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Abstract

The integration of syntactic structures into001
Transformer machine translation has shown002
positive results, but to our knowledge, no work003
has attempted to do so with semantic struc-004
tures. In this work we propose two novel005
parameter-free methods for injecting seman-006
tic information into Transformers, both rely007
on semantics-aware masking of (some of) the008
attention heads. One such method operates009
on the encoder, through a Scene-Aware Self-010
Attention (SASA) head. Another on the de-011
coder, through a Scene-Aware Cross-Attention012
(SACrA) head. We show a consistent improve-013
ment over the vanilla Transformer and syntax-014
aware models for four language pairs. We fur-015
ther show an additional gain when using both016
semantic and syntactic structures in some lan-017
guage pairs.018

1 Introduction019

It has long been argued that semantic representa-020

tion can benefit machine translation (Weaver, 1955;021

Bar-Hillel, 1960). Moreover, RNN-based neural022

machine translation (NMT) has been shown to ben-023

efit from the injection of semantic structure (Song024

et al., 2019; Marcheggiani et al., 2018). Despite025

these gains, to our knowledge, there have been026

no attempts to incorporate semantic structure into027

NMT Transformers (Vaswani et al., 2017). We ad-028

dress this gap, focusing on the main events in the029

text, as represented by UCCA (Universal Cogni-030

tive Conceptual Annotation; Abend and Rappoport,031

2013), namely scenes.032

UCCA is a semantic framework originating033

from typological and cognitive-linguistic theories034

(Dixon, 2009, 2010, 2012). Its principal goal is to035

represent some of the main elements of the seman-036

tic structure of the sentence while disregarding its037

syntax. Formally, a UCCA representation of a text038

is a directed acyclic graph where leaves correspond039

to the words of the sentence and nodes correspond040

to semantic units. The edges are labeled by the role 041

of their endpoint in the relation corresponding to 042

their starting point (see Fig. 1). One of the motiva- 043

tions for using UCCA is its capability to separate 044

the sentence into "Scenes", which are analogous to 045

events (see Fig. 1). Every such Scene consists of 046

one main relation, which can be either a Process 047

(i.e., an action), denoted by P, or a State (i.e., con- 048

tinuous state), denoted by S. Scenes also contain 049

at least one Participant (i.e., entity), denoted by A. 050

For example, the sentence in Fig. 1 comprises two 051

scenes: the first one has the Process "saw" and two 052

Participants – "I" and "the dog"; the second one 053

has the Process "barked" and a single Participant – 054

"dog". 055

So far, to the best of our knowledge, the only 056

structure-aware work that integrated linguistic 057

knowledge and graph structures into Transform- 058

ers used syntactic structures (Strubell et al., 2018; 059

Bugliarello and Okazaki, 2020; Akoury et al., 060

2019; Sundararaman et al., 2019; Choshen and 061

Abend, 2021). The presented method builds on 062

the method proposed by Bugliarello and Okazaki 063

(2020), which utilized a Universal Dependencies 064

graph (UD; Nivre et al., 2016) of the source sen- 065

tence to focus the encoder’s attention on each to- 066

ken’s parent, namely the token’s immediate ances- 067

tor in the UD graph. Similarly, we use the UCCA 068

graph of the source sentence to generate a scene- 069

aware mask for the self-attention heads of the en- 070

coder. We call this method SASA (see §2.1). 071

We test our model (§2) on translating English 072

into four languages. Two that are more syntacti- 073

cally similar to English –(Nikolaev et al., 2020; 074

Dryer and Haspelmath, 2013) German (En-De), 075

Russian (En-Ru), and two that are much less so – 076

Turkish (En-Tr) and Finnish (En-Fi). We find con- 077

sistent improvements across multiple test sets for 078

all four cases. In addition, we create a syntactic 079

variant of our semantic model for better compara- 080

bility. We observe that on average, our semanti- 081
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Figure 1: Example of UCCA-parsing of the sentence
"I saw the dog that barked" and its separation into two
scenes.

