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Abstract— Vision- and language-guided embodied AI requires
a fine-grained understanding of the physical world through
language and visual inputs. Such capabilities are difficult to
learn solely from task-specific data, which has led to the
emergence of pre-trained vision-language models as a tool for
transferring representations learned from internet-scale data
to downstream tasks and new domains. However, commonly
used contrastively trained representations such as in CLIP
have been shown to fail at enabling embodied agents to gain
a sufficiently fine-grained scene understanding—a capability
vital for control. To address this shortcoming, we consider
representations from pre-trained text-to-image diffusion models,
which are explicitly optimized to generate images from text
prompts and as such, contain text-conditioned representations
that reflect highly fine-grained visuo-spatial information. Using
pre-trained text-to-image diffusion models, we construct Stable
Control Representations which allow learning downstream control
policies that generalize to complex, open-ended environments. We
show that policies learned using Stable Control Representations
are competitive with state-of-the-art representation learning
approaches across a broad range of simulated control settings,
encompassing challenging manipulation and navigation tasks.
Most notably, we show that Stable Control Representations
enable learning policies that exhibit state-of-the-art performance
on OVMM, a difficult open-vocabulary navigation benchmark.

I. INTRODUCTION

In this paper, we propose Stable Control Representations
(SCR): pre-trained vision-language representations from text-
to-image diffusion models that can capture both high and low-
level details of a scene [1], [2]. While diffusion representations
have seen success in downstream vision-language tasks, for
example, in semantic segmentation [3], [4], [5], they have,
to date, not been used for control. We perform a careful
empirical analysis in which we deconstruct pre-trained vision-
language representations from text-to-image diffusion models
to understand the effect of different design decisions.

In our empirical investigation, we find that—despite not
being trained for representation learning—diffusion rep-
resentations can outperform general-purpose models like
CLIP [6] across a wide variety of embodied control tasks.
This is the case even for purely vision-based tasks and
settings that require task understanding through text prompts.
A highlight of our results is the finding that diffusion
model representations enable better generalization to unseen
object categories in a challenging open-vocabulary navigation
benchmark [7] and provide improved interpretability through
attention maps [8].

*Equal Contribution
1University of Oxford 2Georgia Tech 3New York University
Corresponding email: gunshi.gupta@cs.ox.ac.uk,

kyadav32@gatech.edu

Our key contributions are as follows:
1) In Section III, we introduce a multi-step approach for

extracting vision-language representations for control
from text-to-image diffusion models. We show that these
representations are capable of capturing both the abstract
high-level and fundamental low-level details of a scene,
offering an alternative to models trained specifically for
representation learning.

2) In Section IV, we evaluate the representation learning
capabilities of diffusion models on a broad range of
embodied control tasks, ranging from purely vision-based
tasks to problems that require an understanding of tasks
through text prompts, thereby showcasing the versatility
of diffusion model representation.

3) In Appendix I-G, we systematically deconstruct the key
features of diffusion model representations for control,
elucidating different aspects of the representation design
space, such as the input selection, the aggregation of
intermediate features, and the impact of fine-tuning on
enhancing performance.

We have demonstrated that diffusion models
are versatile representation learners for control
and can help drive progress in embodied AI.
The code for our experiments can be accessed at
https://github.com/ykarmesh/stable-contro
l-representations

II. BACKGROUND

We briefly review diffusion models and text-conditional
image generation, and then describe the control setting we
consider in this work.
A. Diffusion Models

Diffusion models [9], [10] are a class of generative models
that learn to iteratively reverse a forward noising process
and generate samples from a target data distribution p(x0),
starting from pure noise. Given p(x0) and a set of noise
levels σt for t = 1, . . . , T , a denoising function ϵθ(xt, t) is
trained on the objective

LDM(θ) = Ex0,ϵ,t[∥ϵ− ϵθ
(
xt, t))∥22

]
= Ex0,ϵ,t[∥ϵ− ϵθ

(
x0 + σt · ϵ, t))∥22

]
, (1)

where ϵ ∼ N (0, 1), t ∼ Unif(1, T ), and x0 ∼ p(x0). To
generate a sample x0 during inference, we first sample an
initial noise vector xT ∼ N (0, σT ) and then iteratively
denoise this sample for t = T, ..., 1 by sampling from
p(xt−1|xt), which is a function of ϵθ(xt, t).

In some settings, we may want to generate samples with
a particular property. For example, we may wish to draw
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Fig. 1: Top: Our paper proposes Stable Control Representations, which uses pre-trained text-to-image diffusion models as a
source of language-guided visual representations for downstream policy learning. Bottom: Stable Control Representations
enable learning control policies that achieve all-round competitive performance on a wide range of embodied control tasks,
including in domains that require open-vocabulary generalization. Empirical results are provided in Section IV.

samples from a conditional distribution over data points,
p(x0|c), where c captures some property of the sample, such
as classification label or a text description [1], [11]. In these
settings, we may additionally train with labels to obtain a
conditioned denoiser ϵθ(xt, t, c) and generate samples using
classifier-free guidance [12].

B. Latent Diffusion Models

Latent diffusion models [1] reduce the computational cost
of applying diffusion models to high-dimensional data by
instead diffusing low-dimensional representations of high-
dimensional data. Given an encoder E(·) and decoder D(·),
Equation (1) is modified to operate on latent representations,
z0 =̇ E(x0), yielding

LLDM(θ) = Ex0,c,ϵ,t[∥ϵ− ϵθ
(
E(x0) + σt · ϵ, t, c)∥22

]
, (2)

where ϵ ∼ N (0, 1), t ∼ Unif(1, T ), x0, c ∼ p(x0, c). After
generating a denoised latent representation z0, it can be
decoded as x0 = D(z0).

A popular instantiation of a conditioned latent diffusion
model is the text-to-image Stable Diffusion model [1]. The
SD model is trained on the LAION-2B dataset [13] and
operates in the latent space of a pre-trained VQ-VAE image
encoder [14]. The model architecture is shown at the top of
Figure 1 and is based on a U-Net [15], with the corresponding
conditioning text prompts encoded using CLIP’s [6] language
encoder.

