S REDISCOVERY OF REPORTED FUNCTIONAL HEADS

The detailed information on the Lorsa heads discussed in Section 6.1 is provided in Figure 11, where
we visually demonstrate the logit differences induced by the Lorsa head ,along with the most strongly
correlated MSHA heads and SAE features.
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Figure 11: Detailed information on Lorsa’s rediscovery of reported functional heads.

D.3 ARITHMETIC LORSA HEADS

We present the SAE features related to the reported arithmetic Lorsa heads in Table 4, which shows
consistent interpretation in terms of operand plot and z pattern. Additionally, Table 5 provides a
broader set of examples for these arithmetic Lorsa heads, including functional descriptions and the
z-patterns of their top activations.

D.4 PRELIMINARY PERTUBATION RESULTS

We feed Llama-3.1-8B “75 ÷ 3 =” as the clean prompt and it succeeds to predict the answer 25
(p = 0.73). With attribution from the correct answer logit we identify an “op2 = 3” Lorsa head
in layer 15 (Lorsa.15.2668) with notable contribution. We then set the activation strength z of
this head to 0 at the last token position (“=”) and copy its original value to a an “op2 = 5” head
(Lorsa.15.3099) and rerun the forward pass from layer 15 attention. This gives an answer of 15
(p = 0.66).

Since z of a Lorsa head indicates its output norm along the wo direction, this pertubation experiment
greatly resembles steering SAE vectors (Templeton et al., 2024b). There is also an alternative
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Lorsa head ID Manual Interpretation with Operand Plot Manual Interpretation with z Pattern

Lorsa.16.20791 op1 ∈ 27− 43 near 30
Lorsa.16.20931 op1 % 10 ∈ [4, 5, 6] ending with 4 or 6
Lorsa.16.20947 op1 % 10 ∈ [6, 7, 8] ending with 7, sometimes 6
Lorsa.15.3646 op2 % 10 = 2 ending with 2
Lorsa.15.3813 op2 ∈ 55− 99 from 50 - 99
Lorsa.15.4001 op2 ∈ 38− 63 near 50

Table 4: Supplementary information of Lorsa Head in Figure 7. We observe alignment between
interpretations obtained from operand plots and top activating z patterns sampled from natural
language text corpus.

ID Operator Operand Top Activation Z Pattern

Lorsa.15.3646

Addition op2 ends with 2
Subtraction min(op1, op2) ends with 2

Multiplication op2 = 2 or 12
Division op2 = 2

Lorsa.15.3648

Addition op2 ends with 4
Subtraction min(op1, op2) ends with 4

Multiplication op2 = 4, 24, or 40
Division op2 = 4

Lorsa.15.2668

Addition Inactive
Subtraction Inactive

Multiplication op2 = 3, 6, 30, or 60
Division op2 around 3 or 30

Lorsa.15.2770

Addition Inactive
Subtraction Inactive

Multiplication op2 around 62 and its multiples
Division op2 around 62 and its multiples

Lorsa.15.2945

Addition Inactive
Subtraction Inactive

Multiplication op2 = 7, 11 and their multiples
Division op2 = 7, 11 and their multiples

Table 5: Additional cases of arithmetic heads

interpretation that we are intervening attention computation in OV circuits - this result can be
precisely achieved by swapping the wo’s of these two Lorsa heads. In consequence, the pertubed
Lorsa head recieves “op2 = 3” but tell subsequent computation that “op2 = 5”. Such pertubation
is independent from QK circuits as both Lorsa heads share the same QK weights. This serves as
evidence in the wild that Lorsa heads with shared QK circuits often show similar functionalities.

D.5 THEME ANCHOR HEADS

E ASSESSING CORRELATION WITH MHSA

How to understand the correlation between Lorsa heads and original MHSA heads? We try to
answer this by computing the attribution of each Lorsa head to the original attention heads using
an oblique projection method (Appendix E.1). Analyzing all Lorsa heads trained on Pythia-160M
(Appendix E.2), we find that roughly half of the Lorsa heads originate from a single original head,
while the other half are superpositions across multiple original heads.

