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Abstract

Performing gradient descent in a wide neural network is equivalent to computing the poste-
rior mean of a Gaussian Process with the Neural Tangent Kernel (NTK-GP), for a specific
choice of prior mean and with zero observation noise. However, existing formulations of
this result have two limitations: i) the resultant NTK-GP assumes no noise in the observed
target variables, which can result in suboptimal predictions with noisy data,; ii) it is unclear
how to extend the equivalence to an arbitrary prior mean, a crucial aspect of formulating
a well-specified model. To address the first limitation, we introduce a regularizer into the
neural network’s training objective, formally showing its correspondence to incorporating
observation noise into the NTK-GP model. To address the second, we introduce a shifted
network that enables arbitrary prior mean functions. This approach allows us to perform
gradient descent on a single neural network, without expensive ensembling or kernel matrix
inversion. QOur theoretical insights are validated empirically, with experiments exploring
different values of observation noise and network architectures.

1. Introduction

The connection between wide neural networks and Gaussian Processes via the Neural Tan-
gent Kernel (NTK) (Jacot et al., 2018) provides a powerful framework for understanding
training dynamics in deep learning. Lee et al. (2019) showed that a wide neural network
trained with gradient flow/descent on mean squared error (MSE) aligns with the poste-
rior mean of an NTK-GP. However, this result has two key limitations: it assumes zero
observation noise, leading to model misspecification, and it only holds for a specific prior
mean—namely, a randomly initialized network. Observation noise, or aleatoric uncertainty,
is crucial in probabilistic models like GPs (Williams and Rasmussen, 2006), as real-world
data is inherently noisy due to measurement errors and annotation ambiguities (Kendall
and Gal, 2017). In GPs, this uncertainty is captured through a variance term, ensuring
robust and well-calibrated predictions.

Hu et al. (2020) introduced a regularizer penalizing deviations from initialization, demon-
strating improved performance in noisy settings. However, their analysis assumed the net-
work remains in a linear regime throughout training without proving this assumption. This
is critical, as the regularizer alters training dynamics, making previous results from Lee
et al. (2019) inapplicable. Other works have explored this regularizer for generalization and
stability improvements (Nitanda and Suzuki (2020); Suh et al. (2021); He et al. (2020)), yet
all rely on unverified linearity assumptions (see Appendix A for a more detailed related work
section). In this work, we formally show that the regularizer preserves network linearity
while introducing non-zero aleatoric noise into the NTK-GP mean posterior. This ensures
the NTK-GP posterior mean properly accounts for observation noise, aligning it with real-
world data and supporting the observed generalization benefits of regularization.
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To address the problem of supporting inference with an arbitrary prior mean, we propose
the use of a shifted network during training. This approach provides a principled strategy
to eliminate initialization randomness, ensuring deterministic convergence of a single shifted
network to the posterior mean of the defined NTK-GP prior. In essence, we investigate the
following question:

Main Research Question. Is there a loss function such that performing gradi-
ent descent on that loss gives us a network with predictions

() + Ot (O + BI) (v = m(x).

for an arbitrary prior mean m(x) and for arbitrary values of observation noise 5?7

We answer this question in the affirmative. Specifically, we build up the theory for support-
ing 8 > 0 in Section 3 (Theorems 1 and 2) and then add the theory for supporting arbitrary
prior means in Section 4 (Theorem 3).

2. Preliminaries

Neural Network Parameterization. The choice of parameterization affects how signals
propagate and how gradients scale with width. Let ¢ : R — R be a Lipschitz activation
function. In the standard parameterization, layer outputs are given by

hl+1 — Wl+1xl + bl+1’ $l+1 — ¢(hl+l) c Rnl+17 (1)

where W1 € Rm+1Xm and b+l € R™+1. The parameter vector # € R? stacks all weights
and biases. For simplicity, we consider scalar outputs (k = 1) and assume ny = -+ = ng, =:
2

n. Weights are initialized as Wé}ij ~ N(0,-%%), and biases as b ; ~ N(0,03,). In this

ny
setting, the Jacobian norm diverges as n; — oo.

g

The NTK parameterization rescales the weights:

1
hl+1 — ﬁwH*lxl + bl+1, lerl — ¢(hl+1). (2)

Here, Wé’ij ~ N(0, 012071) and bé,i ~ N(0, O’il). This scaling ensures stable signal propagation
in the infinite-width limit. Appendix C details the equivalence between parameterizations
under proper learning rate selection.

Neural Tangent Kernel (NTK). The NTK describes the evolution of predictions in
wide neural networks. Given f(z,0) with parameters 6 € RP, define the Jacobian J(z, ) :=

% € RV*P. The empirical NTK is:

éz’,m = J(.’IJ’, 90)J($,00)T c RNIXN- (3)
As n — oo, Jacot et al. (2018) showed that (:)x@m converges to a deterministic kernel ©,

which remains constant under unregularized gradient flow. This defines an NTK-GP, where
the trained network mean aligns with the GP posterior mean.
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3. Observation Noise through Regularized Gradient Descent

Weight-space regularization not only affects generalization (Hu et al., 2020) but also alters
training dynamics. Lee et al. (2019) studied unregularized gradient flow, showing its role
in aligning network convergence with Bayesian inference. Here, we analyze regularized
gradient flow, proving that the training trajectory remains arbitrarily close to its linearized
counterpart, providing insights into how regularization modifies learning.

Define f(0) := f(x,0), g(0) := f(x,0) —y € RN, J(0) := J(x,0) € RV*P in the training
points.! We will consider (for NTK parametrization?) the regularized training loss

al 1 1
£06) 1= 5 (70t 0) — v + 5810 — ol = lo@NF + 3816~ dol3 (@)

i=1
The gradient of this loss is given by
VoL (0) = J(6)"9(0) + B(® — o). (5)
We study the training dynamics under the regularized gradient flow>*

dé,

= B
By the chain rule, % = J(, 9'5)%’ and thus the dynamics of the network are
df (z,0
f(dtt) == (J<x7 00).J (0:) " g(0:) + BJ (,0,) (6; — 00)> . 1)

For the sake of readability, we omit the dependence of 8; on 6y and 5. To gain insights into
the role of regularization, we first analyze the regularized gradient flow for the linearized
network

fo(2,0) = f(z,00) + J(z,00)(0 — bo). (8)

This is a linear ODE and hence has a closed-form solution. We formalize this in the following
theorem.

Theorem 1 For training time t — oo, at any point X',

féion(xlﬁ 000) - f(xla 90) + (':)x’,x ((:)x,x + /BI>_1 (y — f(X, 90)) (9)

We derive this solution (for gradient flow and gradient descent) in Appendix B.