C. Policy Learning for Control

We model our environments as Markov Decision Processes
(MDP, [16]), defined as a tuple M = (S,A, P,R, γ), where
S and A denote the state and action spaces respectively,

P (s′|s, a) the transition dynamics, R(s, a) the reward func-
tion, and γ ∈ (0, 1) the discount factor. Our goal is to optimize
a policy π(a|s) that maximizes the expected discounted return
Eπ,P [

∑∞
t=0 γ

tR(st, at)].
In this paper, we consider visual control tasks that may

be language-conditioned, that is, states are given by s =
[simage, stext], where stext specifies the task. We are interested
in pre-trained vision-language representations capable of
encoding the state s as fϕ(simage, stext). This encoded state is
then supplied to a downstream, task-specific policy network,
which is trained to predict the action at. Our evaluation
encompasses both supervised learning and reinforcement
learning regimes for training the downstream policies. We
train agents through behavior cloning on a small set of
demonstrations for the few-shot manipulation tasks we study
in appendix I-B.2. For the indoor navigation tasks we study in
Secs. IV-A and IV-B, we use a version of the Proximal Policy
Optimisation [17] algorithm for reinforcement learning.

III. STABLE CONTROL REPRESENTATIONS

In this paper, we consider extracting language-guided visual
representations from the open-source Stable Diffusion model.
We follow a similar protocol as [5], [18], and [19]: Given
an image-text prompt, s = {simage, stext}, associated with a
particular task, we use the SD VQ-VAE model as the encoder
E(·) and partially noise the latents z0 =̇ E(simage) to some
diffusion timestep t. We then extract representations from
the intermediate outputs of the denoiser ϵθ(zt, t, stext). This
process is illustrated in Figure 2. We refer to the extracted
representations as Stable Control Representations (SCR).
We will describe the design space for extracting SCR in the
remainder of this section.
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Fig. 2: Extraction of Stable Control Representations from Sta-
ble Diffusion. Given an image-text prompt, s = {simage, stext},
we encode and noise the image and feed it into the U-Net
together with the language prompt. We may then aggregate
features from multiple levels of the downsampling process,
as described in Section III.

A. Layer Selection and Aggregation
We are interested in evaluating the internal representations

from the denoiser network, that is, the U-Net ϵθ(·). The
first design choice we consider is which layers of ϵθ to
aggregate intermediate outputs from. The U-Net does not have
a representational bottleneck, and different layers potentially
encode different levels of detail. Trading off size with fidelity,
we concatenate the feature maps output from the mid and
down-sampling blocks to construct the representation. This
results in a representation size comparable to that of the
other pre-trained models we study in Section IV. This is
shown at the bottom of Figure 2 and we ablate this choice
in Appendix I-G.1. Since outputs from different layers may
have different spatial dimensions, we bilinearly interpolate
them so that they are of a common spatial dimension and
can be stacked together. We then pass them through a
learnable convolutional layer to reduce the channel dimension
before feeding them to downstream policies. The method
used to spatially aggregate pre-trained representations can
significantly affect their efficacy in downstream tasks, as we
will discuss in Appendix I-F. We use the best-performing
spatial aggregation method for all the baselines that we re-
train in Section IV.
B. Diffusion Timestep Selection

Next, we consider the choice of extraction timestep t for
the denoising network (shown on the left of Figure 2). Recall
that the images we observe in control tasks are un-noised
(i.e., corresponding to x0), whereas the SD U-Net expects
noised latents, corresponding to zt for t ∈ [0, 1000]. The
choice of timestep t influences the fidelity of the encoded
latents since a higher value means more noising of the
inputs. [19] have observed that there are task-dependent
optimal timesteps and proposed adaptive selection of t during
training, while [20] have used t = 0 to extract representations
from un-noised inputs to do open-vocabulary segmentation.
We hypothesize that control tasks that require a detailed
spatial scene understanding benefit from fewer diffusion
timesteps, corresponding to a later stage in the denoising
process. We provide evidence consistent with this hypothesis
in Appendix I-G.2. To illustrate the effect of the timestep, we

display final denoised images for various t values in different
domains in Figure 7.

C. Prompt Specification

Since text-to-image diffusion models allow conditioning
on text, we investigate if we can influence the representations
to be more task-specific via this conditioning mechanism.
For tasks that come with a text specifier, for example, the
sentence “go to object X”, we simply encode this string
and pass it to the U-Net. However, some tasks are purely
vision-based and in these settings, we explore whether
constructing reasonable text prompts affects downstream
policy learning when using the U-Net’s language-guided
visual representations. We present this analysis in Appendix I-
G.3.

D. Intermediate Attention Map Selection

Recent studies [5], [8] demonstrate that the Stable Diffusion
model generates localized attention maps aligned with text
during the combined processing of vision and language
modalities. [5] leveraged these word-level attention maps to
perform open-domain semantic segmentation. We hypothesize
that these maps can also help downstream control policies
to generalize to an open vocabulary of object categories
by providing helpful intermediate outputs that are category-
agnostic. Following [8], we extract the cross-attention maps
between the visual features and the CLIP text embeddings
within the U-Net. An example of the word-level attention
maps is visualized in Figure 8. We test our hypothesis on
an open-domain navigation task in Section IV-B, where we
fuse the cross-attention maps with the extracted feature maps
from the U-Net. We refer to this variant as SCR-ATTN.

E. Fine-Tuning on General Robotics Datasets

Finally, we consider fine-tuning strategies to better align
the base Stable Diffusion model towards generating repre-
sentations for control. This serves to bridge the domain gap
between the diffusion model’s training data (e.g., LAION
images) and robotics datasets’ visual inputs (e.g., egocentric
tabletop views in manipulation tasks or indoor settings
for navigation). Crucially, we do not use any task-specific
data for fine-tuning. Instead, we use a small subset of the
collection of datasets used by prior works on representation
learning for embodied AI [21], [22]: we use subsets of the
EpicKitchens [23], Something-Something-v2 [24], and the
Bridge-v2 [25] datasets.

We adopt the same text-conditioned generation objective
as that of the base model for the fine-tuning phase. As is
standard, we fine-tune the denoiser U-Net ϵθ but not the VAE
encoder or decoder. Image-text pairs are uniformly sampled
from the video-text pairs present in these datasets. A possible
limitation of this strategy is that text-video aligned pairs (a
sequence of frames in a control task that correspond to a
single language instruction) may define a many-to-one relation
for image-text pairs. However, as we see in experiments in
which we compare to the base Stable Diffusion model in
Section IV, this simple approach to robotics alignment is
useful in most cases. Further details related to fine-tuning



TABLE I: Average Success Rate and standard error evaluated
across different representations.

(a) ImageNav

Model Success

R3M 30.6
CLIP-B 52.2
VC-1 70.3
MVP 68.1
SD-VAE 46.6
SCR 73.9
SCR-FT 69.5

(b) OVMM

Model Success

Oracle 77.6
Detic 36.7
CLIP 38.7 ± 1.7
VC-1 40.6 ± 2.2
SCR 38.7 ± 1.2
SCR-FT 41.9 ± 1.0
SCR-FT-ATTN 43.6 ± 2.1

are provided in Appendix I-I. We refer to the representations
from this fine-tuned model as SCR-FT.