E.1 OBLIQUE PROJECTION METHOD FOR ATTRIBUTION

Given the output of an original attention head, we project it obliquely onto the (generally non-
orthogonal) basis formed by the outputs of all Lorsa heads at the same layer. The resulting coefficients
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(a) z pattern of a presidency-related theme anchor
Lorsa head.

(b) z pattern of a theme anchor Lorsa head related to
dynamical systems.

Figure 12: Two examples of theme anchor Lorsa heads.

represent the contribution of the original head to each Lorsa head. Since the summed outputs of
original heads and Lorsa heads closely match, the contribution coefficients for a given Lorsa head
approximately sum to one. Conversely, we similarly compute the fraction of each Lorsa head’s output
that can be attributed to each original attention head by projecting the Lorsa head’s output onto the
basis formed by the original heads’ outputs. All reported results are averaged over more than 1M
tokens.

E.2 HOW MANY ATTENTION UNITS ARE DISTRIBUTED ACROSS MHSA HEADS?
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Figure 13: Distribution of Lorsa heads based on the number of original attention heads they are
superposed over. No clear trend is observed across different layers. Approximately 50% Lorsa heads
are primarily associated with a single original head, about 25% are superposed over two different
original heads, around 10% are superposed over three different original heads, and others superposed
over more than three original heads.

We compute the attribution statistics for all Lorsa heads trained on Pythia-160M. For a given Lorsa
head, we define n as the minimum number of original heads whose cumulative contributions exceed
90%. We interpret n as the effective number of original heads a Lorsa head superposes over. As
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shown in Figure 13, approximately half of the Lorsa heads are primarily derived from a single original
head, about a quarter involve two original heads, and the remaining quarter involve three or more
original heads.

E.3 INDUCTION MHSA HEADS IN PYTHIA-160M

Table 6: Contribution of each MHSA head to induction behavior in Pythia-160M, measured via path
patching. Notable induction heads (L5.0, L4.6, L5.7, L9.0, L5.6) are bold.

Layer\Head 0 1 2 3 4 5 6 7 8 9 10 11

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 0.07 -0.15 -0.10 0.03 0.09 -0.08 -0.07 0.06 -0.01 0.11 0.34 -0.05
2 -0.14 0.07 0.10 0.14 0.14 -0.13 0.60 -0.03 -0.14 0.10 0.04 0.03
3 -0.24 -0.14 -0.96 -1.20 -0.49 -0.14 0.20 -0.38 -0.10 0.06 -0.11 -0.07
4 0.13 -0.26 0.09 -0.16 -0.10 -0.02 0.89 0.13 0.09 -0.28 -0.14 0.30
5 4.00 -0.20 0.05 0.06 -0.53 -0.04 0.48 0.62 0.06 0.08 0.05 -0.23
6 -0.04 -0.23 -0.04 -0.22 0.02 0.09 0.04 -0.33 0.02 -0.04 -0.38 0.04
7 -0.28 0.17 0.03 0.06 -0.28 -0.07 0.01 -0.18 -0.23 -0.03 -0.02 0.18
8 -0.07 0.03 0.50 0.00 0.15 -0.02 0.01 -0.22 0.02 -0.02 -0.08 0.38
9 0.54 -0.03 0.07 -0.09 -1.10 -0.04 0.04 0.00 0.04 0.10 -0.01 0.02

10 -0.01 0.03 0.00 0.00 -0.03 -0.10 0.01 -0.01 0.00 -0.04 0.03 0.01
11 -0.14 -0.13 -0.05 -0.04 0.00 -0.02 -0.11 -0.02 0.01 -0.07 -0.02 0.06

We use path patching to measure the contribution of each MHSA head in Pythia-160M to induction
behavior. The results are shown in Table 6. We find that heads L5.0, L4.6, L5.7, L9.0, L5.6
exhibit the most prominent induction signals.

F INTERACTION BETWEEN LORSA HEADS AND SAE FEATURES

We trained Sparse Autoencoders (SAE) on both the inputs and outputs of Lorsa to facilitate the
understanding of its functionality. Since Lorsa’s Q, K, and V are computed from the input, with the
output derived from O contributing to the final result, interactions between SAE features and these
components exist across all four aspects: Q, K, O, and V. To evaluate the influence of SAE features
on Q and K, we employ an ablation method (Appendix F.1). The correlation between the OV and
SAE features is assessed using cosine similarity (Appendix F.2). For each Lorsa head, we identify
the SAE features most strongly correlated with different aspects. The results are visualized in the
Lorsa head dashboard.

