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Abstract
Existing unpaired image deraining approaches face challenges in
accurately capture the distinguishing characteristics between the
rainy and clean domains, resulting in residual degradation and
color distortion within the reconstructed images. To this end, we
propose an energy-informed diffusion model for unpaired photo-
realistic image deraining (UPID-EDM). Initially, we delve into the
intricate visual-language priors embedded within the contrastive
language-image pre-training model (CLIP), and demonstrate that
the CLIP priors aid in the discrimination of rainy and clean images.
Furthermore, we introduce a dual-consistent energy function (DEF)
that retains the rain-irrelevant characteristics while eliminating
the rain-relevant features. This energy function is trained by the
non-corresponding rainy and clean images. In addition, we employ
the rain-relevance discarding energy function (RDEF) and the rain-
irrelevance preserving energy function (RPEF) to direct the reverse
sampling procedure of a pre-trained diffusion model, effectively
removing the rain streaks while preserving the image contents. Ex-
tensive experiments demonstrate that our energy-informed model
surpasses the existing unpaired learning approaches in terms of
both supervised and no-reference metrics.
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Figure 1: Intuitive comparisons of our proposed method and
the other existing approaches between the average learned
perpetual image patch similarity and three image natural-
ness assessment metrics. Our model achieves the currently
best performance in the supervised protocols, while preserv-
ing the significant improved naturalness.

1 Introduction
Images taken during rainy weather condition frequently exhibit
reduced visibility caused by rain streaks [3, 35, 36, 43]. This degra-
dation severely impedes multiple computer vision tasks [10, 34, 42],
including detection, segmentation, and video surveillance. There
are significant interests in developing methods to mitigate the rain
degradation and reconstruct the photo-realistic details. Despite re-
cent progress in data-driven learning techniques [4, 5, 33, 44, 49, 50],
fully-supervised learning that depend on the paired synthetic im-
ages frequently fall short in accurately capturing the underlying
rain features. Therefore, these approaches encounter difficulties
when confronted with real-world rainy images due to the disparity
between the datasets utilized for training and testing.

Due to the scarcity of precisely labeled data for image deraining,
several strategies have surfaced to tackle this issue. These encom-
pass semi-supervised methodologies, which leverage both labeled
and unlabeled data, alongside unpaired learning techniques that
function without explicit correlations between rainy and clean im-
ages. The former researches [8, 17, 23, 39, 56] prioritize extracting
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features that remain consistent across different domains and in-
tegrating supplementary objectives to enhance the performance,
while unpaired techniques [6, 14, 41, 47, 57] frequently utilize do-
main adaptation strategies to achieve superior generalization. How-
ever, existing methods encounter challenges in attaining superior
restoration quality because of the absence of clearly defined con-
straints for both rainy and clean images, leading to problems like
residual degradation and color distortion. Therefore, there is a ne-
cessity to create thorough mapping representations that effectively
capture the inherent relationship between rainy and clean domains.
Fortunately, score-based diffusion model (SBDM) [15, 30] presents
a promising departure from traditional generative adversarial net-
work (GAN) [11]. SBDM perturbs data through a diffusion process
and master the reversal of this process, yielding image generation
performance that is either competitive or superior. However, to
the best of our knowledge, there has been no the exploration of
utilizing the score-based diffusion model within the unpaired image
deraining.

In this work, we propose an energy-informed diffusion model for
unpaired photo-realistic image deraining, identified as UPID-EDM.
This approach utilizes a dual-consistent energy function (DEF) that
has been pre-trained across both rainy and clean domains. It directs
the reverse sampling procedure of a pre-trained stochastic differ-
ential equation (SDE), facilitating the removal of rain streaks and
the restoration of image details. Image deraining can be concep-
tualized as comprising two distinct processes, namely preserving
the rain-irrelevant features (image content) and discarding the rain-
relevant features (rain streaks). Based on this, we decompose the
energy function into the summation of two potential functions. Al-
though the contrastive language-image pre-training model (CLIP)
[26] possesses the capability to discern between images depicting
rain and those depicting cleanliness, its practical implementation
still presents considerable challenges. For instance, although clean
images and rain-free images are related concepts, we notice varying
CLIP scores when comparing with the same given images [21]. To
this end, we introduce the trainable domain-representation prompts
(LDP), initialized randomly and trained using non-correspondence
images. Specifically, we employ the rainy and clean images as in-
puts for a fixed image encoder, while the learnable negative and
positive prompts are utilized as inputs for a fixed text encoder. Sub-
sequently, we adopt the binary cross-entropy loss to classify the
rainy and clean images, aiding in the acquisition of learned domain-
representation prompts. Furthermore, we establish a rain-relevance
discarding energy function (RDEF) to ascertain whether a given
image belongs to the clean domain. Meanwhile, we also formulate
a rain-irrelevance preserving energy function (RPEF) that ensures
the generated images maintain consistency with the given rainy
images in terms of image content. With the guidance of our sug-
gested dual-consistent energy function, the pre-trained stochastic
differential equation applied to the clean domain can produce the
photo-realistic derained images when only given the rainy images.

Figure 2 illustrates the overall pipeline of our proposed approach.
The main contributions can be summarized as follows.

