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ABSTRACT

Behavior cloning suffers from poor generalization to out-of-distribution states
due to compounding errors during deployment. We present Difference-Aware
Retrieval Polices for Imitation Learning (DARP), a novel nearest-neighbor-based
imitation learning approach that addresses this limitation by reparameterizing the
imitation learning problem in terms of local neighborhood structure rather than
direct state-to-action mappings. Instead of learning a global policy, DARP trains a
model to predict actions based on k-nearest neighbors from expert demonstrations,
their corresponding actions, and the relative distance vectors between neighbor
states and query states. Our method requires no additional data collection, online
expert feedback, or task-specific knowledge beyond standard behavior cloning
prerequisites. We demonstrate consistent performance improvements of 15-46%
over standard behavior cloning across diverse domains, including continuous
control and robotic manipulation, and across different representations, including
high-dimensional visual features.

1 INTRODUCTION

BC DARP

D D?

?

?

?

Figure 1: Overview of DARP: Unlike standard BC,
DARP utilizes a retrieval-based reparameterization cen-
tered around difference vectors between query states and
retrieved neighbors.

Imitation learning via behavior cloning (BC) has
enabled robots to learn complex, dexterous be-
haviors from expert demonstrations (Zhao et al.,
2023; Chi et al., 2024; Black et al., 2024; Chung
et al., 2014). Yet despite its simplicity, BC often
proves brittle in practice, especially for long-
horizon tasks (Ross et al., 2011). The core issue
is covariate shift: small errors accumulate dur-
ing rollouts, driving the agent into states not well
represented in the demonstration data (Spencer
et al., 2021; Ross et al., 2011). In such out-of-
distribution regions, BC policies are highly unstable, producing unreliable and high-variance behavior
that frequently leads to failure.

This problem is well recognized, and many approaches have been proposed to mitigate compounding
error (Ross et al., 2011; Venkatraman et al., 2015; Ke et al., 2024b; Levine et al., 2020). However,
these typically go beyond the standard BC assumptions, requiring simulators, interactive experts, large
quantities of sub-optimal data, or strong task-specific structure. By contrast, our goal is to remain
in the pure BC regime: learn only from expert state–action pairs, with no additional supervision or
feedback. The central question is thus: can we reduce the variance of BC policies using only the
original demonstration dataset?

From a statistical standpoint, BC minimizes only the supervised risk on expert states. This controls
bias on the training distribution, but leaves variance unchecked: in low-density regions of the state
space (which are often encountered during closed-loop rollouts), the learned policy can oscillate
arbitrarily. A natural remedy is to enforce smoothness, so that nearby states yield similar predicted
actions. This discourages spurious fluctuations and improves rollout stability.

Several approaches to encourage smoothness have been explored, see related work: 4. Although
sometimes effective, each has drawbacks: augmentation does not guarantee consistency, global priors
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can blur distinct behaviors, temporal penalties only act along time (not space), and explicit graph
regularizers require tuning extra smoothness hyperparameters.

A complementary line of work contrasts global and local learning. “Global" supervised models (Black
et al., 2024; Zhao et al., 2023; Chi et al., 2024) attempt to compress the entire demonstration
dataset into a single parametric function, which is typically brittle under distribution shift. “Local"
methods (Pari et al., 2022; Mansimov & Cho, 2018; Salzberg & Aha, 1994) instead adapt predictions
to the structure of the dataset itself, consulting neighborhoods of similar states and generating
outputs from non-parametric or semi-parametric operations on the training distribution of expert
behavior. This locality offers robustness since it avoids reliance on a single parametric function, but
it also has limitations: its effectiveness inherently depends on the distance metric, naive averaging
of neighborhood can blur distinct actions and struggle to represent multimodality, while treating
neighbors only in terms of their absolute states can limit generalization.

We introduce Difference-Aware Retrieval Policies (DARP), which combines the robustness of local
methods with the stability of regularized global policy learning. At inference time, rather than
predicting actions to execute only from the current query state via a feedforward pass on a parametric
function, DARP (Fig. 1) first retrieves a set of neighbors from the training corpus and then conditions
the predicted action on tuples of (neighbor state, associated action, and difference from the query
state). These neighbor-informed predictions are then aggregated in a permutation-invariant manner
to produce a single robust action prediction. This design both grounds predictions in observed
data (due to non-parametric retrieval) and implicitly enforces local consistency (due to parametric
action prediction, conditional on the retrieved neighbors). We show that doing so reduces variance
without requiring additional data, supervision, or hyperparameters. In spectral terms, this form of
neighbor aggregation approximates a Laplacian filter on the k-NN graph of expert states, providing a
parameter-free form of smoothing that adapts to the local density and geometry of the dataset.

We provide both theoretical and empirical evidence that while operating under the same requirements
as behavior cloning, DARP improves performance considerably by reducing variance and enhancing
robustness to distribution shift. Our analysis formalizes the connection to Laplacian regularization,
showing that DARP implicitly applies a fixed low-pass spectral filter that suppresses high-frequency
variance. Empirically, on imitation learning evaluations, DARP achieves 15–46% gains over typical
behavior cloning across continuous control (MuJoCo), robotic manipulation (Robosuite), and high-
dimensional visual imitation tasks (Robosuite with image state). We demonstrate that DARP is a
general, scalable architecture that naturally extends to image-based domains, with rich policy classes
like transformers and Gaussian mixture models. We perform a careful set of ablations to highlight the
importance of our particular choice of representation and architecture, providing general-purpose
insights into retrieval-based algorithms for sequential decision-making problems.

2 DIFFERENCE-AWARE RETRIEVAL POLICIES FOR IMITATION LEARNING

In this work, we instantiate a new class of imitation learning methods that get the best of both “global"
parametric learning methods and “local" learning methods. We propose a new architecture and
simple training objective that allows for learning under the same requirements as typical behavior
cloning, while providing significant improvements both theoretically and empirically. As a warmup,
we discuss a variant of regularized imitation learning (Section 2.2) that imposes additional structure
from the data for improvements in variance, generalization, and stability. In Section 2.3, we then
show how the benefits of explicitly regularized learning can be implicitly accomplished by modifying
policy architecture rather than the objective. Finally, we introduce our practical algorithm DARP,
which realizes these benefits through a semi-parametric retrieval augmented architecture that can be
generally applied to imitation learning with modern neural networks and generative modeling tools.

2.1 PRELIMINARIES: BEHAVIOR CLONING FOR IMITATION LEARNING

We operate in the typical imitation learning setting, formalized by a finite-horizon Markov Decision
Process (MDP), M = {S ,A ,P0}, where S is the state space, A is the action space, and P0 is the
initial state distribution. A policy maps a state to a distribution of actions πθ : s→ a so as to maximize
task-relevant objectives. We assume access to expert human-provided demonstrations D∗ as a
collection of state-action pairs: D∗ = {(s∗j ,a∗j)}. The behavior cloning (Pomerleau, 1991) algorithm
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learns a policy πθ from this dataset by casting imitation as a typical supervised learning problem -
argmaxθ E(s∗,a∗)∼D∗ [log(πθ (a∗ | s∗))]. While the distribution class of πθ can be an arbitrary complex
generative model (Lipman et al., 2023; Chi et al., 2024), we will start with a simple Gaussian
parameterization for the sake of simplicity1.

