

000 DIFFERENCE-AWARE RETRIEVAL POLICES FOR IMITA- 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DIFFERENCE-AWARE RETRIEVAL POLICES FOR IMITA- TION LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Behavior cloning suffers from poor generalization to out-of-distribution states due to compounding errors during deployment. We present **Difference-Aware Retrieval Polices for Imitation Learning** (DARP), a novel nearest-neighbor-based imitation learning approach that addresses this limitation by reparameterizing the imitation learning problem in terms of local neighborhood structure rather than direct state-to-action mappings. Instead of learning a global policy, DARP trains a model to predict actions based on k-nearest neighbors from expert demonstrations, their corresponding actions, and the relative distance vectors between neighbor states and query states. Our method requires no additional data collection, online expert feedback, or task-specific knowledge beyond standard behavior cloning prerequisites. We demonstrate consistent performance improvements of 15-46% over standard behavior cloning across diverse domains, including continuous control and robotic manipulation, and across different representations, including high-dimensional visual features.

1 INTRODUCTION

Imitation learning via behavior cloning (BC) has enabled robots to learn complex, dexterous behaviors from expert demonstrations (Zhao et al., 2023; Chi et al., 2024; Black et al., 2024; Chung et al., 2014). Yet despite its simplicity, BC often proves brittle in practice, especially for long-horizon tasks (Ross et al., 2011). The core issue is *covariate shift*: small errors accumulate during rollouts, driving the agent into states not well represented in the demonstration data (Spencer et al., 2021; Ross et al., 2011). In such out-of-distribution regions, BC policies are highly unstable, producing unreliable and high-variance behavior that frequently leads to failure.

This problem is well recognized, and many approaches have been proposed to mitigate compounding error (Ross et al., 2011; Venkatraman et al., 2015; Ke et al., 2024b; Levine et al., 2020). However, these typically go beyond the standard BC assumptions, requiring simulators, interactive experts, large quantities of sub-optimal data, or strong task-specific structure. By contrast, our goal is to remain in the pure BC regime: learn only from expert state-action pairs, with no additional supervision or feedback. The central question is thus: *can we reduce the variance of BC policies using only the original demonstration dataset?*

From a statistical standpoint, BC minimizes only the supervised risk on expert states. This controls bias on the training distribution, but leaves variance unchecked: in low-density regions of the state space (which are often encountered during closed-loop rollouts), the learned policy can oscillate arbitrarily. A natural remedy is to enforce *smoothness*, so that nearby states yield similar predicted actions. This discourages spurious fluctuations and improves rollout stability.

Several approaches to encourage smoothness have been explored, see related work: 4. Although sometimes effective, each has drawbacks: augmentation does not guarantee consistency, global priors

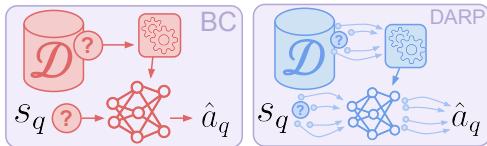


Figure 1: **Overview of DARP:** Unlike standard BC, DARP utilizes a retrieval-based reparameterization centered around difference vectors between query states and retrieved neighbors.

054 can blur distinct behaviors, temporal penalties only act along time (not space), and explicit graph
 055 regularizers require tuning extra smoothness hyperparameters.
 056

057 A complementary line of work contrasts global and local learning. “Global” supervised models (Black
 058 et al., 2024; Zhao et al., 2023; Chi et al., 2024) attempt to compress the entire demonstration
 059 dataset into a single parametric function, which is typically brittle under distribution shift. “Local”
 060 methods (Pari et al., 2022; Mansimov & Cho, 2018; Salzberg & Aha, 1994) instead adapt predictions
 061 to the structure of the dataset itself, consulting neighborhoods of similar states and generating
 062 outputs from non-parametric or semi-parametric operations on the training distribution of expert
 063 behavior. This locality offers robustness since it avoids reliance on a single parametric function, but
 064 it also has limitations: its effectiveness inherently depends on the distance metric, naive averaging
 065 of neighborhood can blur distinct actions and struggle to represent multimodality, while treating
 066 neighbors only in terms of their absolute states can limit generalization.

067 We introduce Difference-Aware Retrieval Policies (DARP), which combines the robustness of local
 068 methods with the stability of regularized global policy learning. At inference time, rather than
 069 predicting actions to execute only from the current query state via a feedforward pass on a parametric
 070 function, DARP (Fig. 1) first retrieves a set of neighbors from the training corpus and then conditions
 071 the predicted action on tuples of (neighbor state, associated action, and difference from the query
 072 state). These neighbor-informed predictions are then aggregated in a permutation-invariant manner
 073 to produce a single robust action prediction. This design both grounds predictions in observed
 074 data (due to non-parametric retrieval) and implicitly enforces local consistency (due to parametric
 075 action prediction, conditional on the retrieved neighbors). We show that doing so reduces variance
 076 without requiring additional data, supervision, or hyperparameters. In spectral terms, this form of
 077 neighbor aggregation approximates a Laplacian filter on the k -NN graph of expert states, providing a
 078 parameter-free form of smoothing that adapts to the local density and geometry of the dataset.

079 We provide both theoretical and empirical evidence that while operating under the same requirements
 080 as behavior cloning, DARP improves performance considerably by reducing variance and enhancing
 081 robustness to distribution shift. Our analysis formalizes the connection to Laplacian regularization,
 082 showing that DARP implicitly applies a fixed low-pass spectral filter that suppresses high-frequency
 083 variance. Empirically, on imitation learning evaluations, DARP achieves 15–46% gains over typical
 084 behavior cloning across continuous control (MuJoCo), robotic manipulation (Robosuite), and high-
 085 dimensional visual imitation tasks (Robosuite with image state). We demonstrate that DARP is a
 086 general, scalable architecture that naturally extends to image-based domains, with rich policy classes
 087 like transformers and Gaussian mixture models. We perform a careful set of ablations to highlight the
 088 importance of our particular choice of representation and architecture, providing general-purpose
 089 insights into retrieval-based algorithms for sequential decision-making problems.

090 2 DIFFERENCE-AWARE RETRIEVAL POLICIES FOR IMITATION LEARNING

091 In this work, we instantiate a new class of imitation learning methods that get the best of both “global”
 092 parametric learning methods and “local” learning methods. We propose a new architecture and
 093 simple training objective that allows for learning under the same requirements as typical behavior
 094 cloning, while providing significant improvements both theoretically and empirically. As a warmup,
 095 we discuss a variant of regularized imitation learning (Section 2.2) that imposes additional structure
 096 from the data for improvements in variance, generalization, and stability. In Section 2.3, we then
 097 show how the benefits of explicitly regularized learning can be implicitly accomplished by modifying
 098 policy *architecture* rather than the objective. Finally, we introduce our practical algorithm DARP,
 099 which realizes these benefits through a semi-parametric retrieval augmented architecture that can be
 100 generally applied to imitation learning with modern neural networks and generative modeling tools.

102 2.1 PRELIMINARIES: BEHAVIOR CLONING FOR IMITATION LEARNING

103 We operate in the typical imitation learning setting, formalized by a finite-horizon Markov Decision
 104 Process (MDP), $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, P_0\}$, where \mathcal{S} is the state space, \mathcal{A} is the action space, and P_0 is
 105 the initial state distribution. A *policy* maps a state to a distribution of actions $\pi_\theta : s \rightarrow a$ so as to
 106 maximize task-relevant objectives. We assume access to expert human-provided demonstrations
 107 \mathcal{D}^* as a collection of state-action pairs: $\mathcal{D}^* = \{(s_j^*, a_j^*)\}$. We use the notation s^* and a^* specifically

108 to denote states and actions belonging to the expert dataset. The behavior cloning (Pomerleau,
 109 1991) algorithm learns a policy π_θ from this dataset by casting imitation as a typical supervised
 110 learning problem - $\arg \max_\theta \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}^*} [\log(\pi_\theta(a^* | s^*))]$. While the distribution class of π_θ can be
 111 an arbitrary complex generative model (Lipman et al., 2023; Chi et al., 2024), we will start with a
 112 simple Gaussian parameterization for the sake of simplicity¹.
 113

114 2.2 WARMUP: NEIGHBOR MANIFOLD REGULARIZED IMITATION LEARNING

116 While behavior cloning minimizes only the supervised imitation loss over expert states drawn from
 117 \mathcal{D}^* , such an objective alone does not control how the policy behaves on states that deviate from the
 118 expert manifold. In practice, accumulating errors lead the agent to out-of-distribution regions where
 119 a BC policy may act arbitrarily, especially for overparameterized neural networks.

120 To mitigate this, we note that behavior cloning enforces function evaluations only at the training states,
 121 but it does not explicitly take into account the relationship between states (and their corresponding
 122 actions) in a neighborhood, thereby ignoring the underlying data manifold. To incorporate this
 123 information into policy learning, let us consider a modified objective that introduces a regularization
 124 term that explicitly encourages *local consistency* of predictions: nearby states in the expert dataset
 125 should be mapped to similar actions. This intuition leads to the following neighborhood-regularized
 126 loss ($\mathcal{L}_{\text{MRIL}}$), where the standard imitation learning objective (\mathcal{L}_{BC}) is combined with an additional
 127 smoothness penalty (\mathcal{L}_{S}) enforcing predictions to respect the geometry of the dataset rather than
 128 relying solely on pointwise supervision.

$$129 \mathcal{L}_{\text{MRIL}}(f) = \underbrace{\mathbb{E}_{(s, a) \sim P_{\mathcal{S}}} [\ell(f(s), a)]}_{\text{supervised risk } (\mathcal{L}_{\text{BC}})} + \lambda \underbrace{\mathbb{E}_{s \sim P_{\mathcal{S}}} \left[\sum_{i \in \mathcal{N}_k(s)} w_i(s) \|f(s) - f(s_i^*)\|_2^2 \right]}_{\text{smoothness regularizer } (\mathcal{L}_{\text{S}})}, \quad (1)$$

133 where $\ell(f(s), a)$ is the supervised imitation loss, $\mathcal{N}_k(s)$ are the k -nearest neighbors of s from the
 134 expert dataset, and the weights $w_i(s)$ are normalized kernel weights based on the state differences -
 135 $w_i(s) \propto K_\Delta \left(\frac{\|s_i^* - s\|}{h} \right)$. As we discuss briefly below (and in detail in Appendix A.1.1), this corresponds
 136 to a form of *manifold regularization* or Laplacian smoothing, where the policy is penalized for high-
 137 frequency variation across the neighborhood of expert states. This manifold regularization provably
 138 leads to improvements in policy variance, stability, and generalization.