IV. EMPIRICAL EVALUATION

In this work, we evaluate Stable Control Representations
(SCR) on an extensive suite of tasks from 6 benchmarks
covering few-shot imitation learning for manipulation in Ap-
pendix I-B.2, reinforcement learning-based indoor navigation
in Sections IV-A and IV-B, and owing to space limitations,
two tasks related to fine-grained visual prediction in Ap-
pendix I-B. Together, these tasks allow us to comprehensively
evaluate whether our extracted representations can encode
both high and low-level semantic understanding of a scene
to aid downstream policy learning. In the following sections
we will describe the individual task setups and results and
defer the description of the baselines to Appendix I-B.1.

A. Image-Goal Navigation
We now assess SCR in more realistic visual environments,

surpassing the simple table-top scenes in manipulation bench-
marks. In these complex settings, the representations derived
from pre-trained foundational models are particularly effective,
benefiting from their large-scale training. We study Image-
Goal Navigation (ImageNav), an indoor visual navigation
task that evaluates an agent’s ability to navigate to the
viewpoint of a provided goal image [26]. The position reached
by the agent must be within a 1-meter distance from the
goal image’s camera position. This requires the ability to
differentiate between nearby or similar-looking views within
a home environment. This task, along with the semantic
object navigation task that we study in Section IV-B, allows
for a comprehensive evaluation of a representation’s ability
to code both semantic and visual appearance-related features
in completely novel evaluation environments.

We follow the protocol for the ImageNav task used by [21]
and input the pre-trained representations to an LSTM-based
policy trained with DD-PPO [27] for 500 million steps on
16 A40 GPUs (further details in Appendix I-K.3). Given the
large training requirements, we only run SCR-FT and directly
compare to the results provided in [21].

Results. We evaluate our agent on 4200 episodes in 14
held-out scenes from the Gibson dataset and report the success
rate in Table Ia. We find that SCR outperforms MVP and
CLIP (ViT-B), and is almost on par with VC-1 (69.5% vs
70.3%), the SOTA visual representation from prior work. We
also see that R3M, the best model for few-shot manipulation
from Table II performs very poorly (30.6%) in this domain,
showing its limited transferability to navigation tasks.

B. Open Vocabulary Mobile Manipulation

We now shift our focus to evaluating how Stable Diffusion’s
web-scale training can enhance policy learning in open-
ended domains. We consider the Open Vocabulary Mobile
Manipulation (OVMM) benchmark [7] that requires an agent
to find, pick up, and place objects in unfamiliar environments.
One of the primary challenges here is locating previously
unseen object categories in novel scenes (illustrated in
Figure 6 (left)).

To manage this complex sparse-reward task, existing
solutions [7] divide the problem into sub-tasks and design
modular pipelines that use open-vocabulary object detectors
such as Detic [28]. We study a modified version of the
Gaze sub-task (detailed in Appendix I-K.2), which focuses
on locating a specified object category for an abstracted
grasping action. The task’s success is measured by the agent’s
ability to precisely focus on the target object category. This
category is provided as an input to the policy through its CLIP
text encoder embedding. The evaluation environments cover
both novel instances of object categories seen during policy
learning, as well as entirely unseen categories. We compare
to VC-1, the best model from Section IV-A and CLIP, since
prior work has studied it for open-vocab navigation [29],
[30]. We also incorporate a baseline that trains a policy with
ground truth object masks, evaluated using either the ground
truth or Detic-generated masks (labeled as Oracle/Detic).

Results. Table Ib shows SCR matches the performance of
CLIP, while SCR-FT surpasses VC-1 by 1.3%, beating CLIP
and SCR by 3.2%. Surprisingly, VC-1’s visual representation
does better than CLIP’s image encoder representation, given
that the downstream policy has to fuse these with the CLIP
text embedding of the target object category. Compared
to these baselines, we can see the benefit of providing
intermediate outputs in the form of text-aligned attention maps
to the downstream policy (+1.7%). These word-level cross-
attention maps simultaneously improve policy performance
and also aid explainability, allowing us to diagnose successes
and failures. Samples of attention maps overlaid on evaluation
episode images can be found in Appendix I-K.

Interestingly, the foundation model representations (CLIP,
VC-1, SCR) perform better than Detic. While object detec-
tions serve as a category-agnostic output that downstream
pick-and-place policies can work with, noisy detections can
often lead to degraded downstream performance, as we see in
this case. Nonetheless, there is still a sizeable gap to ‘Oracle’
which benefits from ground truth object masks.

V. CONCLUSION

In this paper, we proposed Stable Control Representations,
a powerful method for leveraging general-purpose diffusion
features for control. We showed that our extracted repre-
sentations lead to strong performance across a wide variety
of tasks. As such, we hope that SCR will help drive data-
efficient control and enable open-vocabulary generalization
in challenging domains; these capabilities will only improve
as generative modeling advances. IF
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APPENDIX I
A. Related Work

In this section, we review prior work on representation
learning and orthogonal work on diffusion models for control.

Representation Learning with Diffusion Models. Dif-
fusion models have received a lot of recent attention as
flexible representation learners for computer vision tasks of
varying granularity—ranging from key point detection and
segmentation [4], [5] to image classification [19], [18]. [5] has
shown that intermediate layers of a text-to-image diffusion
model encode semantics and depth maps that are recoverable
by training probes. These approaches extract representations
in a similar manner to us by considering a moderately noised
input, and find that the choice of timestep can vary based on
the granularity of prediction required for the task. [19] train
a policy to select an optimal diffusion timestep, we simply
used a fixed timestep per class of task. Several works [4],
[5], [8] observed that the cross-attention layers that attend
over the text and image embeddings encode a lot of the
spatial layout associated with an image and therefore focus
their method around tuning, post-processing, or extracting
information embedded within these layers.

Visual Representation Learning for Control. Over the
past decade, pretrained representation learning approaches
have been scaled for visual discrimination tasks first, and
control tasks more recently. Contrastively pretrained CLIP [6]
representations were employed for embodied navigation tasks
by [29]. MAE representations have been used for control
tasks by VC-1 [21], MVP [22] and OVRL-v2 [31]. R3M [32]
and Voltron [33] leverage language supervision to learn visual
representations. In contrast, we investigate if powerful text-
to-image diffusion models trained for image generation can
provide effective representations for control.

Diffusion Models for Control. Diffusion models have
seen a wide range of uses in control aside from learning
representations. These can broadly be categorized into three
areas. First, there are works that treat diffusion models as
a class of expressive models for learning action distribution
for policies [34], [35], [36]; this can often help model
multimodality and richer action distributions than Gaussians.