If the network initialization is treated as a random variable, the trained linearized network
converges to a normal distribution as n — oo, with a mean matching the NTK-GP posterior

1. We assume that x; # x; for i # j.

2. See Appendix C.2 for standard parametrization.

3. In Appendix F, we state equivalent results for gradient descent with small enough learning rates. These
will involve geometric sums instead of the exponential.

4. We will prove that this ODE has a unique solution under our assumptions.
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mean for a zero prior. However, as noted in (Lee et al. (2019); He et al. (2020)), its covariance
does not correspond to an NTK-GP posterior covariance (see Appendix H).

This section aims to prove convergence of the training dynamics of neural networks to those
of a linearized network for large enough n. For this, we leverage the Lipschitzness of the
Jacobian (Appendix D) and derive new results to prove that the parameter deviation from
initialization remains O(1) (Appendix E.1). Lastly, using these results, we conclude that
the regularized gradient flow and its linearized counterpart remain arbitrarily close.

3.1. Closeness to the Linearized Network along the Regularized Gradient
Flow

We now show that the parameters 6; under regularized gradient flow remain arbitrarily close
to the parameters 61" obtained from the gradient flow applied to the linearized network for
large enough layer width. Using this, we can further prove that the neural network trained
from initial parameters 6y is arbitrarily close to its linearization around 6.

Theorem 2 Let B> 0. Let g > 0 be arbitrarily small. Then, there are C1,Cs, such that
for n large enough, with probability of at least 1 — &g over random initialization,

: 1
supl|6; — 6|, < C —, 10
tZOHt i 2 ' n (10)

(11)

Vel < 1+ suplf (.00 = 5o 617 < Co
See Appendix E.2 for a proof. Unlike previous proofs for § = 0, which rely on the expo-
nential decay of ||g(6;)]|2, we use a more general approach valid for 5 > 0. We decompose
| f(x,0:) — éion (z,01M)||2 into two terms and bound them using Theorem 8 (from Appendix
E.1). These results establish that wide networks under regularized gradient flow remain in a
linear regime, allowing us to apply Theorem 1 to analyze training with regularization.

3.2. NTK-GP Posterior Mean with Aleatoric Noise Interpretation

At convergence under regularized gradient flow, the output of the linearized network cor-
responds to the NTK-GP posterior mean with non-zero observation noise, providing a
Bayesian interpretation of regularized training. While the trained parameters 6., depend
on the random initialization 6y, this variability is not central to our analysis. Unlike deep
ensembles (He et al., 2020), or Thompson sampling (Thompson, 1933), which explicitly
leverage initialization randomness, our focus is on the behaviour of a single trained network.
The initialization strategy we define next removes this randomness, ensuring deterministic
convergence of an individual network to the posterior mean of the NTK-GP.

4. Neural Network Initialization as NTK-GPs with Arbitrary Prior
Mean

Standard neural network initialization typically involves randomly setting weights and biases
to break symmetry but lacks a principled way to encode specific inductive biases or desired
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properties. In contrast, Gaussian processes provide a structured framework for defining
prior distributions over functions through the prior mean and covariance. One approach to
obtaining the NTK-GP posterior with zero prior mean is to train an ensemble of networks
and average their outputs (He et al., 2020). However, if only the posterior mean is needed,
this can be achieved more efficiently with a single network. Section 4.1 explores how, under
the NTK-GP framework, neural networks can be initialized to reflect arbitrary prior means,
allowing greater flexibility for different tasks.

4.1. Shifting the labels or predictions

Inspired by standard techniques in GP literature Williams and Rasmussen (2006), we pro-
vide a formal construction for modifying the network to introduce arbitrary prior mean.
This can be accomplished either by shifting the predictions of the neural network by its
predictions at initialization, or equivalently, defining a new shifted network. The following
theorem formalizes this, resolving the main research question we posed in Section 1.

Theorem 3 (Shifted Network.) Consider any function m. Given a random initialization
6o, define shifted predictions fp,(x,0) as follows:

foo(x,0) := f(x,6) — f(x,60) +m(x). (12)

Training this modified network (starting with 0y) leads to the following output (in the
infinite-width limit)

Joo (X', 850) = m(x') + O x(Oxx + BI) " (y — m(x)). (13)
This can be interpreted as the posterior mean of an NTK-GP with prior mean function m.

We prove this in Appendix G. Unlike the standard network, where fp,(x/,6) is random
but has an NTK-GP posterior mean with prior 0, the shifted network’s output fgo (x,0)
is deterministic. This follows from the NTK being independent of initialization in the
infinite-width limit.

A drawback of shifting predictions is the need to store 8y, doubling memory usage, which
may be prohibitive for large networks. Computing the shift also adds a minor overhead due
to the initial forward pass. However, no additional back-propagation is required, making
this approach more efficient than training an ensemble.

5. Experiments

We empirically validate our results by studying the convergence of wide neural networks
trained with regularized gradient descent to their linearized counterparts. We measure how
trained parameters deviate from the optimal linearized network parameters and how this
difference shrinks with width. Additionally, we compare the trained network’s predictions
to kernel ridge regression while varying depth and regularization strength (.

We train fully connected MLPs under the NTK parametrization using full-batch gradient
descent on a synthetic regression task: y = sin(z) + cos(2z) + ¢, where € ~ N(0,0?). Inputs
x are sampled from [—6,6], and we use a two-layer network. We compute the [ norm
between trained parameters and those from kernel ridge regression and evaluate prediction
error on a test set.
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5.1. Empirical Convergence of the Parameters
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Figure 1: Comparison of parameter and function differences between trained neural net-
works and their linearized counterparts. Left: Deviation in parameter space. Right: Dis-
crepancy in function space across validation points. Shaded regions represent standard
deviation divided by the square root of the number of seeds.

We compare the trained network parameters to those obtained via kernel ridge regression
with the NTK by computing their ¢35 norm difference. Using Theorem 3, we set the prior
mean to zero. As shown in Figure 1 (left), this difference decreases with increasing width,
supporting Theorem 2.

For smaller widths, deviations from the linearized solution highlight finite-width effects, but
these diminish as width grows. Appendix I provides additional results for varying depths.
Notably, inverting the NTK matrix posed a computational bottleneck, limiting scalability,
whereas training the network remained efficient even with full gradient descent.

5.2. Empirical Convergence of the Trained Network to a Linear Model

We now examine function-space convergence by comparing the trained network’s predictions
to those of the corresponding linearized model on unseen data. The validation set, com-
prising 20% of the dataset, was sampled from the same distribution as the training data.
Specifically, we compute sup,cy | f(z,000) — 1 (z,6%)|2, which quantifies the deviation
between the trained network and the kernel ridge regression solution.