2.2 WARMUP: NEIGHBOR MANIFOLD REGULARIZED IMITATION LEARNING

While behavior cloning minimizes only the supervised imitation loss over expert states drawn from
D∗, such an objective alone does not control how the policy behaves on states that deviate from the
expert manifold. In practice, accumulating errors lead the agent to out-of-distribution regions where
a BC policy may act arbitrarily, especially for overparameterized neural networks.

To mitigate this, we note that behavior cloning enforces function evaluations only at the training states,
but it does not explicitly take into account the relationship between states (and their corresponding
actions) in a neighborhood, thereby ignoring the underlying data manifold. To incorporate this
information into policy learning, let us consider a modified objective that introduces a regularization
term that explicitly encourages local consistency of predictions: nearby states in the expert dataset
should be mapped to similar actions. This intuition leads to the following neighborhood-regularized
loss (LMRIL), where the standard imitation learning objective (LBC) is combined with an additional
smoothness penalty (LS) enforcing predictions to respect the geometry of the dataset rather than
relying solely on pointwise supervision.

LMRIL( f ) = E(s,a)∼PS

[
ℓ
(

f (s),a
)]︸ ︷︷ ︸

supervised risk(LBC)

+λ Es∼PS

[
∑

i∈Nk(s)
wi(s)

∥∥ f (s)− f (s⋆i )
∥∥2

2

]
︸ ︷︷ ︸

smoothness regularizer(LS)

, (1)

where ℓ( f (s),a) is the supervised imitation loss, Nk(s) are the k-nearest neighbors of s from the
expert dataset, and the weights wi(s) are normalized kernel weights based on the state differences -
wi(s) ∝ K∆

( ∥s⋆i −s∥
h

)
. As we discuss briefly below (and in detail in Appendix A.1.1), this corresponds

to a form of manifold regularization or Laplacian smoothing, where the policy is penalized for high-
frequency variation across the neighborhood of expert states. This manifold regularization provably
leads to improvements in policy variance, stability, and generalization.
Theorem 1 (Manifold Regularized BC (LMRIL) improves over vanilla BC (LBC)). Let f : S →A
be the expert policy, assumed C2-smooth on a compact state space S . Consider two estimators
trained on expert demonstrations:

1. Vanilla BC: a global supervised model minimizing

LBC( f ) = E(s,a)∼PS
[ℓ( f (s),a)].

2. MRIL: a neighbor-based estimator minimizing

LMRIL( f ) = LBC( f ) + λEs∼PS

[
∑

i∈Nk(s)
wi(s)

∥∥ f (s)− f (s⋆i )
∥∥2

2

]
,

where wi(s) are the kernel weights defined above and λ > 0.

Then, under the smoothness assumption on f , the following hold:

(i) Variance reduction: The Laplacian penalty in MRIL acts as a data-dependent Tikhonov
regularizer, yielding smaller estimator variance than vanilla BC.

(ii) Smoothness guarantee: Minimizers of LMRIL satisfy a uniform bound on the local Lipschitz
constant of f , whereas vanilla BC admits interpolants with arbitrarily large Lipschitz
constants between training states.

(iii) Policy stability: In a closed loop rollout, the deviation recursion

∆t+1 ≤ Ls∆t +La∥π(st)− f (s⋆t )∥
1We show that this can be relaxed in Section 2.4
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accumulates error linearly for vanilla BC, but sublinearly for MRIL, since the smoothness
regularizer enforces ∥ f (s)− f (s′)∥= O(∥s− s′∥) for neighbors s,s′.

This suggests that MRIL enjoys strictly better generalization and stability guarantees than BC.

Proof sketch. We defer the detailed proof to Appendix A.1.1, but provide a brief sketch. The key idea
of the proof is to first show that the smoothness regularizer directly corresponds to a graph Laplacian
penalty on a graph constructed by a k-nearest neighbor (k-NN) affinity matrix defined by the kernel
wi. Next, we show that as the number of samples tends to infinity, this graph Laplacian penalty
converges to the weighted Dirichlet energy (Belkin & Niyogi, 2008; Zhou et al., 2003). Minimizing
this Dirichlet energy (1) ensures that the learned f is locally Lipschitz almost everywhere, ensuring
smoothness and, in turn policy stability, and (2) corresponds to Tikhonov regularization, thereby
reducing estimator variance, while keeping the bias controlled.
Intuitively, the smoothness regularizer is not merely penalizing pairwise disagreements between
neighbors, but is driving the learned policy to be smooth with respect to the underlying data manifold.
In particular, it shrinks the local Lipschitz constant of f along directions where the data density p(s)
is high, ensuring that small changes in state lead to small, consistent changes in the predicted action.
As a result, the policy generalizes more reliably on in-distribution (ID) states and extrapolates in a
structured manner on new out-of-distribution (OOD) states in the neighborhood.

2.3 IMPLICIT MANIFOLD REGULARIZATION VIA IN-CONTEXT ARCHITECTURES

While our MRIL objective does amortize local learning to provide improvements over vanilla BC,
there are two notable drawbacks. Firstly, the presence of a hyperparameter λ that must be tuned
to balance supervised accuracy and smoothness. Secondly, the requirement to optimize a modified,
regularized objective rather than a standard BC objective may modify the optimization landscape in
adverse ways. This raises a natural question: can we obtain the same benefits conferred by MRIL
(Eq 1), by modifying the policy architecture rather than modifying the objective?

In this section, we introduce a retrieval-based change in policy architecture that leads to an implicit
manifold regularization effect (iMRIL), despite using a standard imitation objective. With iMRIL we
can obtain the benefits of Laplacian smoothing (from MRIL) by training on a standard BC objective
(as shown in Fig. 2), without introducing λ as an additional hyperparameter for training. We then
build on this algorithm to instantiate a practical instantiation of this method (DARP) in Section 2.4.

