

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS UNDERSTANDING THE NATURE OF ATTENTION WITH LOW-RANK SPARSE DECOMPOSITION

Anonymous authors

Paper under double-blind review

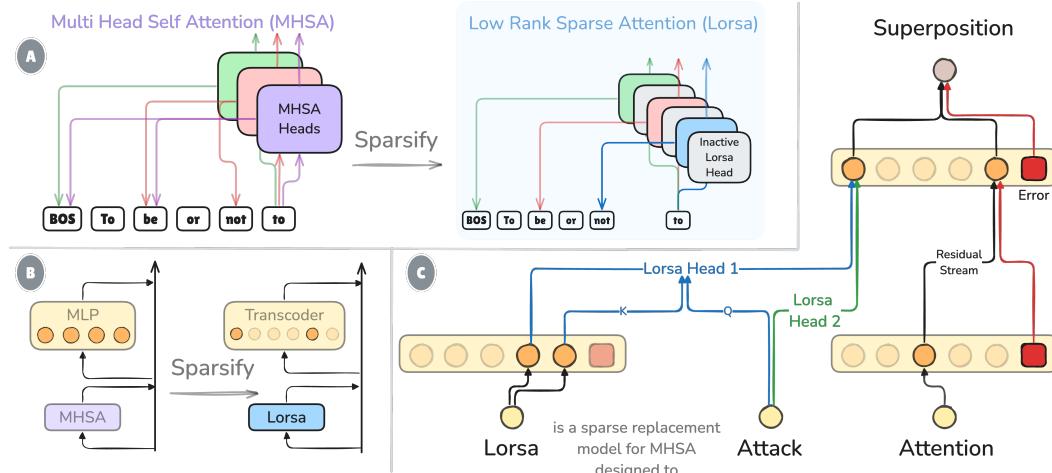


Figure 1: (A) Low-Rank Sparse Attention (Lorsa) comprises thousands of sparsely activated attention heads with 1D outputs, designed to extract interpretable attention units from the original Multi Head Self Attention (MHSA). (B) Lorsa serves as a replacement model for Transformer attention, substituting sparse interpretable components for attention modules. (C) Each Lorsa head explains an atomic feature-feature interaction across token positions, which was originally a part of an MHSA head or spread across multiple heads, i.e. put in attention superposition.

ABSTRACT

We propose Low-Rank Sparse Attention (Lorsa), a sparse replacement model of Transformer attention layers to disentangle original Multi Head Self Attention (MHSA) into individually comprehensible components. Lorsa is designed to address the challenge of *attention superposition* to understand attention-mediated interaction between features in different token positions. Lorsa helps find cleaner and finer-grained versions of previously discovered MHSA behaviors like induction heads, successor heads, attention sink, and a comprehensive family of arithmetic-specific Lorsa heads. Interestingly, we identify a novel head type called *subtoken induction heads* that function at character level rather than token level. Automated interpretability analysis indicates that Lorsa achieves parity with SAE in interpretability while Lorsa exhibits superior circuit discovery properties. We also conduct extensive experiments on architectural design ablation, correlation to original MHSA heads and error analysis. Our early attempt to fully sparsify a toy Transformer succeeds to reveal clean global circuits. Eventually, we hope Lorsa would help us greatly understand attention computation and enable full sparsification of model computation along with its MLP counterparts. Lorsa is open-sourced at <https://anonymous.4open.science/r/Lorsa-5686/>.

054

1 INTRODUCTION

055
 056 When examining the function of individual attention heads in a Transformer model, one might
 057 identify some of these heads implementing a specific behavior. A canonical example is induction
 058 heads which predicts ‘Potter’ following the token ‘Harry’ when ‘Harry Potter’ is present in the
 059 context (Olsson et al., 2022). Ablating these heads substantially prevents the model from correctly
 060 performing corresponding tasks, which indicates causal relation of these heads and the model’s
 061 macroscopic behaviors. These interpretable attention units constitute the basic building blocks of the
 062 model’s inter-token information mixing algorithm.

063 Not all attention heads, however, exhibit clear functionality. Most heads distribute attention across
 064 diverse contexts. Although some heads exhibit identifiable patterns, there might be inter-head
 065 collaboration that explains the whole story. These challenges in attention head interpretation is
 066 analogous to feature superposition in understanding individual neurons, which suggests the existence
 067 of **attention superposition** (Jermyn et al., 2024) in Multi Head Self Attention (MHSA), which we
 068 will further discuss in Section 2.

069 Inspired by the recent success of Sparse Autoencoders (SAEs) to extract monosemantic features
 070 from Transformers’ hidden space (Templeton et al., 2024b) or approximate part of the network’s
 071 computation as a sparse computation (Templeton et al., 2024a; Ge et al., 2024; Dunefsky et al.,
 072 2024), we propose **Low-Rank Sparse Attention** (Lorsa) to disentangle the atomic attention units from
 073 attention superposition (Section 3). Lorsa serves as a replacement module of the original MHSA with
 074 an overcomplete set of attention heads featuring a single-dimensional OV circuit (Elhage et al., 2021)
 075 and sparsity constraints.

076 We evaluate the reconstruction fidelity and sparsity trade-off of Lorsa in Section 4, along with
 077 scalability analysis. In Section 5, we introduce our exploration interface following Bricken et al.
 078 (2023), providing multifaceted information on each Lorsa head. We also quantitatively assess Lorsa
 079 head interpretability using top activations and their attribution patterns (z pattern) with automated
 080 interpretability (Bills et al., 2023). The results indicate that Lorsa’s monosemanticity is comparable
 081 to SAE features.

082 Section 6 presents findings with Lorsa on Pythia-160M (Biderman et al., 2023) and Llama-3.1-
 083 8B (Dubey et al., 2024). For validation, we first identify the Lorsa instantiations of known attention
 084 mechanisms: *induction heads*, *name mover heads* (Wang et al., 2023), *successor heads* (Gould et al.,
 085 2024), and attention sinks (Xiao et al., 2024). Furthermore, we characterize a family of arithmetic-
 086 specific Lorsa heads in Llama-3.1-8B. We also identify a subset of Lorsa heads in Llama-3.1-8B that
 087 function as *theme anchors* by exhibiting long-range, topic-specific attention patterns.

088 To the best of our knowledge, Lorsa is the first attempt to extract sparse and interpretable attentional
 089 computation, yet still has significant room for improvement in aspects discussed in Section 9. We
 090 hope these discussions and findings will facilitate future research along this direction.

091 **Note on Terminology:** While prior work refers to the atomic computational units we aim to
 092 independently understand as *attentional features* (Jermyn et al., 2024; Ameisen et al., 2025), we
 093 adopt *attention units* to avoid conflating with activation-space features (which denote 1D linear
 094 features in representation spaces (Elhage et al., 2022)). The term *head* flexibly denotes either MHSA
 095 heads or Lorsa heads as context dictates. The proposed *replacement model* is not designed for
 096 immediate surrogate for underlying attention layers as they are overparameterized and may introduce
 097 reconstruction errors that compound across layers and token positions. We recommend readers to
 098 view Lorsa as an interpretability tool instead.

100

2 ATTENTION SUPERPOSITION

101
 102 Analogous to how post-ReLU neurons in Transformer MLPs learn to represent more features than
 103 they have dimensions (Elhage et al., 2022), a similar phenomenon may occur in Multi-Head Self
 104 Attention (MHSA). We hypothesize MHSA may comprise multiple attention units in **attention**
 105 **superposition**, each attending between certain token pairs with interpretable read/write operations on
 106 the residual stream. Under this hypothesis, we would expect (1) an atomic attention unit is spread
 107 across multiple MHSA heads. (2) One MHSA head includes multiple units. We list three points of
 evidence of attention superposition in Transformer language models.

1. A Few Neurons (Heads) Are Polysemantic. Gurnee et al. (2023) discovered compound word neurons activating across diverse unrelated n-grams, while Bricken et al. (2023) reported neurons responding to mixed stimuli including academic citations and Korean text. (link). Similarly, successor heads (Gould et al., 2024) which increment ‘Monday’ into ‘Tuesday’ and ‘1’ into ‘2’ simultaneously exhibit Acronym behavior, Copying behavior and Greater-than behavior.

2. Most Neurons (Heads) Exhibit Uninterpretable Activating (Attention) Patterns. Multiple studies report the predominance of MLP neurons lacking clear activation patterns (Arora et al., 2018; Bricken et al., 2023). Likewise, Krzyzanowski et al. (2024) reports failed interpretation attempts for more than 90% heads in GPT-2.

3. Attention Superposition in the Wild. He et al. (2024a) and Kissane et al. (2024) both found attention output SAE features collectively contributed by multiple attention heads. If we consider SAE features to represent monosemantic directions, such distribution provides evidence for attention superposition. Furthermore, Jermyn et al. (2024) directly demonstrate this through a toy model where 5 ground-truth attention units are put in superposition over 2 attention heads. We also show that about 25% of our learned attention units are spread across multiple MHSA heads (Appendix E.2).

Why Does Attention Superposition Matter? Practically, attribution-based circuit tracing (Ge et al., 2024; Ameisen et al., 2025) becomes challenging when features are computed collectively: individual QK patterns do not explain the full mechanism and may be misleading due to interference from other features' computations within the same heads. The structure of attention superposition may reflect intriguing motifs of model biology. For example, what makes some privileged attention units like induction heads mostly implemented by a single MHSA head (Olsson et al., 2022) while others are put in superposition? This parallels privileged bases in MLP neurons (Elhage et al., 2023).

3 LOW-RANK SPARSE ATTENTION

3.1 LORSA ARCHITECTURE

Algorithm 1: Low-Rank Sparse Attention (MHSA Lorsa)

Input: $X \in \mathbb{R}^{n \times d}$: Input sequence (n tokens, d dimensions)
 $W_q^h, W_k^h \in \mathbb{R}^{d \times d_h}$: Query/Key weights for head h . We adopt a QK sharing strategy so QK weights are not independent. See details below.
 $W_v^h \in \mathbb{R}^{d_h \times d_h}$ $w_v^h \in \mathbb{R}^{d \times 1}$: 1-Dim Value weights
 $W_o^h \in \mathbb{R}^{d_h \times d}$ $w_o^h \in \mathbb{R}^{1 \times d}$: 1-Dim Output weights
 H_{MHSA} $H_{\text{Lorsa}} \in \mathbb{Z}^+$: Number of Lorsa heads
 $K \in \mathbb{Z}^+$: Max number of activated Lorsa Heads

Output: $\hat{Y} \in \mathbb{R}^{n \times d}$: Output sequence

for $h \leftarrow 1$ **to** H_{Lorsa} **do**

$Q^h = XW_q^h \in \mathbb{R}^{n \times d_h}$; // Query projection for head h
 $K^h = XW_k^h \in \mathbb{R}^{n \times d_h}$; // Key projection for head h
 $v^h = Xw_v^h \in \mathbb{R}^{n \times 1}$; // d_h -Dim 1-Dim Value projection for head h
 $A^h = \text{softmax} \left(\frac{Q^h (K^h)^T}{\sqrt{d_h}} \right) \in \mathbb{R}^{n \times n}$; // Attention patterns (Causal Mask)
 $z^h = A^h v^h \in \mathbb{R}^{n \times 1}$; // d_h -Dim 1-Dimensional Weighted sum of values
 $\hat{Y}^h = z^h w_o^h \in \mathbb{R}^{n \times d}$; // Output of a single Lorsa head

$S \leftarrow \text{TopKIndices}(\{z^h \mid h = 1, \dots, H_{\text{Lorsa}}\}, K)$; // Select top K heads by attention scores
 $\hat{Y} = \sum_{h \in S} \hat{Y}^h$; // Add up all selected heads
return \hat{Y}

We detail Lorsa's architectural designs in this section, with Algorithm 1 highlighting how Lorsa architecture differs from a standard MHSA layer. Lorsa takes in the same inputs of MHSA and is trained to predict MHSA outputs. The training objective is simply minimizing the mean square error (MSE): $\mathcal{L} = \mathbb{E}_{\mathbf{x} \in \mathcal{D}} \|\text{Lorsa}(\mathbf{x}) - \text{MHSA}(\mathbf{x})\|_2$.

162 **Rank-1 Output-Value Circuits.** Each MHSA head reads from and writes to a residual stream
 163 subspace via its OV circuit (Elhage et al., 2021), whose rank is decided by its head dimension
 164 d_h . Under the linear representation hypothesis that unidimensional features are encoded in the
 165 residual stream, we design Lorsa heads with rank-1 OV circuits. This offers the advantage of
 166 restricting read/write operations to one or few residual stream features (directions). Although ideal
 167 implementations would use rank-1 QK and OV circuits, we restrict dimensionality reduction to OV
 168 circuits for practical reasons.

169 **Query and Key Weights with Parameter Sharing.** We observe significant performance drop as
 170 rank of QK circuits $D_{\text{QK}}^{\text{Lorsa}}$ decreases, which is severer when $D_{\text{QK}}^{\text{Lorsa}} < D_{\text{QK}}^{\text{MHSA}}$. This may suggest
 171 QK circuits for attention units are multidimensional. In result, we choose $D_{\text{QK}}^{\text{Lorsa}} = D_{\text{QK}}^{\text{MHSA}}$ and
 172 implement parameter sharing for QK weights across every G heads. Unless otherwise specified, we
 173 set $G = D_{\text{QK}}^{\text{Lorsa}}$ so that each head maintains a parameter count of $4D_{\text{model}}$ in average - equivalent to
 174 setting $D_{\text{QK}}^{\text{Lorsa}}$ to 1 without parameter sharing, which is crucial for Lorsa scalability.