139 **Theorem 1** (Manifold Regularized BC ($\mathcal{L}_{\text{MRIL}}$)) improves over vanilla BC (\mathcal{L}_{BC})). *Let $f : \mathcal{S} \rightarrow \mathcal{A}$ be the expert policy, assumed C^2 -smooth on a compact state space \mathcal{S} . Consider two estimators trained on expert demonstrations:*

- 143 1. **Vanilla BC:** a global supervised model minimizing

$$145 \mathcal{L}_{\text{BC}}(f) = \mathbb{E}_{(s, a) \sim P_{\mathcal{S}}} [\ell(f(s), a)].$$

- 147 2. **MRIL:** a neighbor-based estimator minimizing

$$149 \mathcal{L}_{\text{MRIL}}(f) = \mathcal{L}_{\text{BC}}(f) + \lambda \mathbb{E}_{s \sim P_{\mathcal{S}}} \left[\sum_{i \in \mathcal{N}_k(s)} w_i(s) \|f(s) - f(s_i^*)\|_2^2 \right],$$

152 where $w_i(s)$ are the kernel weights defined above and $\lambda > 0$.

153 Then, under the smoothness assumption on f , the following hold:

- 155 (i) Variance reduction: The Laplacian penalty in MRIL acts as a data-dependent Tikhonov
 156 regularizer, yielding smaller estimator variance than vanilla BC.
- 158 (ii) Smoothness guarantee: Minimizers of $\mathcal{L}_{\text{MRIL}}$ satisfy a uniform bound on the local Lipschitz
 159 constant of f , whereas vanilla BC admits interpolants with arbitrarily large Lipschitz
 160 constants between training states.

161 ¹We show that this can be relaxed in Section 2.4

162
163(iii) Policy stability: *In a closed loop rollout, the deviation recursion*

164

$$\Delta_{t+1} \leq L_s \Delta_t + L_a \|\pi(s_t) - f(s_t^*)\|^2$$

165

166

accumulates error linearly for vanilla BC, but sublinearly for MRIL, since the smoothness regularizer enforces $\|f(s) - f(s')\| = O(\|s - s'\|)$ for neighbors s, s' .

167

168

This suggests that MRIL enjoys strictly better generalization and stability guarantees than BC.

169

170

Proof sketch. We defer the detailed proof to Appendix A.1.1, but provide a brief sketch. The key idea of the proof is to first show that the smoothness regularizer directly corresponds to a graph Laplacian penalty on a graph constructed by a k -nearest neighbor (k -NN) affinity matrix defined by the kernel w_i . Next, we show that as the number of samples tends to infinity, this graph Laplacian penalty converges to the weighted Dirichlet energy (Belkin & Niyogi, 2008; Zhou et al., 2003). Minimizing this Dirichlet energy (1) ensures that the learned f is locally Lipschitz almost everywhere, ensuring smoothness and, in turn policy stability, and (2) corresponds to Tikhonov regularization, thereby reducing estimator variance, while keeping the bias controlled. \square

171

172

173

174

175

176

177

Intuitively, the smoothness regularizer is not merely penalizing pairwise disagreements between neighbors, but is driving the learned policy to be smooth with respect to the underlying data manifold. In particular, it shrinks the local Lipschitz constant of f along directions where the data density $p(s)$ is high, ensuring that small changes in state lead to small, consistent changes in the predicted action. As a result, the policy generalizes more reliably on in-distribution (ID) states and extrapolates in a structured manner on new out-of-distribution (OOD) states in the neighborhood.

178

179

180

181

182

183

184

2.3 IMPLICIT MANIFOLD REGULARIZATION VIA IN-CONTEXT ARCHITECTURES

185

186

While our MRIL objective does amortize local learning to provide improvements over vanilla BC, there are two notable drawbacks. Firstly, the presence of a hyperparameter λ that must be tuned to balance supervised accuracy and smoothness. Secondly, the requirement to optimize a modified, regularized objective rather than a standard BC objective may modify the optimization landscape in adverse ways. This raises a natural question: *can we obtain the same benefits conferred by MRIL (Eq 1), by modifying the policy architecture rather than modifying the objective?*

187

188

189

190

191

192

In this section, we introduce a retrieval-based change in policy architecture that leads to an *implicit* manifold regularization effect (iMRIL), despite using a standard imitation objective. With iMRIL we can obtain the benefits of Laplacian smoothing (from MRIL) by training on a standard BC objective (as shown in Fig. 2), without introducing λ as an additional hyperparameter for training. We then build on this algorithm to instantiate a practical instantiation of this method (DARP) in Section 2.4.

193

194

195

196

197

198

iMRIL architecture: The high-level idea behind iMRIL is simple - we propose moving the neighborhood aggregation (averaging) operation from the objective (as in Eq 1) to the architecture itself. So instead of learning a standard feedforward predictor $f(s)$ that is trained against a neighborhood regularized smoothness objective (Eq 1), we propose embedding the structure of neighborhood aggregation directly into the parameterization of the action predictor \hat{f} itself, while maintaining the objective as standard imitation learning. iMRIL learns the parameters of a per-state predictor f_θ such that an action predictor explicitly parameterized via neighborhood aggregation $\hat{f}(s^*) = \frac{1}{k} \sum_{i \in \mathcal{N}_k(s^*)} f_\theta(s_i)$ across nearest neighbor states from the training set $\{s_i\}_{i \in \mathcal{N}_k(s)}$ generates accurate predictions of the corresponding expert action a^* . With this parameterization, iMRIL optimizes at training time:

214

215

² L_s and L_a are the Lipschitz constants of the environment transition dynamics with respect to state and action, respectively. We denote $\pi(s_t)$ as the action predicted by the agent from the state time t , s_t .

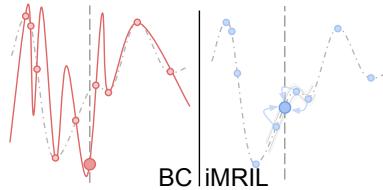


Figure 2: **iMRIL implicitly achieves Laplacian smoothing, which reduces variance and enforces local consistency**, whereas the lack of smoothness constraint on standard BC allows for arbitrarily jagged function approximations.

$$\begin{aligned}
& \arg \min_{\theta} \mathbb{E}_{(s^*, a^*) \sim \mathcal{D}^*} \left[\left\| \underbrace{\left(\frac{1}{k} \sum_{i \in \mathcal{N}_k(s^*)} f_{\theta}(s_i) \right) - a^*}_{\hat{f}(s^*)} \right\|_2 \right] \tag{2}
\end{aligned}$$

At deployment time, inference can be performed on a new state s_q simply by retrieving the k -NN of s_q from the training set and performing neighborhood aggregation $\hat{a} = \hat{f}(s_q) = \frac{1}{k} \sum_{i \in \mathcal{N}_k(s_q)} f_{\theta}(s_i)$. As we show in Section 2.4, the particular parameterization of f is of crucial importance and plays a significant role in the empirical performance of iMRIL- leading to the development of DARP.

Intuitively, we are parameterizing the action predictor \hat{f} as an aggregation of predictions at neighbor states from the training data $f(s_i)$, and then learning f . Supervising the post-aggregation function implicitly prevents any f predictions from being arbitrarily non-smooth, conferring the benefits noted in Section 2.2. We prove a direct equivalence of iMRIL to the Laplacian regularization in Section 2.2.

Equivalence between iMRIL and MRIL: While we defer a full proof of formal equivalence between MRIL and iMRIL to the Appendix Sec. A.1, we state our main result and a proof sketch to this effect here.

Theorem 2 (iMRIL is parameter-free Laplacian regularization for BC (MRIL)). *Consider the symmetric normalized k -NN graph Laplacian L (defined in Section 2.2), with eigenpairs $\{(\mu_j, u_j)\}_{j=1}^n$, where $0 = \mu_1 \leq \mu_2 \leq \dots \leq \mu_n \leq 2$.*

The minimizers of the explicit MRIL objective (Section 2.2) and the implicit iMRIL objective (Section 2.3) have the following closed form expansions

$$f_{\text{MRIL}} = \sum_{j=1}^n \frac{1}{1 + \lambda \mu_j} \langle a^*, u_j \rangle u_j \quad \hat{f}_{\text{iMRIL}} = \sum_{j=1}^n (1 - \mu_j) \langle f, u_j \rangle u_j$$

iMRIL's neighbor aggregation step applies the fixed spectral filter $\phi_{\text{iMRIL}}(\mu) = 1 - \mu$ to the graph Laplacian L , preserving low-frequency modes and suppressing high-frequency modes. The congruence between \hat{f}_{iMRIL} and f_{MRIL} shows that iMRIL is equivalent to a built-in form of Laplacian smoothing (MRIL) with effective $\lambda \approx 1$ in normalized units. Unlike explicit regularization, this implicit filter requires no additional hyperparameter tuning.

Proof sketch. We defer full details to Appendix Sec A.1.2. The explicit regularizer admits a spectral solution by diagonalizing the k -NN Laplacian, yielding a filter of the form $(1 + \lambda \mu)^{-1}$ on each eigenmode. The implicit objective can be expressed as neighbor aggregation $\hat{f} = Sf$ with $S = D^{-1}A$, the random-walk matrix, which has the same eigenvectors and applies the fixed filter $1 - \mu$. Intuitively, both act as low-pass filters on the graph: modes with small eigenvalues (smooth variation across the data manifold) are largely preserved, while modes with large eigenvalues (rapid, high-variance fluctuations between neighbors) are strongly damped. Thus iMRIL implicitly performs Laplacian smoothing, reducing variance and enforcing local consistency without needing to tune λ . \square

Note that the implicit Laplacian smoothing view does not replace the need to learn a policy; rather, it constrains the class of functions that can be represented after aggregation. The neighbor-conditioned network f_{θ} learns how expert actions vary under local perturbations, proposing locally adapted actions for each neighbor. The aggregation operator then enforces variance reduction by smoothing these proposals across the neighborhood. In this way, learning provides accuracy by correcting local bias, while aggregation provides stability by controlling variance.

2.4 DIFFERENCE-AWARE RETRIEVAL POLICIES: A PRACTICAL INSTANTIATION OF iMRIL FOR IMITATION LEARNING

Given the conceptual framework of iMRIL, we instantiate a practical algorithm for large-scale imitation learning. We build on the objective outlined in Eq 2 and instantiate a careful choice of (1) parameterization, (2) neighbor aggregation that leads to strong empirical performance.