Figure 1 (right) shows that this discrepancy decreases with increasing width, further sup-
porting Theorem 2. Additional results for different depths are in Appendix I.

6. Conclusion and Future Work

We analyzed regularized training in wide neural networks under the NTK framework, prov-
ing that weight-space regularization is equivalent to adding aleatoric noise to the NTK-GP
posterior mean in the infinite-width limit. We also introduced a shifted network approach
that enables arbitrary prior functions and ensures deterministic convergence without en-
sembles or kernel inversion. Empirical results confirm our theoretical findings.

Future work could explore our regularizer in architectures with NTK convergence, such
as convolutional and residual networks Arora et al. (2019); Belfer et al. (2024); Yang
(2020).
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Appendix A. Related Work

Linearization The paper by Lee et al. (2019) serves as the starting point for our work. It
demonstrates that as network width approaches infinity, training dynamics simplify and can
be approximated by a linearized model using a first-order Taylor expansion. Lee et al. (2019)
also study the links between the output of trained neural networks and GPs. Crucially, we
extend this work by proving that this linearization still holds in the presence of observation
noise.

Kernel Methods and Neural Networks The seminal paper by Jacot et al. (2018) made
two contributions. First, it introduced the equivalence between kernel methods and wide
neural networks, specifically for the case of kernel ridge regression. Second, it popularized
the study of neural networks in function space, rather than parameter space. We leverage
both of these insights: our Theorem 3 considers the function-space view of a Gaussian
Process (a kernel method). Several later studies have explored the links between wide
neural networks and GPs through the NTK, to investigate the functional behaviour of
neural networks in noisy settings. For example, Rudner et al. (2023) introduced function-
space regularization to encode desired properties into predictions, indirectly addressing
observation noise, while Chen et al. (2022) linked NTK-based function norms to RKHS
regularization, proving to be useful in low-data regimes.

Global Minima and Overparameterization In the context of overparametrization,
Allen-Zhu et al. (2019) prove that stochastic gradient descent (SGD) can find global minima
for neural networks in polynomial time. Similarly, Zou et al. (2020) show that ReLU
networks trained with SGD converge to global minima for a wide range of loss functions by
ensuring that weight updates remain within a small perturbation around the initialization.
While we do not rely on these results directly, our result is spiritually related in that we
guarantee convergence to the global optimum with high probability.

Regularization A line of work has explored the role of regularization in wide neural
networks through the lens of the NTK. Hu et al. (2020) introduced the regularizer pe-
nalizing deviations from initialization, providing generalization bounds in noisy settings
but assuming network linearity without proof. Nitanda and Suzuki (2020) and Suh et al.
(2021) extended this approach to constrain network dynamics and stabilize deeper archi-
tectures.

Bayesian Ensembles He et al. (2020) described a way of training Bayesian ensembles
of neural networks, allowing for inference in the NTK-GP with zero prior mean by averag-
ing the ensembles using the law of large numbers. In cases where we are only interested
in obtaining the posterior mean, our approach is more efficient since we only train one
network®.

5. They additionally provide a way of estimating the posterior covariance, which is not of interest in our
paper.
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Appendix B. Regularized gradient flow and gradient descent for the
linearized network

Consider the linearized network f'"(z,0) = f(x,60) + J(z,00)(0 — ). For notational

convenience, we drop the dependence on 6y throughout the Appendix. In the following, we
will consider training the parameters using the regularized training loss

1 N

5 (i 0) — yi)? + 5810 — o3 (14

3,lin -
L771(0) - 5 2

B.1. Regularized gradient flow for the linearized network

The evolution of the parameters through gradient flow with learning rate g is given by

By (00T + 0 ) (15)
= —n0 (J(00)" (f(B0) + J(B0) (6™ — bo) —y) + B(6;™ — 6o)) (16)
= —n0 (J(80) " J(60) + BIL,) (0™ — 60) — 107 (60) " (f(60) —y)- (17)

This is a multidimensional linear ODE in 6™ — . Its unique solution is given by

O = 0o -+ (70O IO ) (<o (J(00) T (B0) + BT,)) " (~m0(00) T (f(60) — )
(18)
P (I (00T IO+, )t ) (J(60) " T(60) + BL, ) J(00) " (y — f(60)) (19)
=0+ (I, — eI ()T (J(t%) (60)7 + mN) "y - 1(60)) (20)
=0+ (J(60) T — 7O I OB gy T THBIN) v - f6) (D)
= o+ 7(00) " (I - e*m“”“”““)”ﬁ’fv) ) (J<90>J< 0)T + ﬁbv)’ (v — /(60)). (22)
In the third and fourth equality, we used that for k € Z,
(7(80)TJ(60) + BL,) " 1(60) T = J(60)T ((80) T(00)T + BIn)" . (23)
Substituting A" into the formula for the linearized network, we get for any point x’,
M0 (24)
= (', 00) + J(x,00)J (00) T (Iy — €= UMY (7(90) T (06)T + BIn) ™ (v = £(00)
(25)
=F(x',00) + O (I — e (O t81) (O, 4 I ) (v = f(60)). (26)
For training time t — oo, this gives
FI (', 052) = £, 00) + O (O + BIn) (v = £(60)). (27)

B.2. Regularized gradient descent for the linearized network

Similarly to gradient flow, the evolution of the parameters through gradient descent (when
training the regularized loss given by the linearized network) with learning rate 7 is given
by

0" = 6:"1 — o (J(60) " T (60) + BI,) (61 — 60) — noJ (60) " (f(60) — y)- (28)

10
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One may write this as
;™ — 0o = (I, — o (J(60) T J(60) + BIp)) (6™ — 60) — 10 (60) T (f(6o) — y)- (29)

Applying the formula for 6/ — 6 iteratively, leads to the geometric sum

O — = 10 S (I, — 0 (J(60)T T (60) + A1) T(60)T (F(60) — ) (30)
u=0
=10J(0o) " z_: (In —no (J(00)J(00) " + BIN))u (y — f(60)) (31)
u=0
=J(0)" (IN — (In =m0 (J(60)J(60) " + /BIN))t) (J(60)J(60) " + 5IN)_1 (y — f(6o))-
(32)

2
) )\max(J(GO)J(GO)T)+,B
converges (as expected) to the same 61" as that of the regularized gradient flow. Substituting
0 into the formula for the linearized network, we get for any point x/,

This converges for ¢ — oo if and only if 0 < 9 < In that case, it

flin(xl7 9}3“) (33)
=F (<, 00) + (<, 80)60) (I = (I =10 (J(60)T (60) T+ BIn))") (J(60)J(60)T + BLx) ™" (3 = F(60))

(34)

1< 00) + O (I = (1 = 1 (S + 51) ) ) (O 4 B) (v = 00 (3)

Appendix C. Revisiting standard and NTK parametrizations, and
convergence at initialization

In the following, we revisit the standard and the NTK parametrization. First, we repeat
the result about the convergence of the NTK for the NTK parametrization at initialization.
Then, we formally state how the NTK and standard parametrization are related, which
makes it possible to prove the results for standard parametrization by using the results
for NTK parametrization. Finally, we argue that using the same learning rate for every
parameter under standard parametrization leads to redundancies in the NTK for the first
layer and the biases.