175 Our parameter binding strategy renders Lorsa QK circuit strikingly similar to MHSA - a QK-sharing
 176 group of Lorsa heads is almost identical to an original MHSA head except the sparsity constraints
 177 applied on each OV dimension. We describe Lorsa heads as individual heads with shared QK circuits
 178 rather than a sparse dimension in MHSA architecture because they often exhibit correlated yet distinct
 179 interpretable functionalities, as we will show in Section 6. And there are cases where a QK-sharing
 180 group of Lorsa heads show no clear semantic correlation (Appendix C).

181 We also show in Appendix B.3 that Lorsa QK circuits are not solely learning to copy the original
 182 QK circuits. This distinguishes Lorsa from only applying sparse dictionary learning or Independent
 183 Component Analysis on OV circuits (Ameisen et al., 2024).

184 **Orders of Magnitudes More Heads and Sparsity.** To capture numerous underlying attention
 185 units, Lorsa employs an overcomplete architecture with $H_{\text{Lorsa}} \gg H_{\text{MHSA}}$ heads per layer, activating
 186 only $K \ll H_{\text{Lorsa}}$ heads per token. This parallels learning more features than the input dimension
 187 while enforcing sparsity in SAEs.

188 For a given token position, Lorsa’s output aggregates the Top-K heads with largest z ’s, where z is
 189 the scalar activation value of a Lorsa head¹. The active head subset dynamically varies across token
 190 positions. This sparsity mechanism resembles TopK-SAEs (Gao et al., 2024), as both select the K
 191 most salient linear components.

192 **Connection to Sparse Autoencoders.** Lorsa shows notable resemblance to attention SAEs (Kissane
 193 et al., 2024) for its rank-1 OV circuits. Lorsa learns an overcomplete linear basis of the attention output
 194 space $\{w_o^h \mid h = 1, \dots, H_{\text{Lorsa}}\}$ with sparsely activated scalar components $\{z_i^h \mid h = 1, \dots, H_{\text{Lorsa}}\}$
 195 at the i -th position, which is analogous to SAE decoder and sparse feature activations.

196 However, whereas SAE features are computed via single linear encoders with ReLU, Lorsa head
 197 activation at a given position z_i^h derives from attention patterns A_i^h and v^h of previous tokens.
 198 Moreover, SAEs take in and predict the same activations while Lorsa, like Transcoders (Ge et al.,
 199 2024; Dunefsky et al., 2024), learns to predict downstream activations. It is more similar to a
 200 Gated (Rajamanoharan et al., 2024) Transcoder taking in activations from multiple positions, where
 201 the QK circuit resembles the *gate* with a non-linearity and w_v is simply a linear encoder.

202 3.2 LORSA TRAINING

203 The Low-Rank Sparse Attention modules we are studying throughout this work are trained on all
 204 layers of Pythia-160M and Llama-3.1-8B. The training data is sampled from 800 million tokens for
 205 each model. The prompts are collected from SlimPajama (Soboleva et al., 2023) truncated to 256
 206 tokens for Pythia and 1024 tokens for Llama.

207 Best practices for Lorsa training (e.g. Adam optimizer, warm-stable-decay schedule, optimal lr
 208 scaling law, etc.) largely complies with ones adopted in Templeton et al. (2024b). Training one Lorsa

209 ¹Conceptually, a Lorsa head’s activation on a sequence should be $z^h \parallel w_o^h \parallel_2$ rather than z^h . For analytic
 210 simplicity and clarity, we construct a model with identical predictions but set $w_v^h \leftarrow w_v^h \parallel w_o^h \parallel_2$, $b_v^h \leftarrow b_v^h \parallel w_o^h \parallel_2$
 211 and $w_o^h \leftarrow w_o^h / \parallel w_o^h \parallel_2$. This operation isolates activation z^h from output direction w_o^h .

216 module with settings described in Table 1 takes 2 Nvidia A100 GPU hours for Pythia (batch size =
 217 4,096 tokens) and 24 hours for Llama (batch size = 16,384 tokens).
 218

Target Model	# Heads				Head Dimension			# Active Heads per Token		# Params Per Layer	
	MHSA	Independent Lorsa QK	Lorsa QK	Lorsa OV	MHSA	Lorsa QK	Lorsa OV	MHSA	Lorsa	MHSA	Lorsa
Pythia-160M	12	96	6K	6K	64	64	1	12	64	2.25M	18M
Llama-3.1-8B	32	256	32K	32K	128	128	1	32	128	64M	512M

225 Table 1: Architectural setups for both target models. We primarily focus on Lorsa modules with
 226 500-1,000 times more heads than the original MHSA. For instance, we have 6K Lorsa heads for an
 227 MHSA layer in Pythia-160M, with every $D_{\text{QK}}^{\text{Lorsa}} = D_{\text{QK}}^{\text{MHSA}} = 64$ heads sharing QK weights. This
 228 gives us 96 independent QK weights.

229 Both models adopt Rotary Embedding (RoPE) (Su et al., 2021) and Llama uses Grouped Query
 230 Attention (GQA) (Ainslie et al., 2023). We show how Lorsa fits these modifications in Appendix A.
 231

4 EVALUATING LORSA FIDELITY-SPARSITY PERFORMANCE

4.1 $L(N, K)$ SCALING LAWS

232 We explore Lorsa scaling laws with respect to both
 233 number of learnable parameters N and their sparsity
 234 K (i.e. number of active Lorsa heads per token) as
 235 shown in Figure 2, compared to Top-K SAEs (Gao
 236 et al., 2024). Despite similar scaling trends, there is a
 237 notable gap between Lorsa and SAE under the same
 238 parameter budget and sparsity, especially when K is
 239 large. Such comparison in terms of reconstruction
 240 fidelity and sparsity is in favor of SAEs since Lorsa
 241 learns QK and OV circuits to predict attention output
 242 with hundreds of activations, while SAE adopts a
 243 standard dictionary learning setting with the same
 244 input and output.

4.2 PER-LAYER EVALUATION

245 Figure 3 shows Lorsa’s per-layer reconstruction error
 246 on Pythia-160M and Llama-3.1-8B in terms of
 247 fraction of variance unexplained (FVU).
 248

249 We would like to highlight the notable correlation between trends of FVU across layers yielded
 250 by Lorsa and SAE in both models. We also observe strong correlation between these two sparse
 251 dictionary learning methods in terms of per-token error norm and direction (Appendix G).
 252

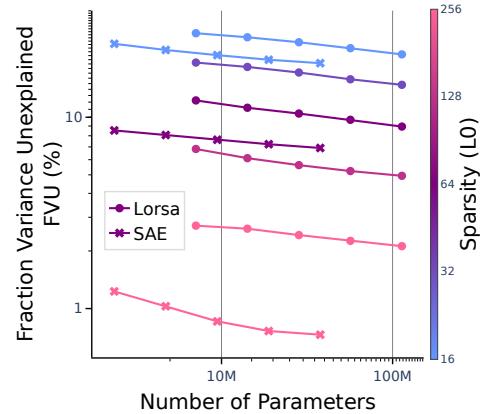
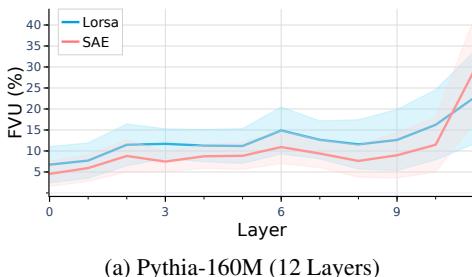
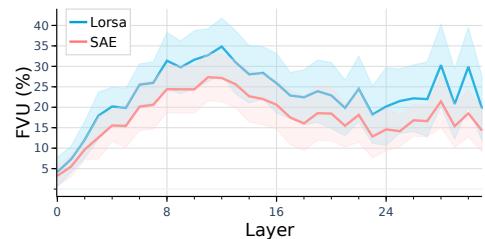




Figure 2: Scaling laws of FVU against number of parameters and fixed L_0 for SAEs and Lorsas trained on layer 3 in Pythia-160M.

(a) Pythia-160M (12 Layers)

(b) Llama-3.1-8B (32 layers)

267 Figure 3: Per-layer reconstruction FVU for Top-K SAEs and Lorsas. All Pythia modules (left)
 268 comprises 18M learnable parameters and $K = 64$. Llama modules (right) have 512M parameters and
 269 $K = 128$. We evaluate the mean and standard deviation (shown as shaded areas) with 64K tokens.

5 ASSESSING LORSA INTERPRETABILITY

5.1 INTERPRETING INDIVIDUAL LORSA HEADS

Top Activations. With Lorsa heads’ output restricted to a single direction, their activation strength at a given position i can be described with a scalar z_i^h (Section 3.1). Similar to SAE interpretation methods (Bricken et al., 2023; Templeton et al., 2024b), we iterate over 100M activations from a held-out dataset to identify the 16 highest-activating tokens for each Lorsa head.

z Pattern. According to Algorithm 1, the top activations z_i^h decompose linearly into token-wise contributions from preceding positions: $z_i^h = A_i^h v^h = \sum_{j=1}^i A_{i,j}^h v_j^h$, where $A_{i,j}^h$ denotes attention weight from token i to token j and $v_j^h = w_v^h \mathbf{x}_j$. Conceptually this tells from which previous tokens the activation z_i^h is computed. Thus we call it the z pattern. This is analogous to direct feature attribution (DFA) analysis for attention SAEs (Kissane et al., 2024; He et al., 2024a). An SAE feature’s activation at the i -th token f_i can be decomposed along heads and sequence position, i.e., $f_i = \sum_{j \leq i} \sum_{h \in H} W_f^{\text{enc}} o_j^h$, where o_j^h is a linear component of MHSA output at token j from head h . The DFA from token j is then defined as $\sum_{h \in H} W_f^{\text{enc}} o_j^h$. In comparison, Lorsa’s attribution includes only one rank-1 OV circuit and a single, though shared, QK circuit without multi-head aggregation. This enables QK circuit attribution for attention units distributed across multiple MHSA heads.

5.2 VISUALIZATION INTERFACE

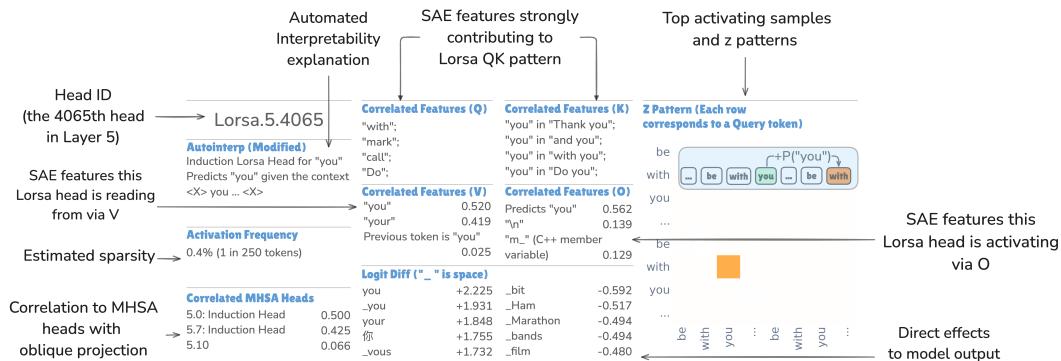


Figure 4: Visualization dashboard for a “you”-specific induction Lorsa head. We provide an example interpretation of each item below.

Our visualization interface provides multifaceted information on Lorsa head interpretation. We illustrate our dashboards with the example in Figure 4, which visualizes to an induction Lorsa head specifically firing for the token “you”. The methods used to identify correlated MHSA heads and SAE features are described in Appendix E and F.

- **Correlation to SAE features / Logits via OV:** It mainly reads from *current token is “you”/“your”* features via its w_v^h ; It strongly activates a *say “you”* feature (i.e., a feature amplifying the logit of “you” via the logit lens (nostalgebraist, 2020)); It amplifies the logits of a variety of “you” tokens.
- **Correlation to SAE features via QK:** Its QK attention pattern is mainly computed by *current token is “X”* features on the query position and *previous token is “X” & current token is “you”* features on the key side, where “X” can be a number of tokens that often precedes “you”, such as “with”, “thank” or “do”.
- **Correlation to MHSA heads:** This Lorsa head is almost equally distributed in MHSA.5.0 and MHSA.5.7. Both MHSA heads exhibit induction functionality as shown in Appendix E.