2.4.1 DIFFERENCE-BASED PARAMETERIZATION OF f_θ

The objective described in Eq 2 leaves the parameterization and input representations of f_θ open to broad interpretation. We make the observation that the neighborhood aggregation should learn how expert actions vary under local perturbations. This suggests that f_θ should use knowledge of *differences* between a query state and a neighbor state to adaptively propose locally adapted actions for each neighbor. In **Difference-Aware Retrieval Policies (DARP)**, instead of simply parameterizing f_θ by $f_\theta(s_i)$, we provide additional context about the optimal neighbor action a_i , as well as the *difference* between the query state and the neighbor state $\Delta s_i = s_q - s_i$; a predictor f_θ predicts an action candidate a'_i for a query state s_q and a neighbor (s_i, a_i) using the difference information as -
$$a'_i = f_\theta(s_i^*, a_i^*, \Delta s_i = s_i^* - s_q).$$

We define a neighborhood set $\mathcal{N}^k(s_q) = \{(s_i^*, a_i^*) \mid i \in \mathcal{I}^k(s_q)\}$, where $\mathcal{I}^k(s_q)$ is the index set of the k nearest neighbors retrieved according to some distance function $d(s_q, s_i^*)$.³ For generating predictions with DARP, we can then perform neighborhood aggregation (as outlined in Section 2.3) to predict an action for any query state s_q .

$$\hat{a}_q = f_{\text{DARP}}(s_q) = \frac{1}{k} \sum_{i \in \mathcal{I}(s_q)} a'_i \quad (3)$$

$$= \frac{1}{k} \sum_{i \in \mathcal{I}(s_q)} f_{\theta}(s_i^*, a_i^*, \Delta s_i = s_i^* - s_q). \quad (4)$$

At training time, this can be used to define a straightforward imitation learning objective from the expert dataset \mathcal{D}^* :

$$\arg \min_{\theta} \mathbb{E}_{(s_q, a_q) \sim \mathcal{D}^*} \left[\left\| \hat{a}_q - a_q \right\|^2 \right]. \quad (5)$$

where we optimize for the parameters of the predictor f_θ , minimizing the discrepancy between the predicted action \hat{a}_q and optimal action a_q . Given the simplicity of the objective, any parameterization can be used for f_θ , in our case, standard feedforward or convolutional neural networks. As we show in Section 3, this difference-based parameterization is crucial for performance. At inference time, we generate actions to execute by retrieving k-NN and performing inference through the neighborhood aggregation operation defined in Eq 3.

2.4.2 GOING BEYOND LINEAR AGGREGATION

While the process of neighborhood aggregation thus far has been restricted to averaging over neighborhood predictions $\hat{a}_q = \frac{1}{k} \sum_{i=1}^k a_i'$, this is a special case of a broader class of permutation-invariant aggregation functions $g_\psi(\{a_i'\}_{i=1}^k)$. For instance, g_ψ could be parameterized with more expressive set-compliant neural models like the set transformer (Lee et al., 2019) or DeepSets (Zaheer et al., 2017). This suggests a generalization of the prediction model in Eq 3 as $\hat{a}_q = g_\psi(\{f_\theta(s_i^*, a_i^*, \Delta s_i = s_i^* - s_q)\}_{i=1}^k)$. Besides benefits in expressivity, generalizing from a simple averaging operation to a parametric aggregation model g_ψ allows for the representation of richer action distributions (e.g Gaussian mixture models (Pignat & Calinon, 2019) or diffusion models (Chi et al., 2024)) than the Gaussian distribution that is implicit to the l_2 -regression objective defined in Eq 5. Rather than predicting \hat{a}_q directly, DARP can predict the parameters α of an action distribution $p(a_q; \alpha)$ – for instance the means, covariances, and weights for a Gaussian mixture model, or the score function for a diffusion model. This allows DARP to perform maximum likelihood training of multimodal action distributions rather than just unimodal l_2 -regression:

$$\arg \max_{\theta} \mathbb{E}_{(s_q, a_q) \sim \mathcal{D}^*} [\log p(a_q; \alpha_{\theta}(s_q))], \text{ where } \alpha_{\theta}(s_q) = g_{\psi}\left(\{f_{\theta}(s_i^*, a_i^*, \Delta s_i = s_i^* - s_q)\}_{i=1}^k\right) \quad (6)$$

³In our work we use the Euclidean distance in a pre-trained embedding space, although other neighborhood functions are also applicable. We refer the reader to Appendix Sec. A.2.1 for a thorough discussion of design decisions in constructing neighborhood sets via retrieval.

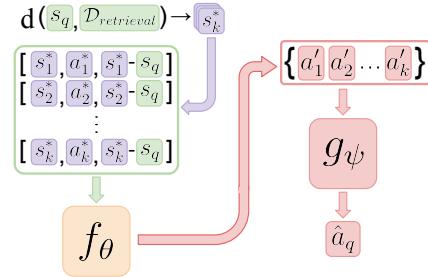


Figure 3: **Retrieval-based policy architecture in DARP**. Retrieved neighbors are first embedded through a predictor f_θ and then aggregated using a permutation invariant function g_ψ .

324 Inference for a query state s_q can be performed by sampling from $p(a_q; \alpha_\theta(s_q))$, constructing
 325 $\alpha_\theta(s_q) = g_\psi(\{f_\theta(s_i^*, a_i^*, \Delta s_i = s_i^* - s_q)\}_{i=1}^k)$ from a set of neighbors retrieved at test time. We refer
 326 readers to Appendix Sec. A.3 for detailed training pseudocode.
 327

329 3 EXPERIMENTAL EVALUATION

331 Next, we evaluate DARP in order to answer three key questions: **Q1:** Can DARP consistently
 332 outperform standard behavioral cloning?, **Q2:** Can DARP handle more complex state representation
 333 and action distributions?, **Q3:** How do different architectural components contribute to DARP’s
 334 performance gains? We conduct experiments across multiple domains using both low-dimensional
 335 state representations, high-dimensional image features, and diverse action representations. Our
 336 evaluation includes continuous control tasks (MuJoCo), robotic manipulation (Robosuite), and
 337 specially designed discontinuous environments that stress-test the neighbor-based approach.

338 3.1 BASELINE COMPARISONS AND TASK DESCRIPTIONS

340 **MuJoCo Tasks:** The MuJoCo tasks entail controlling various legged figures in multiple embodiments
 341 to achieve forward locomotion on a flat plane. Hopper (single-legged hopping robot), Walker (bipedal
 342 humanoid), Ant (quadruped), and HalfCheetah (biped).
 343

344 **RoboSuite Tasks:** The Robosuite tasks all entail a single robotic arm manipulating objects. In the
 345 Stack task, the goal is to put a smaller cube on top of a larger one. In the Thread task, the goal is to
 346 manipulate a thin, needle-like tool and insert it into a small ring. In the Square Peg task, the goal is to
 347 manipulate a square wooden block with a hole in the center and place it onto a square peg.

348 **Baseline Comparisons:** We compare DARP against a variety of baselines and ablations - (1)
 349 **R&P (Sridhar et al., 2025):** refers to directly taking the action corresponding to the nearest neighbor,
 350 (2) **LWR (Pari et al., 2022):** refers to performing locally weighted regression on retrieved neighbors,
 351 (3) **BC:** refers to standard parametric behavior cloning, (4) **REGENT (Sridhar et al., 2025):** refers
 352 to a transformer-based in-context learning method conditioned on retrieved neighbors, (5) **MRIL:**
 353 refers to the explicitly smoothed version of DARP outlined in Section 2.2.

354 3.2 CAN DARP CONSISTENTLY OUTPERFORM STANDARD BEHAVIORAL CLONING (Q1)

356 In this experiment, we evaluate DARP’s core hypothesis on tasks with low-dimensional state rep-
 357 resentations, where the distance metrics between states are well-defined and interpretable. This
 358 evaluation spans locomotion tasks from MuJoCo (Todorov et al., 2012), (Fu et al., 2020) and robotic
 359 manipulation tasks from Robosuite (Zhu et al., 2020) with data generated with MimicGen (Mandlekar
 360 et al., 2023). In these experiments, aggregation function g is implemented as a simple average of all
 361 neighbor action predictions a' .
 362

	Method	Hopper	Ant	Walker	HalfCheetah
365	R&P (Sridhar et al., 2025)	711.82 ± 85.63	-305.97 ± 76.42	419.18 ± 50.21	-178.64 ± 29.75
366	LWR (Pari et al., 2022)	1703.78 ± 245.95	846.59 ± 216.06	1484.91 ± 356.54	1945.82 ± 567.26
367	BC	2313.65 ± 203.75	2376.20 ± 339.43	2658.40 ± 274.08	1063.23 ± 371.08
368	REGENT (Sridhar et al., 2025)	1819.39 ± 186.24	-302.10 ± 146.67	507.01 ± 76.10	169.85 ± 63.10
369	MRIL	2793.63 ± 156.41	3869.08 ± 241.00	4370.96 ± 168.13	701.58 ± 195.08
	DARP	3545.57 ± 3.54	4383.28 ± 266.37	4894.01 ± 75.12	5515.41 ± 841.33
	DARP Set Transformer	2965.86 ± 103.08	4063.79 ± 218.80	4752.42 ± 109.23	3417.85 ± 764.57

371 **Table 1: Both DARP and DARP Set Transformer outperform other approaches across all domains.**
 372 Performance Comparison of DARP vs. BC and other baselines across MuJoCo Environments Using Low-
 373 Dimensional State. Scores reported are averaged across 100 independent trials with 95% confidence intervals.
 374
 375
 376
 377

378 We find that DARP demonstrates substantial improvements over standard behavioral cloning across all tested environments. We observe
 379 performance gains ranging from 15-25% points in robotic manipulation
 380 tasks and significant score improvements in locomotion tasks
 381 (see Table 1 and Table 2). We observe that purely nonparametric
 382 methods (R&P and LWR) perform poorly on these tasks, and while
 383 MRIL is nearly always able to get a score higher than vanilla BC, the
 384 highest scores on this suite of tasks are always achieved by our DARP
 385 architecture.
 386

387 Given the changes introduced for the practical instantiation in Section
 388 2.4, we evaluate whether DARP scales up to higher-dimensional
 389 input representations such as images.
 390

392 3.3 CAN DARP HANDLE MORE COMPLEX STATE 393 REPRESENTATION AND ACTION DISTRIBUTIONS? (Q2)

394 **High-Dimensional Visual Input Representations.** To test the applicability of DARP beyond the regime of compact, low-dimensional states, we evaluate DARP on simulated robotic manipulation tasks using R3M image embeddings (Nair et al., 2022). This tests whether the neighbor-based approach remains effective when states are represented as high-dimensional feature vectors extracted from visual observations (see Table 3). We see that, not only does DARP outperform standard BC, the average improvement, $\sim 35\%$, is actually higher than the average improvement on Robosuite tasks in low-dimensional state ($\sim 22\%$). Empirically, this means that DARP was better at adapting to complex, high-dimensional state representations than standard BC.