cally aware model outperforms the syntactic mod-082

els. Moreover, for the two languages less similar083

to English (En-Tr and En-Fi), combining both the084

semantic and the syntactic data results in a further085

gain. While improvements are often small, at times086

the combined version outperforms SASA and UD-087

ISCAL (our syntactic variant, see §3) by 0.52 and088

0.69 BLEU points (or 0.46 and 0.43 chrF), respec-089

tively.090

We also propose a novel method for introducing091

the source graph information during the decoding092

phase, namely through the cross-attention layer in093

the decoder (see §2.2). We find that it improves094

over the baseline and syntactic models, although095

SASA is generally better. Interestingly, for En-096

Fi, this model also outperforms SASA, suggesting097

that some language pairs may benefit more from098

semantic injection into the decoder.099

Overall, through a series of experiments (see §4),100

we show the potential of semantics as an aid for101

NMT. We experiment with a large set of variants102

of our method, to see where and in what incorpora-103

tion method they best help. Finally, we show that104

semantic models outperform UD baselines and can105

be complementary to them in distant languages,106

showing improvement when combined.107

2 Models108

Transformers have been shown to struggle when109

translating some types of long-distance dependen-110

cies (Choshen and Abend, 2019; Bisazza et al.,111

2021a) and when facing atypical word order112

(Bisazza et al., 2021b). Sulem et al. (2018a) pro-113

posed UCCA based preprocessing at inference114

time, splitting sentences into different scenes. They115

hypothesized that models need to decompose the116

input into scenes implicitly, and provide them with 117

such a decomposition, as well as with the original 118

sentence. They show that this may facilitate ma- 119

chine translation (Sulem et al., 2020) and sentence 120

simplification (Sulem et al., 2018b) in some cases. 121

Motivated by these advances, we integrate 122

UCCA to split the source into scenes. However, 123

unlike Sulem et al., we do not alter the sentence 124

length in pre-processing, as this method allows less 125

flexibility in the way information is passed, and 126

also reimplementing it yielded inferior results (see 127

§A.5). Instead, we investigate ways to integrate the 128

split into the attention architecture. 129

We follow previous work (Bugliarello and 130

Okazaki, 2020) in the way we incorporate our se- 131

mantic information. In their paper, Bugliarello and 132

Okazaki (2020) introduced syntax in the form of a 133

parent-aware mask, which was applied before the 134

softmax layer in the encoder’s self-attention. We 135

mask in a similar method to introduce semantics. 136

However, parent in the UCCA framework is an 137

elusive concept. Hence, we use a different way to 138

express the semantic information in our mask, i.e., 139

we make it scene-aware, rather than parent-aware. 140

Following Sulem et al. (2018b), we divide the 141

source sentence into scenes, using the sentence’s 142

UCCA parse. We then define our Scene-Aware 143

mask 144

145

M [i, j] =

{
1, if i,j in the same scene
0, otherwise

146

Intuitively, an attention head masked this way is 147

allowed to attend to other tokens, as long as they 148

share a scene with the current one.1 149

Our base model is the Transformer (Vaswani 150

et al., 2017), which we enhance by making the 151

attention layers more scene-aware. We force one2 152

of the heads to attend to words in the same scene 153

which we assume are more likely to be related than 154

words from different scenes. As we replace regular 155

self-attention heads with our scene-aware ones, we 156

maintain the same number of heads and layers as 157

in the baseline. 158

2.1 Scene-Aware Self-Attention (SASA) 159

Figure 2 presents the model’s architecture. For 160

a source sentence of length L, we obtain the 161

1In case a token belongs to more than one scene, as is the
case with the word "dog" in Fig. 1, we allow it to attend to
tokens of all the scenes it belongs to.

2Initial trials with more than one head did not show further
benefit for UCCA based models.
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Figure 2: Scene-aware self-attention head for the input
sentence "I saw the dog that barked", consisting of two
scenes: "I saw the dog" and "dog barked".

keys, queries, and values matrices denoted by162

Ki, Qi, V i ∈ RL×d, respectively. We then mul-163

tiply Ki with Qi, scale the result and pass it164

through a softmax layer. The difference between165

our method and a vanilla Transformer (Vaswani166

et al., 2017) is that the vanilla model multiplies the167

output of the softmax by V i. We, however, first168

mask it with our pre-generated scene-aware mask169

M i
S ∈ RL×L, using a pointwise multiplication, and170

only then do we multiply the result with V i.171

2.2 Scene-Aware Cross-Attention (SACrA)172

Figure 3: Scene-aware cross-attention head for the
source sentence "I saw the dog that barked."