5.3 QUANTITATIVE EVALUATION WITH AUTOMATED INTERPRETABILITY

To quantify the interpretability of Lorsa heads in terms of its top activations and z pattern, we perform automated interpretability (autointerp) (Bills et al., 2023) with GPT-4o to estimate how

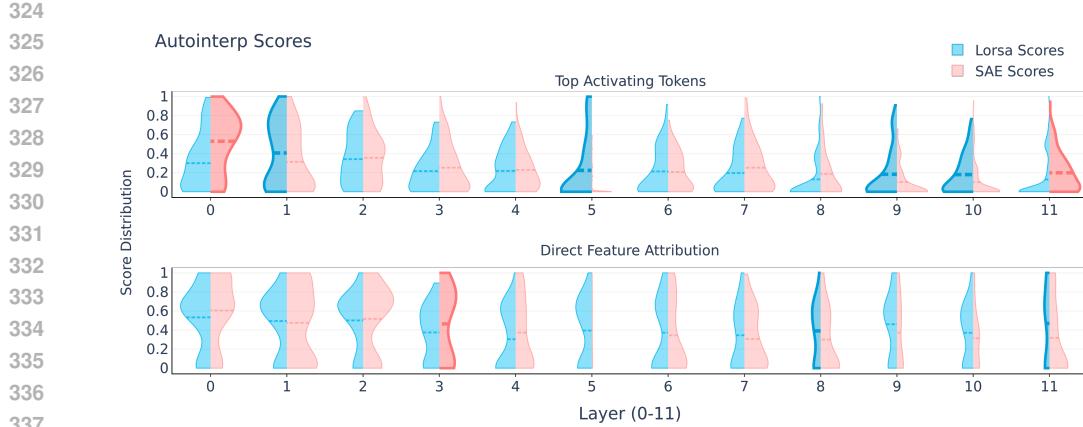


Figure 5: Automated interpretability scores of Lorsa heads and SAE features. Each distribution is estimated with 100 heads / features. The average score of each group is represented by a horizontal dash line. We highlight distributions with larger mean value suggested by t-tests with $\alpha = 0.05$.

comprehensible each Lorsa head is. We apply standard autointerp on max activating samples and extend to Lorsa z -patterns and direct feature attribution of attention output SAEs (Kissane et al., 2024). Prompt design, scoring method and choice of few-shot examples are detailed in Appendix I. All results are obtained with Pythia-160M Lorsa and SAEs of the same size.

As shown in Figure 5, Lorsa achieves a higher score in 6 cases, with 3 losses and 15 ties at $\alpha = 0.05$ significance across 24 layer-wise comparisons, suggesting comparable interpretability to SAE features. Both methods exhibit descending scores in deeper layers. Potential explanations include: (1) increased polysemy in later layers, or (2) limited capacity of current autointerp pipelines to capture long-range dependencies.

6 SEARCHING FOR SPECIFIC LORSA HEADS

We use path patching (Wang et al., 2023; Conmy et al., 2023) to find the Lorsa heads involved in specialized tasks. For a given Lorsa head, path patching ablates its output and allows the influence to propagate only through residual connections and MLPs (but not through other attention heads). This measures the head’s counterfactual influence on the model’s behavior.

6.1 LORSA RE-DISCOVERS PREVIOUSLY REPORTED HEADS

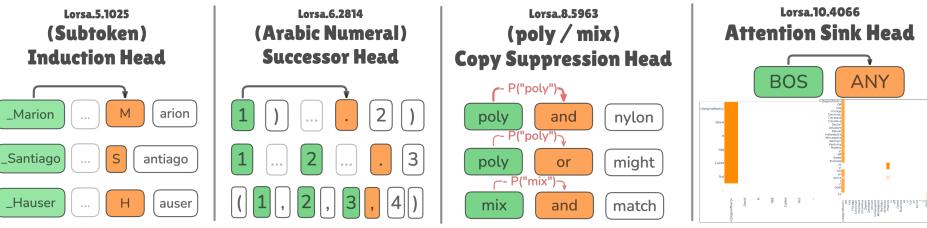


Figure 6: Examples of Lorsa heads re-discovering **finer-grained or cleaner versions** of previously reported heads. **Lorsa.5.1025**: A subtoken induction head for names, see details below. **Lorsa.6.2814**: A successor head attending to the previous arabic numeral token (almost exclusively 1, 2, and 3) and predicts its successor. **Lorsa.8.5963**: A copy suppression head attending to the previous token (almost exclusively ‘poly’ and ‘mix’) and suppresses its copy. **Lorsa.10.4066**: An attention sink head almost exclusively attending to the ‘<beginoftext>’ token.

Previous works have documented attention heads with specific functionalities in well-characterized contexts (Section 7.1). We demonstrate that Lorsa rediscovered more specialized units of these

attention behaviors due to its rank-1 OV circuit. Lorsa also isolates an important phenomenon called attention sink (Xiao et al., 2024) from other semantically meaningful heads. Figure 6 showcases four such heads, with their visualization dashboards provided in Appendix D.2. A representative selection of interpretable Lorsa heads is presented in Table 2.

We want to highlight an interesting variant of induction heads we call subtoken induction heads where the prediction operates at the subtoken level. When the sequence contains “[Marion] . . . [M]”, the head predicts “[arion]”, despite involving three distinct tokens ([A] [B] . . . [C]). This occurs because the leading space in “[Marion]” causes tokenization misalignment, splitting what would otherwise be a single token into subcomponents.

Lorsa Head ID	Manual Interpretation
Lorsa.5.3955	Induction for “ve”
Lorsa.5.4010	Induction for last names
Lorsa.7.4203	Induction for abbreviations
Lorsa.9.132	Induction after “and”/“with”
Lorsa.9.1622	Induction in Italian
Lorsa.4.32	“define”/“include” in PHP
Lorsa.4.3013	“public static” in Java
Lorsa.5.4035	Say “Four”/“Five”
Lorsa.8.142	Apple Inc. and products (iPhone etc.)
Lorsa.4.5167	Previous token is “can”/“could”
Lorsa.11.6084	Previous token is “make”
Lorsa.4.487	Abbreviations (parentheses/quotes)
Lorsa.6.1491	Abbreviations in parentheses
Lorsa.6.1787	Abbreviations in parentheses
Lorsa.6.5499	Abbreviations in parentheses
Lorsa.4.1420	Russian contexts
Lorsa.9.1622	Induction in Italian
Lorsa.4.4388	Attention sinks
Lorsa.7.862	Attention sinks
Lorsa.6.2592	“the other”/“another”
Lorsa.10.1232	Year of birth and death

Table 2: A non-exhaustive collection of interpretable Lorsa heads we have found, which are grouped by color from top to bottom: **induction heads**, **specific token heads**, **previous token heads**, **acronym heads**, **language-specific heads**, **attention sink heads**, and **miscellaneous heads**.

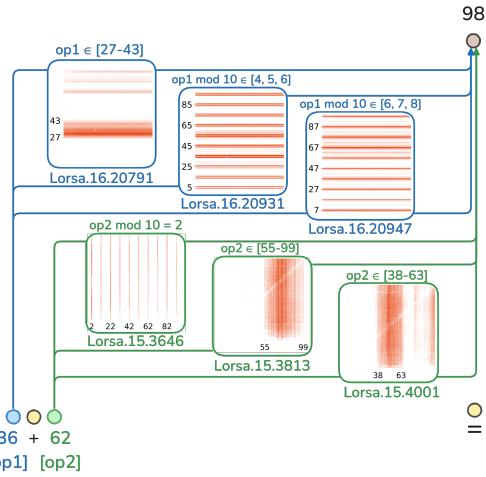


Figure 7: For the prompt “36 + 62 =”, Lorsa moves two operands to the last position with 3 heads each. The first operand (36) is attended in terms of z pattern by an “ $op1 \in 27 - 43$ ”, an “ $op1 \% 10 \in [4, 5, 6]$ ” and an “ $op1 \% 10 \in [6, 7, 8]$ ” head, which uniquely determines “ $op1 = 36$ ”. The same applies to $op2$.

6.2 A FAMILY OF ARITHMETIC LORSA HEADS IN LLAMA-3.1-8B

We identify a group of arithmetic-specific Lorsa heads in Llama-3.1-8B that activate during simple arithmetic operations following the template $[op1] [operator] [op2] [=]$. One observation is that each head fetches certain operands with a number of unrelated heuristics, consistent to prior findings at neuron level on arithmetic mechanisms (Nikankin et al., 2024), despite Lorsa’s architectural differences.

Figure 7 demonstrates an example of the prompt “36 + 62 =”. Similar to Ameisen et al. (2025), we visualize the function of each Lorsa head with an operand plot, displaying its activity on the 100×100 grid of potential inputs of the template “ $op1 + op2 =$ ”.

These six Lorsa heads exhibit consistent interpretations in terms of their operand plots and z patterns sampled from natural language prompts like “The price went up by 27% from \$100 to”. We exemplify this in Appendix D.3, along with more examples of arithmetic-specific Lorsa heads. We also conduct very preliminary perturbation experiments in arithmetic tasks to validate Lorsa’s causal influence on the model’s behavior, as described in Appendix D.4.

6.3 LORSA HEADS AS THEME ANCHORS

While exploring through Lorsa heads in Llama-3.1-8B, we notice a distinctive subset of Lorsa heads attending to keywords with remarkable theme consistency from all subsequent tokens in a sentence. Figure 12 in Appendix D.5 illustrates two representative cases which exhibit relatively selective, long-range attention to tokens related to *presidency* and *dynamical systems* as evidenced by z pattern.

432 Through manual inspection we also find Lorsa heads activating on topics like alcohol addiction,
 433 dynamic system, medication instructions and terms of service.

434
 435 An intuitive hypothesis of these heads’ function is serving as *theme anchors* to maintain persistent
 436 topic representations to bias subsequent token predictions toward domain-appropriate vocabulary and
 437 syntactic structures. We believe these heads to be closely related to SAE features “smeared” across
 438 token positions, as mentioned in Lindsey et al. (2025) (link) (example).

439 7 RELATED WORK

440 7.1 EXPLAINING INDIVIDUAL ATTENTION HEADS

441
 442 With the help of activation patching (Meng et al., 2022; Zhang & Nanda, 2024) or path patching (Wang
 443 et al., 2023; Conmy et al., 2023), the literature has discovered a number of heads that exhibit certain
 444 functionality in pre-defined contexts. This line of research starts from a composition of *previous token*
 445 *heads* and *induction heads* (Olsson et al., 2022) which is closely related to in context learning. More
 446 work on this line includes *name mover heads* (Wang et al., 2023), *number comparison heads* (Hanna
 447 et al., 2023), *copy suppression heads* (McDougall et al., 2023), *successor heads* (Gould et al., 2024)
 448 and *long context retrieval heads* (Wu et al., 2024).

449 7.2 SUPERPOSITION HYPOTHESIS AND SPARSE AUTOENCODERS

450
 451 The superposition hypothesis (Arora et al., 2018; Olah et al., 2020; Elhage et al., 2022) assumes that
 452 neurons are related to multiple non-orthogonal underlying features. Sparse Autoencoders (Cunningham
 453 et al., 2023; Bricken et al., 2023) are proposed to extract an overcomplete set of the sparse and linear
 454 comprehensible features. Importantly, the success of the technique also sheds light on universality of
 455 superposition across model size (Templeton et al., 2024b; Lieberum et al., 2024; He et al., 2024b),
 456 model architectures (Wang et al., 2024) and modality (Abdulaal et al., 2024).

457 7.3 SPARSE AUTOENCODER VARIANTS

458
 459 We see SAEs to have developed multiple forms along with the rapid evolution of SAEs in the past
 460 year. Some of them improve initialization (Conerly et al., 2024), loss function (Conerly, 2024;
 461 Bussmann et al., 2024) or sparsity constraints (Gao et al., 2024) to solve specific issues such as
 462 shrinkage (Wright & Sharkey, 2024) and massive inactive features (Bricken et al., 2023).

463
 464 Another direction of improvement is the SAE architecture. For instance, Gated SAEs (Rajamanoharan
 465 et al., 2024) are proved effective in mitigating shrinkage. Transcoders (Ge et al., 2024; Dunefsky
 466 et al., 2024) aims to simplify sparse circuit analysis by replacing MLPs, whose non-linear nature
 467 makes causal attribution intractable.

468 8 DISCUSSION AND LIMITATIONS

469
 470 We report a number of intriguing findings and limitations of Low-Rank Sparse Attention. Despite
 471 early sign of life with the current Lorsa design and training strategy, a number of key challenges
 472 remain. We believe there remains significant room for improvement for future work in each of these
 473 following aspects.

474
 475 **Unbinding QK circuits.** One significant limitation of our approach is that we do not get completely
 476 independent or low rank Lorsa heads. The shared QK circuit of Lorsa heads raises concerns on
 477 whether they can be independently understood, despite our current positive findings with z patterns
 478 which is a mixed artifact of Q, K and V. Especially in circuit tracing, there might be a risk of
 479 mis-attributing the QK circuit to the ‘true’ components of other Lorsa heads sharing the same QK
 480 circuit.

481
 482 **Dynamically Reducing QK Rank.** One solution to unbind QK circuits is to reduce QK rank for
 483 each Lorsa head. If we could overcome the performance degradation of low-dimensional QK circuits,
 484 it is possible to scale up Lorsa with more independent QK circuits and fewer residual stream features

486 interacting via QK^2 . This is also crucial for circuit tracing methods to have a clearer attribution of
 487 QK circuits with fewer features involved.

488 Moreover, our current design of Lorsa QK circuits assumes that all attention units have the same rank
 489 (i.e., d_{head}^{QK}). In Appendix C we show that Lorsa QK rank can be varied across heads by visualizing
 490 the singular values of W_Q and W_K . A mechanism to dynamically determine the rank of QK circuits
 491 for each Lorsa head would be a promising direction for future work.

492 **Dark Matters.** We find non-trivial correlation between Lorsa error and SAE errors trained on the
 493 same attention layer in terms of (1) average loss per layer (2) loss per token on the same context
 494 and (3) error direction, as shown in Appendix G. This may suggest the existence of universal dark
 495 matters (Olah & Jermyn, 2024; Engels et al., 2024) for sparse dictionary learning methods like SAE
 496 and Lorsa. Any progress along this direction to reduce or understand SAE / Lorsa dark matters should
 497 reveal many interesting behaviors of neural networks.