• Our work pioneers the utilization of diffusion models in unpaired
image deraining, showcasing the potential for the first time.

• We decompose the energy function into two components, aiming
to retain rain-irrelevant features while eliminating rain-relevant
features during the reverse sampling procedure for generating
reconstructed images.

• By leveraging the perceptual abilities of contrastive language-
image pre-training model, we propose the learnable domain-
representation prompts that guarantee the generated images
adhere to clean domain.

• Experiments on publicly available datasets demonstrate our pro-
posed approach achieves the best photo-realistic unpaired de-
raining performance.

2 Related Work
2.1 Unpaired Image Deraining
In the realm of unpaired image deraining, generative adversar-
ial network [58] has emerged as a widely favored model. Several
recent works [14, 57] improve CycleGAN [58] by integrating con-
straints tailored for transfer learning, with a particular focus on
rainy and clean images. For instance, Wei et. al. [40] leverage the
unpaired training datasets to tackle the unpaired deraining task,
indicating a notable progression. Zhu et. al. [57] represent a pio-
neering instance of an end-to-end adversarial model that solely
depends on the unpaired supervision to generate the authentic
images. Meanwhile, Yu et. al. [48] incorporate the existing data
on rain streaks by combining both model-driven and data-driven
methods within an unsupervised framework. Recently, Chen et.
al. [6] combine contrastive learning with adversarial training to
bolster the robustness of unpaired deraining methods, while Chang
et. al. [3] investigate the inherent similarities within each layer and
the distinctiveness between two layers, then propose an unsuper-
vised non-local contrastive learning approach for removing the
rain effects. However, these approaches primarily either depend on
enforcing cycle-consistency constraints, or alternatively, they are
based on adversarial training principles, leading to constraints on
the overall realism and fidelity of the reconstructed images.

2.2 Score-based Diffusion Model
Score-based diffusion model [22, 30, 31] have recently made sig-
nificant progress in a series of conditional image generation tasks.
SBDM provides a diffusion model to guide how image shaped data
from a Gauss distribution is iterated step by step into an image of
the target domain. In each step, SBDM gives score guidance which,
from an engineering perspective, can be mixed with energy and
statistical guidance to control the generation process. Saharia et.
al. [27, 28] develop a conditional SBDM to achieve paired super-
resolution and colorization. Choi et. al. [7] employ the reference
image to refine the generated images after each denoising step
with a low-pass filter. Recently, Zhao et. al.[54] and Sun et. al. [32]
decompose the score into several components to guide the reverse
sampling process and achieve the competitive image translation
performance. The characteristic that SBDM can be influenced by en-
ergy or statistics serves as a strong motivation for us to employ the
domain representation approaches in order to effectively transition
from rainy domain to clean domain. However, there is currently no
approach that employ SBDM to achieve unpaired image deraining.
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(a) Training of the learnable domain-representation prompts on unpaired image pairs and the diffusion model on clean images.

(b) Inference of the pre-trained diffusion model guided by the dual-consistent energy function.

Figure 2: Overall pipeline of our proposed energy-informed diffusion model for unpaired photo-realistic image deraining
(UPID-EDM). This approach employs our developed dual-consistent energy function (DEF) pre-trained on the unpaired rainy
and clean images to guide the reverse sampling process of a pre-trained diffusion model. We decompose the energy function
into two components, which discard the rain-relevant features and preserve the rain-irrelevant features, respectively.

3 Preliminary
SBDM [31, 53] initially perturb the training data through a forward
diffusion process and subsequently acquire the capability to invert
this process, thereby constructing a generative model that approxi-
mates the underlying data distribution. Let 𝑞(𝒚0) be the unknown
data distribution on R𝐷 . The forward diffusion process 𝒚𝑡 , indexed
by time 𝑡 , can be represented by the following forward SDE

𝑑𝑦 = 𝒇 (𝒚, 𝑡)𝑑𝑡 + 𝑔(𝑡)𝑑𝒘, (1)

where 𝑡 ∈ [0,𝑇 ], 𝒘 ∈ R𝐷 is a standard Wiener process, 𝒇 (·, 𝑡) :
R𝐷 → R𝐷 is the drift coefficient and 𝑔(𝑡) ∈ R is the diffusion
coefficient. Denote 𝑞𝑡 |0 (𝒚𝑡 |𝒚0) the transition kernel from time 0 to
𝑡 , which is decided by 𝒇 (𝒚, 𝑡) and 𝑔(𝑡). In practice, 𝒇 (𝒚, 𝑡) typically
exhibits an affine behavior, resulting in the perturbation kernel
being a linear Gaussian distribution, allowing for straightforward
sampling in a single step. Let 𝑞𝑡 (𝒚) be the marginal distribution of
the SDE at time t in Eq. (1), its time reversal can be described by