405 **Multi-modal Action Distributions.** We show that DARP can solve complex multimodal imitation learning tasks such as the Push-T environment over 20% better than behavior cloning. We defer details to Appendix A.2.2.
 406
 407

409 3.4 HOW DO DIFFERENT ARCHITECTURAL COMPONENTS CONTRIBUTE TO DARP’s 410 PERFORMANCE GAINS? (Q3)

412 **Ablation Study:** To understand which components of the DARP architecture contribute most to its performance gains, we conduct a comprehensive ablation study examining each design choice, namely (1) standard DARP; (2) DARP, but without including the neighbor actions; (3) An ensemble of 10 BC agents; (4) DARP, but we choose random neighbors as opposed to using a distance metric; (5) DARP, but we take the L2 norm of the distance vector; (6) BC baseline, which is just the query state s_q ; (7) DARP, but include just the query state rather than the distance vector between the query state and neighbor states; (8) DARP, but using a permutation dependent (so **not** permutation invariant) aggregator to combine all a ’s. We report in Figure 4 the results of this systematic ablation.

413 The ablation study reveals that
 414 distance vectors and permutation
 415 invariance are crucial for
 416 DARP’s success, while neighbor
 417 actions have a more modest im-
 418 pact. Random neighbor selection
 419 performs poorly, confirming
 420 that meaningful distance met-
 421 rics informing neighbor selection
 422 are crucial. The permutation-
 423 invariant aggregation function g
 424 proves critical, as permutation-
 425 dependent alternatives signifi-
 426 cantly degrade performance.
 427
 428
 429
 430
 431

Method	Stack	Thrd.	Peg
R&P	38	11	31
LWR	21	39	30
BC	47	37	46
DARP	72	63	62

Table 2: Comparing across Robosuite Environments using low-dimensional state features. Scores are listed as success percentage. DARP significantly outperforms the listed baselines.

Method	Stack	Thrd.	Peg
BC	44	38	17
DARP	75	76	52

Table 3: Success rates (%) on vision-based RoboSuite tasks (out of 100 trials). DARP outperforms BC.

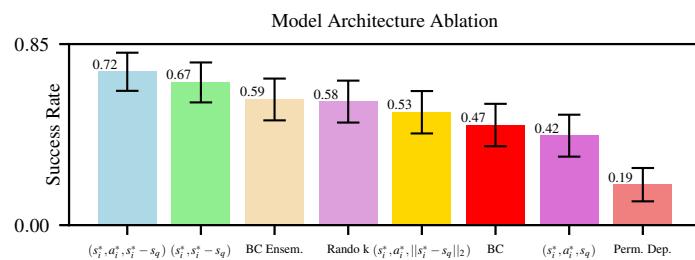


Figure 4: **Distance vectors and permutation invariance contribute heavily to DARP’s success.** Exploration of how the performance of a DARP agent changes as various changes are made to the core architecture demonstrates that DARP success is most attributed to the distance vectors $(s_i^*, a_i^*, s_i^* - s_q)$. Here, the success rate is averaged across 100 trials on the Robosuite Stack environment with 95% confidence intervals.

432 **Divergence Analysis:** To better
 433 understand DARP’s success
 434 over standard BC, we analyze the
 435 point of divergence in rollouts in
 436 which the latter fails but the former
 437 succeeds. We identify the
 438 “step of divergence” as the point
 439 at which DARP and BC begin to
 440 receive a significantly different
 441 reward. We define τ_s and τ_Δ as
 442 the 1st percentile of likelihoods
 443 of the training set (That is, 1%
 444 of the deltas seen at training time
 445 are less likely than τ_Δ).

446 In six different rollouts across two different tasks (the Robosuite Stack task and the MuJoCo Hopper
 447 Task), we see that, in all cases, the query state at the SoD has a state likelihood of $< \tau_s$ but a delta
 448 likelihood of $\geq \tau_\Delta$. This result bolsters our hypothesis that DARP gains occur partly due to improved
 449 prediction on slightly out-of-distribution states due to reparameterization in terms of difference
 450 vectors to neighbors. (see Figure 5 for plots of reward drift, SoDs, and state and delta likelihood for
 451 one task.) See A.2.4 for additional experiments regarding DARP robustness.

4 RELATED WORK

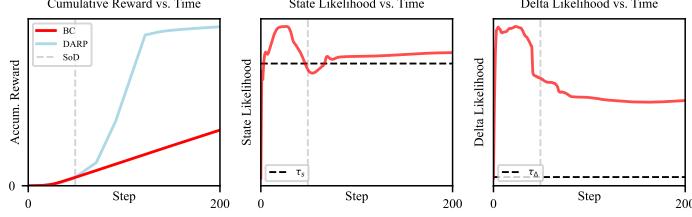
452 **Non-Parametric Imitation Learning Methods:** Non-parametric IL algorithms demonstrate surprising
 453 performance by leveraging local structure. VINN par explores locally weighted regression for
 454 imitation, showing surprising results in image embedding spaces, and MiDiGaP von Hartz et al. (2025)
 455 uses mixtures of Gaussian processes to model multimodal trajectories and achieve rapid generalization.
 456 SEABO Lyu et al. (2024) uses retrieval methods to perform offline RL by rewarding transitions
 457 close to neighbors to form a reward function. FlowRetrieval Lin et al. (2024), STRAP Memmel
 458 et al. (2025) and Behavior Retrieval Du et al. (2023) perform non-parametric retrieval and finetuning
 459 from large unlabeled datasets, enabling generalization through test-time training. DARP differs from
 460 the above in its unique parameterization of retrieved states into $(s_i, a_i, s_i - s_q)$ tuples and learning a
 461 semi-parametric policy rather than relying purely on non-parametric aggregation or test-time training.
 462 This provides us variance reduction of local methods and generalization of parametric policies.

463 **Smoothness-Constrained Policy Learning:** Much recent literature has explored explicit smoothness
 464 constraints to improve policy stability and robustness. L2C2 Kobayashi (2022) considers model-free
 465 RL under local Lipschitz continuity constraints, achieving smoothness and noise robustness without
 466 sacrificing expressiveness, while Asadi et al. (2018) proposed a similar methodology for model-based
 467 RL models with Lipschitz constraints. CCIL Ke et al. (2024a) extends these ideas to generate
 468 synthetic corrective labels for imitation learning using a Lipschitz-constrained dynamics model. This
 469 has also been scaled up to humanoid controllers Chen et al. (2024) to reduce shakiness on deployment.
 470 DARP differs from these methods by enforcing smoothness implicitly through an architecture change,
 471 using standard imitation learning.

472 **In-Context Learning Methods:** Recent work has explored non-parametric retrieval from the
 473 perspective of in-context imitation learning. REGENT Sridhar et al. (2025) investigates retrieval-
 474 augmented generalization by incorporating retrieved states, actions, and rewards into a causal
 475 transformer, while DPT Lee et al. (2023) uses supervised pretraining for transformers to predict
 476 actions given query states and in-context datasets, effectively learning how to explore. Other in-
 477 context architectures include ICRT Fu et al. (2024), Instant Policy Vosylius & Johns (2025), Di Palo
 478 & Johns (2024). These methods aim to quickly adapt to new tasks and environments, whereas DARP
 479 focuses on accomplishing higher performance and stability on standard imitation learning.

5 CONCLUSION

480 We introduced Difference-Aware Retrieval Policies (DARP), a nearest-neighbor-based algorithm that
 481 reparameterizes the imitation learning problem in terms of relative differences between query states



482 **Figure 5: Cumulative rewards for BC and DARP on the Robosuite**
 483 **stack task illustrate initially identical rollouts that diverge as BC fails**
 484 **the task and DARP succeeds.** A vertical dashed line indicates the step
 485 in which the two diverge, labeled “SoD”. At the SoD, the state likelihood
 486 is $< \tau_s$ (OOD), but the delta likelihood is $> \tau_\Delta$ (in distribution).

486 and their nearest neighbors, rather than learning direct state-to-action mappings. We prove that we
 487 are implicitly achieving Laplacian smoothing.
 488

489 Our experimental evaluation across diverse domains, including continuous control and robotic ma-
 490 nipulation, validates three key hypotheses. First, DARP consistently outperforms standard behavior
 491 cloning when using low-dimensional state representation. Secondly, DARP maintains performance
 492 across different state representations, action distribution modeling requirements, and task complexi-
 493 ties, with improvements ranging from 15-46% across tested scenarios. Third, architectural ablations
 494 reveal that distance vectors and permutation-invariant aggregation are crucial components to our
 495 algorithm.

496 6 REPRODUCIBILITY STATEMENT

497 A link to supplementary source code is provided. This codebase contains all code used to train and
 498 evaluate our models. It also contains policy and environment configuration files to generate all results
 500 seen in this paper. We provide all data used in MuJoCo experiments and provide scripts to generate
 501 expert demonstrations for Robosuite tasks via MimicGen. We also provide all code necessary to
 502 transform between different modalities, such as low-dimensional state representation to images to
 503 R3M features. Results will be identical to those in the paper on NVIDIA L40 and L40s GPUs, with
 504 the exception of results that require the use of a transformer (REGENT, Set Transformer), which are
 505 non-deterministic and may differ slightly from reported numbers.

507 REFERENCES

510 Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-based reinforce-
 511 ment learning. In *International Conference on Machine Learning*. PMLR, PMLR, 2018.

513 Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for laplacian-based manifold
 514 methods. *Journal of Computer and System Sciences*, 74(8):1289–1308, 2008.

516 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai,
 517 Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Sergey
 518 Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi, James
 519 Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π_0 : A vision-language-
 520 action flow model for general robot control, 2024. URL <https://arxiv.org/abs/2410.24164>.

522 Zixuan Chen, Xialin He, Yen-Jen Wang, Qiayuan Liao, Yanjie Ze, Zhongyu Li, S. Shankar Sastry,
 523 Jiajun Wu, Koushil Sreenath, Saurabh Gupta, and Xue Bin Peng. Learning smooth humanoid
 524 locomotion through lipschitz-constrained policies. *arxiv preprint arXiv:2410.11825*, 2024.

526 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
 527 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The
 528 International Journal of Robotics Research*, 2024.

529 Fan R. K. Chung. *Spectral Graph Theory*, volume 92 of *CBMS Regional Conference Series in
 530 Mathematics*. American Mathematical Society, 1997. doi: 10.1090/cbms/092.

532 Michael Jae-Yoon Chung, Maxwell Forbes, Maya Cakmak, and Rajesh PN Rao. Accelerating
 533 imitation learning through crowdsourcing. In *2014 IEEE International Conference on Robotics
 534 and Automation (ICRA)*, pp. 4777–4784. IEEE, 2014.

535 Norman Di Palo and Edward Johns. Keypoint action tokens enable in-context imitation learning in
 536 robotics. In *Proceedings of Robotics: Science and Systems (RSS)*, 2024.