498 **Inactive Attention SAE Features and Lorsa Heads.** Despite efforts on hyperparameter search,
 499 we find that attention SAE and Lorsa both contains a majority of inactive feature / heads (i.e. not
 500 activated once in 1e6 tokens). This phenomenon renders most computation wasted and raises a
 501 question about the difference between structure of attention output space and MLP output space or
 502 residual streams, where SAEs of the same size only have few dead features if configured properly.

503 **Cross Layer Attention Superposition.** If certain inter-token feature interaction is performed in
 504 more than one layer, our current method which decomposes only one MHSA layer does not suffice to
 505 find such relation. This parallels the problem of cross-layer superposition (Templeton et al., 2024b)
 506 for residual stream features. A cross-layer variant of Lorsa (Lindsey et al., 2024) might be tractable.

507 **Global Weights and Systematic Q/K/V Composition.** To better understand the global attention
 508 behavior of Transformers, one important research direction is to identify systematic Q/K/V compo-
 509 sition like induction heads and previous token heads. Since Lorsa reveals finer-grained versions of
 510 MHSA heads, we can expect to find more of such cross-layer collaboration behavior. However, we
 511 failed in our early attempts to find Lorsa heads with Q/K composition.

516 9 CONCLUSION

517 In this work, we introduced Low-Rank Sparse Attention (Lorsa) to disentangle atomic attention
 518 units from attention superposition in Transformer models. Our experiments validated that Lorsa
 519 can recover known attention mechanisms and uncover novel interpretable behaviors. The scalability
 520 and quantitative autointerp results suggest the potential of Lorsa to adapt to real-world applications,
 521 especially unveiling the nature of attention computation in systematic end-to-end circuit tracing.

522 Eventually, we hope Lorsa would help build a sparse replacement model of Transformer attention
 523 modules, along with its MLP counterparts to enable full sparsification of model computation. Our
 524 initial attempt gives promising results in a two layer Transfomer and unveil an easy yet clean induction
 525 circuit at feature level. We report this in Appendix H since induction circuits have been well studied.

526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539 ²It might also be the case that attention units must be described in multidimensional QK circuits, like
 induction heads requiring attending to multiple “the previous token is X” features.

540 REFERENCES
541

542 Ahmed Abdulaal, Hugo Fry, Nina Montaña Brown, Ayodeji Ijishakin, Jack Gao, Stephanie L. Hyland,
543 Daniel C. Alexander, and Daniel C. Castro. An x-ray is worth 15 features: Sparse autoencoders for
544 interpretable radiology report generation. *CoRR*, abs/2410.03334, 2024. doi: 10.48550/ARXIV.
545 2410.03334. URL <https://doi.org/10.48550/arXiv.2410.03334>.

546 Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and
547 Sumit Sanghai. GQA: training generalized multi-query transformer models from multi-head
548 checkpoints. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023*
549 *Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,*
550 *December 6-10, 2023*, pp. 4895–4901. Association for Computational Linguistics, 2023. doi:
551 10.18653/V1/2023.EMNLP-MAIN.298. URL <https://doi.org/10.18653/v1/2023.emnlp-main.298>.

553 Emmanuel Ameisen, Joshua Batson, and Jack Lindsey. Investigating successor heads. *Trans-*
554 *former Circuits Thread*, 2024. URL <https://transformer-circuits.pub/2024/september-update/index.html>.

556 Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
557 Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
558 Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
559 Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
560 Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
561 computational graphs in language models. *Transformer Circuits Thread*, 2025. URL <https://transformer-circuits.pub/2025/attribution-graphs/methods.html>.

563 Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic structure
564 of word senses, with applications to polysemy. *Trans. Assoc. Comput. Linguistics*, 6:483–495, 2018.
565 doi: 10.1162/TACL_A_00034. URL https://doi.org/10.1162/tacl_a_00034.

567 Joshua Batson, Brian Chen, and Andy Jones. Circuits updates - march 2024. *Transformer Circuits*
568 *Thread*, 2024. URL <https://transformer-circuits.pub/2024/march-update/index.html>.

571 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric
572 Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
573 Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
574 models across training and scaling. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
575 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine*
576 *Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of*
577 *Machine Learning Research*, pp. 2397–2430. PMLR, 2023. URL <https://proceedings.mlr.press/v202/biderman23a.html>.

578 Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
579 Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in language mod-
580 els. <https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html>, 2023.

583 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
584 Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
585 Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
586 Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
587 Christopher Olah. Towards monosematicity: Decomposing language models with dictionary
588 learning. *Transformer Circuits Thread*, 2023. URL <https://transformer-circuits.pub/2023/monosemantic-features/index.html>.

589 Bart Bussmann, Patrick Leask, and Neel Nanda. Learning multi-
590 level features with matryoshka saes. *LessWrong*, 2024. URL
591 <https://www.lesswrong.com/posts/rKM9b6B2LqwSB5ToN/learning-multi-level-features-with-matryoshka-saes>.

594 Tom Conerly. Circuits updates - february 2024. *Transformer Circuits Thread*, 2024.
 595 URL <https://transformer-circuits.pub/2024/feb-update/index.html#dict-learning-resampling>.
 596

597 Tom Conerly, Adly Templeton, Trenton Bricken, Jonathan Marcus, and Tom Henighan.
 598 Circuits updates - april 2024. *Transformer Circuits Thread*, 2024. URL
 599 <https://transformer-circuits.pub/2024/april-update/index.html#training-saes>.
 600

601 Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià
 602 Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 603 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 604 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 605 16, 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/34e1dbe95d34d7eba f99b9bcaeb5b2be-Abstract-Conference.html.
 606

607 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
 608 coders find highly interpretable features in language models. *CoRR*, abs/2309.08600, 2023. doi: 10.
 609 48550/ARXIV.2309.08600. URL <https://doi.org/10.48550/arXiv.2309.08600>.
 610

611 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 612 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
 613 Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
 614 Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
 615 Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
 616 McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
 617 Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
 618 Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
 619 Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
 620 Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
 621 Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
 622 Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
 623 Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet
 624 Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng
 625 Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
 626 Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya
 627 Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd
 628 of models. *CoRR*, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL <https://doi.org/10.48550/arXiv.2407.21783>.
 629

630 Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable LLM feature
 631 circuits. *CoRR*, abs/2406.11944, 2024. doi: 10.48550/ARXIV.2406.11944. URL <https://doi.org/10.48550/arXiv.2406.11944>.
 632

633 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
 634 Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
 635 Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
 636 Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
 637 Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*, 2021.
 638 <https://transformer-circuits.pub/2021/framework/index.html>.
 639

640 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
 641 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
 642 Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposi-
 643 tion. *Transformer Circuits Thread*, 2022. URL https://transformer-circuits.pub/2022/toy_model/index.html.
 644

645 Nelson Elhage, Robert Lasenby, and Christopher Olah. Privileged bases in the transformer residual
 646 stream. *Transformer Circuits Thread*, 2023. URL <https://transformer-circuits.pub/2023/privileged-basis/index.html>.
 647

648 Joshua Engels, Logan Riggs, and Max Tegmark. Decomposing the dark matter of sparse autoencoders.
 649 *CoRR*, abs/2410.14670, 2024. doi: 10.48550/ARXIV.2410.14670. URL <https://doi.org/10.48550/arXiv.2410.14670>.

651

652 Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
 653 Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *CoRR*, abs/2406.04093,
 654 2024. doi: 10.48550/ARXIV.2406.04093. URL <https://doi.org/10.48550/arXiv.2406.04093>.

655

656 Xuyang Ge, Fukang Zhu, Wentao Shu, Junxuan Wang, Zhengfu He, and Xipeng Qiu. Automatically
 657 identifying local and global circuits with linear computation graphs. *CoRR*, abs/2405.13868, 2024.
 658 doi: 10.48550/ARXIV.2405.13868. URL <https://doi.org/10.48550/arXiv.2405.13868>.

659

660

661 Rhys Gould, Euan Ong, George Ogden, and Arthur Conmy. Successor heads: Recurring, in-
 662 terpretable attention heads in the wild. In *The Twelfth International Conference on Learning
 663 Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
 664 <https://openreview.net/forum?id=kvcbV8KQsi>.

665

666 Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
 667 Finding neurons in a haystack: Case studies with sparse probing. *Trans. Mach. Learn. Res.*, 2023,
 668 2023. URL <https://openreview.net/forum?id=JYs1R9IMJr>.

669

670 Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-
 671 than?: Interpreting mathematical abilities in a pre-trained language model. In Alice Oh,
 672 Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
 673 *Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
 674 formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 675 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/efbba7719cc5172d175240f24be11280-Abstract-Conference.html.

676

677 Zhengfu He, Xuyang Ge, Qiong Tang, Tianxiang Sun, Qinyuan Cheng, and Xipeng Qiu. Dictionary
 678 learning improves patch-free circuit discovery in mechanistic interpretability: A case study on
 679 othello-gpt. *CoRR*, abs/2402.12201, 2024a. doi: 10.48550/ARXIV.2402.12201. URL <https://doi.org/10.48550/arXiv.2402.12201>.

680

681 Zhengfu He, Wentao Shu, Xuyang Ge, Lingjie Chen, Junxuan Wang, Yunhua Zhou, Frances Liu,
 682 Qipeng Guo, Xuanjing Huang, Zuxuan Wu, Yu-Gang Jiang, and Xipeng Qiu. Llama scope:
 683 Extracting millions of features from llama-3.1-8b with sparse autoencoders. *CoRR*, abs/2410.20526,
 684 2024b. doi: 10.48550/ARXIV.2410.20526. URL <https://doi.org/10.48550/arXiv.2410.20526>.

685

686 Adam Jermyn, Chris Olah, and Tom Conerly. Circuits updates - january 2024. *Transformer Circuits
 687 Thread*, 2024. URL <https://transformer-circuits.pub/2024/jan-update/index.html#attn-superposition>.

688

689 Connor Kissane, Robert Krzyzanowski, Joseph Isaac Bloom, Arthur Conmy, and Neel Nanda.
 690 Interpreting attention layer outputs with sparse autoencoders. *CoRR*, abs/2406.17759, 2024.
 691 doi: 10.48550/ARXIV.2406.17759. URL <https://doi.org/10.48550/arXiv.2406.17759>.

692

693

694 Robert Krzyzanowski, Connor Kissane, Arthur Conmy, and Neel Nanda. We inspected
 695 every head in gpt-2 small using saes so you don't have to. Alignment Forum,
 696 2024. URL <https://www.alignmentforum.org/posts/xmegeW5mqiBsvoaim/we-inspected-every-head-in-gpt-2-small-using-saes-so-you-don>.

697

698

699 Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
 700 Varma, János Kramár, Anca D. Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
 701 autoencoders everywhere all at once on gemma 2. *CoRR*, abs/2408.05147, 2024. doi: 10.48550/
 ARXIV.2408.05147. URL <https://doi.org/10.48550/arXiv.2408.05147>.

702 Jack Lindsey, Adly Templeton, Jonathan Marcus, Thomas Conerly, Joshua Batson, and Christopher
 703 Olah. Sparse crosscoders for cross-layer features and model diffing. *Transformer Circuits Thread*,
 704 2024. URL <https://transformer-circuits.pub/2024/crosscoders/index.html>.

705

706 Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
 707 Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
 708 Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
 709 Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
 710 Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
 711 model. *Transformer Circuits Thread*, 2025. URL <https://transformer-circuits.pub/2025/attribution-graphs/biology.html>.

712

713 Callum McDougall, Arthur Conmy, Cody Rushing, Thomas McGrath, and Neel Nanda. Copy
 714 suppression: Comprehensively understanding an attention head. *CoRR*, abs/2310.04625, 2023.
 715 doi: 10.48550/ARXIV.2310.04625. URL <https://doi.org/10.48550/arXiv.2310.04625>.

716

717 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in GPT. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html.

718

719 Neel Nanda and Joseph Bloom. Transformerlens. <https://github.com/TransformerLensOrg/TransformerLens>, 2022.

720

721 Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algorithms:
 722 Language models solve math with a bag of heuristics. *CoRR*, abs/2410.21272, 2024. doi: 10.
 723 48550/ARXIV.2410.21272. URL <https://doi.org/10.48550/arXiv.2410.21272>.

724

725 nostalgebraist. interpreting gpt: the logit lens. lesswrong, 2020. URL <https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens>.

726

727 Chris Olah and Adam Jermyn. Circuits updates - july 2024. *Transformer Circuits Thread*,
 728 2024. URL <https://transformer-circuits.pub/2024/july-update/index.html#hurdles>.

729

730 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
 731 Zoom in: An introduction to circuits. *Distill*, 2020. doi: 10.23915/distill.00024.001.
 732 <https://distill.pub/2020/circuits/zoom-in>.

733

734 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 735 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep
 736 Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson
 737 Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Ka-
 738 plan, Sam McCandlish, and Chris Olah. In-context learning and induction heads. *Trans-
 739 former Circuits Thread*, 2022. URL <https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html>.

740

741 Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
 742 Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse au-
 743 toencoders. *CoRR*, abs/2404.16014, 2024. doi: 10.48550/ARXIV.2404.16014. URL <https://doi.org/10.48550/arXiv.2404.16014>.

744

745 Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel
 746 Hestness, and Nolan Dey. SlimPajama: A 627B token cleaned and
 747 deduplicated version of RedPajama. <https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama>,
 748 2023. URL <https://huggingface.co/datasets/cerebras/SlimPajama-627B>.

756 Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with
 757 rotary position embedding. *CoRR*, abs/2104.09864, 2021. URL <https://arxiv.org/abs/2104.09864>.

759

760 Adly Templeton, Joshua Batson, Adam Jermyn, and Chris Olah. Circuits updates - january
 761 2024. *Transformer Circuits Thread*, 2024a. URL <https://transformer-circuits.pub/2024/jan-update/index.html#predict-future>.