F.1 QUANTIFYING FEATURE IMPACTS ON Q AND K

For a given Lorsa head, the impact of a specific feature on Q is calculated as follows: First, we
compute the attention pattern at the activation locations of the Lorsa head. Then, the feature is ablated
from the input, and Q′ and the new attention pattern are computed (with K remaining unaffected).
The Kullback-Leibler (KL) divergence between the original and modified attention patterns is used
to quantify the effect of the feature on Q. After iterating over 1 million tokens, the maximum KL
divergence observed across all activations of the Lorsa head is taken as the measure of the feature’s
influence on Q for this head. A similar approach is used to calculate the impact of a feature on K, with
the difference being that when recalculating the attention pattern, all instances of K are recomputed
using the modified input, while Q remains unchanged.

F.2 QUANTIFYING DIRECT FEATURE ATTRIBUTION VIA O AND V

For a given Lorsa head, both the weight vectors WO and WV are one-dimensional vectors of size
Dmodel. Therefore, for each SAE feature trained on the Lorsa input, the contribution to V is linear,
meaning that the contribution of each feature to V scales proportionally with the feature’s activation
value. Similarly, for each activation z of the head, the contribution of SAE features trained on the
Lorsa output to the activation value is also linear. We compute the cosine similarity between the
decoder of each SAE feature trained on the Lorsa input and WV , which quantifies its correlation
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with V for the given Lorsa head. Similarly, the cosine similarity between the encoder of each SAE
feature trained on the Lorsa output and WO is computed to measure its correlation with O for the
given Lorsa head.

G LORSA DARK MATTER

Figure 14 illustrates the per-token error norms of Lorsa and SAE across layers 2, 6, and 10 of
Pythia-160M on a set of 64 tokens. Figure 15 quantifies the distribution of cosine similarity between
Lorsa and SAE’s per-token error norms on the same layers, measured on approximately 10,000
tokens. These results indicate that the loss pattern between pre token between Lorsa and SAE has a
nontrivial correlation.

It is interesting that both Lorsa and SAE exhibit a positive correlation in their magnitudes and trends
for FVU and per-token error norms.

We propose that this is not a coincidence, and hypothesize that it stems from a shared gap between
sparse dictionary learning and the representation structure of data within the model. Alternatively, this
correlation may arise from the challenge that sparse dictionary learning faces in capturing super-rare
data features or certain nonlinear or dense components within the features.

This supports the hypothesis of universal dark matters (Olah et al., 2020; Engels et al., 2024) that
a certain fraction of error results from the superposition hypothesis itself that cannot be addressed
simply with larger Lorsas (SAEs).

Figure 14: Per-token error norms of Lorsa and SAE on layer 2, 6, and 10 of Pythia-160M for a
randomly sampled sequence with 64 tokens.

Figure 15: Cosine similarity distribution of per-token error between Lorsa and SAE on layer 2, 6, and
10 in Pythia-160M, measured with approximately 10,000 tokens.
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H TOWARDS FULL SPARSIFICATION OF A 2-LAYER TRANSFORMER

Since our final goal is to understand Transformers’ inner working by breaking down MHSA and
MLPs into atomic units (Figure 1), we train Lorsa and Transcoder (Dunefsky et al., 2024) on a 2-layer
Transfomer (link). We follow the method introduced in Ge et al. (2024) where they multiply features
via QK circuit to find the most salient feature pairs contributing to QK scores. Alternatively applying
attribution through Transcoder features / Lorsa heads and QK ablation gives us the clear attribution
graph for induction behavior (Figure 16). Due to the capability constraint of this model, we failed to
observe more interesting behaviors or attribution graphs involving Transcoder features. Nonetheless,
we believe applying Lorsa and Cross-Layer Transcoders (Ameisen et al., 2025) to a larger model may
reveal a lot of surprising behaviors, following the spirit of Lindsey et al. (2025).

