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Abstract

Premise selection is a key bottleneck for scaling theorem proving in large for-
mal libraries. Yet existing language-based methods often treat premises in isola-
tion, ignoring the web of dependencies that connects them. We present a graph-
augmented approach that combines dense text embeddings of Lean formalizations
with graph neural networks over a heterogeneous dependency graph capturing both
state–premise and premise–premise relations. On the LeanDojo Benchmark, our
method outperforms the ReProver language-based baseline by over 25% across
standard retrieval metrics. These results suggest that relational information is
beneficial for premise selection.

1 Introduction and related work

Recent advances in artificial intelligence, particularly large language models (LLMs), have demon-
strated increasing efficacy in formal mathematics and interactive theorem proving [Polu and Sutskever,
2020, Jiang et al., 2021, Xin et al., 2024]. A central task in this domain is premise selection: retrieving
relevant theorems and definitions from extensive libraries to guide the proofs of new theorems. Effec-
tive premise selection underpins many automated reasoning tools, such as Sledgehammer [Böhme
and Nipkow, 2010] and modern AI-driven provers for Lean [Song et al., 2023].

LLM-based approaches such as ReProver [Yang et al., 2023] use dual-encoder models to map
proof states and premises into a shared vector space, retrieving relevant premises via dense ByT5
embeddings. However, they ignore the structural relationships in formal libraries: the references and
dependencies among axioms, theorems, lemmas, and definitions (entries), which offer strong prior
knowledge for guiding proofs. Attempts to exploit this structure include [Bauer et al., 2023] and
[Ferreira and Freitas, 2020], but the former neglects Lean 4’s state–tactic framework, while the latter
tackles premise selection only in natural text.
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We propose a methodology to integrate structural information into language-based premise retrieval
for Lean 4. Our contributions are the following:

• We extend LeanDojo’s dataset extraction to construct a heterogeneous dependency graph
from Lean source files that allows for graph-enhanced premise selection in Lean’s tactic
mode.

• We design a simple relational graph neural network (RGCN) architecture to propagate graph
structural information, producing graph-aware premise and proof-state representations. We
demonstrate improved performance over the ReProver baseline on the LeanDojo benchmark,
highlighting the benefit of incorporating dependency structure.

2 State-premise dependency graph for Lean

2.1 Augmented data extraction from the Mathlib Library

In tactic-based interactive theorem proving, the proof state at any point inside a proof represents
the statement that currently remains to be proven (the goal), together with its local hypotheses. In
Lean 4 one enters the tactic environment with the by keyword. When a user applies a tactic, this state
is updated to reflect the resulting subgoals. Figures 2 and 3 show the proof states as displayed by
Lean 4 for the example theorem in Figure 1. The first proof state in Figure 2 is the initial state after
the by keyword. After applying the tactic rw [← not_or] to this state, we obtain the second proof
state depicted in Figure 3.

1 theorem premise_example -- (a) premise node
2 (p q : Prop) (h : ¬ (p ∨ q)) -- (b) signature hypotheses
3 : ¬ p ∧ ¬ q := by -- (c) signature goal
4 rw [← not_or] -- (d) proof -step dependency
5 exact h -- (d)

Listing 1: Lean theorem using listings

Figure 1: A hypothetical Lean 4 theorem illustrating the extraction of the graph components. (a) The
theorem premise_example becomes a premise node. (b) Signature hypotheses (with edges to
premises Or, Not) and (c) the goal (with edges to premises And, Not) define signature dependency
edges. (d) The tactic application creates a proof-dependency edge to premise not_or. The proof
states (e.g., after the by keyword, Figure 2) become graph nodes linked to premises in their local
hypotheses and goals.

1 p q : Prop -- (e)
2 h : ¬ (p ∨ q) -- (e)
3 ⊢ ¬ p ∧ ¬ q -- (f)

Figure 2: Initial proof state immediately after
by. State nodes are created for proof states.
The initial state after by (in Figure 2) is linked
to its local hypotheses ([Or, Not]) and goal
premises ([And, Not]).