762

763 Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
 764 Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
 765 Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
 766 Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
 767 Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. *Trans-
 768 former Circuits Thread*, 2024b. URL <https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html>.

769

770 Junxuan Wang, Xuyang Ge, Wentao Shu, Qiong Tang, Yunhua Zhou, Zhengfu He, and Xipeng
 771 Qiu. Towards universality: Studying mechanistic similarity across language model architectures.
 772 *CoRR*, abs/2410.06672, 2024. doi: 10.48550/ARXIV.2410.06672. URL <https://doi.org/10.48550/arXiv.2410.06672>.

773

774 Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
 775 pretability in the wild: a circuit for indirect object identification in gpt-2 small. *arXiv preprint
 776 arXiv:2211.00593*, 2022.

777

778 Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
 779 Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In *The
 780 Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
 781 May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/forum?id=NpsVSN6o4ul>.

782

783 Benjamin Wright and Lee Sharkey. Addressing feature suppression in saes. *Less-
 784 Wrong*, 2024. URL <https://www.lesswrong.com/posts/3JuSjTZYMzaSeTxKk/addressing-feature-suppression-in-saes>.

785

786 Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanistically
 787 explains long-context factuality. *CoRR*, abs/2404.15574, 2024. doi: 10.48550/ARXIV.2404.15574.
 788 URL <https://doi.org/10.48550/arXiv.2404.15574>.

789

790 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 791 language models with attention sinks. In *The Twelfth International Conference on Learning
 792 Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL
 793 <https://openreview.net/forum?id=NG7sS51zVF>.

794

795 Fred Zhang and Neel Nanda. Towards best practices of activation patching in language models:
 796 Metrics and methods. In *The Twelfth International Conference on Learning Representations, ICLR
 797 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=Hf17y6u9BC>.

798

799

800

801

802

803

804

805

806

807

808

809

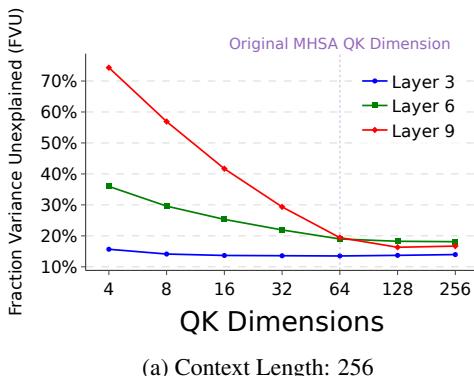
810 A APPLYING LORSA TO MHSA VARIANTS
811

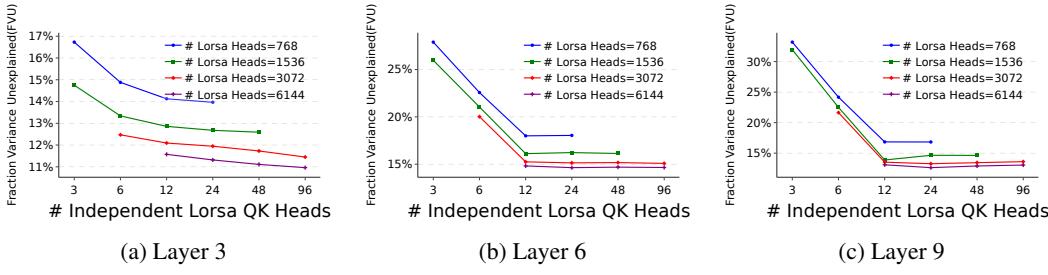
812 Modern transformer-based models commonly employ variants of multi-head self-attention (MHSA),
813 such as those incorporating rotary position embeddings (RoPE) (Su et al., 2021) and grouped-query
814 attention (GQA) (Ainslie et al., 2023). Lorsa demonstrates compatibility with these MHSA variants
815 through straightforward adaptations.

816

- 817 • For RoPE-based MHSA layers, we apply the same rotary transformations to Lorsa’s computed
818 queries and keys before computing attention scores, maintaining the positional information encod-
819 ing.
- 820 • In GQA implementations, Lorsa operates without modification—specifically, we intentionally
821 avoid introducing grouped queries within the Lorsa framework.

822 Empirical results on both Pythia-160M and Llama-3.1-8B demonstrate that this design choice does
823 not adversely affect performance. We apply these architectural variants based on the TransformerLens
824 library (Nanda & Bloom, 2022).


825 B ABLATION STUDY ON CRUCIAL ARCHITECTURAL DESIGNS
826


827 We conduct ablation studies on two crucial architectural designs: (1) the query and key dimension
828 and (2) the binding ratio. Our experiments validate the necessity of maintaining both the QK
829 dimension and the binding mechanism in our proposed architecture. Additional ablation tests on
830 other implementation details further validate our decisions.

831 Furthermore, we derive two **hard constraints** for parameter selection (violating these constraints
832 leads to significant performance degradation):

833

- 834 • The QK dimension must not be smaller than the head dimension in MHSA
- 835 • The number of QK pairs must not be fewer than the number of attention heads in MHSA

836 B.1 ABLATION STUDY ON QK DIMENSION
837

864 B.2 ABLATION STUDY ON BINDING RATIO
865
866
867

868 Figure 9: Ablation study on the binding ratio. We vary the number of independent Lorsa QK heads
869 and evaluate model performance under different settings. Appropriate binding maintains performance
870 while reducing QK circuit cost, whereas overly aggressive binding (below the number of original
871 MHSA heads) leads to substantial degradation.

880 We conduct a systematic study on the impact of the number of independent Lorsa QK heads (i.e., the
881 number of Lorsa heads divided by the binding ratio) across a range of configurations, as illustrated in
882 Figure 9. Our experimental results highlight two key observations:

- 883 • Appropriate binding effectively preserves model performance while substantially reducing both
884 the parameter count and the computational cost of the QK circuit (scaling proportionally with the
885 binding ratio).
- 886 • Model performance deteriorates significantly when the number of independent QK heads falls
887 below the original MHSA head count, establishing this threshold as a critical lower bound for
888 binding ratio selection.

892 B.3 ABLATION STUDY ON QK INITIALIZATION
893

894 Given that our QK matrices maintain high dimensionality and adopt a binding strategy, a natural
895 question arises: can we directly reuse the original MHSA QK parameters in Lorsa? To investigate
896 this, we evaluate three settings: (1) randomly initializing the QK parameters of Lorsa, (2) initializing
897 the QK parameters of Lorsa with the original MHSA QK parameters and allowing them to be updated
898 during training, and (3) fixing the QK parameters to the original MHSA QK parameters throughout
899 training. The results, summarized in Table 3, show that directly fixing the QK parameters to those
900 of MHSA leads to worse performance compared to the other two setups. This suggests that during
901 optimization, Lorsa learns QK parameters that capture information not present in the original MHSA
902 parameters.

Initialization Strategy	Fraction Variance Unexplained (FVU)
Random Initialization	11.3%
Initialization with Original QK (Trainable)	11.2%
Initialization with Original QK (Fixed)	12.4%

909 Table 3: Comparison of different QK initialization strategies for Lorsa.

912 B.4 DOES (TOP-K) LORSA NEED RELU NON-LINEARITY TO GUARANTEE NON-NEGATIVE
913 OUTPUTS?

915 To align with the superposition hypothesis and the architectural design of the SAE, we apply a
916 ReLU to ensure that the activations z are non-negative. However, we observe that this modification
917 has negligible impact on training dynamics, as the top- k activations are almost always positive for
918 reasonable choices of k . This is consistent with findings reported in Gao et al. (2024).

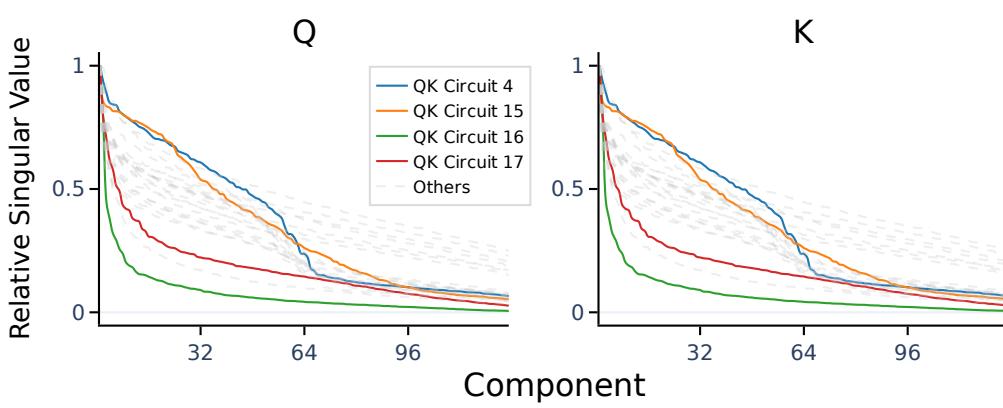


Figure 10: Sorted relative singular values of W_Q and W_K for each QK circuit at pythia-160m layer 5. Each circuit shows strong alignment between the spectra of W_Q and W_K , suggesting similar structural properties. Circuits 4 and 15 have relatively high effective rank, while Circuits 16 and 17 exhibit significantly lower rank.

C DOES QK RANK VARY ACROSS ATTENTION UNITS?

We analyze the structure of 24 independent QK projections trained at layer 5 of Pythia-160M. Specifically, we estimate the effective rank of each pair of W_Q and W_K by sorting their relative singular values in descending order, as shown in Figure 10. Among these QK circuits, Circuit 4 exhibits subtoken induction, previous-token, and successor attention patterns; Circuit 15 also shows clear induction behavior. These circuits tend to have relatively high ranks. In contrast, Circuit 16 attends to itself on certain special tokens, and Circuit 17 functions as an attention sink while also attending to itself on specific inputs. Both of these circuits exhibit lower effective ranks.

D ADDITIONAL CASE STUDIES

D.1 ATTRIBUTION ALGORITHM FOR IDENTIFYING LORSA HEADS WITH SPECIFIC FUNCTIONALITIES

In addition to the path patching method discussed in Section 6.1, we employ an attribution algorithm, inspired by the approach for detecting important features with attribution in Batson et al. (2024), to identify Lorsa heads associated with specific functionalities.

The attribution score for a given Lorsa head h , is defined as:

$$attr_h := O_h \cdot \nabla_x \mathcal{L}$$

Here, $\nabla_x \mathcal{L}$ is the gradient of the logit on the prediction of the target token with respect to the attention output O_h of the Lorsa head. For different prompt, we also try logit difference or probability difference to calculate $\nabla_x \mathcal{L}$.

quantifies the contribution of Lorsa head h to the prediction of the correct token.

D.2 EXAMPLES OF LORSA’S REDISCOVERY OF REPORTED FUNCTIONAL HEADS

The detailed information on the Lorsa heads discussed in Section 6.1 is provided in Figure 11, where we visually demonstrate the logit differences induced by the Lorsa head ,along with the most strongly correlated MSHA heads and SAE features.