𝑑𝒚 = [𝒇 (𝒚, 𝑡) − 𝑔(𝑡)2∇𝒚 log𝑞𝑡 (𝒚)]𝑑𝑡 + 𝑔(𝑡)𝑑�̄�, (2)

where �̄� is a reverse-time standard Wiener process, and 𝑑𝑡 is an
infinitesimal negative timestep. Song et. al. [31] adopts a score-
based model 𝒔 (𝒚, 𝑡) to approximate the unknown ∇𝒚 log𝑞𝑡 (𝒚) by
score matching, thereby inducing a score-based diffusion model,

which is defined as

𝑑𝒚 = [𝒇 (𝒚, 𝑡) − 𝑔(𝑡)2𝒔 (𝒚, 𝑡)]𝑑𝑡 + 𝑔(𝑡)𝑑�̄� . (3)

4 Proposed Method
4.1 Overview
Based on Eq. (3), incorporating a supplementary guidance function
𝜖 (𝒚, 𝒙0, 𝑡) proves beneficial, leading to the derivation of a revised
time-reversed SDE following

𝑑𝒚 = [𝒇 (𝒚, 𝑡) − 𝑔(𝑡)2 (𝒔 (𝒚, 𝑡) − ∇𝒚𝜖 (𝒚, 𝒙0, 𝑡))]𝑑𝑡 + 𝑔(𝑡)𝑑�̄�, (4)

where 𝒔 (·, ·) : R𝐷 × R→ R𝐷 is the score-based diffusion model in
the pre-trained SDE and 𝜖 (·, ·, ·) : R𝐷 ×R𝐷 ×R→ R is the proposed
dual-consistent energy function. The start point 𝑦𝑇𝑠 is sampled
from the perturbation distribution 𝑞𝑇𝑠 |0 (𝑦𝑇𝑠 |𝑥0), where 𝑇𝑠 = 0.4𝑇
empirically. We acquire the derained images by sampling at the
time point 𝑡 = 0 according to the stochastic differential equation
outlined in Eq. (4). Meanwhile, our methodology utilizes a score-
based diffusion model exclusively trained on the pristine domain.
This model delineates a marginal distribution of clean images and
predominantly enhances the authenticity of the derained samples.
The suggested dual-consistent energy function incorporates data
from both rainy and clean domains in an unpaired setting, aiming
to maintain rain-irrelevant features while discarding rain-relevant
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ones. This approach enhances both the fidelity and naturalness of
the reconstructed images. After individually completing training,
we employ Eq. (13) to sample the reconstructed images based on
the given rainy images.

4.2 Dual-consistent Energy Function
Image deraining can be described as a dual process involving the
preservation of rain-irrelevant features (image content) and the
removal of rain-relevant features (rain streaks). Therefore, heav-
ily based on [54], we express the energy function 𝜖 (𝒚, 𝒙, 𝑡) as the
combination of two logarithmic potential functions,

𝜖 (𝒚, 𝒙, 𝑡) = 𝜆1𝜖1 (𝒚, 𝒙, 𝑡) + 𝜆2𝜖2 (𝒚, 𝒙, 𝑡)
= 𝜆1E𝑞𝑡 |0 (𝒙𝑡 |𝑥 ) 𝒔1 (𝒚, 𝒙𝑡 , 𝑡) + 𝜆2E𝑞𝑡 |0 (𝒙𝑡 |𝒙 ) 𝒔2 (𝒚, 𝒙𝑡 , 𝑡),

(5)

where 𝜖1 (·, ·, ·) : R𝐷×R𝐷×R→ R and 𝜖2 (·, ·, ·) : R𝐷×R𝐷×R→ R
are the log potential functions, 𝑥𝑡 is the perturbed source images
in the forward diffusion process, 𝑞𝑡 |0( · | · ) is the perturbation kernel
from time 0 to time 𝑡 in the forward diffusion process, 𝑠1 (·, ·, ·) :
R𝐷×R𝐷×R→ R and 𝑠2 (·, ·, ·) : R𝐷×R𝐷×R→ R are two functions
measuring the similarity between the sample and perturbed source
image, and 𝜆1 ∈ R > 0, 𝜆2 ∈ R > 0 are two weighting hyper-
parameters.

To specify 𝑠1 (·, ·, ·), we investigate the diverse priors within the
contrastive language-image pre-training model, which exhibit a
robust capability to capture domain discrimination [21, 45]. How-
ever, we discover that texts conveying similar meanings exhibit
considerable separation within the latent space. As shown in Fig-
ure 5, we present two instances featuring a single image alongside
varied but analogous texts, followed by an assessment of their sim-
ilarities within the CLIP space. Therefore, we employ the learnable
domain-representation prompts to depict the rainy and clean do-
mains without the need for paired images. Based on the inherent
latent resemblance between images and prompts, we employ binary
cross-entropy loss to classify images as either rainy or clean. This
loss function is derived from

L𝑝𝑟𝑜𝑚𝑝𝑡 = −[𝑧 log(𝑧 (𝒗,𝒑𝑝 )) + (1 − 𝑧) log(1 − 𝑧 (𝒗,𝒑𝑝 ))], (6)

where 𝑧 (𝒗,𝒑) = 𝑝 (𝑧 |E𝑖 (𝒗)) ∈ {0, 1} denotes the target label and
prediction probability, 𝒗 ∈ {𝒙𝑡 ,𝒚}, 𝑝 (·) indicates probability, 𝒑𝑝 is
the learnable positive prompt. 𝑦 = 0 is the label of rainy images
and 𝑦 = 1 is the label of clean images. In our setting, the original
prediction probability can be formulated as