Next, we design a model in which we integrate173

information about the scene structure through the174

cross-attention layer in the decoder (see Fig. 3). 175

Thus, instead of affecting the overall encoding of 176

the source, we bring forward the splits to aid in 177

selecting the next token. 178

Formally, for a source sentence of length Lsrc 179

and target sentence of length Ltrg, we compute 180

for each head the queries and values matrices, de- 181

noted by Qi ∈ RLtrg×dmodel and V i ∈ RLsrc×d, 182

accordingly. Regarding key values, denoted by 183

K̃i ∈ RLsrc×Ltrg : we multiply the encoder’s out- 184

put Xenc ∈ RLsrc×dmodel with our pre-generated 185

mask MS ∈ {0, 1}Lsrc×Lsrc , and then scale it by 186

multiplying the result with 1
Lsrc

. Finally, we pass 187

V i, Qi and K̃i through a regular attention layer, as 188

with the standard Transformer architecture. 189

Scene-Aware Key Matrix. The rationale behind 190

the way we compute our scene-aware keys matrix 191

lies in the role of the keys matrix in an attention 192

layer. In the cross-attention layer, the queries come 193

from the decoder. Source-side contextual informa- 194

tion is encoded in the keys, which come from the 195

encoder. Therefore, when we assign the same scene 196

masks to all the words that are included in the same 197

set of scenes, the key values for these words will 198

be the same, and they will thus be treated similarly 199

by the query. As a result, the query will give the 200

same weight to source tokens that share the same 201

set of scenes. Therefore, a complete scene (or a 202

few scenes), rather than specific tokens (as with the 203

vanilla Transformer), will influence what the next 204

generated token will be, which will in turn yield a 205

more scene-aware decoding process. 206

3 Experimental Setting 207

Data Preparation. First, we unescaped HTML 208

characters and tokenized all our parallel corpora 209

(Koehn et al., 2007). Next, we removed empty 210

sentences, sentences longer than 100 tokens (ei- 211

ther on the source or the target side), sentences 212

with a source-target ratio larger than 1.5, sentences 213

that do not match the corpus’s language as deter- 214

mined by langid Lui and Baldwin, 2012, and sen- 215

tences that fast align (Dyer et al., 2013) considers 216

unlikely to align (minimum alignment score of - 217

180). Then, for languages with capitalization, we 218

trained true-casing models on the train set (Koehn 219

et al., 2007) and applied them to all inputs to the 220

network. Finally, we trained a BPE model (Sen- 221

nrich et al., 2016), jointly for language pairs with 222

a similar writing system (e.g., Latin, Cyrillic, etc.) 223
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and separately otherwise, and then applied them224