972	Lorsa.5.3378	Correlated Features (Q)	Correlated Features (K)	Lorsa.6.2814	Correlated Features (Q)	Correlated Features (K)
973	Autointerp (Modified) (Focuses on identifying the next number in a sequence)	" \oplus "; "what"; "from"; " \sqcup ";	constant bias; " \oplus "; " \sqcup "; Previous token is "(";	Autointerp (Modified) (Focuses on identifying the next number in a sequence)	Previous token is " \sqcup "; constant bias; "km"/"years"/"%"; "million"/"billion";	Previous token is " \sqcup "; constant bias; "km"/"years"/"%"; "million"/"billion";
974	Acronym Head			Succesor Head		
975				(Focuses on identifying the next number in a sequence)		
976	Activation Frequency	"(" & abbreviations 0.320 abbreviations 0.201 "(" & abbreviations 0.183 abbreviations & ")" 0.182	0.275 0.157	Activation Frequency	0.749 0.526 0.308	0.586 0.220
977	Correlated MHSA Heads	5.1 1.052 5.5 0.328 5.3 0.164		Correlated MHSA Heads	6.6 1.212 6.8 0.095 6.3 0.060	0.217
978	Z Pattern (Each row corresponds to a Query token)	-	Logit Diff	Correlated MHSA Heads	6.6 1.212 6.8 0.095 6.3 0.060	0.217
979			◆ +0.128 url ◆ +0.117 confirmed ◆ +0.028 atured ◆ -0.008 strong ◆ -0.023 _ret	Z Pattern (Each row corresponds to a Query token)	6.6 1.212 6.8 0.095 6.3 0.060	0.217
980			-3.526 -3.524 -3.516 -3.488 -3.454			
981	Information Center			Logit Diff		
982	and Information Center			Correlated MHSA Heads		
983	MA VER			Z Pattern (Each row corresponds to a Query token)		
984	and Information Center					
985	MA VER					
986	and Information Center					
987	MA VER					
988	and Information Center					
989						
990	Lorsa.8.5963	Correlated Features (Q)	Correlated Features (K)	Lorsa.10.4066	Correlated Features (Q)	Correlated Features (K)
991	Autointerp (Modified) (Focuses on identifying previously mentioned nouns and suppressing redundant copying of them)	" \sqcup "; first token after " \sqcup "; constant bias; first token after "before";	" \sqcup "; first token after " \sqcup "; "%" after " \sqcup "; "the";	Autointerp (Modified)	Previous token is "s"; Previous token is "ve"; Previous token is "s"; Previous token is "so";	Previous token is "s"; Previous token is "sqcup"; Previous token is "s"; Previous token is "s";
992	Copy Suppressor Head			Attention Sink Head (Mainly attens to ' \sqcup beginnextxt>')		
993			Correlated Features (V)	Correlated Features (V)		
994	Activation Frequency	1.26%	Previous token is "Rel" "of" "Previous token is "21"	Activation Frequency	31.52%	Correlated Features (V)
995	Correlated MHSA Heads	8.9 0.987 8.7 0.070 8.8 0.021	0.190 0.189 0.185	Correlated MHSA Heads	10.12 0.679 10.4 0.557 10.9 0.099	Correlated Features (V)
996	Z Pattern (Each row corresponds to a Query token)	-	Logit Diff	Z Pattern (Each row corresponds to a Query token)	-	Correlated Features (V)
997			cells +2.057 inde +2.041 _Daniels +1.948 _Bert +1.933 _breasts +1.918			
998			◆ +0.057 ◆ +0.290 ◆ -0.282 ◆ -0.264 ◆ -0.208			
999	<beginnextxt>			Logit Diff		
1000	exploring		<beginnextxt>	Correlated MHSA Heads		
1001	poly		our	Z Pattern (Each row corresponds to a Query token)		
1002	or		wedding			
1003	might		planning			
1004	be		design			
1005			experts			
1006			—			
1007			<beginnextxt>			
1008			a			
1009			mix			
1010			and			
1011			match			
1012			package			
1013			—			
1014						
1015						
1016						
1017						
1018						
1019						
1020						
1021						
1022						
1023						
1024						
1025						
1026						
1027						
1028						
1029						
1030						
1031						
1032						
1033						
1034						
1035						
1036						
1037						
1038						
1039						
1040						
1041						
1042						
1043						
1044						
1045						
1046						
1047						
1048						
1049						
1050						
1051						
1052						
1053						
1054						
1055						
1056						
1057						
1058						
1059						
1060						
1061						
1062						
1063						
1064						
1065						
1066						
1067						
1068						
1069						
1070						
1071						
1072						
1073						
1074						
1075						
1076						
1077						
1078						
1079						
1080						
1081						
1082						
1083						
1084						
1085						
1086						
1087						
1088						
1089						
1090						
1091						
1092						
1093						
1094						
1095						
1096						
1097						
1098						
1099						
1100						
1101						
1102						
1103						
1104						
1105						
1106						
1107						
1108						
1109						
1110						
1111						
1112						
1113						
1114						
1115						
1116						
1117						
1118						
1119						
1120						
1121						
1122						
1123						
1124						
1125						
1126						
1127						
1128						
1129						
1130						
1131						
1132						
1133						
1134						
1135						
1136						
1137						
1138						
1139						
1140						
1141						
1142						
1143						
1144						
1145						
1146						
1147						
1148						
1149						
1150						
1151						
1152						
1153						
1154						
1155						
1156						
1157						
1158						
1159						
1160						
1161						
1162						
1163						
1164						
1165						
1166						
1167						
1168						
1169						
1170						
1171						
1172						
1173						
1174						
1175						
1176						
1177						
1178						
1179						
1180						
1181						
1182						
1183						
1184						
1185						
1186						
1187						
1188						
1189						
1190						
1191						
1192						
1193						
1194						
1195						
1196						
1197						
1198						
1199						
1200						
1201						
1202						
1203						
1204						
1205						
1206						
1207						
1208						
1209						
1210						
1211						
1212						
1213						
1214						
1215						
1216						
1217						
1218						
1219						
1220						
1221						
1222						
1223						
1224						
1225						
1226						
1227						
1228						
1229						
1230						
1231						
1232						
1233						
1234						
1235						
1236						
1237						
1238						
1239						
1240						
1241						
1242						
1243						
1244						
1245						
1246						
1247						
1248						
1249						
1250						
1251						
1252						
1253						
1254						
1255						
1256						
1257						
1258						
1259						
1260						
1261						
1262						
1263						
126						

Figure 11: Detailed information on Lorsa's rediscovery of reported functional heads.

D.3 ARITHMETIC LORSA HEADS

We present the SAE features related to the reported arithmetic Lorsa heads in Table 4, which shows consistent interpretation in terms of operand plot and z pattern. Additionally, Table 5 provides a broader set of examples for these arithmetic Lorsa heads, including functional descriptions and the z -patterns of their top activations.

D.4 PRELIMINARY PERTUBATION RESULTS

We feed Llama-3.1-8B “ $75 \div 3 =$ ” as the clean prompt and it succeeds to predict the answer 25 ($p = 0.73$). With attribution from the correct answer logit we identify an “ $op2 = 3$ ” Lorsa head in layer 15 (Lorsa.15.2668) with notable contribution. We then set the activation strength z of this head to 0 at the last token position (“ $=$ ”) and copy its original value to a “ $op2 = 5$ ” head (Lorsa.15.3099) and rerun the forward pass from layer 15 attention. This gives an answer of 15 ($p = 0.66$).

Since z of a Lorsa head indicates its output norm along the w_o direction, this perturbation experiment greatly resembles steering SAE vectors (Templeton et al., 2024b). There is also an alternative

1026	1027	Lorsa head ID	Manual Interpretation with Operand Plot	Manual Interpretation with z Pattern
1028		Lorsa.16.20791	$op1 \in 27 - 43$	near 30
1029		Lorsa.16.20931	$op1 \% 10 \in [4, 5, 6]$	ending with 4 or 6
1030		Lorsa.16.20947	$op1 \% 10 \in [6, 7, 8]$	ending with 7, sometimes 6
1031		Lorsa.15.3646	$op2 \% 10 = 2$	ending with 2
1032		Lorsa.15.3813	$op2 \in 55 - 99$	from 50 - 99
1033		Lorsa.15.4001	$op2 \in 38 - 63$	near 50

1034
1035
1036 Table 4: Supplementary information of Lorsa Head in Figure 7. We observe alignment between
interpretations obtained from operand plots and top activating z patterns sampled from natural
language text corpus.

1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054	1055	1056	1057	ID	Operator	Operand	Top Activation Z Pattern
Lorsa.15.3646	Addition	op2 ends with 2																					
Subtraction	min(op1, op2) ends with 2																						
Multiplication	op2 = 2 or 12																						
Division	op2 = 2																						
Lorsa.15.3648	Addition	op2 ends with 4																					
Subtraction	min(op1, op2) ends with 4																						
Multiplication	op2 = 4, 24, or 40																						
Division	op2 = 4																						
Lorsa.15.2668	Addition	Inactive																					
Subtraction	Inactive																						
Multiplication	op2 = 3, 6, 30, or 60																						
Division	op2 around 3 or 30																						
Lorsa.15.2770	Addition	Inactive																					
Subtraction	Inactive																						
Multiplication	op2 around 62 and its multiples																						
Division	op2 around 62 and its multiples																						
Lorsa.15.2945	Addition	Inactive																					
Subtraction	Inactive																						
Multiplication	op2 = 7, 11 and their multiples																						
Division	op2 = 7, 11 and their multiples																						

1058
1059
1060
1061 Table 5: Additional cases of arithmetic heads

1061 interpretation that we are intervening attention computation in OV circuits - this result can be
1062 precisely achieved by swapping the w_o 's of these two Lorsa heads. In consequence, the perturbed
1063 Lorsa head *receives* “ $op2 = 3$ ” but *tell* subsequent computation that “ $op2 = 5$ ”. Such perturbation
1064 is independent from QK circuits as both Lorsa heads share the same QK weights. This serves as
1065 evidence in the wild that Lorsa heads with shared QK circuits often show similar functionalities.

1066
1067 D.5 THEME ANCHOR HEADS1068
1069 E ASSESSING CORRELATION WITH MHSA

1071 How to understand the correlation between Lorsa heads and original MHSA heads? We try to
1072 answer this by computing the attribution of each Lorsa head to the original attention heads using
1073 an oblique projection method (Appendix E.1). Analyzing all Lorsa heads trained on Pythia-160M
1074 (Appendix E.2), we find that roughly half of the Lorsa heads originate from a single original head,
1075 while the other half are superpositions across multiple original heads.

1076
1077 E.1 OBLIQUE PROJECTION METHOD FOR ATTRIBUTION

1078 Given the output of an original attention head, we project it obliquely onto the (generally non-
1079 orthogonal) basis formed by the outputs of all Lorsa heads at the same layer. The resulting coefficients

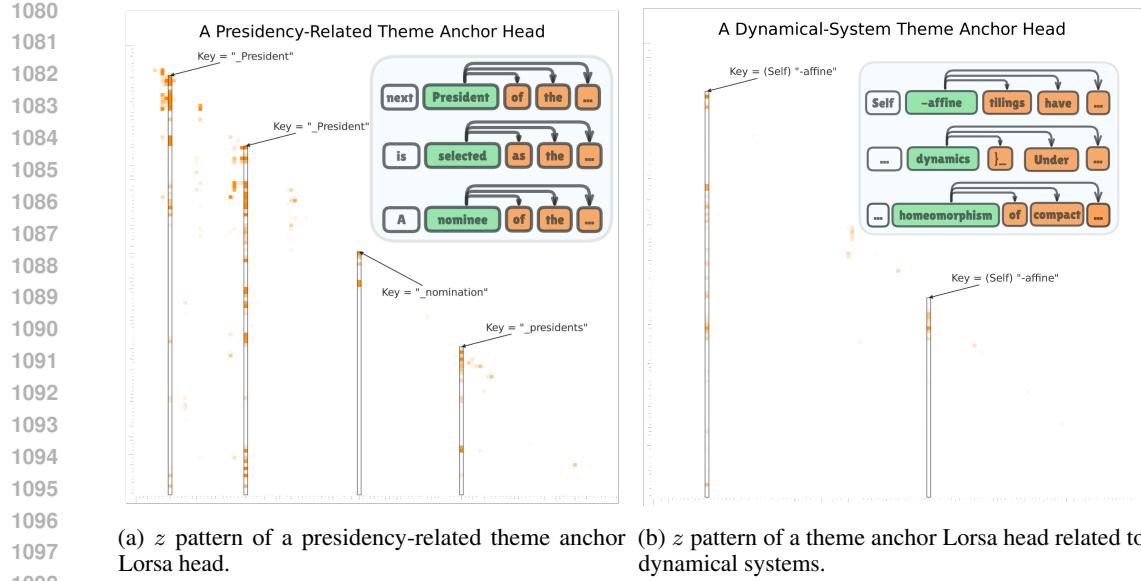


Figure 12: Two examples of theme anchor Lorsa heads.

represent the contribution of the original head to each Lorsa head. Since the summed outputs of original heads and Lorsa heads closely match, the contribution coefficients for a given Lorsa head approximately sum to one. Conversely, we similarly compute the fraction of each Lorsa head’s output that can be attributed to each original attention head by projecting the Lorsa head’s output onto the basis formed by the original heads’ outputs. All reported results are averaged over more than 1M tokens.

E.2 HOW MANY ATTENTION UNITS ARE DISTRIBUTED ACROSS MHSA HEADS?

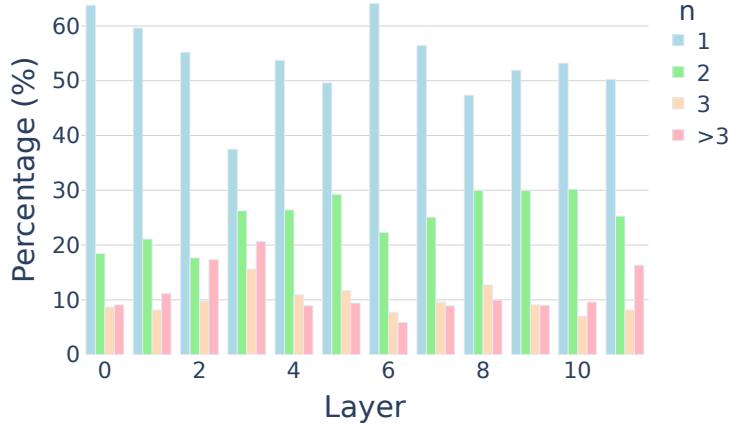


Figure 13: Distribution of Lorsa heads based on the number of original attention heads they are superposed over. No clear trend is observed across different layers. Approximately 50% Lorsa heads are primarily associated with a single original head, about 25% are superposed over two different original heads, around 10% are superposed over three different original heads, and others superposed over more than three original heads.