𝑧 (𝒗,𝒑𝑝 ) =
𝑒𝑥𝑝 (𝑠𝑖𝑚(E𝑖 (𝒗), E𝑡 (𝒑𝑝 )))∑

𝑢∈{𝑛,𝑝 } 𝑒𝑥𝑝 (𝑠𝑖𝑚(E𝑖 (𝒗), E𝑡 (𝒑𝑢 )))
, (7)

where 𝑠𝑖𝑚(·) denotes the cosine similarity, E𝑖 (·) and E𝑡 (·) indicate
the image encoder and text encoder in CLIP, respectively. 𝒑𝑛 is the
learnable negative prompts. As illustrated in Figure 5, our learnable
domain-representation prompts facilitate the accuracy of CLIP in
distinguishing between rainy and clean images.

Following the training of the learnable prompts, we also select
the negative prompt to represent the underlying correlation be-
tween the provided images and prompts [21], a formulation of
which can be described as

𝑧 (𝒗,𝒑𝑛) =
𝑒𝑥𝑝 (𝑠𝑖𝑚(E𝑖 (𝒗), E𝑡 (𝒑𝑛)))∑

𝑢∈{𝑛,𝑝 } 𝑒𝑥𝑝 (𝑠𝑖𝑚(E𝑖 (𝒗), E𝑡 (𝒑𝑢 )))
. (8)

Algorithm 1 Energy-informed Diffusion Model
Input: rainy image 𝒙0, initial time 𝑇𝑠 , denoising steps 𝑁 , weight-

ing hyper-parameters 𝜆1, 𝜆2, dual-consistent energy function
𝒔1 (·, ·, ·) and 𝒔2 (·, ·, ·), score function 𝒔 (·, ·)

Output: reconstructed image 𝑦0
1: 𝒚𝑇𝑠 ∼ 𝑞𝑀 |0 (𝒚𝑇𝑠 |𝒙0)
2: ℎ =

𝑇𝑠
𝑁

3: for 𝑖 = 𝑁 to 1 do
4: 𝑛 = 𝑖ℎ

5: 𝑡 = 𝑛 − ℎ

6: 𝒙 ∼ 𝑞𝑛 |0 (𝒙 |𝒙0)
7: 𝜖 (𝒚𝑛, 𝒙0, 𝑛) = 𝜆1𝜖1 (𝒚𝑛, 𝒙0, 𝑛) − 𝜆2𝜖2 (𝒚𝑛, 𝒙0, 𝑛)
8: 𝒚𝑡 = 𝒚𝑛 − [𝒇 (𝒚𝑛, 𝑛) − 𝑔(𝑛)2 (𝒔 (𝒚𝑛, 𝑛) − ∇𝒚𝜖 (𝒚𝑛, 𝒙0, 𝑛))]ℎ +

𝑔(𝑛)
√
ℎ𝜂, 𝜂 ∼ N(0, I ) if 𝑖 > 1, else 𝜂 = 0

9: end for
10: return 𝒚0

Therefore, we have the rain-relevance discarding energy function
𝒔1 (𝒚, 𝒙𝑡 , 𝑡) following

𝒔1 (𝒚, 𝒙𝑡 , 𝑡) = 𝑧 (𝒙𝑡 ,𝒑𝑛) + 𝑧 (𝒚,𝒑𝑛) . (9)

Lowering this energy value indicates the generated sample to elim-
inate rain-relevant characteristics, ensuring its alignment with the
clean domain [2, 12].

Furthermore, to maintain rain-irrelevant attributes and ensure
contextual coherence between generated samples and clean im-
ages, we utilize two CLIP image encoders to assess latent similarity.
This approach aims to enhance the alignment of derained images
with their rainy counterparts in terms of contextual features [21],
thereby fostering the fidelity of content within the derained images.
Therefore, we formulate the rain-irrelevance preserving energy
function 𝒔2 (𝒚, 𝒙𝑡 , 𝑡) as

𝒔2 (𝒚, 𝒙𝑡 , 𝑡) =
1
𝑚

𝑚∑︁
𝑘=0

𝜆𝑘 | |E𝑘
𝑖 (𝒚) − E𝑘

𝑖 (𝒙𝑡 ) | |2, (10)

where𝑚 denotes the number of image encoder layers utilized to
represent the distances, E𝑖 (·) is the weight of 𝑘-th layer in im-
age encoder, 𝜆𝑘 indicates the coefficient corresponding to the 𝑘-th
layer. By decreasing this energy value, it prompts the improved
outcome to closely resemble the clean images in content, thereby
safeguarding the rain-irrelevant features. Therefore, our decom-
posed dual-consistent energy function aids our model in filter-
ing out rain-relevant features while retaining those that are rain-
irrelevant. Compared to the energy function in [54], our decom-
posed energy function achieves better domain representation and
structural preservation in the complex generative process of image
deraining.