C.1. Convergence of NTK under NTK parametrization at initialization

Here, we restate the following theorem from Yang (2020) about the convergence of the NTK
at initialization. This was first shown in Jacot et al. (2018) when taking the limit of layer
widths sequentially.

Theorem 4 Consider a standard feedforward neural network in NTK parametrization.
Then, the empirical NTK @y x converges to a deterministic matriz Oy y, which we call
the analytical NTK:

L+1

O = J(@',00)(w,00) =D (J(', W T (@, W T + I, 6)T(,0) ) 5 @0, (36)
=1

for layer width n — oc.

11
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Define ® := O x € RN*N as the analytical NTK on the training points. We will assume
Amin(®) > 0. A sufficient condition for this is that ||x;||2 = 1 Vi, and that ¢ grows non-
polynomially for large x, see Jacot et al. (2018). This directly implies that for n large
enough, the minimum eigenvalue of the analytical NTK is lower bounded by a positive
number with high probability:

Lemma 5 For any dp > 0, there is n large enough, such that with probability of at least
1 — 6o, for the minimum eigenvalue of the empirical NTK,

Amin (J(GO)J(GO)T> > %)\mm(@)), and A (J(eo)J(eo)T) < D (©).  (37)

C.2. Equivalence of NTK parametrization to standard parametrization with
layer-dependent learning rates

In this section, we will formally show how the NTK parametrization relates to the standard
parametrization of neural networks. This makes it possible to prove results for standard
parametrization by using the results for NTK parametrization.

Recall that the number of parameters is p = ElL:Jrll (ni—1 + 1)n;. Define the diagonal matrix
H € RP*P through

H = diag(Hy,1, Hp1, - - Hw,p11, Ho 141), (38)
where H,,; = ﬁl_llnz_mw and Hy; := I,. The diagonal of H? contains the scalars by
which each parameter is multiplied when going from NTK parametrization to standard

parametrization. For G(S)td initialized in standard parametrization, define

gutk = 25 (39)

Then, 63t is initialized as in NTK parametrization. Further, let f*'¢ denote a neural
network in standard parametrization. Then,

fntk(.l‘,entk) — fStd(.x’H%Hntk), (40)

defines a neural network in NTK parametrization. Differentiating with respect to 6™k
gives

Jntk(x,entk) _ Jstd(x’H%Hntk)H%’ (:)EF}; _ JStd(.’L'/7H%9ntk)HJStd(x,Héentk). (41)

Motivated by this, define the regularized loss

N

1 1
B,std — std /. 32 Trr—1
L7F(0) = 3 ;(f (xi,0) —yi)" + 55(9 —0o) H™ (0 — 0o), (42)
with the gradient
Vo L£P4(0) = J52(0) T g*4(0) + BH (6 — 6p). (43)

12
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Define 65'Y as parameters evolving by gradient flow of the regularized objective in standard
parametrization®, with layer-dependent learning rate 1y H:

dHStd S S S S S S S S
=~ H VLG ) = —no HI(O) T g™ (0F) — BB — 05). (44)
We define 07tk := H—2¢5d Then, as di%:k = H‘%%,
doy e 1 ostd/pstd\ T std/pstd -1 std std
di = —noH2J¥(0;) ¢ (0;) —moH 280, — 05°) (45)
10 IR 1n n n
=10 <JStd(H29t tk)H"’) g td(H29t tk) — noB(6; th_ eotk) (46)
= —no " (07) T g™ (07 — no B0 — 65). (47)

Thus, 02 follows the regularized gradient flow of the objective under NTK parametrization
with learning rate n9. Now, we can apply our results for NTK parametrization from above,
and transfer them to standard parametrization by using €54 = H %0}}“‘, t4(z, 05t4) =
U (, H203).

C.3. Redundancies when using the same learning rate for standard
parametrization

In the previous section, we established the equivalence between training a neural network in
NTK parametrization with learning rate ng, and a neural network in standard parametriza-
tion with layer-dependent learning rate ngH. By definition, the learning rate for the first
layer is niono = %17707 and the one for the biases is 79. The learning rate for the other weight
matrices is ﬁno = %770, for l = 2,...,L + 1. Note that the convergence of the learning
rates to 0 for n — oo is necessary to stabilize the gradient.

The learning rate that was used in the proof of Lee et al. (2019) is %770 for any layer. In
the following, we argue that this effectively leads to the first layer, and the biases not being
trained in the infinite-width limit. For simplicity, let 5 = 0. Lee et al. (2019) shows that
using the learning rate %770 for each layer in standard parametrization, leads to the trained
network for large width being driven by the standard parametrization NTK

L+1
1 1
(o, 00) 7w, 00) T = — 3 (M@, W W) T+ T 8T e, 8) )
I=1
(48)
By using the equivalences from the previous section, we may write for [ = 2,..., L+1 (using

1 .
HUJJ = ﬁIm_mz)-

1 3 2 : 2%
EJStd(:U/,Wé)JStd(I,Wé)T _ <J5td(Hi,7l\/ﬁWé)Hi),l> (Jstd(Hqu\/ﬁWé)Hi],l) (49)

= (/W) T (VW) T (50)

6. The existence of a unique solution of this ODE will follow from the relation to the gradient flow under
NTK parametrization.

13
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This is equal to the empirical NTK under NTK parametrization for weights \/ﬁWéﬂ-’j ~
N(0,0,,) in the [-th layer. However, for the first layer, we get (using Hy, 1 = éIdn)

1 d : i)
njstd(x’,w(})Jstd(x,W(})Tz(JStd(HQ VaAWg)H ><J5td(H2 VAWg)Hy; )

n
(51)

d
= M (VAW) T (Vdwg) T (52)
— 0, for n — oo, (53)

as JUK(V/dW3)J",(\/dWa)T converges by Theorem 4. Similarly for the biases, for I =
L+ 1:

1 1
EJStd(a:', b)) I (2, ) T = EJntk(a:’, bh) (2, bh) T — 0, for n — oo, (54)

Thus, the analytical standard parametrization NTK of Lee et al. (2019) does not depend
on the contribution of the gradient with respect to the first layer and the biases. In other
words, using the learning rate %7}0 for the first layer and the biases leads to them not being
trained for large widths.