We compute the attribution statistics for all Lorsa heads trained on Pythia-160M. For a given Lorsa head, we define n as the minimum number of original heads whose cumulative contributions exceed 90%. We interpret n as the effective number of original heads a Lorsa head superposes over. As

1134 shown in Figure 13, approximately half of the Lorsa heads are primarily derived from a single original
 1135 head, about a quarter involve two original heads, and the remaining quarter involve three or more
 1136 original heads.
 1137

1138 E.3 INDUCTION MHSA HEADS IN PYTHIA-160M

1140 Table 6: Contribution of each MHSA head to induction behavior in Pythia-160M, measured via path
 1141 patching. Notable induction heads ($L5.0, L4.6, L5.7, L9.0, L5.6$) are bold.
 1142

1143 Layer\Head	0	1	2	3	4	5	6	7	8	9	10	11
1144 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1145 1	0.07	-0.15	-0.10	0.03	0.09	-0.08	-0.07	0.06	-0.01	0.11	0.34	-0.05
1146 2	-0.14	0.07	0.10	0.14	0.14	-0.13	0.60	-0.03	-0.14	0.10	0.04	0.03
1147 3	-0.24	-0.14	-0.96	-1.20	-0.49	-0.14	0.20	-0.38	-0.10	0.06	-0.11	-0.07
1148 4	0.13	-0.26	0.09	-0.16	-0.10	-0.02	0.89	0.13	0.09	-0.28	-0.14	0.30
1149 5	4.00	-0.20	0.05	0.06	-0.53	-0.04	0.48	0.62	0.06	0.08	0.05	-0.23
1150 6	-0.04	-0.23	-0.04	-0.22	0.02	0.09	0.04	-0.33	0.02	-0.04	-0.38	0.04
1151 7	-0.28	0.17	0.03	0.06	-0.28	-0.07	0.01	-0.18	-0.23	-0.03	-0.02	0.18
1152 8	-0.07	0.03	0.50	0.00	0.15	-0.02	0.01	-0.22	0.02	-0.02	-0.08	0.38
1153 9	0.54	-0.03	0.07	-0.09	-1.10	-0.04	0.04	0.00	0.04	0.10	-0.01	0.02
1154 10	-0.01	0.03	0.00	0.00	-0.03	-0.10	0.01	-0.01	0.00	-0.04	0.03	0.01
1155 11	-0.14	-0.13	-0.05	-0.04	0.00	-0.02	-0.11	-0.02	0.01	-0.07	-0.02	0.06

1155 We use path patching to measure the contribution of each MHSA head in Pythia-160M to induction
 1156 behavior. The results are shown in Table 6. We find that heads $L5.0, L4.6, L5.7, L9.0, L5.6$
 1157 exhibit the most prominent induction signals.
 1158

1159 F INTERACTION BETWEEN LORSA HEADS AND SAE FEATURES

1160 We trained Sparse Autoencoders (SAE) on both the inputs and outputs of Lorsa to facilitate the
 1161 understanding of its functionality. Since Lorsa’s Q , K , and V are computed from the input, with the
 1162 output derived from O contributing to the final result, interactions between SAE features and these
 1163 components exist across all four aspects: Q , K , O , and V . To evaluate the influence of SAE features
 1164 on Q and K , we employ an ablation method (Appendix F.1). The correlation between the OV and
 1165 SAE features is assessed using cosine similarity (Appendix F.2). For each Lorsa head, we identify
 1166 the SAE features most strongly correlated with different aspects. The results are visualized in the
 1167 Lorsa head dashboard.
 1168

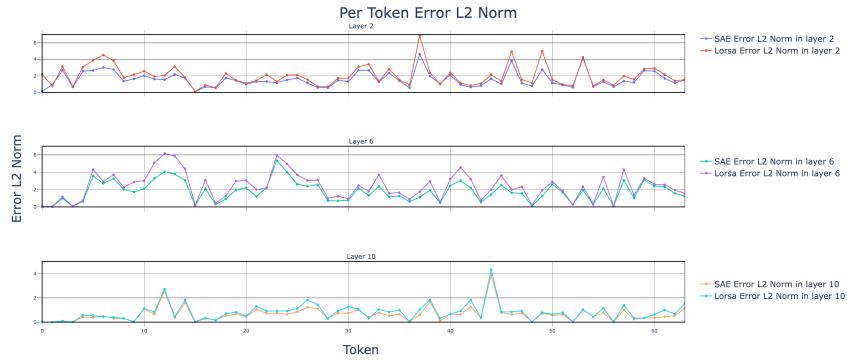
1169 F.1 QUANTIFYING FEATURE IMPACTS ON Q AND K

1170 For a given Lorsa head, the impact of a specific feature on Q is calculated as follows: First, we
 1171 compute the attention pattern at the activation locations of the Lorsa head. Then, the feature is ablated
 1172 from the input, and Q' and the new attention pattern are computed (with K remaining unaffected).
 1173 The Kullback-Leibler (KL) divergence between the original and modified attention patterns is used
 1174 to quantify the effect of the feature on Q . After iterating over 1 million tokens, the maximum KL
 1175 divergence observed across all activations of the Lorsa head is taken as the measure of the feature’s
 1176 influence on Q for this head. A similar approach is used to calculate the impact of a feature on K , with
 1177 the difference being that when recalculating the attention pattern, all instances of K are recomputed
 1178 using the modified input, while Q remains unchanged.
 1179

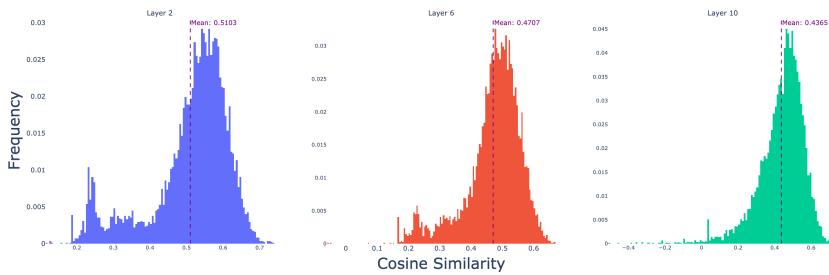
1180 F.2 QUANTIFYING DIRECT FEATURE ATTRIBUTION VIA O AND V

1181 For a given Lorsa head, both the weight vectors W_O and W_V are one-dimensional vectors of size
 1182 D_{model} . Therefore, for each SAE feature trained on the Lorsa input, the contribution to V is linear,
 1183 meaning that the contribution of each feature to V scales proportionally with the feature’s activation
 1184 value. Similarly, for each activation z of the head, the contribution of SAE features trained on the
 1185 Lorsa output to the activation value is also linear. We compute the cosine similarity between the
 1186 decoder of each SAE feature trained on the Lorsa input and W_V , which quantifies its correlation
 1187

1188 with V for the given Lorsa head. Similarly, the cosine similarity between the encoder of each SAE
 1189 feature trained on the Lorsa output and W_O is computed to measure its correlation with O for the
 1190 given Lorsa head.
 1191


1192 G LORS A DARK MATTER

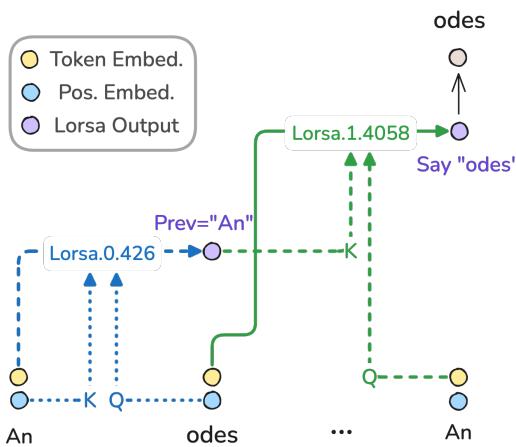
1194 Figure 14 illustrates the per-token error norms of Lorsa and SAE across layers 2, 6, and 10 of
 1195 Pythia-160M on a set of 64 tokens. Figure 15 quantifies the distribution of cosine similarity between
 1196 Lorsa and SAE’s per-token error norms on the same layers, measured on approximately 10,000
 1197 tokens. These results indicate that the loss pattern between pre token between Lorsa and SAE has a
 1198 nontrivial correlation.
 1199


1200 It is interesting that both Lorsa and SAE exhibit a positive correlation in their magnitudes and trends
 1201 for FVU and per-token error norms.
 1202

We propose that this is not a coincidence, and hypothesize that it stems from a shared gap between
 1203 sparse dictionary learning and the representation structure of data within the model. Alternatively, this
 1204 correlation may arise from the challenge that sparse dictionary learning faces in capturing super-rare
 1205 data features or certain nonlinear or dense components within the features.
 1206

This supports the hypothesis of *universal dark matters* (Olah et al., 2020; Engels et al., 2024) that
 1207 a certain fraction of error results from the superposition hypothesis itself that cannot be addressed
 1208 simply with larger Lorsas (SAEs).
 1209

1222 Figure 14: Per-token error norms of Lorsa and SAE on layer 2, 6, and 10 of Pythia-160M for a
 1223 randomly sampled sequence with 64 tokens.
 1224



1234 Figure 15: Cosine similarity distribution of per-token error between Lorsa and SAE on layer 2, 6, and
 1235 10 in Pythia-160M, measured with approximately 10,000 tokens.
 1236

1237
 1238
 1239
 1240
 1241

1242 H TOWARDS FULL SPARSIFICATION OF A 2-LAYER TRANSFORMER

1244 Since our final goal is to understand Transformers’ inner working by breaking down MHSA and
 1245 MLPs into atomic units (Figure 1), we train Lorsa and Transcoder (Dunefsky et al., 2024) on a 2-layer
 1246 Transfomer (link). We follow the method introduced in Ge et al. (2024) where they multiply features
 1247 via QK circuit to find the most salient feature pairs contributing to QK scores. Alternatively applying
 1248 attribution through Transcoder features / Lorsa heads and QK ablation gives us the clear attribution
 1249 graph for induction behavior (Figure 16). Due to the capability constraint of this model, we failed to
 1250 observe more interesting behaviors or attribution graphs involving Transcoder features. Nonetheless,
 1251 we believe applying Lorsa and Cross-Layer Transcoders (Ameisen et al., 2025) to a larger model may
 1252 reveal a lot of surprising behaviors, following the spirit of Lindsey et al. (2025).

1269 Figure 16: An induction circuit found in our fully sparsified replacement model.

1272 I AUTOMATED INTERPRETABILITY DETAILS

1274 **Evaluation Protocol.** Our automated interpretability assessment employs a two-phase explanation-
 1275 simulation paradigm adapted from Bills et al. (2023):

- 1277 **Explanation Phase:** GPT-4o generates mechanistic explanations using:
 - 1278 For activation patterns: 8 top-activating token contexts
 - 1279 For z -patterns/DFAs: Contribution graphs to max-activating tokens
- 1281 **Simulation Phase:** GPT-4o predicts activations/patterns for:
 - 1282 4 top-activating contexts (testing pattern recognition)
 - 1283 4 randomly sampled contexts (testing generalization)

1285 Top Activation Explanation Phase Prompt.

1288 Prompt

1289 We are analyzing the activation levels of features in a neural network, where each feature
 1290 activates certain tokens in a text. Each token’s activation value indicates its relevance to the
 1291 feature, with higher values showing stronger association. Your task is to infer the common
 1292 characteristic that these tokens collectively suggest based on their activation values.

1293 Consider the following activations for a feature in the neural network. Activation values are
 1294 non-negative, with higher values indicating a stronger connection between the token and the
 1295 feature. Summarize in a single sentence what characteristic the feature is identifying in the text.

1296
 1297 Don't list examples of words. Do not start with "This feature is identifying...". Go straight to
 1298 the explanation.
 1299 Sentence 1:
 1300 <START>
 1301 <lendoftextl><tab>-0.0
 1302 /<tab>-0.0
 1303 */<tab>0.2
 1303 ... (omitted)
 1304 <END>
 1305 Sentence 2:
 1306 ... (omitted)
 1307

1308 Top Activation Simulation Phase Prompt.

1311 Prompt

1312
 1313 We're studying neurons in a neural network. Each neuron looks for certain things in a short
 1314 document. Your task is to read the explanation of what the neuron does, and predict the neuron's
 1315 activations for each token in the document.

1316 For each document, you will see the full text of the document, then the tokens in the document
 1317 with the activation left blank. You will print the exact same tokens verbatim, but with the
 1318 activation values filled in according to the explanation. Pay special attention to the explanation's
 1319 description of the context and order of tokens or words.

1320 Fill out the activation values with integer values from 0 to 10. Don't use negative numbers.
 1321 Please think carefully. No need to include rationales. Directly start with the first token and do
 1322 not use code blocks, i.e., ``.

1323 Neuron 1 explanation: This feature is identifying vowels.

1324 Sequence 1: Tokens without Activations:

1325 a<tab>
 1326 b<tab>
 1327 c<tab>
 1328 d<tab>
 1329 e<tab>
 1330 f<tab>

1331 Sequence 1 Tokens with Activations:

1332 a<tab>10
 1333 b<tab>0
 1334 c<tab>0
 1335 d<tab>0
 1336 e<tab>10
 1337 f<tab>0

1338 Neuron 2 explanation: <Autointerp explanations generated in the previous phase>
 1339 <Few shot examples>

1340 z Pattern / DFA Explanation Phase Prompt.

1341 Prompt

1342 We are analyzing the attention map of attention heads in a neural network, where each head
 1343 attends between tokens in a text. Given a head and a query token, we provide each previous
 1344 token's contribution value, with higher values showing stronger association. Your task is to infer
 1345 the common characteristic of this head that these sequences collectively suggest based on their
 1346 attention map.