538 Maximilian Du, Suraj Nair, Dorsa Sadigh, and Chelsea Finn. Behavior retrieval: Few-shot imitation
 539 learning by querying unlabeled datasets. In *Proceedings of Robotics: Science and Systems (RSS)*,
 2023.

540 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
 541 data-driven reinforcement learning, 2020.

542

543 Letian Fu, Huang Huang, Gaurav Datta, Lawrence Yunliang Chen, William Chung-Ho Panitch,
 544 Fangchen Liu, Hui Li, and Ken Goldberg. In-context imitation learning via next-token prediction.
 545 *arXiv preprint arXiv:2408.15980*, 2024.

546 Liyiming Ke, Yunchu Zhang, Abhay Deshpande, Siddhartha Srinivasa, and Abhishek Gupta. Ccil:
 547 Continuity-based data augmentation for corrective imitation learning. In *The Twelfth International
 548 Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=LQ6LQ8f4y8>.

549

550 Liyiming Ke, Yunchu Zhang, Abhay Deshpande, Siddhartha S. Srinivasa, and Abhishek Gupta.
 551 CCIL: continuity-based data augmentation for corrective imitation learning. In *The Twelfth Inter-
 552 national Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.*
 553 OpenReview.net, 2024b. URL <https://openreview.net/forum?id=LQ6LQ8f4y8>.

554

555 Taisuke Kobayashi. L2c2: Locally lipschitz continuous constraint towards stable and smooth
 556 reinforcement learning. In *2022 IEEE/RSJ International Conference on Intelligent Robots and
 557 Systems (IROS)*, pp. 4032–4039. IEEE, IEEE, October 2022.

558

559 Jonathan Lee et al. Supervised pretraining can learn in-context reinforcement learning. In *Advances
 in Neural Information Processing Systems*, volume 36, pp. 43057–43083, 2023.

560

561 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
 562 former: A framework for attention-based permutation-invariant neural networks. In *Proceedings
 563 of the 36th International Conference on Machine Learning*, pp. 3744–3753, 2019.

564

565 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
 566 review, and perspectives on open problems, 2020. URL <https://arxiv.org/abs/2005.01643>.

567

568 Li-Heng Lin, Yuchen Cui, Amber Xie, Tianyu Hua, and Dorsa Sadigh. Flowretrieval: Flow-
 569 guided data retrieval for few-shot imitation learning. In Pulkit Agrawal, Oliver Kroemer, and
 570 Wolfram Burgard (eds.), *Conference on Robot Learning, 6-9 November 2024, Munich, Germany*,
 571 volume 270 of *Proceedings of Machine Learning Research*, pp. 4084–4099. PMLR, 2024. URL
<https://proceedings.mlr.press/v270/lin25a.html>.

572

573 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 574 matching for generative modeling. In *International Conference on Learning Representations
 (ICLR) 2023*, 2023. URL <https://arxiv.org/abs/2210.02747>. Originally appeared
 575 as arXiv preprint arXiv:2210.02747.

576

577 Jiafei Lyu, Xiaoteng Ma, Le Wan, Runze Liu, Xiu Li, , and Zongqing Lu. Seabo: A simple
 578 search-based method for offline imitation learning. In *International Conference on Learning
 579 Representations*, 2024.

580

581 Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan, Yuke
 582 Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using human
 583 demonstrations. In *7th Annual Conference on Robot Learning*, 2023.

584

585 Elman Mansimov and Kyunghyun Cho. Simple nearest neighbor policy method for continuous
 586 control tasks. In *International Conference on Learning Representations (ICLR) 2018*, 2018. Under
 587 review as a conference paper at ICLR 2018.

588

589 Marius Memmel, Jacob Berg, Bingqing Chen, Abhishek Gupta, and Jonathan Francis. Strap: Robot
 590 sub-trajectory retrieval for augmented policy learning. In *The Thirteenth International Conference
 591 on Learning Representations*, 2025.

592

593 Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3M: A universal
 594 visual representation for robot manipulation. In Karen Liu, Dana Kulic, and Jeffrey Ichniowski
 595 (eds.), *Conference on Robot Learning, CoRL 2022, 14-18 December 2022, Auckland, New Zealand*,
 596 volume 205 of *Proceedings of Machine Learning Research*, pp. 892–909. PMLR, 2022. URL
<https://proceedings.mlr.press/v205/nair23a.html>.

594 Jyothish Pari, Nur Muhammad Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto. The
 595 surprising effectiveness of representation learning for visual imitation. In *Robotics: Science and*
 596 *Systems (RSS)*. Robotics: Science and Systems Foundation, June 2022. doi: 10.15607/RSS.2022.
 597 XVIII-052.

598 Emmanuel Pignat and Sylvain Calinon. Bayesian gaussian mixture model for robotic policy imita-
 599 tion. *IEEE Robotics and Automation Letters*, 2019. URL <https://arxiv.org/pdf/1904.10716.pdf>. Preprint version.

600 601

602 Dean Pomerleau. Efficient training of artificial neural networks for autonomous navigation. *Neural*
 603 *Comput.*, 3(1):88–97, 1991. doi: 10.1162/NECO.1991.3.1.88. URL <https://doi.org/10.1162/neco.1991.3.1.88>.

604 605 Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning and
 606 structured prediction to no-regret online learning. In Geoffrey J. Gordon, David B. Dunson,
 607 and Miroslav Dudík (eds.), *Proceedings of the Fourteenth International Conference on Artificial*
 608 *Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011*, volume 15
 609 of *JMLR Proceedings*, pp. 627–635. JMLR.org, 2011. URL <http://proceedings.mlr.press/v15/ross11a/ross11a.pdf>.

610 611 Steven L. Salzberg and David W. Aha. Learning to catch: Applying nearest neighbor algorithms to
 612 dynamic control tasks. In P. Cheeseman and R. W. Oldford (eds.), *Selecting Models from Data:*
 613 *Artificial Intelligence and Statistics IV*, volume 89 of *Lecture Notes in Statistics*, pp. 321–328.
 614 Springer, 1994. doi: 10.1007/978-1-4612-2660-4_33. URL https://link.springer.com/chapter/10.1007/978-1-4612-2660-4_33.

615 616 Jonathan C. Spencer, Sanjiban Choudhury, Arun Venkatraman, Brian D. Ziebart, and J. Andrew Bag-
 617 nell. Feedback in imitation learning: The three regimes of covariate shift. *CoRR*, abs/2102.02872,
 618 2021. URL <https://arxiv.org/abs/2102.02872>.

619 620 Kaustubh Sridhar, Souradeep Dutta, Dinesh Jayaraman, and Insup Lee. REGENT: A retrieval-
 621 augmented generalist agent that can act in-context in new environments. In *The Thirteenth*
 622 *International Conference on Learning Representations (ICLR)*, 2025. Oral presentation.

623 624 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 625 In *2012 IEEE/RSJ international conference on intelligent robots and systems*, pp. 5026–5033.
 626 IEEE, 2012.

627 628 Arun Venkatraman, Martial Hebert, and J. Andrew Bagnell. Improving multi-step prediction of
 629 learned time series models. In Blai Bonet and Sven Koenig (eds.), *Proceedings of the Twenty-*
 630 *Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA*, pp.
 631 3024–3030. AAAI Press, 2015. doi: 10.1609/AAAI.V29I1.9590. URL <https://doi.org/10.1609/aaai.v29i1.9590>.

632 633 Jan Ole von Hartz, Adrian Röfer, Joschka Boedecker, and Abhinav Valada. The unreasonable
 634 effectiveness of discrete-time gaussian process mixtures for robot policy learning. *arXiv preprint*
 635 *arXiv:2505.03296*, 2025.

636 637 Vitalis Vosylius and Edward Johns. Instant policy: In-context imitation learning via graph diffusion.
 638 In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2025.

639 640 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov, and
 641 Alexander J Smola. Deep sets. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
 642 S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems 30*,
 643 pp. 3391–3401. Curran Associates, Inc., 2017. URL <http://papers.nips.cc/paper/6931-deep-sets.pdf>.

644 645 Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
 646 manipulation with low-cost hardware. In *Proceedings of Robotics: Science and Systems (RSS)*,
 647 2023.

648 649 Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf.
 650 Learning with local and global consistency. In *Advances in Neural Information Processing Systems*
 651 (*NeurIPS*), volume 16, 2003.

648 Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush Nasiriany,
649 Yifeng Zhu, and Kevin Lin. robosuite: A modular simulation framework and benchmark for robot
650 learning. In *arXiv preprint arXiv:2009.12293*, 2020.
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A APPENDIX**
 703

704 **A.1 LEMMAS AND PROOFS**
 705

706 **A.1.1 PROOF OF THEOREM 1**
 707

708 To prove Theorem 1, we first start with a well-known result (Chung, 1997; Zhou et al., 2003; Belkin
 709 & Niyogi, 2008).

710 **Lemma 1** (Smoothness regularizer as k -NN graph Laplacian penalty). *Let $\{s_1, \dots, s_n\}$ be the expert
 711 states with corresponding predicted actions $f(s_i) \in \mathbb{R}^{d_a}$. For each i , let $\mathcal{N}_k(s_i)$ denote the indices of
 712 the k nearest neighbors of s_i (excluding i). Define asymmetric weights*

713
$$\tilde{W}_{ij} = \begin{cases} w_j(s_i), & \text{if } j \in \mathcal{N}_k(s_i), \\ 0, & \text{otherwise,} \end{cases}$$

 714

715 and construct a symmetric affinity matrix
 716

717
$$W_{ij} = \frac{1}{2}(\tilde{W}_{ij} + \tilde{W}_{ji}).$$

 718

719 Let D be the degree matrix with $D_{ii} = \sum_j W_{ij}$, and define the k -NN graph Laplacian $L = D - W$.
 720

721 Then the smoothness regularizer can be written as the quadratic form
 722

723
$$\mathcal{L}_S(f) = \frac{1}{n} \sum_{i=1}^n \sum_{j \in \mathcal{N}_k(s_i)} w_j(s_i) \|f(s_i) - f(s_j)\|^2 \propto \text{Tr}(F^\top L F),$$

 724

725 where $F = [f(s_1), f(s_2), \dots, f(s_n)]^\top \in \mathbb{R}^{n \times d_a}$. Equivalently, in the scalar case,
 726

727
$$\mathcal{L}_S(f) \propto f^\top L f.$$

 728

729 **Corollary 1** (Continuum limit of smoothness regularizer). *Assume states $\{s_i\}_{i=1}^n$ are sampled
 730 i.i.d. from a smooth density $p(s)$ supported on an m -dimensional C^2 manifold $\mathcal{M} \subset \mathbb{R}^d$. Let W be the
 731 symmetrized k -NN affinity matrix constructed from a kernel K_Δ with bandwidth h , and let $L = D - W$
 732 be the graph Laplacian.*