4.3 Energy-informed diffusion model
In this work, we utilize the Euler-Maruyama solver [24] to tackle the
energy-guided reverse-time stochastic differential equation. Based
on the pre-trained score-based model 𝒔 (𝒚, 𝑡) and energy function
𝜖 (𝒚, 𝒙, 𝑡), we can solve the proposed energy-informed score-based
diffusion model to generate samples from conditional distribution
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𝑝 (𝒚0 |𝒙0). We select a step size ℎ, and utilize the iteration rule start-
ing from 𝑡 = 𝑛 − ℎ following

𝒚𝑡 =𝒚𝑛 − [𝒇 (𝒚𝑛, 𝑛) − 𝑔(𝑛)2 (𝒔 (𝒚𝑛, 𝑛) − ∇𝒚𝜖 (𝒚𝑛, 𝒙0, 𝑛))]ℎ

+ 𝑔(𝑛)
√
ℎ𝜂,

(11)

where 𝜂 ∼ N(0, I ). The anticipated value within 𝜖 (𝒚𝑠 , 𝒙0, 𝑠) is
evaluated using the Monte Carlo method with a single sample to
enhance efficiency. We outline the overarching sampling process of
our approach in Algorithm 1. In our experiments, we employ the
variance-preserving energy-informed diffusion model, as explicitly
defined by

𝑑𝒚 = [−1
2
𝛽 (𝑡)𝒚− 𝛽 (𝑡) (𝒔 (𝒚, 𝑡) −∇𝒚𝜖 (𝒚, 𝒙0, 𝑡))]𝑑𝑡 +

√︁
𝛽 (𝑡)𝑑�̄�, (12)

where 𝛽 (·) is a positive function. The perturbation kernel𝑞𝑡 |0 (𝒚𝑡 |𝒚0) ∼
N (𝒚0 exp− 1

2
∫ 𝑡

0 𝛽 (𝑛)𝑑𝑛, (1−exp−
∫ 𝑡

0 (𝛽 (𝑛)𝑑𝑛)I ) and 𝛽 (𝑡) = 𝛽𝑚𝑖𝑛+
𝑡 (𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛). We set 𝛽𝑚𝑖𝑛 = 0.1 and 𝛽𝑚𝑎𝑥 = 20 [15, 24, 54].
Therefore, the iteration rule from 𝑛 to 𝑡 = 𝑛 − ℎ is

𝒚𝑡 =
1√︁

1 − 𝛽 (𝑛)ℎ
[𝒚𝑠 + 𝛽 (𝑛)ℎ(𝒔 (𝒚𝑛, 𝑛) − ∇𝒚𝜖 (𝒚𝑛, 𝒙0, 𝑛))]

+
√︁
𝛽 (𝑛)ℎ𝜂.

(13)

The iteration rule in Eq. (13) is equivalent to that using Euler-
Maruyama solver when ℎ is small [31], thereby the score network
is modified to 𝒔 (𝒚, 𝒙0, 𝑡) = 𝒔 (𝒚, 𝑡) − ∇𝒚𝜖 (𝒚, 𝒙0, 𝑡) in our proposed
UPID-EDM. Therefore, we can readily adjust the noise prediction
network and integrate it into the reverse sampling process [15].

5 Experimental Results
5.1 Implementation Details
We implement our proposed method with PyTorch on a single
NVIDIA GeForce RTX 4090 GPU. The rain-relevance discarding
energy function is trained on the combined dataset, where we
ensure the rainy images are never paired with their corresponding
clean images. We utilize the Adam optimizer [20] with 𝛽1 = 0.9 and
𝛽2 = 0.99. Each learnable domain-representation prompt contains
16 embedded tokens, with a total of 50 000 iterations. The learning
rate for the energy function learning is set to 5 × 10−6, and the
batch size is 8. In the rain-irrelevance preserving energy function,
𝜆𝑘∈1,2,3,4,5 = 0.5, 1, 1, 1, 1. The initial time 𝑇𝑠 is configured as 0.4𝑇 .

5.2 Datasets
We employ five commonly recognized benchmark rainy datasets to
assess the effectiveness of our proposed approach, namely Rain800
[52], Rain1400 [9], Rain1200 [51], RainCityscapes [16], SPA-Data
[38] datasets. In this work, our training regimen integrates a com-
bination of these datasets, while testing experiments are conducted
independently. A detailed description of these rainy datasets is
provided in Table 1. To optimize our training, we utilize a feature
clustering approach to eliminate data that deviates significantly
from the center of the testing distribution.

5.3 Evaluation Metrics
We employ the learned perpetual image patch similarity (LPIPS)
[53] to evaluate the supervised metrical scores between the recon-
structed images and corresponding clean images. Meanwhile, we

Table 1: Dataset description of five commonly utilized image
deraining benchmark datasets.

Dataset Rain800 Rain1400 Rain1200 RainCityscapes SPA-Data

Training 700 12 600 12 000 9 432 28 500
Testing 100 1 400 1 200 1 188 1 000
Testname Test100 Test1400 Test1200 Test1188 Test1000

also utilize the contrastive language-image pre-training image qual-
ity assessment (CLIPIQA) [37], multi-dimension attention network
image quality assessment (MANIQA) [46] and multi-scale image
quality transformer (MUSIQ) [18] to evaluate the no-reference met-
rical scores of the derained images. The lower LPIPS score indicates
better image quality, and vice versa for the others.