BC iMRIL

Figure 2: iMRIL implicitly achieves Laplacian
smoothing, which reduces variance and enforces
local consistency, whereas the lack of smoothness
constraint on standard BC allows for arbitrarily
jagged function approximations.

iMRIL architecture: The high-level idea behind
iMRIL is simple - we propose moving the neigh-
borhood aggregation (averaging) operation from the
objective (as in Eq 1) to the architecture itself. So
instead of learning a standard feedforward predic-
tor f (s) that is trained against a neighborhood reg-
ularized smoothness objective (Eq 1), we propose
embedding the structure of neighborhood aggrega-
tion directly into the parameterization of the action
predictor f̂ itself, while maintaining the objective as
standard imitation learning. iMRIL learns the param-
eters of a per-state predictor fθ such that an action
predictor explicitly parameterized via neighborhood-
aggregation f̂ (s∗) = 1

k ∑i∈Nk(s∗) fθ (si) across nearest
neighbor states from the training set {si}i∈Nk(s) generates accurate predictions of the corresponding
expert action a∗. With this parameterization, iMRIL optimizes at training time:

argmin
θ

E(s∗,a∗)∼D∗

[∥∥∥∥
(

1
k ∑

i∈Nk(s∗)
fθ (si)

)
︸ ︷︷ ︸

f̂ (s∗)

−a∗
∥∥∥∥

2

]
(2)

At deployment time, inference can be performed on a new state sq simply by retrieving the k-NN
of sq from the training set and performing neighborhood aggregation â = f̂ (sq) =

1
k ∑i∈Nk(sq) fθ (si).
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As we show in Section 2.4, the particular parameterization of f is of crucial importance and plays a
significant role in the empirical performance of iMRIL- leading to the development of DARP.

Intuitively, we are parameterizing the action predictor f̂ as an aggregation of predictions at neighbor
states from the training data f (si), and then learning f . Supervising the post-aggregation function
implicitly prevents any f predictions from being arbitrarily non-smooth, conferring the benefits noted
in Section 2.2. We prove a direct equivalence of iMRIL to the Laplacian regularization in Section 2.2.

Equivalence between iMRIL and MRIL: While we defer a full proof of formal equivalence
between MRIL and iMRIL to the Appendix Sec. A.1, we state our main result and a proof sketch to
this effect here.
Theorem 2 (iMRIL is parameter-free Laplacian regularization for BC (MRIL)). Consider the
symmetric normalized k-NN graph Laplacian L (defined in Section 2.2), with eigenpairs {(µ j,u j)}n

j=1,
where 0 = µ1 ≤ µ2 ≤ ·· · ≤ µn ≤ 2.

The minimizers of the explicit MRIL objective (Section 2.2) and the implicit iMRIL objective (Sec-
tion 2.3) have the following closed form expansions

fMRIL =
n

∑
j=1

1
1+λ µ j

⟨a⋆,u j⟩u j f̂iMRIL =
n

∑
j=1

(1−µ j)⟨ f ,u j⟩u j

iMRIL ’s neighbor aggregation step applies the fixed spectral filter φiMRIL(µ) = 1−µ to the graph
Laplacian L, preserving low-frequency modes and suppressing high-frequency modes. The con-
gruence between f̂iMRIL and fMRIL shows that iMRIL is equivalent to a built-in form of Laplacian
smoothing (MRIL) with effective λ ≈ 1 in normalized units. Unlike explicit regularization, this
implicit filter requires no additional hyperparameter tuning.

Proof sketch. We defer full details to Appendix Sec A.1.2. The explicit regularizer admits a spectral
solution by diagonalizing the k-NN Laplacian, yielding a filter of the form (1+ λ µ)−1 on each
eigenmode. The implicit objective can be expressed as neighbor aggregation f̂ = S f with S = D−1A,
the random-walk matrix, which has the same eigenvectors and applies the fixed filter 1−µ . Intuitively,
both act as low-pass filters on the graph: modes with small eigenvalues (smooth variation across
the data manifold) are largely preserved, while modes with large eigenvalues (rapid, high-variance
fluctuations between neighbors) are strongly damped. Thus iMRIL implicitly performs Laplacian
smoothing, reducing variance and enforcing local consistency without needing to tune λ .

Note that the implicit Laplacian smoothing view does not replace the need to learn a policy; rather, it
constrains the class of functions that can be represented after aggregation. The neighbor-conditioned
network fθ learns how expert actions vary under local perturbations, proposing locally adapted
actions for each neighbor. The aggregation operator then enforces variance reduction by smoothing
these proposals across the neighborhood. In this way, learning provides accuracy by correcting local
bias, while aggregation provides stability by controlling variance.

2.4 DIFFERENCE-AWARE RETRIEVAL POLICIES: A PRACTICAL INSTANTIATION OF IMRIL
FOR IMITATION LEARNING

Given the conceptual framework of iMRIL, we instantiate a practical algorithm for large-scale
imitation learning. We build on the objective outlined in Eq 2 and instantiate a careful choice of (1)
parameterization, (2) neighbor aggregation that leads to strong empirical performance.

2.4.1 DIFFERENCE-BASED PARAMETERIZATION OF fθ

The objective described in Eq 2 leaves the parameterization and input representations of fθ open
to broad interpretation. We make the observation that the neighborhood aggregation should learn
how expert actions vary under local perturbations. This suggests that fθ should use knowledge of
differences between a query state and a neighbor state to adaptively propose locally adapted actions
for each neighbor. In Difference-Aware Retrieval Policies (DARP), instead of simply parameterizing
fθ by fθ (si), we provide additional context about the optimal neighbor action ai, as well as the

5
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difference between the query state and the neighbor state ∆si = sq− si; a predictor fθ predicts an
action candidate a′i for a query state sq and a neighbor (si,ai) using the difference information as -
a′i = fθ (s∗i ,a

∗
i ,∆si = s∗i − sq).

,[ , - ]
,[ , - ]

,[ , - ]

(d ), →

{ }

Figure 3: Retrieval-based policy architec-
ture in DARP. Retrieved neighbors are first
embedded through a predictor fθ and then ag-
gregated using a permutation invariant func-
tion gψ .

We define a neighborhood set N k(sq) = {(s∗i ,a∗i ) | i ∈
I k(sq)}, where I k(sq) is the index set of the k nearest
neighbors retrieved according to some distance function
d(sq,s∗i ).

2 For generating predictions with DARP, we
can then perform neighborhood aggregation (as outlined
in Section 2.3) to predict an action for any query state sq

âq = fDARP(sq) =
1
k ∑

i∈I (sq)

a′i (3)

=
1
k ∑

i∈I (sq)

fθ (s∗i ,a
∗
i ,∆si = s∗i − sq). (4)

At training time, this can be used to define a straightfor-
ward imitation learning objective from the expert dataset
D∗:

argmin
θ

E(sq,aq)∼D∗
[∥∥âq−aq

∥∥2
]
. (5)

where we optimize for the parameters of the predictor fθ , minimizing the discrepancy between the
predicted action âq and optimal action aq. Given the simplicity of the objective, any parameterization
can be used for fθ , in our case, standard feedforward or convolutional neural networks. As we show
in Section 3, this difference-based parameterization is crucial for performance. At inference time, we
generate actions to execute by retrieving k-NN and performing inference through the neighborhood
aggregation operation defined in Eq 3.