Instead, one may scale the learning rates “correctly”, as motivated by the NTK parametriza-
tion in the previous section. For large widths n, the trained network is then governed by
the following modified NTK for standard parametrization:

J(9)H 5 (6) (55)
L+1
:JStd(Wl)JStd(W ) + Jstd(bl Jstd bl Z ( Jstd Wl Jstd(Wl) + Jstd(bl)JStd(bl)T> )
(56)

For simplicity, we do not consider training of the first layer and the biases.

Appendix D. Local Lipschitzness and Boundedness of the Jacobian

The goal of this section is to prove the following lemma:

Lemma 6 For any 6y > 0, there is K' > 0 (independent of C), such that: For every
C > 0, there is n large enough, such that with probability of at least 1 — oy (over random
initialization): For any point x with ||z|2 < 1:

VO € B(6y,C) : ||J(z,0)|]2 < K, (57)
~ - 1 -
90,0 € B(#, ) : | (w,0) — I, 0) 2 < = K'l0 (58)

In particular, with K = v NK', for the Jacobian over the training points:

V0 € B(6),C) : | J(6)]|r < K, (59)
V9,6 € B(6o,C) : | J(6) — J(B)]|r < ;ﬁKue — 4]l (60)

14
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As a direct consequence, for the Hessian Vaf(z,0) € RP*P of the network,

V0 € B(6o,C) : ||V f(x,0)|, < \}HK’. (61)

Here, the Frobenius-norm is used to aggregate over different training points, i.e. ||J(8)||% =

Sl (e, 0)15-

Lee et al. (2019) proved this Lemma for standard parametrization. In their version for
NTK parametrization (Lemma 2), there is a typo stating that the Lipschitz-constant of the
Jacobian is O(1) instead of O(ﬁ), which is why we quickly go over how to obtain this
Lemma. As mentioned in the previous section, we don’t train the first layer and the biases
for simplicity. Let f™* be the network in NTK parametrization, and let 6y be randomly
initialized according to the NTK parametrization. Further, let 9,5 € B(6p,C). Then,
49) == fr*%(y/nh) is a network in standard parametrization, and %00 is randomly

ini;cialized in standard parametrization. Further, fﬁ \}0 € B( fﬁo, IC) Note, that
JUE(Q) =

ﬁﬁtd(ﬁe). Now, by applying Lemma 1 from Lee et al. (2019) to the network in
standard parametrization and the parameters IGO, fe fH we get with high probability

over random initialization:

”Jntk(a:’Q)H2 _ \}ﬁ‘JStd( 7\/1> )H < \/EK/ — K/’ (62)

and

1
779 _Jstd z,
f ) (

10~ 7=

HJntk(CU,H) N J“tk(a:,e)Hg _ THJStd(x }é)‘h (63)
1
NG

<—\FK’

NG 9H2 =

K'[0 =0l (64)

Appendix E. Proof for regularized gradient flow

The goal of this section is to proof Theorem 2. In section E.1 we show that the norm of the
gradient of the regularized loss decays exponentially over time. This result directly implies
that the distance between the parameters and their initialization is bounded by a constant,
ie. ||0:—0o||]2 = O(1). Further, it follows that the Jacobian remains close to its initial value,
with deviations scaling as O(%) Using this, we can prove the closeness of the network to
it’s linearization during training in section E.2.

E.1. Exponential decay of the regularized gradient and closeness of
parameters to their initial value

We start with the following technical lemma.

Lemma 7 Let § > 0. We have for any t > 0: |g(6)]l2 < |lg(6o)|2- Further, for any
dg > 0, there is Ry > 0, such that for n large enough, with probability of at least 1 — &y over
random initialization, ||g(6o)|l2 < Ro.
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Proof Using the chain rule and the definition of the gradient flow, we obtain

d do
T L2(0) = VoL (00T " = —mVoL (0)TVeLP (0r) = —mo|[ VoL (@)]I3 < 0. (65)

Thus,
1 1 1 1
S19(0013 < 5103 + 516 — 6oll3 = £(60) < £7(00) = 5l (@) 3. (66)

Hence, ||g(0:)]]2 < ||g(0o)]||2. Further, note that f(6y) converges in distribution to a Gaussian
with mean zero and covariance given by the NNGP kernel Lee et al. (2018). Thus, for n
large enough, one can bound ||g(6p)||2 with high probability. [ ]

In the following, we show that the norm of the gradient of the regularized loss decays
exponentially over time.

Theorem 8 Let > 0. Let g > 0 be arbitrarily small. There are K', K, Ry, cg > 0, such
that for n large enough, the following holds with probability of at least 1 — oy over random
initialization, when applying reqularized gradient flow with learning rate n = ng:

do
2

K K

60— Bollo < B0 (1 — et < % —C, (68)
s
Ve < 1+ (2.0) = Tz 00 < —=K'C, (69)
1

01) = J(6o)ll2 < —=KC.

I|.J(6:) — J(00)]]2 < 7 C -

Proof Using Lemma 7, there is Ry > 0, such that for n large enough, with probability of at
least 1 — £8o over random initialization, [|g(6o)||2 < Ro. Further, using Lemma 6, let K be
the constant for local Lipschitzness/boundedness of the Jacobian with probability 1 — %50
for n large enough. Finally, by Lemma 5, for n large enough, with probability of at least
1-— %60 over random initialization, the minimum eigenvalue of the empirical NTK is lower
bounded: Amin(J(00)J(00)T) > %)\min(@).7 For n large enough, these three events hold
with probability of at least 1 — dg over random initialization. In the following, we consider
such initializations 6.