Next, off-the-shelf diffusion models have been used to
augment limited robot demonstration datasets by specifying
randomizations for object categories seen in the data through
inpainting [37], [38], [39]. Diffusion models trained from
scratch have also been shown to be an effective method for
data augmentation [40].

Finally, there are works that cast planning as sequence mod-
eling through diffusion models [41], [42], [43]. Diffuser [41]
proposes to view RL as a sequence modeling problem where
a diffusion model can be trained to predict trajectories of
interleaved state-actions given a behavior dataset. These state-
actions can then be guided towards higher value and then
used in a receding horizon control setup.

B. Extended Empirical Evaluation Details

1) Baselines: We compare SCR and its variants (i.e.,
SCR-FT and SCR-FT-ATTN) to the following prior work in

TABLE II: Meta-World & Franka-Kitchen.
Model Meta-World Franka-Kitchen

R3M 96.0 ± 1.1 57.6 ± 3.3
CLIP 90.1 ± 3.6 36.3 ± 3.2
VC-1 92.3 ± 2.5 47.5 ± 3.4
Voltron 72.5 ± 5.2 33.5 ± 3.2
SD-VAE 75.5 ± 5.2 43.7 ± 3.1
SCR 94.4 ± 1.9 45.0 ± 3.3
SCR-FT 94.9 ± 2.0 49.9 ± 3.4

representation learning for control:
- R3M [32] pretrains a ResNet50 encoder on video-language
pairs from the Ego4D dataset using time-contrastive video-
language alignment learning.
- MVP [22] and VC-1 [21] both pretrain ViT-B/L models with
the masked auto-encoding (MAE) objective on egocentric data
from Ego4D, Epic-Kitchens, Something-Something-v2 [24,
SS-v2] and ImageNet, with VC-1 additionally pretraining on
indoor navigation videos.
- CLIP [6] trains text and ViT-based image encoders using
contrastive learning on web-scale data.
- Voltron [33] is a language-driven representation learning
method that involves pretraining a ViT-B using MAE and
video-captioning objectives on aligned text-video pairs from
SS-v2.
- SD-VAE [1] is the base VAE encoder used by SD to encode
images into latents.

To assess how well the vision-only methods would do
on tasks with language specification, we concatenate their
visual representations with the CLIP text embeddings of the
language prompts. While we are limited by the architecture
designs of the released models we are studying, to ensure a
more fair comparison we try to match parameter counts as
much as we can. We use the ViT-Large (307M parameters)
versions of CLIP, MVP, and VC-1 since extracting SCR
involves a forward pass through 500M parameters.

2) Few-shot Imitation Learning: We start by evalu-
ating SCR on commonly studied representation learning
benchmarks in few-shot imitation learning. Specifically, our
investigation incorporates five commonly studied tasks from
Meta-World [44] (same as CORTEXBENCH [21]), which
includes bin picking, assembly, pick-place, drawer opening,
and hammer usage; as well as five tasks from the Franka-
Kitchen environments included in the RoboHive suite [45],
which entail tasks such as turning a knob or opening a door.
We adhere to the training and evaluation protocols adopted in
their respective prior works to ensure our results are directly
comparable (detailed further in Appendix I-K.1).

Results. We report the best results of SCR and baselines in
Table II. On Meta-World, we see that SCR outperforms most
prior works, achieving 94.9% success rate. In comparison,
VC-1, the visual foundation model for embodied AI and CLIP
achieved 92.3 and 90.1% respectively. On Franka-Kitchen,
SCR obtains 49.9% success rate, which is much higher than
CLIP (36.3%) and again outperforms all other baselines
except for R3M. We note that R3M’s sparse representations
excel in few-shot manipulation with limited demos but



struggle to transfer beyond this setting [21], [33].
We see that while the SD-VAE encoder performs com-

petitively on Franka-Kitchen, it achieves a low success rate
on Meta-World. This observation allows us to gauge the
improved performance of SCR from the base performance
gain we may get just from operating in the latent space
of this VAE. Additionally, we see that the task-agnostic
fine-tuning gives SCR-FT an advantage (4%) over SCR on
Franka-Kitchen while making no difference on Meta-World.
Note that the other high-performing baselines (R3M and
Voltron) have been developed for downstream control usage
with training objectives that take temporal information into
account, while VC-1 has been trained on a diverse curation
of robotics-relevant data. In this context, SCR’s comparable
performance shows that generative foundation models hold
promise for providing useful representations for control, even
with relatively minimal fine-tuning on non-task-specific data.

3) Referring Expressions Grounding: In appendix I-B.2
and Secs. IV-A and IV-B, we analyzed the performance
of diverse representations across a range of control tasks.
We now turn our attention to two specific tasks: referring
expressions grounding and grasp affordance prediction. These
tasks, involving fine-grained visual prediction, have been
previously examined by [33] as proxy measures to evaluate
the efficacy of representations for control applications.

Here, we revisit the Referring Expressions Grounding task
first introduced in appendix I-G.3 and compare to other
baselines. This task requires the identification and bounding
box prediction of an object in an image based on its textual
description. Similar to [33], we use the OCID-Ref Dataset
[46] for our experiments. All models output a frozen visual
representation which is concatenated with a text embedding
and passed to a shallow MLP, which predicts the bounding
box coordinates. We evaluate bounding box accuracy at a
25% Intersection-over-Union (IoU) threshold across different
scene clutter levels. The IoU metric characterizes the degree
of overlap between labels and predictions and in this case, a
minimum 25% IoU is used to decide if a prediction should
be marked as correct or incorrect. We train SCR-variants
along with baselines from [33] for 10 epochs with batch size
128 and lr=1e−3. The results are presented in Tab. III.

TABLE III: Referring Expression Grounding (Accuracy at
IoU 0.25).

Model Average Maximum
clutter

Medium
clutter

Minimum
clutter

CLIP 68.1 60.3 76.6 67.0
CLIP 94.3 92.5 95.1 92.8
R3M 63.3 55.3 68.3 63.3
Voltron 92.5 96.9 91.8 90.2
VC-1 94.6 93.7 96.5 93.7
SD-VAE 94.3 93.2 96.3 93.4
SCR 92.9 91.1 95.9 91.8
SCR-FT 91.8 90.1 94.8 90.8

Results. We see that SCR is tied with Voltron and that VC-
1 and SD-VAE perform the best with a 1.5% lead. The better
performance of these vision-encoder only methods highlights
that on this task, it is not a challenge for the downstream

decoder to learn to associate the visual embeddings with the
CLIP text encoder’s output for the language specification.
Since the training budget is fixed, we observed that many
methods were not close to complete convergence and could
potentially improve over extended training. However, we
were primarily interested in this task not to compare the
downstream visual prediction performance, but to use it as
a testbed for exploring two questions. Specifically, we were
interested in evaluating whether the performance differences
between the representations we evaluated in Sec. IV stem from
the absence of fine-grained spatial information encoded within
the representations. We refute this claim in the following
section, where we present the impact of a representation’s
spatial aggregation method on task performance in appendix I-
F. This will explain the poor performance of CLIP as reported
in [33] as well as our improved result for CLIP in gray
in the table. Additionally, recall that we used this task to
explore the extent to which language prompting influences
the representations from SCR in appendix I-G.3.