accordingly.225

We trained our model on the full WMT16 dataset226

for the English−→German (En-De) task, using the227

WMT newstest2013 as development set. We also228

trained our models on a train set consisting of Yan-229

dex Corpus, News Commentary v15, and Wikititles230

v2 for the English−→Russian (En-Ru) task. In ad-231

dition, we trained our models on the full WMT19232

dataset (excluding ParaCrawl, in order to avoid233

noisiness in the data) for the English−→Finnish (En-234

Fi). Finally, we trained on the full WMT18 dataset235

for the English−→Turkish (En-Tr) task. For the test236

sets, we used all the newstests available for every237

language pair since 2012, excluding the one desig-238

nated for development.239

Models. Hyperparameters shared by all models240

are described in §3. We tune the number of heads241

that we apply the mask to (#heads) and the layers242

of the encoder we apply SASA to (layer), using the243

En-De development set. We start with tuning the244

layers for SASA, which we find is layer = 4, and245

then we tune the #heads (while fixing layer =246

4), and get #head = 1. We also use the En-De247

development set to tune the #heads and the layers248

of the SACrA model in a similar fashion, namely249

first the layers and then the #heads (with the tuned250

layers fixed). We find the best hyperparameters are251

#heads = 1 and layers = 2&3. For both models,252

we apply the tuned hyperparameters to all other253

language pairs. Interestingly, while it is common254

practice to change all the layers of the model, we255

find it suboptimal. Moreover, the fact that semantic256

information is more beneficial in higher layers, in257

contrast to the syntactic information that is most258

helpful when introduced in lower layers (see §3)259

may suggest that semantics is relevant for more260

complex generalization, which is reminiscent of261

findings by previous work (Tenney et al., 2019a;262

Belinkov, 2018; Tenney et al., 2019b; Peters et al.,263

2018; Blevins et al., 2018; Slobodkin et al., 2021).264

UCCA parses are extracted using a pretrained265

BERT-based TUPA model, that was trained on266

sentences in English, German and French (Her-267

shcovich et al., 2017).268

Binary Mask. For the SASA model, we experi-269

ment with two types of masks: a binary mask, as270

described in §2, and scaled masks, i.e., 271

MC [i, j] =

{
1, if i,j in the same scene
C, otherwise

(1) 272

where C ∈ (0, 1). By doing so, we allow some 273

out-of-scene information to pass through, while 274

still emphasizing the in-scene information (by keep- 275

ing the value of M for same-scene tokens at 1). In 276

order to tune C, we performed a small grid search 277

over C ∈ {0.05, 0.1, 0.15, 0.2, 0.3, 0.5}. 278

Additionally, similarly to Bugliarello and 279

Okazaki (2020), we test a normally-distributed 280

mask, according to the following equation: 281

Mi,j = fnorm(x = C · dist(i, j)) (2) 282

where fnorm is the density function of the nor- 283

mal distribution: 284

fnorm(x) =
1√
2πσ2

e−
x2

2σ2 (3) 285

We define a scene-graph where nodes are scenes 286

and edges are drawn between scenes with over- 287

lapping words. dist(i, j) is the shortest distance 288

between tokens i and j. σ = 1√
2π

, to ensure 289

the value of M is 1 for words that share a scene 290

(dist(i, j)=0), and C is a hyperparameter, which 291

is determined through a grid search over C ∈ 292

{0.1, 0.2, 0.5,
√
0.5}. For each of those two scaled 293

versions of the mask, we choose the mask which 294

has the best performance and compare it to the bi- 295

nary mask (see 1). We find that neither outperforms 296

the binary mask. Therefore, we report the rest of 297

our experiments with the binary mask. 298

Baselines. We compared our model to a few 299

other models: 300

• Transformer. Standard Transformer-based 301

NMT model, using the standard hyperparame- 302

ters, as described in §3. 303

• PASCAL. Following Bugliarello and Okazaki 304

(2020), we generate a syntactic mask for the 305

self-attention layer in the encoder. We extract 306

a UD-graph (Nivre et al., 2016) with udpipe 307

(Straka and Straková, 2017). The value of the 308

entries of the masks equal (see equation 3): 309

Mpt,j = fnorm(x = (j − pt)) (4) 310
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models 2012 2013 2014 2015 2016 2017 2018 2019 2020 2020B

Transformer 17.60 20.49 20.55 22.17 25.46 19.70 28.01 26.84 17.71 16.94

+ binary mask
(#h=1, l= 4)

17.64 20.37 20.84 22.48 25.32 19.76 28.36 26.80 17.74 16.98

+ scaled mask
(#h=2, l=4, C=0.1)

17.41 20.21 20.53 22.43 24.95 19.81 28.25 27.21 18.03 17.01

+ normally distributed mask
(#h=2, l=4, C=

√
0.5)

17.39 20.52 20.57 22.24 25.44 19.63 28.35 26.6 17.14 16.77

Table 1: BLEU scores for the top versions of our binary mask, scaled mask, and normally-distributed mask methods
across all the WMT En-De newstests. Each column contains the BLEU scores over the WMT newstest correspond-
ing to the year the column is labeled with (e.g., the scores under column 2015 are for En-De newstest2015). For
newstest2020, there was more than one version on WMT, each translated by a different person. Both versions were
included, with the second version denoted with a "B". The best score for each test set is boldfaced, unless none is
better than the baseline Transformer.