733 If $n \rightarrow \infty$, $h \rightarrow 0$, and $nh^{m+2} \rightarrow \infty$, then the normalized quadratic form converges to the weighted
 734 Dirichlet energy:
 735

736
$$\frac{1}{n^2 h^{m+2}} \text{Tr}(F^\top L F) \longrightarrow C_K \int_{\mathcal{M}} \|\nabla_{\mathcal{M}} f(s)\|_2^2 p(s)^2 d\text{vol}(s),$$

 737

738 where $C_K > 0$ is a constant depending only on the kernel K_Δ .
 739

740 **Theorem 1** (Manifold Regularized BC ($\mathcal{L}_{\text{MRIL}}$) improves over vanilla BC (\mathcal{L}_{BC})). *Let $f: \mathcal{S} \rightarrow \mathcal{A}$
 741 be the expert policy, assumed C^2 -smooth on a compact state space \mathcal{S} . Consider two estimators
 742 trained on expert demonstrations:*

743 1. **Vanilla BC:** a global supervised model minimizing

744
$$\mathcal{L}_{\text{BC}}(f) = \mathbb{E}_{(s,a) \sim P_{\mathcal{S}}} [\ell(f(s), a)].$$

 745

746 2. **MRIL:** a neighbor-based estimator minimizing

747
$$\mathcal{L}_{\text{MRIL}}(f) = \mathcal{L}_{\text{BC}}(f) + \lambda \mathbb{E}_{s \sim P_{\mathcal{S}}} \left[\sum_{i \in \mathcal{N}_k(s)} w_i(s) \|f(s) - f(s_i^*)\|_2^2 \right],$$

 748

749 where $w_i(s)$ are the kernel weights defined above and $\lambda > 0$.
 750

751 Then, under the smoothness assumption on f , the following hold:
 752

753 (i) Variance reduction: The Laplacian penalty in MRIL acts as a data-dependent Tikhonov
 754 regularizer, yielding smaller estimator variance than vanilla BC.

756 (ii) Smoothness guarantee: *Minimizers of $\mathcal{L}_{\text{MRIL}}$ satisfy a uniform bound on the local Lipschitz
757 constant of f , whereas vanilla BC admits interpolants with arbitrarily large Lipschitz
758 constants between training states.*

759 (iii) Policy stability: *In a closed loop rollout, the deviation recursion*

$$\Delta_{t+1} \leq L_s \Delta_t + L_a \|\pi(s_t) - f(s_t^*)\|^4$$

760 *accumulates error linearly for vanilla BC, but sublinearly for MRIL, since the smoothness
761 regularizer enforces $\|f(s) - f(s')\| = O(\|s - s'\|)$ for neighbors s, s' .*

762 *This suggests that MRIL enjoys strictly better generalization and stability guarantees than BC.*

763 *Proof.* We prove each claim in turn.

764 (i) **Variance reduction.** The Laplacian penalty in $\mathcal{L}_{\text{MRIL}}$ is

$$\sum_{i,j} W_{ij} \|f(s_i) - f(s_j)\|^2 = 2f^\top Lg,$$

765 where $L = D - W$ is the graph Laplacian, and W is the k -NN affinity matrix. By Lemma 1, this equals
766 the empirical Dirichlet energy of f on the k -NN graph. It is well known (Zhou et al., 2003; Belkin &
767 Niyogi, 2008) that such a quadratic penalty is equivalent to Tikhonov regularization with respect to
768 the graph Laplacian norm $\|f\|_L^2 = f^\top Lf$. In statistical learning theory, adding a Tikhonov penalty
769 strictly reduces the variance of the estimator compared to the unregularized solution while keeping
770 the bias term controlled. Thus MRIL enjoys smaller estimator variance than vanilla BC, which uses
771 no such penalty.

772 (ii) **Smoothness guarantee.** Consider the continuum limit (Corollary 1): for i.i.d. samples $\{s_i\}$
773 from density p on a smooth manifold \mathcal{M} , the normalized penalty converges to

$$\int_{\mathcal{M}} \|\nabla f(s)\|^2 p(s)^2 d\text{vol}(s).$$

774 This is the weighted Dirichlet energy of f on \mathcal{M} . If this integral is finite, f belongs to the Sobolev
775 space $H^1(\mathcal{M}, p^2)$, and in particular f is locally Lipschitz almost everywhere with

$$\|f(s) - f(s')\| \leq C\|s - s'\| \quad \text{for } p\text{-a.e. neighbor pairs } s, s'.$$

776 Therefore minimizers of $\mathcal{L}_{\text{MRIL}}$ have uniformly bounded local Lipschitz constants along high-density
777 regions of the state space. By contrast, minimizers of vanilla BC have no such constraint: any
778 oscillatory interpolant that matches the training data exactly yields the same supervised risk, so
779 arbitrarily large Lipschitz constants are possible.

780 (iii) **Policy stability.** Let $\Delta_t = \|s_t - s_t^*\|$ denote the deviation at time t . For Lipschitz dynamics T ,

$$\Delta_{t+1} \leq L_s \Delta_t + L_a \|\pi(s_t) - f(s_t^*)\|.$$

781 Decompose the action error:

$$\|\pi(s_t) - f(s_t^*)\| \leq \|\pi(s_t) - f(s_t)\| + \|f(s_t) - f(s_t^*)\|.$$

782 For vanilla BC, the first term $\|\pi(s_t) - f(s_t)\|$ is only minimized on the empirical distribution $P_{\mathcal{S}}$;
783 off-distribution, it may be $O(1)$ regardless of Δ_t . The second term satisfies $\|f(s_t) - f(s_t^*)\| = O(\Delta_t)$
784 by smoothness of f . Hence the recursion can take the form

$$\Delta_{t+1} \leq L_s \Delta_t + L_a (O(1) + O(\Delta_t)),$$

785 which accumulates linearly in t .

786 For MRIL, the Laplacian penalty enforces

$$\|\pi(s) - \pi(s')\| \leq C\|s - s'\| \quad \text{for neighbor pairs } (s, s'),$$

809 ⁴ L_s and L_a are the Lipschitz constants of the environment transition dynamics with respect to state and action,
810 respectively. We denote $\pi(s_t)$ as the action predicted by the agent from the state time t , s_t .

as shown in part (ii). Thus $\|\pi(s_t) - f(s_t)\| = O(r^2)$ (where r is the radius of the kernel bandwidth around the point s_t) by local-linear regression error bounds, and $\|f(s_t) - f(s_t^*)\| = O(\Delta_t)$ by smoothness of f . Combining these,

$$\Delta_{t+1} \leq L_s \Delta_t + L_a (O(r^2) + O(\Delta_t)).$$

Since the constant multiplying Δ_t is strictly smaller under the smoothness constraint, the cumulative error grows strictly slower than in vanilla BC. In particular, error growth is sublinear in the rollout horizon when r is small, whereas it is linear for vanilla BC. \square

Conclusion. Claims (i)–(iii) establish that MRIL yields lower variance, uniform smoothness control, and sublinear rollout error accumulation compared to vanilla BC, completing the proof. \square

Kernel choice. For the IC smoothness regularizer, we adopt a Gaussian kernel

$$w_i(s) \propto \exp\left(-\frac{\|s-s_i^*\|^2}{2h^2}\right), \quad \sum_{i \in \mathcal{N}_k(s)} w_i(s) = 1,$$

with bandwidth h set to the median distance to the k -th nearest neighbor across the dataset. This choice is standard in manifold regularization (Belkin & Niyogi, 2008; Zhou et al., 2003) and ensures that the graph Laplacian penalty converges to the Dirichlet energy in the continuum limit. In practice, we found this default to be stable across tasks, though other kernels (e.g., uniform k -NN or exponential decay) yield qualitatively similar results.

A.1.2 PROOF OF THEOREM 2

We first begin with the required Lemmas establishing the spectral form of explicit Laplacian regularization and neighbor aggregation.

Lemma 2 (Spectral form of explicit Laplacian regularization). *Let L be the symmetric normalized graph Laplacian with eigenpairs $\{(\mu_j, u_j)\}_{j=1}^n$, where $0 = \mu_1 \leq \mu_2 \leq \dots \leq \mu_n \leq 2$. The minimizer of the penalized objective*

$$\mathcal{L}_\lambda(f) = \|f - a^*\|^2 + \lambda f^\top L f$$

has the closed-form expansion

$$f_\lambda = \sum_{j=1}^n \frac{1}{1 + \lambda \mu_j} \langle a^*, u_j \rangle u_j.$$

Thus λ directly determines the spectral filter $\phi_\lambda(\mu) = (1 + \lambda \mu)^{-1}$ applied to each Laplacian mode.

Proof. Diagonalize $L = U \Lambda U^\top$ with $U = [u_1, \dots, u_n]$ orthogonal and $\Lambda = \text{diag}(\mu_1, \dots, \mu_n)$. Write $f = Uc$, $a^* = Ub$ in this basis. The objective becomes

$$\|Uc - Ub\|^2 + \lambda c^\top \Lambda c = \sum_{j=1}^n (c_j - b_j)^2 + \lambda \mu_j c_j^2.$$

Minimizing each term yields $c_j = \frac{1}{1 + \lambda \mu_j} b_j$. Transforming back gives the stated expansion. \square

Lemma 3 (Spectral form of neighbor aggregation). *Let $S = D^{-1}A$ be the random-walk matrix of the k -NN graph, with adjacency A and degree D . For any prediction vector f , the neighbor-averaged prediction is $\hat{f} = Sf$. In the Laplacian eigenbasis, this corresponds to the spectral filter*

$$\hat{f} = \sum_{j=1}^n (1 - \mu_j) \langle f, u_j \rangle u_j,$$

i.e. $\phi_{\text{DARP}}(\mu) = 1 - \mu$.