1 p q : Prop -- (g)
2 h : ¬ (p ∨ q) -- (g)
3 ⊢ ¬ (p ∨ q) -- (h)

Figure 3: The updated proof state obtained
after applying the tactic rw [← not_or].

Base dataset: proof states and premises In the LeanDojo machine learning framework [Yang et al.,
2023], premise selection is formulated as the following task. For each proof state s, given its textual
representation xs, we aim to identify the list of relevant premises ys from the (Mathlib [The mathlib
Community, 2020]) library that will be used in the next tactic. For example, for the proof state in
Figure 2, the tactic uses the premise not_or. Although only one premise appears in this example, in
general, a tactic application may use multiple premises or none. Let S denote the set of proof states,
and XS the text representations for each s ∈ S.

Let P be the set of all potential premises available in the library. Each premise p ∈ P has a library
definition in Lean code, and we denote by XP the code (text) representations of the premises in
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P . For example, in Figure 1, the entire block defines the premise premise_example. The dataset
in [Yang et al., 2023] can therefore be summarized as the tuple (XP , XS , YS), where YS denotes the
set of all lists of relevant premises ys.

Graph structure Definitions of premises, as well as proof states, may reference previously defined
premises. The graphical user interface for Lean 4 allows a user to navigate to a previously defined
premise by clicking on its symbol in the formalization code of a premise or a proof state. We treat the
underlying navigation links as references in our graph.

By merging V = P ∪ S as the node set, X = XS ∪ XP as the textual representations of the
corresponding Lean formalizations, and references E ⊆ V × R × V as the edge set, we can
summarize a Lean library as a text-attributed directed graph G = (V,X,E). Here R is the set
of relation types described in the next paragraph. We extend LeanDojo’s open-source extraction
framework [Yang et al., 2023] to query the proof assistant for this additional information and extract
this full dataset, i.e., the tuple (G, YS). The dataset (for Mathlib) thus now includes (XP , XS , YS)
from [Yang et al., 2023], but adds the additional premise-premise and premise-state edges, forming
a directed graph. The modified extraction code and the learning pipeline used is available at
https://github.com/JobPetrovcic/GNNReProver/tree/lighweight.

Relation types References can be categorized into different types depending on where premises
appear in a definition or proof state. Each definition consists of:

1. The name ((a) in the example in Figure 1).
2. The signature—which itself splits into local hypotheses (b) and the goal (c).
3. The proof (d), required for theorems, lemmas, and definitions, but not for axioms.

A relation is thus assigned a type based on the positions of its occurrence, and we denote the set of
these relation types by R.

Proof states follow a similar structure: they consist of local hypotheses ((e) and (g) in the examples in
Figure 2 and 3) and goals ((f) and (h)). The proof component is represented by the next tactic applied
to this state. The premises the tactic uses are the lists ys introduced earlier.

File and import graph To remain consistent with the framework of [Yang et al., 2023], we also use
the separate directed graph of imports between the files and a map between entries, states, and the files
where they were defined. We do not use this information during training, and it is not employed by
the model. We leave the utilization of this information for future work. However, during evaluation,
this graph is used to restrict the premise selection only to premises that would have been available to
the model at that point in the file: premises from imports, and premises defined before the current
entry. For complete details, see [Yang et al., 2023].

2.2 Dataset statistics

Table 3 in the appendix summarizes the graph statistics for the augmented LeanDojo benchmark
extracted from the Mathlib library commit 29dcec074de168ac2bf835a77ef68bbe069194c5, the
one used in the official repository of [Yang et al., 2023]. This allows us to directly compare our
results with the results of their approach.

3 Methodology

3.1 GNN-augmented premise retrieval

We can now formulate premise selection as learning a scoring function f : S × P → R that measures
the relevance of premise p ∈ P for proof state s ∈ S. To this end, we apply GNN-refined embeddings
as follows.

Step 1: initial text embeddings. The textual representations of premises xp and states xs are initially
embedded using ReProver’s ByT5 dual-encoder [Yang et al., 2023], yielding initial node feature
vectors h(0)

p and h
(0)
s , respectively.