2.4.2 GOING BEYOND LINEAR AGGREGATION

While the process of neighborhood aggregation thus far has been restricted to averaging over neigh-
borhood predictions âq =

1
k ∑

k
i=1 a′i, this is a special case of a broader class of permutation-invariant

aggregation functions gψ({a′i}k
i=1). For instance, gψ could be parameterized with more expressive

set-compliant neural models like the set transformer (Lee et al., 2019) or DeepSets (Zaheer et al.,
2017). This suggests a generalization of the prediction model in Eq 3 as âq = gψ({ fθ (s∗i ,a

∗
i ,∆si =

s∗i − sq)}k
i=1). Besides benefits in expressivity, generalizing from a simple averaging operation to

a parametric aggregation model gψ allows for the representation of richer action distributions (e.g
Gaussian mixture models (Pignat & Calinon, 2019) or diffusion models (Chi et al., 2024)) than
the Gaussian distribution that is implicit to the l2-regression objective defined in Eq 5. Rather than
predicting âq directly, DARP can predict the parameters α of an action distribution p(aq;α) – for
instance the means, covariances, and weights for a Gaussian mixture model, or the score function for
a diffusion model. This allows DARP to perform maximum likelihood training of multimodal action
distributions rather than just unimodal l2-regression:

argmax
θ

E(sq,aq)∼D∗
[
log p(aq;αθ (sq))

]
, where αθ (sq) = gψ

(
{ fθ (s∗i ,a

∗
i ,∆si = s∗i − sq)}k

i=1

)
(6)

Inference for a query state sq can be performed by sampling from p(aq;αθ (sq)), constructing
αθ (sq) = gψ

(
{ fθ (s∗i ,a

∗
i ,∆si = s∗i − sq)}k

i=1
)

from a set of neighbors retrieved at test time. We refer
readers to Appendix Sec. A.3 for detailed training pseudocode.

3 EXPERIMENTAL EVALUATION

Next, we evaluate DARP in order to answer three key questions: Q1: Can DARP consistently
outperform standard behavioral cloning?, Q2: Can DARP handle more complex state representation

2In our work we use the Euclidean distance in a pre-trained embedding space, although other neighborhood
functions are also applicable. We refer the reader to Appendix Sec. A.2.1 for a thorough discussion of design
decisions in constructing neighborhood sets via retrieval.
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and action distributions?, Q3: How do different architectural components contribute to DARP’s
performance gains? We conduct experiments across multiple domains using both low-dimensional
state representations, high-dimensional image features, and diverse action representations. Our
evaluation includes continuous control tasks (MuJoCo), robotic manipulation (Robosuite), and
specially designed discontinuous environments that stress-test the neighbor-based approach.

3.1 BASELINE COMPARISONS AND TASK DESCRIPTIONS

MuJoCo Tasks: The MuJoCo tasks entail controlling various legged figures in multiple embodiments
to achieve forward locomotion on a flat plane. Hopper (single-legged hopping robot), Walker (bipedal
humanoid), Ant (quadruped), and HalfCheetah (biped).

RoboSuite Tasks: The Robosuite tasks all entail a single robotic arm manipulating objects. In the
Stack task, the goal is to put a smaller cube on top of a larger one. In the Thread task, the goal is to
manipulate a thin, needle-like tool and insert it into a small ring. In the Square Peg task, the goal is to
manipulate a square wooden block with a hole in the center and place it onto a square peg.

Baseline Comparisons: We compare DARP against a variety of baselines and ablations - (1)
R&P (Sridhar et al., 2025): refers to directly taking the action corresponding to the nearest neighbor,
(2) LWR (Pari et al., 2022): refers to performing locally weighted regression on retrieved neighbors,
(3) BC: refers to standard parametric behavior cloning, (4) REGENT (Sridhar et al., 2025): refers
to a transformer-based in-context learning method conditioned on retrieved neighbors, (5) MRIL:
refers to the explicitly smoothed version of DARP outlined in Section 2.2.

3.2 CAN DARP CONSISTENTLY OUTPERFORM STANDARD BEHAVIORAL CLONING (Q1)

In this experiment, we evaluate DARP’s core hypothesis on tasks with low-dimensional state rep-
resentations, where the distance metrics between states are well-defined and interpretable. This
evaluation spans locomotion tasks from MuJoCo (Todorov et al., 2012), (Fu et al., 2020) and robotic
manipulation tasks from Robosuite (Zhu et al., 2020) with data generated with MimicGen (Mandlekar
et al., 2023). In these experiments, aggregation function g is implemented as a simple average of all
neighbor action predictions a′.

Method Hopper Ant Walker HalfCheetah

R&P (Sridhar et al., 2025) 711.82 ± 85.63 -305.97 ± 76.42 419.18 ± 50.21 -178.64 ± 29.75
LWR (Pari et al., 2022) 1703.78 ± 245.95 846.59 ± 216.06 1484.91 ± 356.54 1945.82 ± 567.26

BC 2313.65 ± 203.75 2376.20 ± 339.43 2658.40 ± 274.08 1063.23 ± 371.08
REGENT (Sridhar et al., 2025) 1819.39 ± 186.24 -302.10 ± 146.67 507.01 ± 76.10 169.85 ± 63.10

MRIL 2793.63 ± 156.41 3869.08 ± 241.00 4370.96 ± 168.13 701.58 ± 195.08
DARP 3545.57 ± 3.54 4383.28 ± 266.37 4894.01 ± 75.12 5515.41 ± 841.33

DARP Set Transformer 2965.86 ± 103.08 4063.79 ± 218.80 4752.42 ± 109.23 3417.85 ± 764.57

Table 1: Both DARP and DARP Set Transformer outperform other approaches across all domains.
Performance Comparison of DARP vs. BC and other baselines across MuJoCo Environments Using Low-
Dimensional State. Scores reported are averaged across 100 independent trials with 95% confidence intervals.

Method Stack Thrd. Peg

R&P 38 11 31
LWR 21 39 30

BC 47 37 46
DARP 72 63 62

Table 2: Comparing across
Robosuite Environments using
low-dimensional state features.
Scores are listed as success per-
centage. DARP significantly
outperforms the listed baselines.

We find that DARP demonstrates substantial improvements over stan-
dard behavioral cloning across all tested environments. We observe
performance gains ranging from 15-25% points in robotic manipu-
lation tasks and significant score improvements in locomotion tasks
(see Table 1 and Table 2). We observe that purely nonparametric
methods (R&P and LWR) perform poorly on these tasks, and while
MRIL is nearly always able to get a score higher than vanilla BC, the
highest scores on this suite of tasks are always achieved by our DARP
architecture.

Given the changes introduced for the practical instantiation in Sec-
tion 2.4, we evaluate whether DARP scales up to higher-dimensional
input representations such as images.

7
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3.3 CAN DARP HANDLE MORE COMPLEX STATE
REPRESENTATION AND ACTION DISTRIBUTIONS? (Q2)

Method Stack Thrd. Peg

BC 44 38 17
DARP 75 76 52

Figure 4: Success rates (%)
on vision-based RoboSuite tasks
(out of 100 trials). DARP outper-
forms BC.