TABLE IV: Grasp Affordance Prediction: Precision on pixels
corresponding to positive graspability at varying probability
threshold levels.

Model Top99 Top95 Top90

CLIP 60.3 45.0 28.6
CLIP 72.9 55.9 36.5

Voltron 62.5 42.8 32.1
SD-VAE 55.6 41.3 33.8

SCR 72.9 55.9 54.5
SCR-FT 72.3 54.6 44.4

4) Grasp Affordance Prediction: The Grasp Affordance
Prediction task requires segmenting areas of object in an
RGB image, that would be amenable to grasping by a suction
gripper. The evaluation metric adopted in prior work is the
precision of predictions corresponding to positive graspability
at varying confidence levels (90, 95, and 99th percentile
of the predicted per-pixel probabilities, denoted as Top90,
Top95, and Top99 in Tab. IV). We refer the reader to [33]
for the complete task setup details. We re-ran all the methods
using the evaluation repository provided with the work, and
obtained slightly different results compared to the reported
numbers in [33], possibly attributed to a bug we fixed related
to metrics computation. The evaluation procedure for this task
adopted in prior work involves a 5-fold cross-validation, and
we observed a high variability in the results, with different
runs of 5-fold cross-validation yielding different final test
metrics.

Our findings highlight that SCR and our adaptation of
CLIP both excel in this task, achieving a Top99 score of
72.9. The following section will further elaborate on our
modifications to CLIP. Interestingly, we found that finetuning
did not enhance performance on the visual prediction tasks
explored (appendices I-B.3 and I-B.4), suggesting a potential
disconnect from control task benchmarks.

C. Fine-tuning CLIP
We follow the same experimental constraints that we took

into account while fine-tuning the diffusion model to get SCR-



rTABLE V: Performance on Franka-Kitchen after fine-tuning
CLIP.

Model Franka-Kitchen

CLIP 36.9 ± 3.2
CLIP (FT) 34.2 ± 2.9

rTABLE VI: Comparing to LIV on manipulation and naviga-
tion tasks.

Model Franka-Kitchen OVMM

SCR 45.0 38.7
SCR-FT 49.9 41.9

LIV 54.2 8.4

FT: we trained it on the same text-image pairs from the same
datasets, and using CLIP’s contrastive loss to bring the visual
embedding of the middle frames of a video closer to the video
caption’s text embedding. Specifically, for our experiment, we
use the huggingface CLIP finetuning implementation and train
the model with a batch size of 384 (the maximum number of
samples we were able to fit on 8 A40 GPUs) with a learning
rate of 5e-5 and a weight decay of 0.001 for 5000 update
steps (same as SR-FT). We present the results in Table V
for Franka-Kitchen, and note the lack of improvement on the
task post-fine-tuning.

D. Comparison with LIV

We include a comparison with LIV [47] on two tasks
that involve manipulation and navigation. LIV is a vision-
language representation learned through contrastive learning
on the EpicKitchens dataset [23]. Similar to R3M results in
the main paper, this representation does well on manipulation
tasks but poorly on navigation tasks.

E. Overall Ranking of Representations

In Table VII, we present the consolidated scores across
the four control benchmarks we study in Section IV, for
all the representations we evaluate in this work. This is to
give a higher-level view of the all-round performance of
the different representations on the diverse set of tasks we
consider. We see that VC-1, SCR, and SCR-FT emerge as
the top three visual representations overall. While VC-1 is a
representation-learning foundation model trained specifically
for robotics tasks, SCR and SCR-FT are the diffusion model
representations that we study in this paper, confirming the
potential of large pre-trained foundation generative models
across a wide array of downstream robotics tasks.

F. Method of Spatial Aggregation Matters

We revise the representation extraction approach used in
previous studies by incorporating a convolutional layer to
downsample the spatial grid of pretrained representations, to
effectively preserve the spatial information. This adjustment,
described as a ”compression layer” by [31], aims to reduce
the high channel dimension of pretrained model outputs
without losing spatial details, facilitating more effective input
processing by task-specific decoders like MLPs.

We show the performance gains achieved by this modifica-
tion, by replacing the multi-headed attention pooling done for

TABLE VII: Representation Performance Comparison: Num-
bers in the task columns (OVMM, ImageNav, MetaWorld,
Franka Kitchen) indicate relative scores of different represen-
tations (normalized by the highest score on that task), and
the average normalized score column indicates the averaged
scores across the task-wise relative scores where numbers are
available.

Method OVMM ImageNav MetaWorld Franka Avg Score
VAE - 0.629 0.786 0.759 0.725
R3M - 0.414 1.000 1.000 0.805
VC-1 0.969 0.951 0.961 0.825 0.927
CLIP 0.924 0.706 0.939 0.630 0.800
SR 0.924 1.000 0.983 0.781 0.922
SR-FT 1.000 0.942 0.989 0.866 0.949

TABLE VIII: Ablating the spatial aggregation method (CLS
token embedding versus using the compression layer) for
CLIP and VC-1 representations on MuJoCo Tasks: Average
success rate and std. error on Meta-World & Franka Kitchen.

Model Meta-World Franka Kitchen

VC-1 (CLS) 88.8 ± 2.2 52.0 ± 3.4
VC-1 (Compression) 92.3 ± 2.5 47.5 ± 3.4
CLIP (CLS) 88.8 ± 3.9 35.3 ± 3.4
CLIP (Compression) 90.1 ± 3.6 36.3 ± 3.2

CLIP embeddings with a convolutional downsampling layer
in appendix I-B.3. This significantly enhances performance
in bounding box prediction tasks (an improvement from 68%
to 94%, as reported in the grayed-out CLIP result in Tab. III).
We present a similar modification and finding for the grasp
affordance prediction results for CLIP in gray in Tab. IV. This
finding contradicts previous claims by [33] regarding CLIP’s
inability for low-level spatial predictions, underscoring the
importance of representation adaptation.