Define cs := %B for > 0, and cg := %/\mm(@) for B =0.% Let C := Kc—f‘o. By Lemma 6,
the gradient flow ODE has a unique solution as long as 6, € B(6y,C). Consider

t1 = inf{tzo: H(gt—e()HQ ZC} (71)
In the following, let t < ¢;. Recall that
de
= —mVel(6) = —no (J(6) 9(6:) + B(6r — 00) ). (72)

7. We will only need this for 8 = 0.
8. One can choose any constant smaller than 8 for 8 > 0, and similarly any constant smaller than Amin (©)
for g =0.
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We want to show that the gradient Vg£?(;) of the regularized loss converges to 0 quickly,
and hence 6; doesn’t move much. For 8 = 0, its norm is ||J(6;) " g(6;)||2 and hence Lee et al.
(2019) and related proofs showed that ||g(6;)||2 converges to 0 quickly. However, for § > 0,
this is not the case, as the training error does not converge to 0. Instead, we directly look
at the dynamics of the norm of the gradient:

d db
LIvsL? 013 =2 (VoL (0) V3EA6) S (73)
= 2 (VeL?(0)) V3LP0:) (VoL @) (74)
The Hessian V32L£P(6;) € RP*P of the regularized loss is given by
ViL () = g(0:) VG £ (00) + J(0) T J(0) + BI,. (75)

Here, V3f(0) € RN*P*P_and g(6;)"V2f(6:) = SN | g(xi,0:)V2f(xi,6;). Next, use the
triangle inequality and Cauchy-Schwarz to write

l9(00) " VG ©)> < Z (i, OV S (i, 0|2 < llg(B1)l2 va (i, 0)I13. (76)
i=1 i=1
By Lemma 6, we have ||V2f(x;, 0;)|]2 < ﬁK’. Further, by Lemma 7, we have [|g(6;)]|2 <
19(60)l2 < Ro. Thus (with K = vV NK'),
1
l9(6) " V5 ()]l < 7 K Fo- (77)
As g(et)Tvg f(0) is symmetric, its minimum eigenvalue is lower bounded:
1
: T > V2 > .
Amin (900 TV31(0)) 2 ~lg(6) V@)l 2~ KRy (78)

Now consider S > 0. Then, for n large enough, the smallest eigenvalue of the Hessian of
the regularized loss is positive:

1
Amin (vgzﬁ(et)) > ==Ky +0+5 > g —: cs. (79)
Thus,
d
@HWEB(@)H% < —2n0cgl| VoL (6,)]5. (80)

In Remark 9 we show how to modify the proof so that this step is valid for 8 = 0.
By Gronwalls inequality, it follows (for § > 0) that

IVoL7 (613 < e[ Vo L7 (60) 3. (81)
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Thus,

Ve L5 (0)]l2 < e ™| VoL (60) ]2 (82)
< e ™| 1 (00) T g(60) |2 (83)
< e J(60)]l21lg(8o) 2 (84)
< K Rge ™", (85)

Hence, for the distance of parameters from initialization

L do,
I~ ool = | [ S (56)
' o du 2
Ll de
< [ |22 du (87)
/0 du ||
t
§770KR0/ e B dy, (88)
0
K
= R°(1—e*770%t). (89)

cp

Thus, for t < t1, ||#: — Oo||2 < C. By continuity, t; = oco. Using local Lipschitzness, one can
further bound the distance of the Jacobian at any [|z|l2 <1

1 1
1 (x, 0¢) — J(x,00)|2 < %K/H@t —oll2 < %K/C- (90)

This finishes the proof of Theorem 8.

Remark 9 For =0, the Hessian is
V3L (00) = 9(00) "V F(00) + T(01) T T(6r). (91)

For 3 > 0, we just used that J(0;)T J(6;) is positive semi-definite, as BI dominates the
negative eigenvalues of the first term of the Hessian. For § = 0, this is not enough.
J(0,)TJ(0;) € RP*P shouldn’t be confused with the NTK J(6;)J(0;)" € RN*N. However,
they share the same nonzero eigenvalues. For p > N (which is the case for n large enough),
J(0;) T J(6) will additionally have the eigenvalue 0 with multiplicity of at least p— N. Thus,
we can’t naively lower bound the minimum eigenvalue of the Hessian with the minimum
eigenvalue of J(0;)" J(6y).

Luckily, VoL%(0;) = J(0;) " g(0;) is in the row-span of J(0;). This is orthogonal to the
nullspace of J(0y), i.e. the eigenspace corresponding to the eigenvalue O of J(0;). Thus,
VoL0(0;) only “uses” the positive eigenvalues of J(0;)" J(6;). The smallest positive eigen-
value of J(0;)7J(0;) is equal to the smallest positive eigenvalue of the empirical NTK
J(0,)J(6,)7, which is lower bounded by 1 Amin(©) on the high probability event we consider.
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Hence, for n large enough,

d
Va3 = —3m0 (VoL(0) ' V3L (60) (VoL (61)) (92)
1
< =20 Amin (VoL (01)) VoL (O)]Z =m0 Amin (O)[ VoL (G5 (93)
1 1
< 2 (~E2 KRy + Pain(©) ) V0603 (o1
1
< =203 Mmin(©) [ Vo L (61) 3. (95)

Define ¢y := %)\mm(@)) to continue with the proof above for B > 0. This is an alternative
proof to Lee et al. (2019). It shows that in the unregularized case, it is important that the
gradient flow lies in the row-space of the Jacobian.

E.2. Closeness to the Linearized Network along the Regularized Gradient
Flow

Now, we can prove that the neural network along the regularized gradient flow stays close
to the linearized network along the linear regularized gradient flow. We restate the theorem
for convenience.

Theorem 2 Let 8 > 0. Let §g > 0 be arbitrarily small. Then, there are Cy,Co, such that
for n large enough, with probability of at least 1 — &g over random initialization,

; 1
supl|6; — 6|2 < C1—= (10)
t>0

i
: : 1
<1: _ lin lin < ] 11
Vel < 15 supl (e 00) = £ 0]l < Co—re (1)

Proof The proof of Lee et al. (2019) use that the training error converges to 0. Thus, we
need a different approach, which also provides a more straightforward and intuitive proof
for 8 = 0. Recall that

F™(2,0) = f(x,00) + J(x,00)(0 — o), (96)

and .
dehn
dt

To prove the second part of the theorem, we will use

= 0 (J(00) g™ (6}) + B(OS™ — 00) ). (97)

1F (2, 00) = f10 (2, 0"z < 11f (2, 00) — £, )|z + (L (2, 0e) — f70 (2, 07) |2 (98)

We start by bounding the first term. Next, we bound ||§; — 6|2, and use this to bound
the second term.
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First step: To bound || f(z,0;) — f'""(x,6;)|2, we compute

. de

H (x,6;) fh“(x,et)> = H(J(m,@t) — J(z,6p)) dtt (99)
d¢9
< G, 80) = T (. 0ol | | (100)
1
< —=K'CnoK Rye~™%* 101
= \/ﬁ CTIO Roe ) ( 0 )
where we used Theorem 8 in the last step. Now, we can bound
KRy

i 1 ¢ 1 1
__glin < K/ K / —nocgu < K/ — K/ 2' 102
Hf(xvet) f (x79t)||2 = \/ﬁ CT’O RO 0 € du >~ \/ﬁ C cs \/ﬁ C ( 0 )

In particular, for the difference at the training points, ||f(6;) — f'(6;)|l2 < KC’Q.