Figure 16: An induction circuit found in our fully sparsified replacement model.

I AUTOMATED INTERPRETABILITY DETAILS

Evaluation Protocol. Our automated interpretability assessment employs a two-phase explanation-
simulation paradigm adapted from Bills et al. (2023):

1. Explanation Phase: GPT-4o generates mechanistic explanations using:

• For activation patterns: 8 top-activating token contexts
• For z-patterns/DFAs: Contribution graphs to max-activating tokens

2. Simulation Phase: GPT-4o predicts activations/patterns for:

• 4 top-activating contexts (testing pattern recognition)
• 4 randomly sampled contexts (testing generalization)

Top Activation Explanation Phase Prompt.

Prompt

We are analyzing the activation levels of features in a neural network, where each feature
activates certain tokens in a text. Each tokenś activation value indicates its relevance to the
feature, with higher values showing stronger association. Your task is to infer the common
characteristic that these tokens collectively suggest based on their activation values.
Consider the following activations for a feature in the neural network. Activation values are
non-negative, with higher values indicating a stronger connection between the token and the
feature. Summarize in a single sentence what characteristic the feature is identifying in the text.
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Dont́ list examples of words. Do not start with “This feature is identifying. . . ”. Go straight to
the explanation.
Sentence 1:
<START>
<|endoftext|><tab>-0.0
/<tab>-0.0
*/<tab>0.2
. . . (omitted)
<END>
Sentence 2:
. . . (omitted)

Top Activation Simulation Phase Prompt.

Prompt

We’re studying neurons in a neural network. Each neuron looks for certain things in a short
document. Your task is to read the explanation of what the neuron does, and predict the neuron’s
activations for each token in the document.
For each document, you will see the full text of the document, then the tokens in the document
with the activation left blank. You will print the exact same tokens verbatim, but with the
activation values filled in according to the explanation. Pay special attention to the explanation’s
description of the context and order of tokens or words.
Fill out the activation values with integer values from 0 to 10. Don’t use negative numbers.
Please think carefully. No need to include rationales. Directly start with the first token and do
not use code blocks, i.e., “‘.
Neuron 1 explanation: This feature is indentifying vowels.
Sequence 1: Tokens without Activations:
a<tab>
b<tab>
c<tab>
d<tab>
e<tab>
f<tab>
Sequence 1 Tokens with Activations:
a<tab>10
b<tab>0
c<tab>0
d<tab>0
e<tab>10
f<tab>0
Neuron 2 explanation: <Autointerp explanations generated in the previous phase>
<Few shot examples>

z Pattern / DFA Explanation Phase Prompt.

Prompt

We are analyzing the attention map of attention heads in a neural network, where each head
attends between tokens in a text. Given a head and a query token, we provide each previous
tokenś contribution value, with higher values showing stronger association. Your task is to infer
the common characteristic of this head that these sequences collectively suggest based on their
attention map.
Consider the following attention maps for an attention head. Each line is in the
format of <token><tab><value>. Query tokens are additionally highlighted with <to-
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ken><tab><value><tab>**Query token**. Note that query tokens also attend to themselves.
Higher values indicates a stronger contribution from this token to the query token.
Summarize in a single sentence what characteristic the head is attending from and to in the text.
It might be helpful to summarize both the commonality of query tokens and source tokens (if
any). It is also recommended to mention if this head is often attending to itself.
Dont́ list examples of words. Do not start with “This head is . . . ”. Directly start with the
explanation.
Sentence 1:
<START>
<|endoftext|><tab>-0.0
/<tab>0.0
. . . (omitted)
*/<tab>0.0<tab>**Query token**

z Pattern / DFA Simulation Phase Prompt.