with σ = 1 and pt being the middle position311

of the t-th token’s parent in the UD graph of312

the sentence.313

We use the same general hyperparameters as314

in the Transformer baseline. In addition, fol-315

lowing the tuning of Bugliarello and Okazaki316

(2020), we apply the PASCAL mask to five317

heads of the first attention layer of the encoder,318

but unlike the original paper, we apply it after319

the layer’s softmax, as it yields better results320

and also resembles our model’s course of ac-321

tion.322

• UDISCAL. In an attempt to improve the PAS-323

CAL model, we generate a mask that instead324

of only being sensitive to the dependency par-325

ent, is sensitive to all the UD relations in the326

sentences. We denote it UD-Distance-Scaled327

mask (UDISCAL). Namely, in order to com-328

pute the mask, we use a similar equation to329

that of PASCAL, with a minor alteration:330

Mi,j = fnorm(x = dist(i, j)) (5)331

Where σ = 1, and dist(i, j) is defined to332

be the distance between the token i and the333

token j in the UD graph of the sentence while334

treating the graph as undirectional. As with335

the PASCAL layer, we apply the UD-scaled336

mask after the softmax layer. But, unlike the337

PASCAL head, we tuned the architecture’s338

hyperparameters to be just one head of the339

first layer, after performing a small grid search,340

namely testing with all layers l ∈ [1, 4], and341

then with #head ∈ [1, 5].342

Training Details. All our models are based 343

on the standard Transformer-based NMT model 344

(Vaswani et al., 2017), with 4000 warmup steps. 345

In addition, we use an internal token representa- 346

tion of size 256, per-token cross-entropy loss func- 347

tion, label smoothing with εls = 0.1 (Szegedy 348

et al., 2016), Adam optimizer, Adam coefficients 349

β1 = 0.9 and β2 = 0.98, and Adam ε = e−1. Fur- 350

thermore, we incorporate 4 layers in the encoder 351

and 4 in the decoder, and we employ a beam-search 352

during inference, with beam size 4 and normaliza- 353

tion coefficient α = 0.6. In addition, we use a 354

batch size of 128 sentences for the training. We 355

use chrF++.py with 1 word and beta of 3 to ob- 356

tain chrF+ (Popovic, 2017) score as in WMT19 357

(Ma et al., 2019) and detokenized BLEU (Papineni 358

et al., 2002) as implemented in Moses. We use the 359

Nematus toolkit (Sennrich et al., 2017), and we 360

train all our models on 4 NVIDIA GPUs for 150K 361

steps. The average training time for the vanilla 362

Transformer is 21.8 hours, and the average training 363

time for the SASA model is 26.5 hours. 364

4 Experiments 365

We hypothesize that NMT models may benefit from 366

the introduction of semantic structure, and present 367

a set of experiments that support this hypothesis 368

using the above-presented methods. 369

4.1 Scene-Aware Self-Attention 370

We find that on average, SASA outperforms the 371

Transformer for all four language pairs (see 3), at 372

times having gains larger than 1 BLEU point. More- 373

over, we assess the consistency of SASA’s gains, 374

using the sign-test, and get a p-value smaller than 375
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Source sentences and Translations Literal Translations into English

SRC I promised a show ?

BASE � obewal pokazat~? I promised to show?

SASA � obewal xou? I promised a show?

SRC students said they looked forward to his class .

BASE Studenty skazali, qto oni

smotr�t na svo� klass.

Students said, that they
look at one’s classroom.

SASA Studenty skazali, qto oni

s neterpeniem �dali svoego klassa.

Students said, that they
impatiently waited one’s classroom.

SRC I remember those kids I used to play
with in the yard who never got out .

BASE � pomn� teh dete�, kotorye � igral

s dvorom, kotory� nikogda ne vyhodil.

I remember those kids, that I played with yard, that
never got out ("that" and "got out" refer to yard).

SASA � pomn� teh dete�, s kotorymi � igral

na dvore, kotorye nikogda ne vyxli.

I remember those kids, with which I played in yard,
that never got out ("that" and "got out" refer to kids).

Table 2: Examples of correct translations generated by SASA, compared to the baseline Transformer.