Proof. By definition, $L = I - D^{-1/2}AD^{-1/2}$ and $S = D^{-1}A = I - L_{\text{rw}}$ where $L_{\text{rw}} = D^{-1}L$ is the random-walk Laplacian. Since L_{rw} and L share the same spectrum up to similarity transform, the eigenbasis $\{u_j\}$ diagonalizes S . Thus for each mode u_j , $Su_j = (1 - \mu_j)u_j$, yielding the claimed spectral filter. \square

864
 865 **Theorem 2** (iMRIL is parameter-free Laplacian regularization for BC (MRIL)). *Consider the*
 866 *symmetric normalized k -NN graph Laplacian L (defined in Section 2.2), with eigenpairs $\{(\mu_j, u_j)\}_{j=1}^n$,*
 867 *where $0 = \mu_1 \leq \mu_2 \leq \dots \leq \mu_n \leq 2$.*

868 *The minimizers of the explicit MRIL objective (Section 2.2) and the implicit iMRIL objective (Sec-
 869 tion 2.3) have the following closed form expansions*

$$f_{\text{MRIL}} = \sum_{j=1}^n \frac{1}{1 + \lambda \mu_j} \langle a^*, u_j \rangle u_j \quad \hat{f}_{\text{iMRIL}} = \sum_{j=1}^n (1 - \mu_j) \langle f, u_j \rangle u_j$$

870
 871 *iMRIL’s neighbor aggregation step applies the fixed spectral filter $\phi_{\text{iMRIL}}(\mu) = 1 - \mu$ to the graph*
 872 *Laplacian L , preserving low-frequency modes and suppressing high-frequency modes. The con-
 873 *gruence between \hat{f}_{iMRIL} and f_{MRIL} shows that iMRIL is equivalent to a built-in form of Laplacian*
 874 *smoothing (MRIL) with effective $\lambda \approx 1$ in normalized units. Unlike explicit regularization, this*
 875 *implicit filter requires no additional hyperparameter tuning.**

876
 877 *Proof.* From Lemma 3, the neighbor aggregation operator $S = D^{-1}A$ acts on Laplacian eigenmodes
 878 u_j as

$$Su_j = (1 - \mu_j)u_j,$$

879 where μ_j are the normalized Laplacian eigenvalues. Thus in the graph Fourier basis, neighbor
 880 aggregation corresponds to multiplying each mode by the fixed spectral filter $\phi_{\text{DARP}}(\mu) = 1 - \mu$.

881 On the other hand, Lemma 2 shows that explicit Laplacian regularization with parameter λ yields
 882 the spectral filter $\phi_\lambda(\mu) = (1 + \lambda\mu)^{-1}$. Both filters downweight high-frequency modes ($\mu \gg 0$)
 883 while preserving low-frequency modes ($\mu \approx 0$). The key difference is that $\phi_\lambda(\mu)$ requires tuning λ ,
 884 whereas $\phi_{\text{DARP}}(\mu)$ is parameter-free.

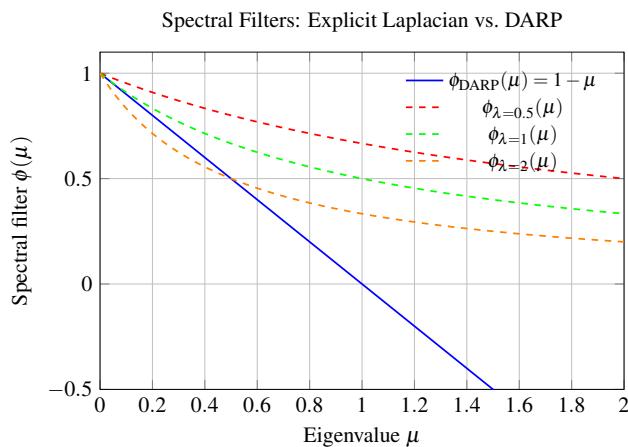
885 To see the equivalence, note that for small μ ,

$$\phi_{\text{DARP}}(\mu) = 1 - \mu \approx (1 + \mu)^{-1} = \phi_{\lambda=1}(\mu) \quad \text{up to } O(\mu^2) \text{ terms.}$$

886 Thus DARP can be interpreted as performing Laplacian smoothing with an effective regularization
 887 weight of order $\lambda \approx 1$ in normalized units. Moreover, for large μ , $\phi_{\text{DARP}}(\mu)$ damps high-frequency
 888 modes even more strongly by driving them toward zero, providing a sharper low-pass effect than
 889 explicit regularization.

890 Therefore, DARP’s aggregation step is mathematically equivalent to implicit Laplacian regularization
 891 with fixed spectral filter ϕ_{DARP} , eliminating the need to tune λ explicitly. \square

892 DARP can therefore be viewed as a form of *locally adaptive implicit regularization*: rather than
 893 introducing an explicit global weight λ , its neighbor aggregation step enforces smoothness auto-
 894 matically through the graph structure. The effective regularization strength varies with local degree

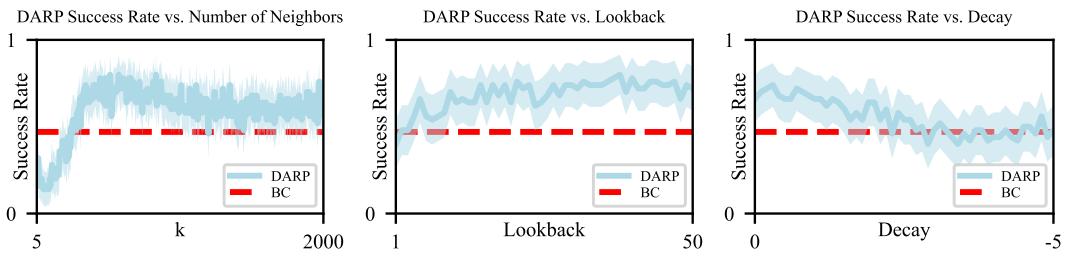


904
 905 **Figure 6:** DARP achieves sharper low-pass filtering

918 and neighborhood geometry, adapting to the density of the expert demonstrations. Spectrally, this
 919 corresponds to the fixed filter $\phi_{\text{DARP}}(\mu) = 1 - \mu$, which suppresses high-frequency modes more
 920 aggressively than any fixed explicit λ . Figure 6 illustrates this comparison, showing how DARP
 921 achieves sharper low-pass filtering without the need for hyperparameter tuning.
 922

923 A.2 ADDITIONAL EXPERIMENTAL DETAILS

925 A.2.1 RETRIEVAL



926 Figure 7: DARP performance analysis as retrieval hyperparameters are swept: (left) we see that the performance
 927 of a DARP model is poor in when using few neighbors, reaches a global optimum when retrieving about 500
 928 neighbors, and plateaus just above BC’s success rate as k goes to the size of the dataset; (center) we see that the
 929 performance of a DARP model generally slightly improves as more history is considered, and only performs
 930 worse than BC when very little or no history is considered; (right) we see that the performance of a DARP model
 931 is sensitive to how much weight is applied to older observations when performing retrieval. Intuitively, if this
 932 decay is too high, DARP performance is nearly identical to having little to no lookback, performing worse than
 933 BC. Success rate is measured out of 50 trials on the Robosuite Stack environment. 95% confidence intervals are
 934 included.

935 The selection of the distance function $d(s_q, s_i^*)$ to select k neighbors is crucial. While we find
 936 that simple Euclidean distance between states can work, in our experiments, we use a slightly
 937 modified algorithm that takes advantage of the fact that we are working with sequences of states and
 938 incorporates history in our distance calculation.
 939

940 Suppose we have a query trajectory $S_q = (\dots, s_{q,-1}, s_{q,0})$ where $s_{q,0}$ is the current query state s_q . Now
 941 suppose we want to calculate $d(s_q, s_i^*)$, where s_i^* is some state from the expert dataset. We first find
 942 the trajectory this state is from—call this S_j^* —and the index of s_i^* in this trajectory—call this t . Thus,
 943 s_i^* can be rewritten as $s_{j,t}^*$. Given some lookback parameter ℓ which denotes how many past states we
 944 want to consider, we get:

$$945 d(s_q, s_i^*) = \sum_{n=0}^{\ell-1} \|s_{q,-n} - s_{j,t-n}^*\|$$

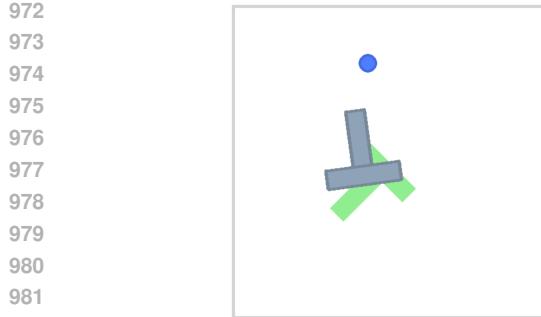
946 Which is simply the accumulation of Euclidean distances of the current and last $\ell - 1$ states from
 947 both the query trajectory and the source trajectory, assuming valid indices. Of course, in practice, we
 948 generally want to put more emphasis on more recent states, as we want them to be more influential in
 949 the selection of neighbors. Thus, given some rate of exponential decay $r \geq 0$, we have

$$950 d(s_q, s_i^*) = \sum_{n=0}^{\ell-1} \|s_{q,-n} - s_{j,t-n}^*\| \cdot e^{-rn}$$

951 See Figure 7 for an experimental analysis on how the success rate in an environment changes as
 952 these parameters are swept.

953 A.2.2 CAN DARP HANDLE TASKS REQUIRING THE REPRESENTATION OF MULTI-MODAL 954 ACTION DISTRIBUTIONS?

955 We test DARP’s ability to handle complex action distributions by evaluating on the Push-T task, as
 956 described in (Chi et al., 2024), which requires representing multi-modal action distributions (see
 957 Figure 8 for a visualization). For this experiment, DARP employs a Set Transformer head that
 958 predicts parameters of a Gaussian Mixture Model. We note that DARP with a GMM head is to handle
 959 multi-modal distributions effectively, showing a 22% improvement over BC on the Push-T task (Q1)

Figure 8: **Push-T Environment.**

The goal is to control the blue circle to push the T-shaped block.

Method	Score
BC	48 ± 8
DARP	70 ± 8

Table 4: **Push-T Results.** Averaged over 100 trials, DARP outperforms BC.

(see Table 4). This demonstrates that DARP can be further adapted to multi-modal action distribution modeling requirements.

A.2.3 CAN DARP HANDLE DISCONTINUOUS ENVIRONMENTS WHERE NEARBY STATES MAY REQUIRE OPPOSING ACTIONS?

A key concern for neighbor-based approaches is performance in environments with strong discontinuities, where states that are close in Euclidean distance may require drastically different actions. To address this concern, we design a stress test using a modified version of D4RL’s Umaze environment (see Figure 9 for a visualization).

Even in this deliberately challenging discontinuous environment, DARP achieves a 57% success rate compared to BC’s 25%. (Q3) (see Table 5) This suggests that the distance vectors and permutation-invariant aggregation help the model distinguish between appropriate and inappropriate neighbors, even when spatial proximity doesn’t guarantee action similarity.

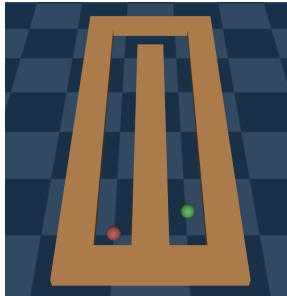


Figure 9: **Long maze environment.** The goal is to move a force-actuated ball from the green start to the red destination.