Although incorporating the compression layer also slightly
improves CLIP’s performance in control tasks (by 1-2%),
it does not enable it to surpass the best-performing models.
In the main paper, we used the compression layer method
of aggregation for all the baselines we ran to ensure we
compared to their best numbers (Tabs. Ia, Ib and II). We also
present ablations over the spatial aggregation method for VC-
1 and CLIP on the MuJoCo tasks in Tab. VIII, to showcase the
slight improvement that using the compression layer brings
across both tasks. We recommend future work to adopt this
methodology where applicable to compare representations
more fairly.

G. Deconstructing Stable Control Representations

In this section, we aim to deconstruct which design choices
from Sec. III were most crucial for SCR’s strong performance
and assess our representation’s robustness to each.

1) Layer Selection: We begin our investigation by exam-
ining how the performance of SCR is influenced by the
selection of layers from which we extract feature maps. We
had previously chosen to utilize outputs from the mid and
downsampling layers of the U-Net (Fig. 2), because their
aggregate size closely matches the representation sizes from
ViT-based models such as VC-1, MVP, and CLIP. Appendix I-



TABLE IX: Ablations of the denoising timestep and layers
chosen for representation extraction for SR on the Franka
Kitchen benchmark. Numbers indicate mean ± standard error
over 3 seeds.

Timestep Layers Success Rate

0 Down[1-3] 43.0 ± 3.4
0 Down[1-3] + Mid 49.9 ± 3.4
0 Mid 41.6 ± 3.3
0 Mid, Up[0] 42.1 ± 3.6

0 Down[1-3] + Mid 49.9 ± 3.4
10 Down[1-3] + Mid 48.2 ± 3.1
100 Down[1-3] + Mid 42.0 ± 3.7
110 Down[1-3] + Mid 42.0 ± 3.4
200 Down[1-3] + Mid 35.1 ± 3.2

J lists out the exact feature map sizes used for all the models
we study.

Table IX (top) lists the success rates achieved on the Franka-
Kitchen domain when we use different sets of block outputs
in SCR. We see that utilizing outputs from multiple layers
is instrumental to SCR’s high performance. This finding
underscores a broader principle applicable to the design of
representations across different models: leveraging a richer
set of features from multi-layer outputs should enhance
performance on downstream tasks. However, it’s important to
acknowledge the practical challenges in applying this strategy
to ViT-based models. The high dimensionality of each layer’s
patch-wise embeddings (16x16x1024 for ViT-L for images of
size 224x224), may complicate the integration of multi-layer
outputs.

2) Sensitivity to the Noising Timestep: Next, we charac-
terize the sensitivity of task performance to the denoising
step values chosen during representation extraction on the
Franka-Kitchen tasks in Tab. IX (bottom). We see that the
performance across nearby timesteps (0 and 10 or 100 and
110) is similar, and that there is a benefit to doing a coarse
grid search up to a reasonable noising level (0 vs 100 vs 200)
to get the best value for a given task.

3) How is language guiding the representations?: Recall
that in our experiments on OVMM (Sec. IV-B), we concate-
nated the target object’s CLIP text embedding to the visual
representations before feeding it to the policy. For SCR and
SCR-FT, we also provided the text as the prompt to the U-
Net, and additionally extracted the generated cross-attention
maps for SCR-FT-ATTN. In this subsection, we seek to more
closely understand how the text prompts impact the generated
representations in SCR.

We start with the Franka-Kitchen setup from appendix I-
B.2, which includes manipulation tasks that do not originally
come with a language specification. We experiment with
providing variations of task relevant and irrelevant prompts
during the representation extraction in SCR. Tab. X shows the
downstream policy success rates for irrelevant (“an elephant
in the jungle”) and relevant (“a Franka robot arm opening a
microwave door”) prompts, compared to our default setting
of not providing a text prompt (none). We see that providing
a prompt does not help with downstream policy performance
and can indeed degrade performance as the prompt gets more

irrelevant to the visual context of the input.
TABLE X: Ablations of the input text prompt on Franka
Kitchen.

Prompt Type None Relevant Irrelevant

Success Rate 49.9 ± 3.4 49.2 ± 3.5 48.7 ± 3.3

We now move to a task that requires grounding language
in vision. We consider the Referring Expressions Grounding
task, which requires predicting the bounding box of an object
in an image based on its textual description. Performance is
measured by the accuracy of the box predictions, thresholded
at a minimum overlap of 25% with the ground truth box. We
show a sample image-text pair from the dataset to showcase
the complexity of the task in Fig. 3 and defer a more thorough
evaluation to Tab. III.
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Fig. 3: Sample image-text pair from the OCID-Ref dataset
[46] used for the Referring Expressions task.

We follow the same evaluation protocol of feeding in
frozen representations to a trainable task-specific decoder as
in Sec. IV. The decoder is a 4-layer MLP that predicts the
bounding box coordinates. To study the role of the U-Net
in shaping the visual representations guided by the text, we
examine different text integration methods in Tab. XI and
compare to the Voltron baseline. We compared the following
approaches of providing the task’s text specification to the
task decoder (in column order):
(1) No text input: Exclude text prompt from both SCR and
the task decoder by passing an empty prompt to the U-Net
and using only the resulting SCR output for the decoder.
(2) Prompt Only: Pass text prompt only to the U-Net.
(3) Concat Only: Concatenate the CLIP embedding of the
text prompt with the visual representation, feeding an empty
prompt to the U-Net.
(4) Prompt + Concat: Combination of (2) and (3).
(5) Only text encoding: Removing visual representations
completely and relying only on CLIP text embeddings.

Looking at the results of (1) and (2) in Tab. XI, it’s
evident that incorporating the text prompt into the U-Net
significantly enhances accuracy compared to ignoring the
text altogether. The transition from (2) to (3) indicates that
directly providing text embeddings to the decoder improves
performance, suggesting that certain crucial aspects for object
localization are not fully captured by the representation
alone. Going from (3) to (4) we see that with explicit text
embeddings, further modulation by visual representations



TABLE XI: Ablating text input to SCR on referring expres-
sions task.

Configuration Score

Voltron 92.5
No text input 14.8
Prompt Only 82.7
Concat Only 92.2
Prompt + concat 92.9
Only text encoding 37.5

does not significantly benefit this task. Finally, (5) reveals
the extent to which the task relies on text-based guesswork.