High-Dimensional Visual Input Representations. To test the ap-
plicability of DARP beyond the regime of compact, low-dimensional
states, we evaluate DARP on simulated robotic manipulation tasks
using R3M image embeddings (Nair et al., 2022). This tests whether
the neighbor-based approach remains effective when states are rep-
resented as high-dimensional feature vectors extracted from visual
observations (see Table 4). We see that, not only does DARP out-
perform standard BC, the average improvement, ∼ 35%, is actually
higher than the average improvement on Robosuite tasks in low-
dimensional state (∼ 22%). Empirically, this means that DARP was
better at adapting to complex, high-dimensional state representations than standard BC.

Multi-modal Action Distributions. We show that DARP can solve complex multimodal imitation
learning tasks such as the Push-T environment over 20% better than behavior cloning. We defer
details to Appendix A.2.2.

3.4 HOW DO DIFFERENT ARCHITECTURAL COMPONENTS CONTRIBUTE TO DARP’S
PERFORMANCE GAINS? (Q3)

Ablation Study: To understand which components of the DARP architecture contribute most to
its performance gains, we conduct a comprehensive ablation study examining each design choice,
namely (1) standard DARP; (2) DARP, but without including the neighbor actions; (3) An ensemble
of 10 BC agents; (4) DARP, but we choose random neighbors as opposed to using a distance metric;
(5) DARP, but we take the L2 norm of the distance vector; (6) BC baseline, which is just the query
state sq; (7) DARP, but include just the query state rather than the distance vector between the query
state and neighbor states; (8) DARP, but using a permutation dependent (so not permutation invariant)
aggregator to combine all a′s. We report in Figure 5 the results of this systematic ablation.

(s∗i ,a
∗
i ,s
∗
i − sq) (s∗i ,s

∗
i − sq) BC Ensem. Rando k (s∗i ,a

∗
i , ||s∗i − sq ||2) BC (s∗i ,a

∗
i ,sq) Perm. Dep.

0.00

0.85

Su
cc

es
s

R
at

e

0.72
0.67

0.59 0.58
0.53

0.47
0.42

0.19

Model Architecture Ablation

Figure 5: Distance vectors and permutation invariance contribute
heavily to DARP’s success. Exploration of how the performance of a
DARP agent changes as various changes are made to the core architecture
demonstrates that DARP success is most attributed to the distance vectors
(s⋆i ,a

⋆
i ,s

⋆
i − sq). Here, the success rate is averaged across 100 trials on

the Robosuite Stack environment with 95% confidence intervals.

The ablation study reveals that
distance vectors and permuta-
tion invariance are crucial for
DARP’s success, while neighbor
actions have a more modest im-
pact. Random neighbor selec-
tion performs poorly, confirm-
ing that meaningful distance met-
rics informing neighbor selection
are crucial. The permutation-
invariant aggregation function g
proves critical, as permutation-
dependent alternatives signifi-
cantly degrade performance.

0 200Step
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Cumulative Reward vs. Time
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DARP
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0 200Step
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Figure 6: Cumulative rewards for BC and DARP on the Robosuite
stack task illustrate initially identical rollouts that diverge as BC fails
the task and DARP succeeds. A vertical dashed line indicates the step
in which the two diverge, labeled “SoD”. At the SoD, the state likelihood
is < τs (OOD), but the delta likelihood is > τ∆ (in distribution).

Divergence Analysis: To bet-
ter understand DARP’s success
over standard BC, we analyze the
point of divergence in rollouts in
which the latter fails but the for-
mer succeeds. We identify the
“step of divergence" as the point
at which DARP and BC begin to
receive a significantly different
reward. We define τs and τ∆ as
the 1st percentile of likelihoods
of the training set (That is, 1%
of the deltas seen at training time
are less likely than τ∆).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

In six different rollouts across two different tasks (the Robosuite Stack task and the MuJoCo Hopper
Task), we see that, in all cases, the query state at the SoD has a state likelihood of < τs but a delta
likelihood of ≥ τ∆. This result bolsters our hypothesis that DARP gains occur partly due to improved
prediction on slightly out-of-distribution states due to reparameterization in terms of difference
vectors to neighbors. (see Figure 6 for plots of reward drift, SoDs, and state and delta likelihood for
one task.) See A.2.4 for additional experiments regarding DARP robustness.

4 RELATED WORK

Non-Parametric Imitation Learning Methods: Non-parametric IL algorithms demonstrate surpris-
ing performance by leveraging local structure. VINN Pari et al. (2021) explores locally weighted
regression for imitation, showing surprising results in image embedding spaces, and MiDiGaP von
Hartz et al. (2025) uses mixtures of Gaussian processes to model multimodal trajectories and achieve
rapid generalization. SEABO Lyu et al. (2024) uses retrieval methods to perform offline RL by
rewarding transitions close to neighbors to form a reward function. FlowRetrieval Lin et al. (2024),
STRAP Memmel et al. (2025) and Behavior Retrieval Du et al. (2023) perform non-parametric
retrievel and finetuning from large unlabeled datasets, enabling generalization through test-time train-
ing. DARP differs from the above in its unique parameterization of retrieved states into (si,ai,si− sq)
tuples and learning a semi-parametric policy rather than relying purely on non-parametric aggregation
or test-time training. This provides us variance reduction of local methods and generalization of
parametric policies.

Smoothness-Constrained Policy Learning: Much recent literature has explored explicit smoothness
constraints to improve policy stability and robustness. L2C2 Kobayashi (2022) considers model-free
RL under local Lipschitz continuity constraints, achieving smoothness and noise robustness without
sacrificing expressiveness, while Asadi et al. (2018) proposed a similar methodology for model-based
RL models with Lipschitz constraints. CCIL Ke et al. (2024a) extends these ideas to generate
synthetic corrective labels for imitation learning using a Lipschitz-constrained dynamics model. This
has also been scaled up to humanoid controllers Chen et al. (2024) to reduce shakiness on deployment.
DARP differs from these methods by enforcing smoothness implicitly through an architecture change,
using standard imitation learning.

In-Context Learning Methods: Recent work has explored non-parametric retrieval from the
perspective of in-context imitation learning. REGENT Sridhar et al. (2025) investigates retrieval-
augmented generalization by incorporating retrieved states, actions, and rewards into a causal
transformer, while DPT Lee et al. (2023) uses supervised pretraining for transformers to predict
actions given query states and in-context datasets, effectively learning how to explore. Other in-
context architectures include ICRT Fu et al. (2024), Instant Policy Vosylius & Johns (2025), Di Palo
& Johns (2024). These methods aim to quickly adapt to new tasks and environments, whereas DARP
focuses on accomplishing higher performance and stability on standard imitation learning.

5 CONCLUSION

We introduced Difference-Aware Retrieval Policies (DARP), a nearest-neighbor-based algorithm that
reparameterizes the imitation learning problem in terms of relative differences between query states
and their nearest neighbors, rather than learning direct state-to-action mappings. We prove that we
are implicitly achieving Laplacian smoothing.