Prompt

We’re studying attention heads in a neural network. Each head follows a certain attention pattern
in a short document. Your task is to read the explanation of what the head does, and predict the
head’s attention pattern for each previous token in the document, given a specific query token.
For each document, you will see the full text of the document, then the tokens in the document
with the activation left blank. You will print the exact same tokens verbatim, but with the contri-
bution values filled in according to the explanation. Pay special attention to the explanation’s
description of the context and order of tokens or words.
Each line is in the format of <token><tab>. Query tokens are additionally highlighted with
<token><tab>**Query token**<tab>.
Fill out the contribution values with integer values from 0 to 10. Don’t use negative numbers.
Please think carefully. No need to include rationales. Directly start with the first token and do
not use code blocks, i.e., “‘.
Head 1 explanation: This head is attending from one vowel to previous vowels and itself.
Sequence 1 Tokens without Activations:
a<tab>
b<tab>
c<tab>
d<tab>
e<tab>**Query token**
Sequence 1 Tokens with Activations:
a<tab>10
b<tab>0
c<tab>0
d<tab>0
e<tab>**Query token**<tab>10
Head 2 explanation: <Autointerp explanations generated in the previous phase>
<Few shot examples>

J THE PATCHING ATTRIBUTION APPROXIMATION BOUND BETWEEN MHSA
AND LORSA

Definition 1 (MHSA). For attention module, the calculation by MHSA can be formalized as

AMHSA(x) = h1(x) + · · ·+ hn(x), (1)

where n is the number of attention heads, x ∈ Rd is the input, and hi is the i-th attention head.
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Definition 2 (Lorsa). For attention module, the calculation by Lorsa can be formalized as

ALorsa(x) =

N∑
j=1

TopK(pj(x))ĥj(x), (2)

where N >> n is the number of Lorsa heads, ĥj is the j-th Lorsa head defined in previous Section
..., pj : x 7→ R represent the activation of hj , and TopK is the TopK activation. Specifically, the TopK
activation function can be expressed by

TopK(pj(x)) =
{

pj(x), pj(x) is in the top-k activations,
0, pj(x) is not in the top-k activations, (3)

From the Linear Representation Hypothesis, we assume that the attention head in MHSA can be
approximated by the the linear combination of Lorsa Heads, and the approximation error is bounded:
Assumption 1 (Linear Representation Hypothesis of Attention). For each MHSA attention head hi,
there exists a Lorsa head set Si satisfying

AMHSA(x) =
∑
j∈Si

pj(x)ĥj(x) + ϵi(x), (4)

where ϵi(x) > 0 is the approximation error from Lorsa. The approximation between MHSA and
Lorsa is bounded, i.e., there exists ϵ > 0 satisfying

∥AMHSA(x)−ALorsa(x)∥ ≤ ϵ, ∀x ∈ D, (5)
where D is the dataset.

Previous studies have also referred to this estimation error as dark matter, which is inevitable.

Moreover, from the superposition hypothesis, the activation of Lorsa heads is sparse for each input.
And, since we initialize Lorsa’s QK module by MHSA, it is natural to assume that the Lorsa head
will align with the head of a specific MHSA. Therefore, we have the below assumption.
Assumption 2 (Superposition Hypothesis). For Lorsa, the activation is sparse, i.e., for any Lorsa
head set S, we have ∑

j∈S

notTopK(pj(x))ĥj(x) ≈ 0, (6)

where notTopK is defined similar to TopK in eq. 3.

For the MHSA attention head, we have the Lorsa heads sets {Si} in eq. 4 for each MHSA head is a
partition of the all Lorsa heads, i.e.,

Si ∩ Sj = ∅, for i ̸= j,⋃
Si = {1, 2, · · · , N}.

(7)

Therefore, we can prove that, from the perspective of patching, the behavior of the i-th MHSA
attention head is approximately equivalent to that of the Lorsa head in Si, i.e., this sparsification does
not alter the model’s underlying behavior in feature-level. First, following the direct logit attribution
(DLA) (Wang et al., 2022), we define the influence of the heads in MHSA and Lorsa.
Definition 3 (Variation for DLA in MHSA and Lorsa). The variation for DLA (VDLA) of i-th MHSA
heads for the input pair (xr,xc) (xr is the reference input, and the xc is the counterfactual input
transformed from xr) can be defined as

V DLAMHSA(xr,xc, i) := f(hi(xr))− f(hi(xc)), (8)
where f : Rd → R is the composite map for DLA. And we assume that the f is Lipschitz continuous,
i.e., there exists Lipschitz bound C > 0 such that

|f(x)− f(y)| ≤ C|x− y|. (9)
And the VDLA of Lorsa head sets S for the input pair (xr,xc) can be defined as

V DLALorsa(xr,xc,S) := f

∑
j∈S

TopK(pj(xr))ĥj(xr)

− f

∑
j∈S

TopK(pj(xc))ĥj(xc)

 .