5.4 Comparisons with Existing Methods
To evaluate the effectiveness of our proposed approach on synthetic
image deraining, we employ the combined training dataset to train
the involved methods and conduct evaluation on the corresponding
five testing datasets, respectively. As Table 2 depicted, our proposed
method demonstrates substantial enhancements in performance
metrics, surpassing existing methods in both reference-based and
no-reference evaluations. To further illustrate the effectiveness of
our model, we additionally compute the average quantitative met-
rics and offer intuitive comparisons among various methods across
LPIPS and the three image naturalness assessment metrics shown
in Figure 1. As illustrated, our model excels in average performance
under supervised protocols and exhibits significantly enhanced
naturalness compared to the other methods. Furthermore, we also
provide several visual samples of the comparative methods in Fig-
ure 3. Specifically, although EGSDE [54] with a similar setup can
ensure that the reconstructed images fall within the clean domain,
which leads to severe artifacts and hallucinations due to the lack
of strict constraints on details. Meanwhile, the visual results of the
other approaches exhibit either notable residual degradation or sub-
stantial color distortions. In contrast, our model effectively removes
rain streaks while maintaining consistent color consistency.

5.5 Ablation Studies
We conduct ablation experiments to evaluate the effectiveness of
our model for unpaired photo-realistic image deraining, and all the
experimental results are calculated by averaging the metrical scores
across the five testing datasets.

5.5.1 Individual Energy Functions. We validate the effectiveness
of our proposed dual-consistent energy function by changing the
weighting parameters 𝜆1 and 𝜆2 to control the contribution level
of the rain-relevant discarding and rain-irrelevance preserving en-
ergy functions in the overall performance. As shown in Figure 4,
although the results generated without using our energy functions
clearly fall within the clean domain, the textures of reconstructed
images are inaccurate and there are many artifacts. This result
intuitively proves the effectiveness of our dual-consistent energy
function in constraining the domain and textures of reconstructed
images. Meanwhile, Table 3 reports the quantitative comparisons
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Table 2: Quantitative comparisons of our proposed method and the other comparative algorithms on five synthetic testing
datasets. The red and blue font indicate the best and second-best metrical scores, respectively. Our model achieves the best
performance in both the reference-based and no-reference metrical indicators. Our work mainly focuses on achieving better
photo-realistic deraining, thereby we provide the other metrical indicators in the supplementary materials to save space.

Method Test100 Test1400 Test1200
LPIPS CLIPIQA MUSIQ MANIQA LPIPS CLIPIQA MUSIQ MANIQA LPIPS CLIPIQA MUSIQ MANIQA

CycleGAN [58] 0.2908 0.3910 57.742 0.2294 0.2345 0.3774 59.068 0.2600 0.2600 0.3591 58.332 0.2359
UAGGAN [1] 0.4555 0.2736 54.166 0.2303 0.4566 0.3000 53.996 0.2512 0.4557 0.3012 55.511 0.2472
CUT [25] 0.3469 0.4099 57.041 0.2344 0.3445 0.4119 57.357 0.2513 0.3485 0.4025 56.991 0.2378
DCLGAN [13] 0.5387 0.2557 50.352 0.2110 0.5171 0.2636 52.773 0.2217 0.5486 0.2472 54.746 0.2301
DerainCycleGAN [40] 0.2117 0.5089 64.661 0.3744 0.2659 0.5004 62.626 0.4338 0.3867 0.3880 65.423 0.3395
NLCL [47] 0.4428 0.5358 57.934 0.3662 0.4000 0.5356 61.115 0.3972 0.4316 0.4777 60.056 0.3673
DCD-GAN [6] 0.3693 0.3223 54.857 0.2207 0.3623 0.3221 54.073 0.2333 0.3611 0.3188 54.799 0.2354
LUD-VAE [55] 0.4787 0.4900 54.024 0.2480 0.5280 0.4697 51.163 0.2613 0.6671 0.4201 49.645 0.2150
EGSDE [54] 0.2196 0.5427 60.105 0.3992 0.3184 0.5439 61.550 0.4091 0.2957 0.3864 66.025 0.3431
UNSB [19] 0.6457 0.2456 39.328 0.2076 0.6508 0.2820 40.882 0.2200 0.6475 0.2591 43.158 0.2301
CLIP-LIT [21] 0.2967 0.5724 62.978 0.3665 0.2124 0.5817 64.412 0.4221 0.2971 0.4792 64.507 0.3533
UPID-EDM (ours) 0.1996 0.5953 65.773 0.4176 0.1684 0.6404 66.164 0.4700 0.2108 0.4919 69.321 0.4011