Our experimental evaluation across diverse domains, including continuous control and robotic ma-
nipulation, validates three key hypotheses. First, DARP consistently outperforms standard behavior
cloning when using low-dimensional state representation. Secondly, DARP maintains performance
across different state representations, action distribution modeling requirements, and task complexi-
ties, with improvements ranging from 15-46% across tested scenarios. Third, architectural ablations
reveal that distance vectors and permutation-invariant aggregation are crucial components to our
algorithm.
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6 REPRODUCIBILITY STATEMENT

A link to supplementary source code is provided. This codebase contains all code used to train and
evaluate our models. It also contains policy and environment configuration files to generate all results
seen in this paper. We provide all data used in MuJoCo experiments and provide scripts to generate
expert demonstrations for Robosuite tasks via MimicGen. We also provide all code necessary to
transform between different modalities, such as low-dimensional state representation to images to
R3M features. Results will be identical to those in the paper on NVIDIA L40 and L40s GPUs, with
the exception of results that require the use of a transformer (REGENT, Set Transformer), which are
non-deterministic and may differ slightly from reported numbers.
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A APPENDIX

A.1 LEMMAS AND PROOFS

A.1.1 PROOF OF THEOREM 1

To prove Theorem 1, we first start with a well-known result (Chung, 1997; Zhou et al., 2003; Belkin
& Niyogi, 2008).

Lemma 1 (Smoothness regularizer as k-NN graph Laplacian penalty). Let {s1, . . . ,sn} be the expert
states with corresponding predicted actions f (si) ∈ Rda . For each i, let Nk(si) denote the indices of
the k nearest neighbors of si (excluding i). Define asymmetric weights

W̃i j =

{
w j(si), if j ∈Nk(si),

0, otherwise,

and construct a symmetric affinity matrix

Wi j = 1
2

(
W̃i j +W̃ji

)
.

Let D be the degree matrix with Dii = ∑ j Wi j, and define the k-NN graph Laplacian L = D−W.

Then the smoothness regularizer can be written as the quadratic form

LS( f ) =
1
n

n

∑
i=1

∑
j∈Nk(si)

w j(si)∥ f (si)− f (s j)∥2
∝ Tr

(
F⊤LF

)
,

where F = [ f (s1), f (s2), . . . , f (sn)]
⊤ ∈ Rn×da . Equivalently, in the scalar case,

LS( f ) ∝ f⊤L f .

Corollary 1 (Continuum limit of smoothness regularizer). Assume states {si}n
i=1 are sampled

i.i.d. from a smooth density p(s) supported on an m-dimensional C2 manifold M ⊂Rd . Let W be the
symmetrized k-NN affinity matrix constructed from a kernel K∆ with bandwidth h, and let L = D−W
be the graph Laplacian.

If n→ ∞, h→ 0, and nhm+2→ ∞, then the normalized quadratic form converges to the weighted
Dirichlet energy:

1
n2hm+2 Tr

(
F⊤LF

)
−→ CK

∫
M
∥∇M f (s)∥2

2 p(s)2 dvol(s),

where CK > 0 is a constant depending only on the kernel K∆.

Theorem 1 (Manifold Regularized BC (LMRIL) improves over vanilla BC (LBC)). Let f : S →A
be the expert policy, assumed C2-smooth on a compact state space S . Consider two estimators
trained on expert demonstrations:

1. Vanilla BC: a global supervised model minimizing

LBC( f ) = E(s,a)∼PS
[ℓ( f (s),a)].

2. MRIL: a neighbor-based estimator minimizing

LMRIL( f ) = LBC( f ) + λEs∼PS

[
∑

i∈Nk(s)
wi(s)

∥∥ f (s)− f (s⋆i )
∥∥2

2

]
,

where wi(s) are the kernel weights defined above and λ > 0.

Then, under the smoothness assumption on f , the following hold:

(i) Variance reduction: The Laplacian penalty in MRIL acts as a data-dependent Tikhonov
regularizer, yielding smaller estimator variance than vanilla BC.
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(ii) Smoothness guarantee: Minimizers of LMRIL satisfy a uniform bound on the local Lipschitz
constant of f , whereas vanilla BC admits interpolants with arbitrarily large Lipschitz
constants between training states.

(iii) Policy stability: In a closed loop rollout, the deviation recursion
∆t+1 ≤ Ls∆t +La∥π(st)− f (s⋆t )∥

accumulates error linearly for vanilla BC, but sublinearly for MRIL, since the smoothness
regularizer enforces ∥ f (s)− f (s′)∥= O(∥s− s′∥) for neighbors s,s′.

This suggests that MRIL enjoys strictly better generalization and stability guarantees than BC.

Proof. We prove each claim in turn.

(i) Variance reduction. The Laplacian penalty in LMRIL is

∑
i, j

Wi j ∥ f (si)− f (s j)∥2 = 2 f⊤Lg,

where L = D−W is the graph Laplacian, and W is the k-NN affinity matrix. By Lemma 1, this equals
the empirical Dirichlet energy of f on the k-NN graph. It is well known (Zhou et al., 2003; Belkin &
Niyogi, 2008) that such a quadratic penalty is equivalent to Tikhonov regularization with respect to
the graph Laplacian norm ∥ f∥2

L = f⊤L f . In statistical learning theory, adding a Tikhonov penalty
strictly reduces the variance of the estimator compared to the unregularized solution while keeping
the bias term controlled. Thus MRIL enjoys smaller estimator variance than vanilla BC, which uses
no such penalty.

(ii) Smoothness guarantee. Consider the continuum limit (Corollary 1): for i.i.d. samples {si}
from density p on a smooth manifold M , the normalized penalty converges to∫

M
∥∇ f (s)∥2 p(s)2 dvol(s).

This is the weighted Dirichlet energy of f on M . If this integral is finite, f belongs to the Sobolev
space H1(M , p2), and in particular f is locally Lipschitz almost everywhere with

∥ f (s)− f (s′)∥ ≤ C∥s− s′∥ for p-a.e. neighbor pairs s,s′.
Therefore minimizers of LMRIL have uniformly bounded local Lipschitz constants along high-density
regions of the state space. By contrast, minimizers of vanilla BC have no such constraint: any
oscillatory interpolant that matches the training data exactly yields the same supervised risk, so
arbitrarily large Lipschitz constants are possible.

(iii) Policy stability. Let ∆t = ∥st − s⋆t ∥ denote the deviation at time t. For Lipschitz dynamics T ,
∆t+1 ≤ Ls∆t +La∥π(st)− f (s⋆t )∥.

Decompose the action error:
∥π(st)− f (s⋆t )∥ ≤ ∥π(st)− f (st)∥+∥ f (st)− f (s⋆t )∥.