(10)
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The VDLA metric reflects the strength of influence exerted by certain heads in MHSA and Lorsa
on model behavior. And we can prove that the influences in MHSA and Lorsa are approximately
equivalent by the theorem below.
Theorem 1 (The VDLA Approximation Bound between MHSA and Lorsa). From the Assumption 1
and 2, we have

|V DLAMHSA(xr,xc, i)− V DLALorsa(xr,xc,Si)| ≲ 2Cϵ, (11)

where ϵ is the error bound defined in Assumption 1, and C is the lipschitz bound of f defined in
Definition 3.

Proof. For the VDLA error, we have

|V DLAMHSA(xr,xc, i)− V DLALorsa(xr,xc,Si)|

≤

∣∣∣∣∣∣f(hi(xr))− f(hi(xc))− f

∑
j∈S

TopK(pj(xr))ĥj(xr)

+ f

∑
j∈S

TopK(pj(xc))ĥj(xc)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣f(hi(xr))− f

∑
j∈S

TopK(pj(xr))ĥj(xr)

∣∣∣∣∣∣+
∣∣∣∣∣∣f(hi(xc))− f

∑
j∈S

TopK(pj(xc))ĥj(xc)

∣∣∣∣∣∣
≤C

∣∣∣∣∣∣hi(xr)−
∑
j∈S

TopK(pj(xr))ĥj(xr)

∣∣∣∣∣∣+ C

∣∣∣∣∣∣hi(xc)−
∑
j∈S

TopK(pj(xc))ĥj(xc)

∣∣∣∣∣∣
(12)

From the Assumption 1, for the first term, we have∣∣∣∣∣∣hi(xr)−
∑
j∈S

TopK(pj(xr))ĥj(xr)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ϵi(xr) +
∑
j∈S

notTopK(pj(xr))ĥj(xr)

∣∣∣∣∣∣
≤|ϵi(xr)|+

∣∣∣∣∣∣
∑
j∈S

notTopK(pj(xr))ĥj(xr)

∣∣∣∣∣∣ .
(13)

From the Assumption 2, for all x ∈ D, we have

∥AMHSA(x)−ALorsa(x)∥ = ∥
n∑

j=1

ϵj(x)∥ =
n∑

j=1

ϵj(x) ≤ϵ, (14)

where the second equality is from ϵi(x) > 0. Therefore, we have

ϵj(x) ≤ ϵ. (15)

From the eq. 13 and eq. 15, we have∣∣∣∣∣∣hi(xr)−
∑
j∈S

TopK(pj(xr))ĥj(xr)

∣∣∣∣∣∣
≤ϵ+

∣∣∣∣∣∣
∑
j∈S

notTopK(pj(xr))ĥj(xr)

∣∣∣∣∣∣ .
(16)

Then, from the Assumption 2, we have∣∣∣∣∣∣hi(xr)−
∑
j∈S

TopK(pj(xr))ĥj(xr)

∣∣∣∣∣∣ ≲ ϵ. (17)
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Similarly, for the second term in eq. 12, we have∣∣∣∣∣∣hi(xc)−
∑
j∈S

TopK(pj(xr))ĥj(xc)

∣∣∣∣∣∣ ≲ ϵ. (18)

Substituting eq. 17 and eq. 18 into eq. 12, we have

|V DLAMHSA(xr,xc, i)− V DLALorsa(xr,xc,Si)| ≲ 2Cϵ. (19)

The proof is completed.

From the Theorem 1, we obtain the following corollary.
Corollary 1. For the dataset Dr, where (xr,xc) ∼ Dr, xr ∼ D is the reference input, and xc is
counterfactual input transformed from xr, D is the original input dataset, we have

E(xr,xc)∼Dr
|V DLAMHSA(xr,xc, i)− V DLALorsa(xr,xc,Si)| ≲ 2Cϵ (20)
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