Method Test1188 Test1000 Average
LPIPS CLIPIQA MUSIQ MANIQA LPIPS CLIPIQA MUSIQ MANIQA LPIPS CLIPIQA MUSIQ MANIQA

CycleGAN [58] 0.3611 0.1830 49.250 0.2141 0.6294 0.1599 44.388 0.2095 0.3552 0.2941 53.756 0.2298
UAGGAN [1] 0.3929 0.2763 45.774 0.2031 0.3934 0.2811 48.984 0.2543 0.4308 0.2864 51.686 0.2372
CUT [25] 0.2918 0.3102 52.324 0.1996 0.2567 0.2991 47.682 0.2491 0.3177 0.3667 54.279 0.2344
DCLGAN [13] 0.4186 0.2215 47.584 0.2053 0.4457 0.2329 47.394 0.2327 0.4937 0.2442 50.570 0.2202
DerainCycleGAN [40] 0.4549 0.3870 58.439 0.4180 0.2563 0.2252 49.268 0.2699 0.3151 0.4019 60.083 0.3671
NLCL [47] 0.3723 0.3738 53.014 0.4786 0.4475 0.2938 53.363 0.2951 0.4188 0.4433 57.096 0.3809
DCD-GAN [6] 0.2605 0.2502 49.967 0.2005 0.2430 0.2580 43.077 0.2412 0.3192 0.2943 51.355 0.2262
LUD-VAE [55] 0.8213 0.2334 47.532 0.1860 0.9337 0.3262 39.353 0.2142 0.6858 0.3879 48.343 0.2249
EGSDE [54] 0.3200 0.3522 50.954 0.4436 0.2600 0.3073 51.144 0.3042 0.2827 0.4265 57.956 0.3798
UNSB [19] 0.6294 0.2055 28.608 0.1533 0.5748 0.2943 47.297 0.2552 0.6296 0.2573 39.855 0.2132
CLIP-LIT [21] 0.2403 0.3139 58.298 0.3742 0.2669 0.2626 49.426 0.2732 0.2627 0.4420 59.924 0.3579
UPID-EDM (ours) 0.1503 0.4527 59.613 0.5315 0.1647 0.3428 57.085 0.3228 0.1788 0.5046 63.591 0.4286

of different weighting parameters, which illustrates that both our
decomposed two energy functions present positive effect on the
overall performance. In our experiments, we empirically determine
that setting 𝜆1 to 73 and 𝜆2 to 0.72 strikes the desired balance be-
tween fidelity and naturalness.

Table 3: Ablation experiments on the individual energy func-
tions. Our energy function shows positive performance in
improving the image fidelity and naturalness.

Weight LPIPS CLIPIQA MUSIQ MANIQA

𝜆1 = 50, 𝜆2 = 0 0.4901 0.4298 52.047 0.2926
𝜆1 = 100, 𝜆2 = 0 0.5126 0.4445 53.900 0.3468
𝜆1 = 200, 𝜆2 = 0 0.5123 0.5136 60.321 0.3845
𝜆1 = 0, 𝜆2 = 0.5 0.4394 0.2970 46.996 0.2344
𝜆1 = 0, 𝜆2 = 1 0.3803 0.2793 45.234 0.2178
𝜆1 = 0, 𝜆2 = 2 0.3001 0.2802 43.077 0.1999
𝜆1 = 73, 𝜆2 = 0.72 0.1788 0.5046 63.591 0.4286

5.5.2 Rain-relevance Discarding Energy Function. We also compare
our proposed rain-relevance discarding energy function with the
texts and classifier.We substitute the learnable domain-representation
prompts with the negative text ′𝑟𝑎𝑖𝑛𝑦 𝑖𝑚𝑎𝑔𝑒′ and the positive text
′𝑐𝑙𝑒𝑎𝑛 𝑖𝑚𝑎𝑔𝑒′ in the texts. Additionally, we utilize a basic VGG16
network [29] to train a classifier for clarifying the rainy and clean
images. As Table 4 reported, our LDP demonstrates the significant
image fidelity and naturalness improvements over the simple texts
and classifier. Therefore, our proposed energy function for discard-
ing rain-relevance aids the pre-trained score-based diffusion model
in eliminating the rain-relevant features.

5.5.3 Rain-irrelevance Preserving Energy Function. To further demon-
strate the effectiveness of our proposed rain-irrelevance preserv-
ing energy function, we compare the performance of it with the
commonly used cycle consistency constraint (CCC) [40] and the
Gaussian-guided mean squared error (GMSE) [54]. As Table 5 de-
picted, our RPEF achieves the performance gain over both consistency-
preserving functions, which demonstrates that our RPEF preserves
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Rainy ImageDerainCycleGAN [40] NLCL [47] DCD-GAN [6] EGSDE [54] CLIP-LIT [21] UPID-EDM (ours) Ground Truth

Figure 3: Visual samples of the involved methods on synthetic rainy images. Our proposed approach completely eliminates the
rain streaks and generates more photo-realistic derained images.

Rainy Image 𝜆1, 𝜆2 = 0, 0 𝜆1, 𝜆2 = 73, 0.72 Ground Truth

Figure 4: Intuitive comparisons of the effectiveness of the
proposed dual-consistent energy function. Without our pro-
posed dual-consistency energy function, the textures of re-
constructed images are inaccurate and there are many arti-
facts.

the rain-irrelevant features, and further improves the quality of the
reconstructed images.