For vanilla BC, the first term ∥π(st)− f (st)∥ is only minimized on the empirical distribution PS ;
off-distribution, it may be O(1) regardless of ∆t . The second term satisfies ∥ f (st)− f (s⋆t )∥= O(∆t)
by smoothness of f . Hence the recursion can take the form

∆t+1 ≤ Ls∆t +La
(
O(1)+O(∆t)

)
,

which accumulates linearly in t.

For MRIL, the Laplacian penalty enforces
∥π(s)−π(s′)∥ ≤ C∥s− s′∥ for neighbor pairs (s,s′),

as shown in part (ii). Thus ∥π(st)− f (st)∥ = O(r2) by local-linear regression error bounds, and
∥ f (st)− f (s⋆t )∥= O(∆t) by smoothness of f . Combining these,

∆t+1 ≤ Ls∆t +La
(
O(r2)+O(∆t)

)
.

Since the constant multiplying ∆t is strictly smaller under the smoothness constraint, the cumulative
error grows strictly slower than in vanilla BC. In particular, error growth is sublinear in the rollout
horizon when r is small, whereas it is linear for vanilla BC.
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Conclusion. Claims (i)–(iii) establish that MRIL yields lower variance, uniform smoothness control,
and sublinear rollout error accumulation compared to vanilla BC, completing the proof.

Kernel choice. For the IC smoothness regularizer, we adopt a Gaussian kernel

wi(s) ∝ exp
(
− ∥s−s⋆i ∥2

2h2

)
, ∑

i∈Nk(s)
wi(s) = 1,

with bandwidth h set to the median distance to the k-th nearest neighbor across the dataset. This
choice is standard in manifold regularization (Belkin & Niyogi, 2008; Zhou et al., 2003) and ensures
that the graph Laplacian penalty converges to the Dirichlet energy in the continuum limit. In practice,
we found this default to be stable across tasks, though other kernels (e.g., uniform k-NN or exponential
decay) yield qualitatively similar results.

A.1.2 PROOF OF THEOREM 2

We first begin with the required Lemmas establishing the spectral form of explicit Laplacian regular-
ization and neighbor aggregation.

Lemma 2 (Spectral form of explicit Laplacian regularization). Let L be the symmetric normalized
graph Laplacian with eigenpairs {(µ j,u j)}n

j=1, where 0 = µ1 ≤ µ2 ≤ ·· · ≤ µn ≤ 2. The minimizer
of the penalized objective

Lλ ( f ) = ∥ f −a⋆∥2 +λ f⊤L f

has the closed-form expansion

fλ =
n

∑
j=1

1
1+λ µ j

⟨a⋆,u j⟩u j.

Thus λ directly determines the spectral filter φλ (µ) = (1+λ µ)−1 applied to each Laplacian mode.

Proof. Diagonalize L = UΛU⊤ with U = [u1, . . . ,un] orthogonal and Λ = diag(µ1, . . . ,µn). Write
f =Uc, a⋆ =Ub in this basis. The objective becomes

∥Uc−Ub∥2 +λc⊤Λc =
n

∑
j=1

(c j−b j)
2 +λ µ jc2

j .

Minimizing each term yields c j =
1

1+λ µ j
b j. Transforming back gives the stated expansion.

Lemma 3 (Spectral form of neighbor aggregation). Let S = D−1A be the random-walk matrix of the
k-NN graph, with adjacency A and degree D. For any prediction vector f , the neighbor-averaged
prediction is f̂ = S f . In the Laplacian eigenbasis, this corresponds to the spectral filter

f̂ =
n

∑
j=1

(1−µ j)⟨ f ,u j⟩u j,

i.e. φDARP(µ) = 1−µ .

Proof. By definition, L = I −D−1/2AD−1/2 and S = D−1A = I − Lrw where Lrw = D−1L is the
random-walk Laplacian. Since Lrw and L share the same spectrum up to similarity transform, the
eigenbasis {u j} diagonalizes S. Thus for each mode u j, Su j = (1− µ j)u j, yielding the claimed
spectral filter.

Theorem 2 (iMRIL is parameter-free Laplacian regularization for BC (MRIL)). Consider the
symmetric normalized k-NN graph Laplacian L (defined in Section 2.2), with eigenpairs {(µ j,u j)}n

j=1,
where 0 = µ1 ≤ µ2 ≤ ·· · ≤ µn ≤ 2.

The minimizers of the explicit MRIL objective (Section 2.2) and the implicit iMRIL objective (Sec-
tion 2.3) have the following closed form expansions
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fMRIL =
n

∑
j=1

1
1+λ µ j

⟨a⋆,u j⟩u j f̂iMRIL =
n

∑
j=1

(1−µ j)⟨ f ,u j⟩u j

iMRIL ’s neighbor aggregation step applies the fixed spectral filter φiMRIL(µ) = 1−µ to the graph
Laplacian L, preserving low-frequency modes and suppressing high-frequency modes. The con-
gruence between f̂iMRIL and fMRIL shows that iMRIL is equivalent to a built-in form of Laplacian
smoothing (MRIL) with effective λ ≈ 1 in normalized units. Unlike explicit regularization, this
implicit filter requires no additional hyperparameter tuning.

Proof. From Lemma 3, the neighbor aggregation operator S = D−1A acts on Laplacian eigenmodes
u j as

Su j = (1−µ j)u j,

where µ j are the normalized Laplacian eigenvalues. Thus in the graph Fourier basis, neighbor
aggregation corresponds to multiplying each mode by the fixed spectral filter φDARP(µ) = 1−µ .

On the other hand, Lemma 2 shows that explicit Laplacian regularization with parameter λ yields
the spectral filter φλ (µ) = (1+λ µ)−1. Both filters downweight high-frequency modes (µ ≫ 0)
while preserving low-frequency modes (µ ≈ 0). The key difference is that φλ (µ) requires tuning λ ,
whereas φDARP(µ) is parameter-free.

To see the equivalence, note that for small µ ,

φDARP(µ) = 1−µ ≈ (1+µ)−1 = φλ=1(µ) up to O(µ2) terms.

Thus DARP can be interpreted as performing Laplacian smoothing with an effective regularization
weight of order λ ≈ 1 in normalized units. Moreover, for large µ , φDARP(µ) damps high-frequency
modes even more strongly by driving them toward zero, providing a sharper low-pass effect than
explicit regularization.

Therefore, DARP ’s aggregation step is mathematically equivalent to implicit Laplacian regularization
with fixed spectral filter φDARP, eliminating the need to tune λ explicitly.