These findings align with both intuition and recent research
in controllable generation through diffusion models [48],
which underscores the challenges associated with using long-
form text guidance. However, ongoing efforts that focus on
training models with more detailed image descriptions or
leveraging approaches to encode and integrate sub-phrases
of lengthy texts could solve this problem.
H. Discussion

In appendix I-G, we deconstructed various components of
SCR and identified where techniques used in our approach
could apply to other foundational control models. Our analysis
in Appendices I-F and I-G.1 revealed that using multi-
layer features and appropriate spatial aggregation signifi-
cantly affects performance, and overlooking these factors
can lead to misleading conclusions about the capabilities
of previously used representations. Next, our investigation
into how language shapes diffusion model representations
uncovered nuanced results. Text influence on representations
does not uniformly enhance their downstream utility. This
is particularly evident in tasks where text specification is
not required and where training and test environments are
congruent, minimizing the need for semantic generalization.
Furthermore, tasks like referring expressions grounding
demonstrate the necessity of direct access to text embeddings
for accurate object localization, even when representations
are modulated to considerable success.

In the OVMM task, we identified a scenario where
multimodal alignment is essential. Here, we proposed a
method to more explicitly utilize the latent knowledge of the
Stable Diffusion model. While extracting similar text-aligned
attention maps isn’t straightforward for other multimodal
models, future research could design methods to derive precise
text-associated attribution maps for these models.

Finally, we contrast the simplicity of fine-tuning diffusion
models with that of the contrastive learning objective required
to fine-tune CLIP. While the former only requires image-text
or image-only samples for the conditional or unconditional
generation objectives respectively, the latter would require a
sophisticated negative label sampling pipeline along with very
high batch sizes to ensure that the model does not collapse
to a degenerate solution [6].

I. Fine-tuning Stable Diffusion
For our experiments, we start with the

runwayml/stable-diffusion-v1-5 model weights

hosted on huggingface.com and finetune them using the
diffusers library. As mentioned in Sec. III-E, we use a subset
of the frames from EpicKitchens, Something-Something-v2
and Bridge-v2 datasets. More specifically, we take the middle
one-third of the video clips and sample 4 frames randomly
from this chunk to increase the chances of sampling frames
where the text prompt associated with the video clip is most
relevant for describing the scene. This subsampling results in
a paired images-language dataset of size 1.3 million. Fig. 4
shows some samples of the images from the finetuning
datasets we use. Since different embodiments (human and
robot) are visible in the training images, we prepend the
corresponding embodiment name to the text prompt for the
associated image during training.

We adopt the same text-conditioned generation objective
as that of the base model for the fine-tuning phase. As is
standard, we fine-tune the denoiser U-Net ϵθ but not the VAE
encoder or decoder. Image-text pairs are uniformly sampled
from the video-text pairs present in these datasets. A possible
limitation of this strategy is that text-video aligned pairs (a
sequence of frames in a control task that correspond to a
single language instruction) may define a many-to-one relation
for image-text pairs. However, as we see in experiments in
which we compare to the base Stable Diffusion model in
Sec. IV, this simple approach to robotics alignment is useful
in most cases.

We finetune on the dataset for only a single epoch (5000
gradient steps) using 2 GPUs with a total batch size of 512 and
a learning rate of 1e−4. Although the original Stable Diffusion
model is trained on images of resolution 512x512, we
finetune the model on images downscaled to 256x256, since
it aligned with the resolution requirements of the downstream
application. We show some sample generations from the
diffusion model after finetuning in Fig. 5. Interestingly, we
observe that the model learns to associate the prompt with
not just the human or robot hand but also with the style of
the background and objects of the training datasets.

J. Representation Extraction Details

Here, we describe the representation extraction details for
all our baselines assuming a 224x224 input image:
- Stable Control Representations: The Stable Diffusion
model downsamples the input images by a factor of 64.
Therefore, we first resize the input image to a size of 256x256.
We pass the image to the VAE, which converts it into a
latent vector of size 32x32x4 and passes it to the U-Net.
We use the last three downsampling blocks’ and the mid
block’s output feature map of sizes 8x8x640, 4x4x1280,
4x4x1280, and 4x4x1280 respectively. The total size is,
therefore, 102400, and we linearly interpolated them to the
same spatial dimension (8x8) before concatenating them
channel-wise.
- R3M [32]: For most of our experiments we use the original
ResNet50 model, which outputs a 2048 dimensional vector.
For the referring expressions and grasp affordance prediction
tasks from the Voltron evaluation suite [33], a VIT-S is used,
which outputs an embedding of size 14x14x384=75,264
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Fig. 4: Snapshots from the datasets we use for finetuning the Stable Diffusion model.

Human hand

opening a drawer

slicing a cucumber with a knife

tossing a box in the trash

wiping the kitchen counter

Robot hand

wiping the kitchen counterslicing a cucumber with a knife

tossing a box in the trash opening a drawer

Fig. 5: Image generations from the finetuned Stable Diffusion
model. We provide 4 different prompts, each prefixed with
either “Human hand” or “Robot hand”.

- MVP [22] and VC-1 [21]: The last layer (24th) outputs an
embedding of size 16x16x1024=262,144.
- CLIP [6]: For ViT-B, the last layer (12th) outputs an embed-
ding of size 14x14x768=150,528. For ViT-L, the last layer
(24th) outputs an embedding of size 16x16x1024=262,144.
- Voltron [33]: We use the VCond-Base model which outputs
a representation of size 14x14x768=150,528.
- SD-VAE [1]: Outputs a latent vector of size 32x32x4=4096.

K. Task Details

1) Few-Shot Imitation Learning: For all baselines, we
freeze the pretrained vision model and train a policy using
imitation learning on the provided set of 25 expert demon-
strations. The results are then reported as the average of the
best evaluation performance for 25 evaluation runs over 3
seeds.

Meta-World. We follow [21] and use the hammer-v2,
drawer-open-v2, bin-picking-v2, button-press-topdown-v2,
assembly-v2 tasks from the Meta-World benchmark suite [44].
Each task provides the model with the last three 256x256
RGB images, alongside a 4-dimensional gripper pose. The
model is a 3-layer MLP with a hidden dimension of 256 and
is trained for 100 epochs similar to [21]. The training uses a
batch size of 256 and a learning rate of 1e-3.

Franka Kitchen. The tasks involved here include Knob On,
Knob Off, Microwave Door Open, Sliding Door Open, and L
Door Open, each observed from three distinct camera angles.
For each task, the model receives a 256x256 RGB image
and a 24-dimensional vector representing the manipulator’s
proprioceptive state. For our experiments, we follow [45]

and use a 2-layer MLP with a hidden dimension of 256 and
train for 500 epochs. The batch size is set at 128, with a
learning rate of 1e-4. We additionally correct a bug in the
RoboHive implementation of the VC-1 baseline, specifically on
input image normalization. Adjusting the image normalization
to a 0-1 range resulted in a significant improvement in its
performance.