Step 2: GNN-based refinement. We employ a Relational Graph Convolutional Network (RGCN)
[Schlichtkrull et al., 2018] to propagate information over the heterogeneous directed graph. Each
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premise node’s embedding hp is updated iteratively using

h(l+1)
p = σ

(
W

(l)
0 h(l)

p +
∑

(u,r,p)∈E

1

Nr(p)
W(l)

r h(l)
u

)

over L layers, where Nr(p) = |{u|(u, r, p) ∈ E, u ∈ P, p ∈ P}|, σ is an activation function, and
W

(l)
r are trainable RGCN weight matrices.

Step 3: GNN-refined state encoding. At retrieval, the proof state is treated as a temporary query
node s connected to its premises. Using the same architecture with different weights, the same
one-step message passing produces the embeddings of the states h(l+1)′

s by aggregating embeddings
{h(l)′

p } of premises referenced by the state. Note that the edge directions prevent information flow
from states to dependencies or future premises to prior dependencies.

3.2 Training objective

We use the InfoNCE [van den Oord et al., 2018, Rusak et al., 2025] loss, which for a given list ys of
valid premises, calculates as:

LInfoNCE = − 1∑
s∈S |ys|

∑
s∈S

∑
p∈ys

ln
esim(h(L)′

s ,h(L)
p )/τ∑

k∈P esim(h
(L)′
s ,h

(L)
k )/τ

, sim(u,v) =
u · v

∥u∥∥v∥
,

where the hyperparameter τ is a scalar temperature. Note that by minimizing this loss, we train a
model of the scoring function f(s, p) = sim(h

(L)′

s ,h
(L)
p ). The InfoNCE loss contrasts positive and

negative premises for each state, summing probabilities over multiple valid premises. The GNN is
trained transductively on the full premise graph, excluding all edges from proof relations (the third
item in the enumeration of relation types in Section 2.1) to prevent trivial memorization and promote
learning of general structural patterns.

3.3 Other optimizations

We use an ensemble of six independently-trained models (N=6), averaging their outputs to form
the final prediction. This approach mitigates initialization sensitivity, which is a known issue in
GNNs [Li et al., 2023]. In addition, we apply exponential model averaging (EMA) to further improve
performance and generalization [Morales-Brotons et al., 2024]. Finally, compared to LLMs, GNNs
use relatively less memory, removing the need to sample negative examples. We thus simply use all
other premises in the library as negatives.

4 Experiments and results

4.1 Experimental setup

For our experiments, we use the LeanDojo Mathlib benchmark dataset with graph augmentation. We
adopt the same train/validation/test split as [Yang et al., 2023] (the “random” split) and evaluate with
the same metrics: Recall@1, Recall@10, and Mean Reciprocal Rank (MRR). Our baseline is the
ReProver retriever with a ByT5-small encoder. We tune our model’s hyperparameters using Optuna
on the validation set (see Appendix B). The number of GNN layers used is L = 2.

4.2 Results

Results reported in Table 1 show that our GNN-augmented retriever outperforms the baseline across
all metrics. Note that the baseline results differ from those reported in [Yang et al., 2023]. On
GitHub1, the authors explain that this is potentially due to improvements made to the ReProver
system from the time of their publication.

1https://github.com/lean-dojo/ReProver/discussions/51
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Model R@1 ∆ R@10 ∆ MRR ∆

ReProver (Baseline) 13.42% – 39.60% – 0.3283 –
GNN-augmented retriever
(Ours)

17.98% +33.98% 50.04% +26.36% 0.4095 +24.73%

Ours + EMA 18.31% +36.44% 50.33% +27.10% 0.4140 +26.10%

Table 1: Retrieval performance on LeanDojo test set. Relative improvements ∆ are w.r.t. ReProver
(Baseline).

4.3 Ablations

To understand the contribution of different components in our model, we perform an ablation study
on the augmented LeanDojo data set. Specifically, we examine the effect of excluding the graph
between contexts and premises and the graph between premises and premises. Table 2 summarizes
the results of the ablations. Note that due to computational cost, no ensembling was used in all cases
for fair comparison and thus the results for No ablation in Table 2 do not match those in Table 1.