DARP can therefore be viewed as a form of locally adaptive implicit regularization: rather than
introducing an explicit global weight λ , its neighbor aggregation step enforces smoothness auto-
matically through the graph structure. The effective regularization strength varies with local degree
and neighborhood geometry, adapting to the density of the expert demonstrations. Spectrally, this
corresponds to the fixed filter φDARP(µ) = 1− µ , which suppresses high-frequency modes more
aggressively than any fixed explicit λ . Figure 7 illustrates this comparison, showing how DARP
achieves sharper low-pass filtering without the need for hyperparameter tuning.
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Figure 7: DARP achieves sharper low-pass filtering
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A.2 ADDITIONAL EXPERIMENTAL DETAILS

A.2.1 RETRIEVAL

5 2000k
0

1

Su
cc

es
s R

at
e

DARP Success Rate vs. Number of Neighbors

DARP
BC

1 50Lookback
0

1

Su
cc

es
s R

at
e

DARP Success Rate vs. Lookback

DARP
BC

0 -5Decay
0

1

Su
cc

es
s R

at
e

DARP Success Rate vs. Decay

DARP
BC

Figure 8: DARP performance analysis as retrieval hyperparameters are swept: (left) we see that the performance
of a DARP model is poor in when using few neighbors, reaches a global optimum when retrieving about 500
neighbors, and plateaus just above BC’s success rate as k goes to the size of the dataset; (center) we see that the
performance of a DARP model generally slightly improves as more history is considered, and only performs
worse than BC when very little or no history is considered; (right) we see that the performance of a DARP model
is sensitive to how much weight is applied to older observations when performing retrieval. Intuitively, if this
decay is too high, DARP performance is nearly identical to having little to no lookback, performing worse than
BC. Success rate is measured out of 50 trials on the Robosuite Stack environment. 95% confidence intervals are
included.

The selection of the distance function d(sq,s∗i ) to select k neighbors is crucial. While we find
that simple Euclidean distance between states can work, in our experiments, we use a slightly
modified algorithm that takes advantage of the fact that we are working with sequences of states and
incorporates history in our distance calculation.
Suppose we have a query trajectory Sq = (. . . ,sq,−1,sq,0) where sq,0 is the current query state sq. Now
suppose we want to calculate d(sq,s∗i ), where s∗i is some state from the expert dataset. We first find
the trajectory this state is from—call this S∗j —and the index of s∗i in this trajectory—call this t. Thus,
s∗i can be rewritten as s∗j,t . Given some lookback parameter ℓ which denotes how many past states we
want to consider, we get:

d(sq,s∗i ) =
ℓ−1

∑
n=0
∥sq,−n− s′j,t−n∥

Which is simply the accumulation of Euclidean distances of the current and last ℓ−1 states from
both the query trajectory and the source trajectory, assuming valid indices. Of course, in practice, we
generally want to put more emphasis on more recent states, as we want them to be more influential in
the selection of neighbors. Thus, given some rate of exponential decay r ≥ 0, we have

d(sq,s∗i ) =
ℓ−1

∑
n=0
∥sq,−n− s′j,t−n∥·e−rn

See Figure 8 for an experimental analysis on how the success rate in an environment changes as
these parameters are swept.

A.2.2 CAN DARP HANDLE TASKS REQUIRING THE REPRESENTATION OF MULTI-MODAL
ACTION DISTRIBUTIONS?

We test DARP’s ability to handle complex action distributions by evaluating on the Push-T task, as
described in (Chi et al., 2024), which requires representing multi-modal action distributions. For this
experiment, DARP employs a Set Transformer head that predicts parameters of a Gaussian Mixture
Model. We note that DARP with a GMM head is to handle multi-modal distributions effectively,
showing a 22% improvement over BC on the Push-T task (Q1). This demonstrates that DARP can be
further adapted to multi-modal action distribution modeling requirements.
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Method Score

BC 48 ± 8
DARP 70 ± 8

Figure 9: Push-T Results. The goal is to control the blue circle to push the T-shaped block to cover as much of
the green region as possible. Averaged over 100 trials with 95% confidence intervals.

A.2.3 CAN DARP HANDLE DISCONTINUOUS ENVIRONMENTS WHERE NEARBY STATES MAY
REQUIRE OPPOSING ACTIONS?

A key concern for neighbor-based approaches is performance in environments with strong discontinu-
ities, where states that are close in Euclidean distance may require drastically different actions. To
address this concern, we design a stress test using a modified version of D4RL’s Umaze environment
(see Figure 10 for a visualization).

Even in this deliberately challenging discontinuous environment, DARP achieves a 57% success
rate compared to BC’s 25%. (Q3) This suggests that the distance vectors and permutation-invariant
aggregation help the model distinguish between appropriate and inappropriate neighbors, even when
spatial proximity doesn’t guarantee action similarity.

Method Succ. (%)

BC 25
DARP 57

Figure 10: Long maze: Averaged over 100 trials, DARP significantly outperforms competition.
The goal is to move a force-actuated ball from the green start to the red destination.

A.2.4 CAN DARP RECOVER FROM BC ERROR?

In order to analyze DARP’s robustness to accumulated error, we roll out a BC agent in an environment
in which we know it will fail, but every k steps, we create a fork of the environment and begin rolling
out a DARP agent in that clone of the environment. The results (seen in Fig. 11) show that, even as BC
approaches failure and drifts away from the support of expert demonstrations, DARP is able to recover
and score very highly. This suggests that DARP indeed has superior robustness to accumulation of
error and can perform well in the slightly out-of-distribution states that a failing BC agent drifts into.
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Figure 11: In two different tasks (the Robosuite Stack task and the MuJoCo Hopper task), we rollout
a BC agent and create a fork of the environment every k steps (in this case, k = 10). We see that, even
as BC nears the end of its failing rollout, DARP is able to scale highly, and is only prevented from
doing so about halfway through the Stack rollout and about 80% through the Hopper rollout.

A.3 PSUEDOCODE

We provide pseudocode of the DARP algorithm, see Algorithm 1.

Algorithm 1 Difference-Aware Retrieval Policies
H

1: Input: Expert demonstrations D∗ = {(s∗j ,a∗j)}, number of neighbors k
2: Initialize: f parameters θ

3: if g is parametric then
4: Initialize: g parameters ψ

5: end if
6: // Training Loop
7: while not converged do
8: Sample batch of query data (sq,aq)∼D∗

9: for each query pair (sq,aq) in batch do
10: // Find k-Nearest Neighbors from the entire dataset D∗

11: I (sq)← argmin-k jd(sq,s∗j)
12: N (sq)←{(s∗j ,a∗j) | j ∈I (sq)}
13: // Compute Neighbor-based Predictions
14: for each neighbor (s∗i ,a

∗
i ) ∈N (sq) do

15: a′i← fθ (s∗i ,a
∗
i ,s
∗
i − sq)

16: end for
17: // Aggregate Predictions
18: if ρ is parametric then
19: âq← gψ({a′1,a′2, . . . ,a′k})
20: else
21: âq← g({a′1,a′2, . . . ,a′k})
22: end if
23: end for
24: // Update Parameters based on the batch loss
25: L ← ∑(sq,aq)∈batch ∥âq−aq∥2

26: // Gradient descent step
27: θ ← θ −α∇θ L
28: if g is parametric then
29: ψ ← ψ−α∇ψL
30: end if
31: end while
32: Output: Trained parameters θ and, if applicable, ψ
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