Second step: Now, we bound the difference between 6, — 9%“1. We write

= (760 9(60) + 56~ 60)) (103)
= =m0 ((J(60) = J(60)) 9(60) + J(60)T (9(6) — 9™ (8)) + T (60) ™ () + B(8: — )
(104)

= o2 =m0 (T(00) g™ (0:) + B0~ 00)) . (105)

where A, == (J(8;) — J(6)) " g(6,) + J(6)T (9(6:) — g"™(6:)). We now bound ||A|2. For

the first term, use Theorem 8:

1(T0) = (00) " 90|z < [17(6) — T(B0) |12l g(00)ll2 < ;ﬁKcRO. (106)

For the second term, use Theorem 8 and the bound we derived in the first step to write
1780 (9(6) = ™8 ) ll2 = 11760)™ (£(80) = 1™ (60)) I (107)
< [T (80) 1211 £(8:) — £(80)]|2 (108)
< \}HKQCQ. (109)

Thus, defining K2 := KCRy+ K2C?, we can bound || A2 < ﬁKA. Now, compute
CZ(@ — gl (110)

= — ol — (J(QO)TQIIH( t) + By (0 — 90)) + 1o <<7(9())T i (gfin) + B (6™ 90))

(111)
==l — 0 (J00)T (9"(0) — g™ (0/)) + B(6: — 0})) (112)
= — 102 — o (J(60) 1 (60) (6 — 05) + 561 — ™)) (113)
= — 08 — o (J(60)(60) + BI) (6: — 6}") (114)
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The solution to this inhomogeneous linear ODE in 6; — 61" is

t
6, — glin — / ¢~ (I(00)00) THBI) (=) (_p A Y, (115)
0
Hence (using ||e=4[|o < e~ Amin(4)),
t
16; — 6|2 < / le= (IO C0)HBI) =)o | Ay o (116)
0
L ommleotBt-u), L pea
< [ e “ny—=K"du (117)
J 7
1 K&
1 , 118
~ Vne+ B (118)
: A
Thus, sup,||6; — 0/7]]2 < C{)(Jrﬁﬁ.
Third step: Using the bound on ||§;—6}"||2, we can easily bound || f*(z, 8;) — £ (z, 01™)|2:
£ (2, 60) — ™ (2, 6) |2 = || (2, 60) (B — 62 (119)
< |, 60) 12116 — 6|2 (120)
K& 1
! —. 121
co+Bvn (121)
Finally, use equation (98) to write
12 00) — £, 05) | < (K'c2 T KKA> L (122)
) sVt — o + /8 \/77,’

which concludes the proof.

Appendix F. Proof for regularized gradient descent

F.1. Geometric decay of the regularized gradient and closeness of parameters
to their initial value

Theorem 10 Let 5 > 0. Let §g > 0 be arbitrarily small. There are K', K, Ry, c3, max > 0,
such that for n large enough, the following holds with probability of at least 1—&g over random
watialization, when applying reqularized gradient descent with learning rate 1 = 1y < NMmax:

1641 — Ocll2 = 10| Vo LP (1) |2 < moK Ro (1 — noca)’ (123)
16, — o < Kc];o —.C (124)

Vllels < 1: (2, 0) — J(x,600)])2 < ;ﬁK'C, (125)
17(6:) — J(00) |2 < ;ﬁm. (126)
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Proof Consider the same high probability event as in the proof for the regularized gradient

flow. Define cg := %ﬁ for 5 > 0, and cg := %)\min(@) for 5 = 0. Further, let C =
KR
We prove the first two inequalities by induction. For ¢ = 0,

IV6L7(80) 12 = [1(Bo) " 9(6o)ll2 < K Ro. (127)

Now, assume it holds true for s < t. We want to bound |01 — 6|2 = 10l VoL (012
Recall that VoLP(6;) = J(0;) " g(0;) + B(0; — 0p). Write

VoL (0:)]13 =1VoLE (0:-1) + VoL (6:) — VoLl (6:-1)13 (128)
=[IVoL? (0r-1)I3 (129)
oveLB )T (vgﬁﬁ (6,) — VoL (et_l)) (130)
+ VoL’ (6:) — VoL’ (6:-1)|5. (131)
In the following, we will look at how to bound the second and the third terms. We have
VoLl (0;) — VoLl (0,-1) = VoLl (0,—1 — oV L (0,-1)) — VoL (0,1) (132)

—— [7 (%37 (61~ wT0L601))) - Vol Ouo)n. (133)

As in the proof for the gradient flow, the following part only holds for 5 > 0. Note
that for any u € [0,m0], 6;—1 — uVeLP(0;—1) € B(fo,C), as we know by induction that
0;—1,0; € B(6p,C). Thus, similar to the proof for the gradient flow, for n large enough,
Yu € [0, 7]0]:

3
Amin (V3L? (01 = uVoL2(0:1) ) ) = Ses. (134)
Note that we use %05 = %6, which is slightly higher than cg which we used in the gradient

flow case, to arrive at the equivalent result in the end. For the second term (130) we
get

2V9LP(8:1)" (VoL (00) — VoLl (B:1)) (135)
_ 0"0 VoL’ (01) (V3L? (Ger —uVel(0,1)) ) - VoL  (Bir)du  (136)
<~ 2m0scs Va0 )3 (137)
Further, for any 6 € B(6p, C) we have that
VL ()ll2 < [lg(0) "V f(O)ll2 + 117(8) T T (0) |2 + BI, (138)
< \}HKRO e (JO)T10)) + 5 (139)
< LnKRO + 2 nax(®) + 6 (140)
< 2(Amax(©) + ), (141)
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for n large enough. Using this with § = 6; 1 — uVeLP(6;_1), we get for the third term
(131),

Vo LP(6:) — VoLl (0:-1)][3 (142)
0 2
- ‘ / ! (vgcﬁ (et_l —uV9£’B(9t_1)>) Vo LB (1) du (143)
0 2
70 2
< < /O |V2.h (9t_1 _ quﬁﬁ(Qt_1)> ngvgzﬁ(et_l)uzdu) (144)
< (2(Amax(©) + 8))* VoL (8:-1) |3 (145)
<nocg|| VoL’ (0:-1) 13- (146)

In the last inequality, we chose the learning rate ng < o CB@) A small enough. Similarly

max(

to the gradient flow case, one can derive such bounds for f = 0. Summing up the three
terms,