1347 Consider the following attention maps for an attention head. Each line is in the
 1348 format of <token><tab><value>. Query tokens are additionally highlighted with <to-

1350 ken><tab><value><tab>**Query token**. Note that query tokens also attend to themselves.
 1351 Higher values indicates a stronger contribution from this token to the query token.
 1352 Summarize in a single sentence what characteristic the head is attending from and to in the text.
 1353 It might be helpful to summarize both the commonality of query tokens and source tokens (if
 1354 any). It is also recommended to mention if this head is often attending to itself.
 1355 Don't list examples of words. Do not start with "This head is ...". Directly start with the
 1356 explanation.
 1357 Sentence 1:
 1358 <START>
 1359 <lendoftextl><tab>-0.0
 1360 /<tab>0.0
 1361 ... (omitted)
 1362 */<tab>0.0<tab>**Query token**
 1363
 1364
 1365 **z Pattern / DFA Simulation Phase Prompt.**
 1366
 1367
 1368 **Prompt**
 1369 We're studying attention heads in a neural network. Each head follows a certain attention pattern
 1370 in a short document. Your task is to read the explanation of what the head does, and predict the
 1371 head's attention pattern for each previous token in the document, given a specific query token.
 1372 For each document, you will see the full text of the document, then the tokens in the document
 1373 with the activation left blank. You will print the exact same tokens verbatim, but with the contri-
 1374 bution values filled in according to the explanation. Pay special attention to the explanation's
 1375 description of the context and order of tokens or words.
 1376 Each line is in the format of <token><tab>. Query tokens are additionally highlighted with
 1377 <token><tab>**Query token**<tab>.
 1378 Fill out the contribution values with integer values from 0 to 10. Don't use negative numbers.
 1379 Please think carefully. No need to include rationales. Directly start with the first token and do
 1380 not use code blocks, i.e., ``.
 1381 Head 1 explanation: This head is attending from one vowel to previous vowels and itself.
 1382 Sequence 1 Tokens without Activations:
 1383 a<tab>
 1384 b<tab>
 1385 c<tab>
 1386 d<tab>
 1387 e<tab>**Query token**
 1388 Sequence 1 Tokens with Activations:
 1389 a<tab>10
 1390 b<tab>0
 1391 c<tab>0
 1392 d<tab>0
 1393 e<tab>**Query token**<tab>10
 1394 Head 2 explanation: <Autointerp explanations generated in the previous phase>
 1395 <Few shot examples>
 1396
 1397
 1398 **J THE PATCHING ATTRIBUTION APPROXIMATION BOUND BETWEEN MHSA**
 1399 **AND LORSA**
 1400
 1401 **Definition 1 (MHSA).** For attention module, the calculation by MHSA can be formalized as
 1402
 1403
$$\mathcal{A}_{MHSA}(\mathbf{x}) = h_1(\mathbf{x}) + \dots + h_n(\mathbf{x}), \quad (1)$$

 where n is the number of attention heads, $\mathbf{x} \in \mathbb{R}^d$ is the input, and h_i is the i -th attention head.

1404 **Definition 2** (Lorsa). For attention module, the calculation by Lorsa can be formalized as
 1405

$$\mathcal{A}_{\text{Lorsa}}(\mathbf{x}) = \sum_{j=1}^N \text{TopK}(p_j(\mathbf{x})) \hat{h}_j(\mathbf{x}), \quad (2)$$

1406 where $N >> n$ is the number of Lorsa heads, \hat{h}_j is the j -th Lorsa head defined in previous Section
 1407 ..., $p_j : \mathbf{x} \mapsto \mathbb{R}$ represent the activation of h_j , and TopK is the TopK activation. Specifically, the TopK
 1408 activation function can be expressed by

$$\text{TopK}(p_j(\mathbf{x})) = \begin{cases} p_j(\mathbf{x}), & p_j(\mathbf{x}) \text{ is in the top-}k \text{ activations,} \\ 0, & p_j(\mathbf{x}) \text{ is not in the top-}k \text{ activations,} \end{cases} \quad (3)$$

1409 From the Linear Representation Hypothesis, we assume that the attention head in MHSA can be
 1410 approximated by the the linear combination of Lorsa Heads, and the approximation error is bounded:
 1411

1412 **Assumption 1** (Linear Representation Hypothesis of Attention). For each MHSA attention head h_i ,
 1413 there exists a Lorsa head set \mathbf{S}_i satisfying

$$\mathcal{A}_{\text{MHSA}}(\mathbf{x}) = \sum_{j \in \mathbf{S}_i} p_j(\mathbf{x}) \hat{h}_j(\mathbf{x}) + \epsilon_i(\mathbf{x}), \quad (4)$$

1414 where $\epsilon_i(\mathbf{x}) > 0$ is the approximation error from Lorsa. The approximation between MHSA and
 1415 Lorsa is bounded, i.e., there exists $\epsilon > 0$ satisfying

$$\|\mathcal{A}_{\text{MHSA}}(\mathbf{x}) - \mathcal{A}_{\text{Lorsa}}(\mathbf{x})\| \leq \epsilon, \quad \forall \mathbf{x} \in \mathbf{D}, \quad (5)$$

1416 where \mathbf{D} is the dataset.

1417 Previous studies have also referred to this estimation error as dark matter, which is inevitable.

1418 Moreover, from the superposition hypothesis, the activation of Lorsa heads is sparse for each input.
 1419 And, since we initialize Lorsa's QK module by MHSA, it is natural to assume that the Lorsa head
 1420 will align with the head of a specific MHSA. Therefore, we have the below assumption.

1421 **Assumption 2** (Superposition Hypothesis). For Lorsa, the activation is sparse, i.e., for any Lorsa
 1422 head set \mathbf{S} , we have

$$\sum_{j \in \mathbf{S}} \text{notTopK}(p_j(\mathbf{x})) \hat{h}_j(\mathbf{x}) \approx \mathbf{0}, \quad (6)$$

1423 where notTopK is defined similar to TopK in eq. 3.

1424 For the MHSA attention head, we have the Lorsa heads sets $\{\mathbf{S}_i\}$ in eq. 4 for each MHSA head is a
 1425 partition of the all Lorsa heads, i.e.,

$$\begin{aligned} S_i \cap S_j &= \emptyset, \text{ for } i \neq j, \\ \bigcup S_i &= \{1, 2, \dots, N\}. \end{aligned} \quad (7)$$

1426 Therefore, we can prove that, from the perspective of patching, the behavior of the i -th MHSA
 1427 attention head is approximately equivalent to that of the Lorsa head in \mathbf{S}_i , i.e., this sparsification does
 1428 not alter the model's underlying behavior in feature-level. First, following the direct logit attribution
 1429 (DLA) (Wang et al., 2022), we define the influence of the heads in MHSA and Lorsa.

1430 **Definition 3** (Variation for DLA in MHSA and Lorsa). The variation for DLA (VDLA) of i -th MHSA
 1431 heads for the input pair $(\mathbf{x}_r, \mathbf{x}_c)$ (\mathbf{x}_r is the reference input, and the \mathbf{x}_c is the counterfactual input
 1432 transformed from \mathbf{x}_r) can be defined as

$$\text{VDLA}_{\text{MHSA}}(\mathbf{x}_r, \mathbf{x}_c, i) := f(h_i(\mathbf{x}_r)) - f(h_i(\mathbf{x}_c)), \quad (8)$$

1433 where $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is the composite map for DLA. And we assume that the f is Lipschitz continuous,
 1434 i.e., there exists Lipschitz bound $C > 0$ such that

$$|f(\mathbf{x}) - f(\mathbf{y})| \leq C|\mathbf{x} - \mathbf{y}|. \quad (9)$$

1435 And the VDLA of Lorsa head sets \mathbf{S} for the input pair $(\mathbf{x}_r, \mathbf{x}_c)$ can be defined as

$$\text{VDLA}_{\text{Lorsa}}(\mathbf{x}_r, \mathbf{x}_c, \mathbf{S}) := f \left(\sum_{j \in \mathbf{S}} \text{TopK}(p_j(\mathbf{x}_r)) \hat{h}_j(\mathbf{x}_r) \right) - f \left(\sum_{j \in \mathbf{S}} \text{TopK}(p_j(\mathbf{x}_c)) \hat{h}_j(\mathbf{x}_c) \right). \quad (10)$$

1458 The VDLA metric reflects the strength of influence exerted by certain heads in MHSA and Lorsa
 1459 on model behavior. And we can prove that the influences in MHSA and Lorsa are approximately
 1460 equivalent by the theorem below.

1461 **Theorem 1** (The VDLA Approximation Bound between MHSA and Lorsa). *From the Assumption 1
 1462 and 2, we have*

1463 $|VDLA_{MHSA}(\mathbf{x}_r, \mathbf{x}_c, i) - VDLA_{Lorsa}(\mathbf{x}_r, \mathbf{x}_c, \mathbf{S}_i)| \lesssim 2C\epsilon, \quad (11)$

1464 where ϵ is the error bound defined in Assumption 1, and C is the lipschitz bound of f defined in
 1465 Definition 3.

1466

1467 *Proof.* For the VDLA error, we have

1468
$$\begin{aligned} & |VDLA_{MHSA}(\mathbf{x}_r, \mathbf{x}_c, i) - VDLA_{Lorsa}(\mathbf{x}_r, \mathbf{x}_c, \mathbf{S}_i)| \\ & \leq \left| f(h_i(\mathbf{x}_r)) - f(h_i(\mathbf{x}_c)) - f\left(\sum_{j \in \mathbf{S}} \text{TopK}(p_j(\mathbf{x}_r))\hat{h}_j(\mathbf{x}_r)\right) + f\left(\sum_{j \in \mathbf{S}} \text{TopK}(p_j(\mathbf{x}_c))\hat{h}_j(\mathbf{x}_c)\right) \right| \\ & \leq \left| f(h_i(\mathbf{x}_r)) - f\left(\sum_{j \in \mathbf{S}} \text{TopK}(p_j(\mathbf{x}_r))\hat{h}_j(\mathbf{x}_r)\right) \right| + \left| f(h_i(\mathbf{x}_c)) - f\left(\sum_{j \in \mathbf{S}} \text{TopK}(p_j(\mathbf{x}_c))\hat{h}_j(\mathbf{x}_c)\right) \right| \\ & \leq C \left| h_i(\mathbf{x}_r) - \sum_{j \in \mathbf{S}} \text{TopK}(p_j(\mathbf{x}_r))\hat{h}_j(\mathbf{x}_r) \right| + C \left| h_i(\mathbf{x}_c) - \sum_{j \in \mathbf{S}} \text{TopK}(p_j(\mathbf{x}_c))\hat{h}_j(\mathbf{x}_c) \right| \end{aligned} \quad (12)$$

1481 From the Assumption 1, for the first term, we have

1482
$$\begin{aligned} & \left| h_i(\mathbf{x}_r) - \sum_{j \in \mathbf{S}} \text{TopK}(p_j(\mathbf{x}_r))\hat{h}_j(\mathbf{x}_r) \right| \\ & = \left| \epsilon_i(\mathbf{x}_r) + \sum_{j \in \mathbf{S}} \text{notTopK}(p_j(\mathbf{x}_r))\hat{h}_j(\mathbf{x}_r) \right| \\ & \leq |\epsilon_i(\mathbf{x}_r)| + \left| \sum_{j \in \mathbf{S}} \text{notTopK}(p_j(\mathbf{x}_r))\hat{h}_j(\mathbf{x}_r) \right|. \end{aligned} \quad (13)$$

1493 From the Assumption 2, for all $\mathbf{x} \in \mathbf{D}$, we have

1494
$$\|\mathcal{A}_{MHSA}(\mathbf{x}) - \mathcal{A}_{Lorsa}(\mathbf{x})\| = \left\| \sum_{j=1}^n \epsilon_j(\mathbf{x}) \right\| = \sum_{j=1}^n \epsilon_j(\mathbf{x}) \leq \epsilon, \quad (14)$$

1497 where the second equality is from $\epsilon_i(\mathbf{x}) > 0$. Therefore, we have

1498
$$\epsilon_j(\mathbf{x}) \leq \epsilon. \quad (15)$$

1500 From the eq. 13 and eq. 15, we have

1501
$$\begin{aligned} & \left| h_i(\mathbf{x}_r) - \sum_{j \in \mathbf{S}} \text{TopK}(p_j(\mathbf{x}_r))\hat{h}_j(\mathbf{x}_r) \right| \\ & \leq \epsilon + \left| \sum_{j \in \mathbf{S}} \text{notTopK}(p_j(\mathbf{x}_r))\hat{h}_j(\mathbf{x}_r) \right|. \end{aligned} \quad (16)$$

1508 Then, from the Assumption 2, we have

1509
$$\left| h_i(\mathbf{x}_r) - \sum_{j \in \mathbf{S}} \text{TopK}(p_j(\mathbf{x}_r))\hat{h}_j(\mathbf{x}_r) \right| \lesssim \epsilon. \quad (17)$$

1512 Similarly, for the second term in eq. 12, we have
 1513

$$1514 \quad 1515 \quad 1516 \quad \left| h_i(\mathbf{x}_c) - \sum_{j \in \mathbf{S}} \text{TopK}(p_j(\mathbf{x}_r)) \hat{h}_j(\mathbf{x}_c) \right| \lesssim \epsilon. \quad (18)$$

1517 Substituting eq. 17 and eq. 18 into eq. 12, we have
 1518

$$1519 \quad |VDLA_{MHSA}(\mathbf{x}_r, \mathbf{x}_c, i) - VDLA_{Lorsa}(\mathbf{x}_r, \mathbf{x}_c, \mathbf{S}_i)| \lesssim 2C\epsilon. \quad (19)$$

1520 The proof is completed. \square
 1521

1522 From the Theorem 1, we obtain the following corollary.
 1523

1524 **Corollary 1.** *For the dataset \mathbf{D}_r , where $(\mathbf{x}_r, \mathbf{x}_c) \sim \mathbf{D}_r$, $\mathbf{x}_r \sim \mathbf{D}$ is the reference input, and \mathbf{x}_c is
 1525 counterfactual input transformed from \mathbf{x}_r , \mathbf{D} is the original input dataset, we have*

$$1526 \quad 1527 \quad \mathbb{E}_{(\mathbf{x}_r, \mathbf{x}_c) \sim \mathbf{D}_r} |VDLA_{MHSA}(\mathbf{x}_r, \mathbf{x}_c, i) - VDLA_{Lorsa}(\mathbf{x}_r, \mathbf{x}_c, \mathbf{S}_i)| \lesssim 2C\epsilon \quad (20)$$

1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565