5.5.4 Learnable Domain-representation Prompts. Table 3 verifies
the effectiveness of our proposed learnable domain-representation
prompts. To clarify the motivation of our LDP, we additionally
demonstrate the comparative latent similarities between various
prompts and the provided rainy and clean images in Figure 5, where
the texts similarities are compared with the given images, and the

Table 4: Ablation experiments on the rain-relevance discard-
ing energy function. Our learnable domain-representation
prompts achieves better performance over the texts and clas-
sifier.

Component LPIPS CLIPIQA MUSIQ MANIQA

Texts 0.2674 0.4828 57.644 0.4049
Classifier 0.2155 0.4420 59.724 0.4103
LDP 0.1788 0.5046 63.591 0.4286

Table 5: Ablation experiments on the rain-irrelevance pre-
serving energy function. Our RPEF achieves the better perfor-
mance over the commonly used cycle consistency constraint
[40] and the Gaussian-guided mean squared error [54].

Components LPIPS CLIPIQA MUSIQ MANIQA

CCC 26.398 0.3466 59.440 0.3515
GMSE 0.1962 0.3790 60.325 0.3603
RPEF 0.1788 0.5046 63.591 0.4286

learnable prompts similarities are calculated across all the five
testing datasets. In this figure, the negative prompts of given rainy
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and clean images are ′𝑟𝑎𝑖𝑛-𝑓 𝑟𝑒𝑒 𝑖𝑚𝑎𝑔𝑒′ and ′𝑟𝑎𝑖𝑛-𝑑𝑒𝑔𝑟𝑎𝑑𝑒𝑑 𝑖𝑚𝑎𝑔𝑒′,
respectively. As illustrated, although the texts present similar mean-
ings in depicting the provided images, they exhibit notable distinc-
tions in the underlying context. This issue have also been demon-
strated in [21]. Therefore, employing the texts to compute energy
values in our rain-relevance discarding energy function would lead
to instability in the reverse sampling procedure. In contrast, our
LDP can classify rainy images and clean images more accurately.

Figure 5: Similarity comparisons of different prompts with
the given images. Similar texts present significant distances
in the latent space, while our learnable prompts achievemore
accurate classification.

5.5.5 Starting Time. We evaluate how the starting time parame-
ter 𝑇𝑠 impacts the overall effectiveness of our proposed energy-
informed diffusion model. The performance comparisons of our
model with various initial time settings are detailed in Table 6.
As depicted, our energy-informed diffusion model demonstrates
comparable performance at both 𝑇𝑠 = 0.4𝑇 and 𝑇𝑠 = 0.6𝑇 , and the
under-performance at the other starting times. Therefore, we set
𝑇𝑠 = 0.4𝑇 to strike a balance between the reconstruction perfor-
mance and inference time in our experiments.

Table 6: Ablation experiments on the starting time. We set
𝑇𝑠 = 0.4𝑇 to achieve a balance between the performance and
inference time in our experiments.

Initial Time LPIPS CLIPIQA MUSIQ MANIQA

𝑇𝑠 = 0.2𝑇 0.2622 0.4860 62.156 0.4154
𝑇𝑠 = 0.4𝑇 0.1788 0.5046 63.591 0.4286
𝑇𝑠 = 0.5𝑇 0.2177 0.4964 61.164 0.4163
𝑇𝑠 = 0.6𝑇 0.1790 0.5050 63.580 0.4198
𝑇𝑠 = 0.8𝑇 0.3843 0.4751 60.492 0.3912

5.5.6 Inputs of Energy Function. Table 7 reports the performance
of our approach when employing the 𝒙0 and 𝒙𝑡 to calculate the
energy values, where compute the energy values in the correspond-
ing noise level results in an improved fidelity and naturalness per-
formance. This proves that computing the energy values in the
corresponding noise level ensures the model learn more accurate
domain representation and image contents.

Table 7: Ablation experiments on the inputs of energy func-
tion. Our proposed method achieves improved performance
when employing both images in the same noise level to cal-
culate the energy values.

Input LPIPS CLIPIQA MUSIQ MANIQA

(𝒚𝑡 , 𝒙0) 0.3555 0.4690 60.123 0.4097
(𝒚𝑡 , 𝒙𝑡 ) 0.1788 0.5046 63.591 0.4286

6 Limitations
Although our approach successfully eliminates the rain streaks
without the requirements of paired rainy and cleans images, its ma-
jor limitations arise from the significant computational resources
required for generating the reconstructed images and the processing
time for individual images surpasses that of the existing methods.
Additionally, although our proposed approach is effective in re-
moving the real-world rain degradation, which may inadvertently
exhibit hallucinations (seen in Figure 6), leading to the degradation
of image details and distortion of texture in several cases.

Figure 6: Visual comparisons of the rainy, generated and
clean images. Our model successfully eliminates the rain
degradations, but generates several hallucinations.

7 Conclusion
In this work, we introduce an innovative method for generating
photo-realistic images without paired images. We delve into the
rich visual-language priors within the contrastive language-image
pre-training model, along with the capabilities of the score-based
diffusion model in this context. Additionally, we showcase how
our proposed dual-consistent energy function aids in filtering out
the rain-relevant features while preserving the rain-irrelevant fea-
tures during the reverse sampling process of a pre-trained diffusion
model.
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