3
IVoLP(8:)113 < (1 — 25 s+ nea)IVoL’ (G113 = (1 = 2n0¢5) VoL (1) 13- (147)

Thus, by Bernoulli’s inequality, and the induction hypothesis,

IV6L7(00)ll2 < /T =2m0¢5]| Vo L7 (0:-1) 2 (148)
< (1= 10¢8) VoL (Be-1)ll2 (149)
< K Ro(1 = nocg)". (150)

Hence, [|0141 — 64]]2 = 10| VaLP (01)]]2 < moK Ro(1 — mocp)?. From this, it follows that

t
16541 = oll2 <D l[0us1 — Oull2 (151)
u=0
t
< noKRo Y (1 - nocp)" (152)
u=0
1-(1- i
— K Ryt (L= m0¢) (153)
1n0cs
K
B o (154)
cg

This proves the first two inequalities. The rest follows directly from the local Lipschitzness
of the Jacobian, like in the proof for the gradient flow. |

F.2. Closeness to the linearized network along the regularized gradient
descent

The following Theorem is the same as in the gradient flow case, and the proof is very similar,
which is why we only provide the main idea.
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Theorem 11 Let 5 > 0. Let 6g > 0 be arbitrarily small. Then, there are C1,Cy > 0, such
that for n large enough, with probability of at least 1 — &g over random initialization,

. 1 : . 1
sup||6i® — 0,]ls < C1—, V|z|l2 < 1:sup||f(x, 6 — f(xz,6 < Cy——. 155
tng h tl]2 < N z]]2 < tzgllf (z,0,™) — f(x,0)]|]2 < N (155)

Proof Recall that .

f™(2,0) = f(x,00) + J(x,60)(0 — bo), (156)
and
oz, = o5 — o (1(60) g™ (0F™) + B ~ o)) (157)

The structure of the proof is the same as for the gradient low. We only show how to bound
the term || f(z,0;) — f"(x, 6;)||2. The bounds for the other terms can be done similarly. In
particular, we will show by induction that

t—1
. 1 “
1 00) = @ 0)ll2 < o= K'CR Ro 3 (1= )" (158)
u=0
For t = 0, this is true. Now, assume this holds for s < ¢, then
£ (@, 0p1) = £ (2, 0r41) 2 (159)

=15, 00) = 7 0l + 1 00s1) = £(,00) — (122, 001) = f2(2,00) - (160)

By the chain rule and the fundamental theorem of calculus, we can write

17 0052) — 7,00 — (£, 0u0) — 12,00 (161)
- ‘ /770 J (x 6, — uvgﬁﬁ(et)) VoL (0))du — /"0 J(x,00) Vo L5 (0;)du (162)
0 0 2
70
g/ 17 (:c,@t - uvgzﬁ(et)) — Tz, 00)||2]| VoL (8,)[|2du (163)
0
! K'CKRy (1 —nocp)" . (164)

<P ——
_UO\/ﬁ

In the last step we used Theorem 10. Thus,

t—1
; 1
17 0in) = £, 0011) 2 < oK' CK Ro (Z (1 —mocg)" + (1 — 77065Y> . (165)
u=0
This finishes the induction proof. Next, using the geometric series
1 t—1
lin ! u
£ (.00 = (&, B0)ll2 < mo—=K CKRO; (1= mocg) (166)
< M K'CK Ry—— (167)
VG "nocs
1
= ——K'C% 168
NG (168)
For the other inequalities one can proceed in the same way, using the fundamental theorem
of calculus and the geometric series. |
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Appendix G. Shifting the network at initialization

Here, we prove that shifting the network at initialization makes it possible to include any
prior mean, and compute the posterior mean with a single training run.

Theorem 3 (Shifted Network. ) Consider any function m. Given a random initialization
6o, define shifted predictions fp,(x,0) as follows:

foo(x,6) := f(x,6) — f(x,60) +m(x). (12)

Training this modified network (starting with 0y) leads to the following output (in the
infinite-width limit)

foo (%', 800) = m(x') + O x(Oxx + BI) " y — m(x)). (13)
This can be interpreted as the posterior mean of an NTK-GP with prior mean function m.

Proof The Jacobian of the shifted network is equal to the Jacobian of the original net-
work:

TH(@,6) = Jy(z,6). (169)

Define the shifted labels § := y + f(x,60p) — m(x). Then, f(x,0) —y = f(x,0) —y. Thus,
training the network f with regularized gradient flow/descent is equivalent to training f
using the shifted labels y, in the sense that the parameter update rule is the same. The
latter leads to parameters 6, for which (in the infinite-width limit)

F(x,050) = F(xX,00) + O x (Oxx + BI) ' (¥ — f(x,060)). (170)

By adding — f(x, 6p) +m(x) to both sides of the equation, and using y — f(x, 0) = y —m(x),
we get

f(X/7 Ooc) = m(x') + O x (Oxx + BI)_l (y — m(x)). (171)
|

Appendix H. The Output of the Linearized Network is (Gaussian over
Random Initializations

Corollary 12 (Convergence under Regularized Gradient Flow/Descent) Under reg-
ularized gradient flow/descent training, the output of a wide neural network converges in
distribution to a Gaussian over random initialization as the width n — oo. Specifically, for
test inputs x' and t — oo, the mean and covariance of the output distribution at convergence
are

/J’(X/) =0 x (Oxx + BI)_l Y, (172)
B(x) =Ky x + Oxrx (Oxxc + BI) " Ky x (Oxxc + 1) Oy (173)
- ®x/,x (®x,x + /BI)—l Kx,x’ - Kx’,x (®X,X + 51)_1 ®X,X" (174)

Note that the resulting covariance combines contributions from the NTK and NNGP kernels
and therefore does not directly correspond to the posterior covariance of any GP.
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Proof As we showed, for large enough layer width,
F(X,000) = (X', 00) + O x (O + BI) ' (v — f(x,60)). (175)

f(x',6p) and f(x,6p) jointly converge to a Gaussian with mean zero and covariance matrix
given through the NNGP-kernel K. From this, it directly follows that f(x’,6,,) converges
to a Gaussian with the given mean and covariance matrices.” |

Appendix I. Convergence Plots for Different Noise Coefficients and
Network Depths
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Figure 2: Parameter and function differences for additional network depths. (Top row)
Parameter difference plots from Section 5.1. (Bottom row) Function difference plots from
Section 5.2. (Left) Results for one fully connected hidden layer. (Right) Results for an
MLP with three fully connected hidden layers. Increasing the network width reduces both
parameter and function differences, backing up the theory. g = 0.1 was used.

9. The covariance matrix of X + AY, where X and Y are jointly Gaussian, is given by Lx + ANy A" +
AZX,Y + EY,XAT.
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