2) OVMM: Open-Vocabulary Mobile Manipulation [7,
OVMM] is a recently proposed embodied AI bench-
mark that evaluates an agent’s ability to find and ma-
nipulate objects of novel categories in unseen indoor en-
vironments. Specifically, the task requires an agent to
“Find and pick an object on the start receptacle
and place it on the goal recetacle”, where object,
start receptacle and goal recetacle are the ob-
ject category names. Given the long-horizon and sparse-
reward nature of this task, current baselines [7] divide the
problem into sub-tasks. The sub-tasks include navigation to
the start receptacle, precise camera re-orientation to focus on
the object (an abstracted form of grasping), navigating to the
goal receptacle, and finally, object placement.

Since our aim is to investigate the open-vocabulary capabil-
ities of pretrained representations, we choose to evaluate the
models on only the precise camera re-orientation task (more
commonly known as the Gaze task). In the original Gaze
task, the agent is initialized within a distance of 1.5m and
angle of 15◦ from the object which is lying on top of the
start receptacle. The episode is deemed successful
when the agent calls the Pick action with the camera’s
center pixel occupied by the target object and the robot’s
gripper less than 0.8m from the object center. In our initial
experiments, we found the current initialization scheme would
lead the agent to learn a biased policy. This policy would call
the Pick action after orienting towards the closest object in
the field of view. Therefore, we chose to instantiate a harder
version of the gaze task, where the episode starts with the
agent spawned facing any random direction within 2.0m of
the object.

We carry out our experiments in the Habitat simulator [49]
using the episode dataset provided by [7]. This dataset uses
38 scenes for training and 12 scenes for validation, all
originating from the Habitat Synthetic Scenes Dataset [50,
HSSD]. These validation scenes are populated with previously
unseen objects, spanning 106 seen and 22 unseen categories.
The validation set consists of a total of 1199 episodes.

Our agent is designed to resemble the Stretch robot,
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Fig. 6: Snapshots of a sample scene from the Habitat
environments for the OVMM (left) and ImageNav (right)
task.

characterized by a height of 1.41 meters and a radius of 0.3
meters. At a height of 1.31 meters from the base, a 640x480
resolution RGBD camera is mounted. This camera is equipped
with motorized pan and tilt capabilities. The agent’s action
space is continuous, allowing it to move forward distances
ranging from 5 to 25 centimeters and to turn left or right
within angles ranging from 5 to 30 degrees. Additionally,
the agent can adjust the head’s pan and tilt by increments
ranging from 0.02 to 1 radian in a single step.

In our experiments, we use a 2 layer LSTM policy and
pass in the visual encoder representations after passing them
through the compression layer. We initialize the LSTM
weights with the LSTM weights of the Oracle model to get
a slight boost in performance. We train our agents using the
distributed version of PPO [27] with 152 environments spread
across 4 80 GB A100 GPUs. We train for 100M environment
steps while evaluating the agent every 5M steps and report
the metrics based on the highest success rate observed on
the validation set.

3) ImageNav: We conduct our ImageNav experiments in
the Habitat simulator [51], using the episode dataset from [52].
The dataset uses 72 training and 14 validation scenes from
the Gibson [53] scene dataset with evaluation conducted on
a total of 4200 episodes. The agent is assumed to be in the
shape of a cylinder of height 1.5m and radius 0.1m, with an
RGB camera mounted at a height of 1.25m from the base.
The RGB camera has a resolution of 128×128 and a 90◦

field-of-view.
At the start of each training episode, an agent is randomly

initialized in a scene and is tasked to find the position from
where the goal image was taken within 1000 simulation
steps. At each step, the agent receives a new observation
and is allowed to take one of the four discrete actions
including MOVE FORWARD (25 cm), TURN LEFT (30◦),
TURN RIGHT (30◦) and STOP. The episode is a success
if the agent calls the STOP action within 1m of the goal
viewpoint. Similar to [31], [21] we train our agents using a
distributed version of DD-PPO [27] with 320 environments for
500M timesteps (25k updates). Each environment accumulates
experience across up to 64 frames, succeeded by two epochs
of Proximal Policy Optimization (PPO) using two mini-
batches. While the pretrained model is frozen, the policy
is trained using the AdamW optimizer, with a learning rate
of 2.5 × 10−4 and weight decay of 10−6. Performance is
assessed every 25M training steps, with reporting metrics
based on the highest success rate observed on the validation
set.
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Fig. 7: Noising and denoising plots for images from 3 of
our tasks using the finetuned Stable Diffusion model. For
each image, we first add noise up to timestep t, where t ∈
{100, 200, 300}, and then denoise the image back to timestep
0. We observe that different tasks have different optimal
timesteps based on the amount of information the images
contain. On Meta-World, SD is able to reconstruct the image
correctly even at t=200, while for refer expression, noising
leads to information loss even at t=100.

L. Hyperparameters

We provide the hyperparameters used in Sec. IV for Stable
Control Representations in Tab. XII.



TABLE XII: Hyperparameters and configuration settings used across tasks and methods.

Benchmark Timestep Prompt Attn Layers Post Compression Dim

Meta-World 200 No No Mid + Down [1-3] 3072
Franka Kitchen 0 No No Mid + Down [1-3] 2048
ImageNav 0 No No Mid + Down [1-3] 2048
OVMM 100 Yes Yes Mid + Down [1-3] 2048
Referring Expression 0 Yes No Mid + Down [1-3] 8192
Grasp Prediction 0 No No Mid + Down [1-3] 8192
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Fig. 8: The Stable Diffusion model allows us to extract word-level cross-attention maps for any given text prompt. We
visualize these maps in a robotic manipulation environment and observe that they are accurate at localizing objects in a
scene. Since these maps are category agnostic, downstream policies should become robust to unseen objects at test time.

(1) Find Tomato

(4) Find Spray Bottle (5) Find Plant Container

(2) Find Gaming Console (3) Find Plant Container

(6) Find Candle Holder

Fig. 9: Images from OVMM benchmark with their corresponding attention maps obtained from the finetuned Stable Diffusion
(SD) model. The first 5 pairs of images correspond to failed episodes, with the bottom right pair corresponding to a successful
episode. The attention maps help us interpret the cause of failure: (1) Tomato - SD wrongly attends strongly to an apple. (2)
Gaming Console - visible in the top of the image; however, SD attends to multiple objects due to low visual quality. (3)
Plant Container - SD instead focuses on the two glasses it sees in the image. (4) Spray Bottle - SD completely misses the
spray bottles in the image and attends to the lava lamp. (5) Plant Container - SD wrongly attends to the apple. (6) Candle
Holder - SD correctly attends.
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