Method	Succ. (%)
BC	25
DARP	57

Table 5: **Long maze results.** Averaged over 100 trials, DARP significantly outperforms BC. The goal is to move a force-actuated ball from the green start to the red destination.

A.2.4 CAN DARP RECOVER FROM BC ERROR?

In order to analyze DARP’s robustness to accumulated error, we roll out a BC agent in an environment in which we know it will fail, but every k steps, we create a fork of the environment and begin rolling out a DARP agent in that clone of the environment. The results (seen in Fig. 10) show that, even as BC approaches failure and drifts away from the support of expert demonstrations, DARP is able to recover and score very highly. This suggests that DARP indeed has superior robustness to accumulation of error and can perform well in the slightly out-of-distribution states that a failing BC agent drifts into.

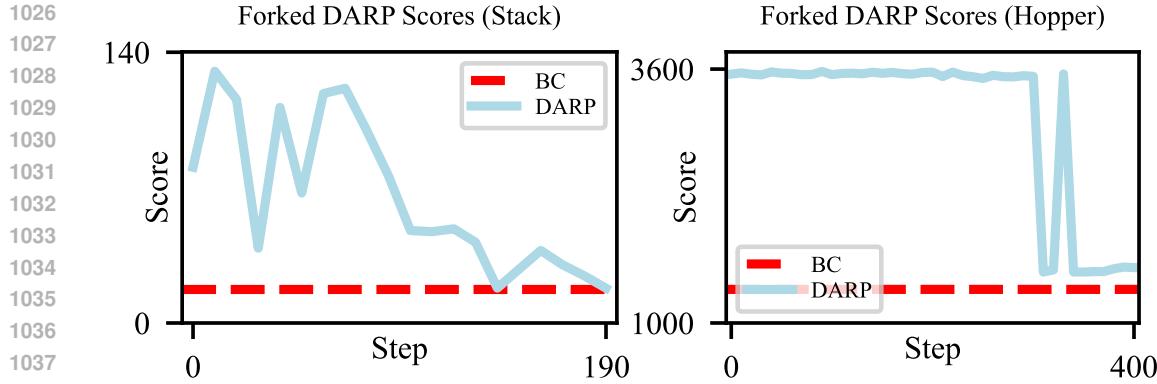


Figure 10: In two different tasks (the Robosuite Stack task and the MuJoCo Hopper task), we rollout a BC agent and create a fork of the environment every k steps (in this case, $k = 10$). We see that, even as BC nears the end of its failing rollout, DARP is able to scale highly, and is only prevented from doing so about halfway through the Stack rollout and about 80% through the Hopper rollout.

Environment	Method	Improvement over BC (%)
Hopper	CCIL	32.6%
	DARP	53.2%
Walker	CCIL	84.1%
	DARP	84.1%
Ant	CCIL	12.6%
	DARP	84.5%
HalfCheetah	CCIL	5.4%
	DARP	418.7%

Table 6: **Relative improvement over BC compared to CCIL.** Comparing DARP against CCIL on standard MuJoCo benchmarks. DARP achieves higher or equal relative gains across all tasks.

A.2.5 COMPARISON WITH CCIL

As shown in Table 6, we evaluate our method against CCIL, a baseline that explicitly induces smoothness. We use the reported scores in the CCIL paper, and compare percent improvement over BC. We see that DARP outperforms CCIL significantly on three out of four environments, with a particularly large margin on HalfCheetah (418.7% vs 5.4% improvement).

A.2.6 DISTANCE METRIC SENSITIVITY

Method	Success Rate (%)
BC	47
DARP (Cosine Similarity)	70
DARP (Euclidean Distance)	75

Table 7: **Distance Metric Sensitivity.** Comparison of success rates using R3M features. DARP with Euclidean distance and cosine similarity perform similarly, beating BC by 28% and 23% respectively. Results are on the Robosuite Stack task.

While all experiments performed in this paper using Euclidean distance to choose nearby neighbors, it is natural to consider alternative metrics, like cosine similarity, especially in high-dimensional embeddings such as R3M. We find (as shown in Table 7) that DARP performs similarly – only 5% worse – when using cosine similarity rather than Euclidean distance. This suggests DARP is robust to the choice of distance metric used.

1080 A.2.7 DARP IN COMBINATION WITH DIFFUSION POLICY
1081
1082
1083

Method	Score (Success %)
BC (MLP)	34
DARP (MLP)	62
Diffusion	50
DARP w/ Diffusion	76

1084
1085 Table 8: **DARP in combination with diffusion policy.** DARP provides significant improvements
1086 when applied to both standard MLP policies and Diffusion policies. Results are on the Robosuite
1087 Stack task. Note that the number of demonstrations used is half that used in Table 2, so numbers do
1088 not match.
10891090 While all reported experiments are performed with an MLP backbone, diffusion policy (Chi et al.,
1091 2024) has proven to be a state-of-the-art model class for imitation learning, particularly for manipula-
1092 tion tasks. Table 8 reveals that, not only does DARP with an MLP backbone outperform standard
1093 diffusion by 12%, it is not mutually exclusive with diffusion and can be combined for an even more
1094 performant model. Using the DARP architecture with a diffusion backbone outperforms DARP with
1095 an MLP backbone by 14%, beating standard BC by 42%.
1096

Method	Training (s/epoch)	Inference (s/step)
Diffusion	5.610	0.15700
DARP (MLP)	0.559	0.00437

1097 Table 9: **Computational efficiency of DARP with an MLP backbone and diffusion policy.**
1098 Comparison of runtime costs between DARP (MLP) and diffusion policy. Diffusion policy is
1099 significantly more expensive, being $\approx 10\times$ slower in training and $\approx 36\times$ slower during inference.
11001111 Additionally, we empirically find that DARP with an MLP backbone is much faster than standard
1112 diffusion, particularly in inference – see Table 9.
11131114 A.2.8 DARP TRAINED ON HUMAN DEMONSTRATIONS
1115

Method	Success Rate (%)
BC	45
DARP	60

1116 Table 10: **Results with human demonstrations.** Comparison of success rates when training on
1117 human data rather than data collected by RL policies. Results are on the Robosuite Stack task.
11181119 The expert demonstrations used to train models for the MuJoCo and Robosuite environments are
1120 collected by an optimal Reinforcement Learning policy. It is crucial to ensure DARP maintains a
1121 performance gain in comparison to BC when trained on expert demonstrations collected by humans.
1122 Indeed, when trained on human demonstrations on the Robosuite Stack task, DARP outperforms
1123 standard BC by 15% (see Table 10).
1124

1134 A.2.9 CHOICE OF RETRIEVAL HYPERPARAMETERS
1135

Environment	Method	Score (Mean)
Hopper	BC	507.49
	DARP	805.69
Stack	BC	0.12
	DARP	0.31

1143 Table 11: **Performance comparison when validation loss is used to select training epochs and**
1144 **retrieval hyperparameters.** Mean scores on Hopper and Stack environments. We see that DARP
1145 maintains a performance gain in comparison to BC.1146
1147 Figure 7 reveals that there are selections of retrieval parameters (for example, a very low number of
1148 neighbors) which cause DARP to perform worse than standard BC. However, we find that choosing
1149 retrieval hyperparameters that minimize validation loss is an effective strategy to find performant
1150 settings, see Table 11.
11511152 A.3 PSUEDOCODE
11531154 We provide pseudocode of the DARP algorithm, see Algorithm 1.
11551156 **Algorithm 1** Difference-Aware Retrieval Policies
1157

```

1: Input: Expert demonstrations  $\mathcal{D}^* = \{(s_j^*, a_j^*)\}$ , number of neighbors  $k$ 
2: Initialize:  $f$  parameters  $\theta$ 
3: if  $g$  is parametric then
4:   Initialize:  $g$  parameters  $\psi$ 
5: end if
6: // Training Loop
7: while not converged do
8:   Sample batch of query data  $(s_q, a_q) \sim \mathcal{D}^*$ 
9:   for each query pair  $(s_q, a_q)$  in batch do
10:    // Find  $k$ -Nearest Neighbors from the entire dataset  $\mathcal{D}^*$ 
11:     $\mathcal{I}(s_q) \leftarrow \arg \min -k_j d(s_q, s_j^*)$ 
12:     $\mathcal{N}(s_q) \leftarrow \{(s_j^*, a_j^*) \mid j \in \mathcal{I}(s_q)\}$ 
13:    // Compute Neighbor-based Predictions
14:    for each neighbor  $(s_i^*, a_i^*) \in \mathcal{N}(s_q)$  do
15:       $a'_i \leftarrow f_\theta(s_i^*, a_i^*, s_i^* - s_q)$ 
16:    end for
17:    // Aggregate Predictions
18:    if  $g$  is parametric then
19:       $\hat{a}_q \leftarrow g_\psi(\{a'_1, a'_2, \dots, a'_k\})$ 
20:    else
21:       $\hat{a}_q \leftarrow g(\{a'_1, a'_2, \dots, a'_k\})$ 
22:    end if
23:  end for
24:  // Update Parameters based on the batch loss
25:   $\mathcal{L} \leftarrow \sum_{(s_q, a_q) \in \text{batch}} \|\hat{a}_q - a_q\|^2$ 
26:  // Gradient descent step
27:   $\theta \leftarrow \theta - \alpha \nabla_\theta \mathcal{L}$ 
28:  if  $g$  is parametric then
29:     $\psi \leftarrow \psi - \alpha \nabla_\psi \mathcal{L}$ 
30:  end if
31: end while
32: Output: Trained parameters  $\theta$  and, if applicable,  $\psi$ 

```

1188
1189 A.4 RUNTIME ANALYSIS
1190
1191

Environment	k	Train (s/epoch)	Test (s/step)
Hopper (1,000 datapoints)	BC	0.102	0.00127
	100	0.126	0.00413
	200	0.128	0.00418
	300	0.130	0.00420
	400	0.131	0.00421
	500	0.130	0.00419
Stack (4,200 datapoints)	BC	0.431	0.00139
	100	0.556	0.00437
	250	0.539	0.00442
	500	0.559	0.00437
	750	0.576	0.00433
	1000	0.591	0.00478
	1500	0.682	0.00452
	2000	0.758	0.00451

1211
1212 Table 12: **Runtime comparison across environments.** Training and testing speeds (in seconds) for Behavior
1213 Cloning (BC) and varying values of k on Hopper and Stack datasets.
12141215 As shown in Table 12, we analyze the computational overhead of DARP at both training-time and
1216 inference-time. Our analysis indicates that computation cost scales sub-linearly as k increases, and
1217 that inference time is tractable for real-time robotic application. For example, on the Robosuite
1218 Stack task at $k = 500$, inference takes approximately 0.00437 seconds per step on our hardware,
1219 corresponding to a control frequency higher than 230 Hz.
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241