Model R@1 R@10 MRR
No ablation 17.43% 48.52% 0.4010
No ablation + EMA 17.74% 48.70% 0.4048

Context graph ablation 17.30% 49.99% 0.4008
Context graph ablation + EMA 17.58% 50.13% 0.4057

Premise graph ablation 17.45% 49.30% 0.4008
Premise graph ablation + EMA 18.18% 49.98% 0.4096

Table 2: Ablation study on the LeanDojo test set.

After performing ablations, we realized that removing parts of the dependency graph even improves
performance. This leads to the possibility that the utilization of the graph structure is not the main
factor behind the superior performance, but rather that this is caused by the different choices of the
loss function and sampling strategy. We leave this scrutinization for future work.

5 Conclusion

We introduced a graph-augmented language approach to premise selection in Lean. By extracting
fine-grained syntactic dependencies and propagating structural information via a GNN, our method
produces embeddings that outperform text-based baselines.

As the ablation section suggests, however, the superior performance might be attributed to the
different training paradigm choices rather than the model’s utilization of graph structure. Besides
further analysis of the root cause of the improvement, future work includes exploring advanced GNN
architectures, such as graph attention networks, to better incorporate structural information. Finally,
the model will be evaluated on more realistic splits, such as the LeanDojo "novel" split or a split
based on the creation time of premises.
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A Dataset statistic for Mathlib 4

Table 3: Summary statistics of the augmented LeanDojo Mathlib 4 dependency graph, including node
counts and edge types used for premise and state relations.

Node Statistic Value
Total Number of Nodes 440,487

Premise Nodes 180,907
State Nodes 259,580

Edge Statistics Premise-to-Premise Premise-to-State
Signature local hypotheses edges 652,484 (36.9%) 2,670,304 (63.4%)
Signature goal edges 626,318 (35.4%) 1,539,899 (36.6%)
Proof-dependency edges 490,356 (27.7%) /
Next tactic premise labels (YS) / 379861

Total Edges 1,769,158 4,210,203

B Hyperparameters

B.1 Hyperparameter tuning

The hyperparameters for our GNN retrieval model were determined through a two-stage search using
the Optuna framework [Akiba et al., 2019]. The first stage focused on architectural choices, such
as GNN layer type, hidden dimensions, learning rate, and model structure (e.g., separate vs. shared
GNNs for premises and contexts). The objective was to maximize the Recall@10 metric on the
training set for the first batch.

As the best model was prone to overfitting, we introduced a second stage, fixing the best architecture
from the previous stage, and performed a fine-grained search for optimal regularization parameters.
This included tuning the node feature dropout rate, the edge dropout rate, and the L2 weight decay for
the optimizer. The objective in this case was to maximize the Recall@10 metric on the validation set.

B.2 Model and training configuration

Table 4 lists the final configuration of our best-performing model, obtained through a two-stage
Optuna search described in the previous section. We train for 120 epochs and select the model with
the best validation Recall@10 for evaluation on the test set.

C Resources

We ran all experiments on a cluster with three NVIDIA A6000 GPUs (48 GB each), two Intel Xeon
Silver 4410Y CPUs (24 cores, 48 threads), and 512 GB of RAM.

The initial hyperparameter tuning stage, with reduced training epochs, took about one day, and the
subsequent stage about. 12 hours. Final training of the ensemble of six independently trained models
took roughly one day, with exponential moving average (EMA) optimization adding negligible time.
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Table 4: Final model and training configuration for the GNN-augmented retrieval model.

Category Parameter Value / Notes

GNN

number of layers 2
hidden size 1024
activation ReLU
dropout 0.256
edge dropout 0.142
residual connections Used

Loss InfoNCE temperature 0.0138

Optimizer learning rate 0.00499
weight decay 2.359e-5

Training batch size 1024
gradient accumulation 2 batches
epochs 120
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