0.01, thus exhibiting a statistically significant im-376

provement (see §A.4). We see a similar trend when377

evaluating the performance using the chrF metric378

(see §A.2), which further highlights our model’s379

consistent gains.380

We also evaluate our model’s performance on381

sentences with long dependencies (see A.3), which382

were found to pose a challenge for Transformers383

(Choshen and Abend, 2019). We assume that such384

cases could benefit greatly from the semantic in-385

troduction. In contrast to our hypothesis, we find386

the gain to be only slightly larger than in the gen-387

eral case, which leads us to conclude the improve-388

ments we see do not specifically originate from389

the syntactic challenge. Nevertheless, we still ob-390

serve a consistent improvement, with gains of up391

to 1.41 BLEU points, which further underscores392

our model’s superiority over the baseline model.393

Qualitative Analysis. Table 2 presents a few ex-394

amples in which the baseline Transformer errs,395

whereas our model translates correctly. In the396

first example, the Transformer translates the word397

“show” as a verb, i.e. to show, rather than as a398

noun. In the second example, the baseline model399

makes two errors: it misinterprets the word "look400

forward to" as "look at", and it also translates it401

as a present-tense verb rather than past-tense. The402

third example is particularly interesting, as it high-403

lights our model’s strength. In this example, the404

Transformer makes two mistakes: first, it translates405

the part "play with (someone) in the yard" as "play 406

with the yard". Next, it attributes the descriptive 407

clause "which never got out" to the yard, rather 408

than the children. It seems then that introducing in- 409

formation about the scene structure into the model 410

facilitates the translation, since it both groups the 411

word "kids" with the phrase "I used to play with 412

in the yard", and it also separates "never got out" 413

from the word "yard". Instead, it clusters the latter 414

with "kids", thus highlighting the relations between 415

words in the sentence. In general, all these ex- 416

amples are cases where the network succeeds in 417

disambiguating a word in its context. 418

4.2 Comparison to Syntactic Masks 419

Next, we wish to compare our model to other base- 420

lines. Given that this is the first work to incorporate 421

semantic information into the Transformer-based 422

NMT model, we compare our work to syntactically- 423

infused models (as described in §3): one is the 424

PASCAL model (Bugliarello and Okazaki, 2020), 425

and the other is our adaptation of PASCAL, the 426

UD-Distance-Scaled (UDISCAL) model, which re- 427

sembles better our SASA mask. We find (Table 3) 428

that on average, SASA outperforms both PASCAL 429

and UDISCAL. We also compare SASA with each 430

of the syntactic models, finding that it is signifi- 431

cantly (sign-test p < 0.01; see §A.4) better. This 432

suggests that semantics might be more beneficial 433

for Transformers than syntax. 434
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En-De

models 2012 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 17.6 20.55 22.17 25.46 19.7 28.01 26.84 17.71 16.94 21.66

PASCAL 17.34 20.59 22.62 25.1 19.92 28.09 26.61 17.5 16.81 21.62

UDISCAL 17.42 20.86 22.53 25.23 19.95 27.87 26.8 17.06 16.39 21.57

SASA 17.64↑ 20.84 22.48 25.32 19.76 28.36↑ 26.8 17.74↑ 16.98↑ 21.77↑

SASA + UDISCAL 17.51 20.42 22.1 24.9 19.72 28.35 27.14∗ 17.59 16.68 21.60

SACrA 17.11 20.9↑ 22.59 24.64 19.79 27.88 26.28 16.8 16.25 21.36

SACrA + UDISCAL 17.07 21.09∗ 22.26 24.85 19.56 28.1∗ 26.49 16.66 15.93 21.33

En-Ru

models 2012 2013 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 24.32 18.11 25.35 21.1 19.77 22.34 19 20.14 15.64 22.33 20.81

PASCAL 23.78 18.37 24.87 20.97 19.81 21.83 18.81 19.93 15.42 21.48 20.53

UDISCAL 23.88 18.31 25.23 20.82 20.31 22.15 19.27 20.32 15.7 22.19 20.82

SASA 24.17 18.43↑ 25.53↑ 21.59↑ 20.11 22.69↑ 19.53↑ 20.2 15.76↑ 23.36↑ 21.14↑

SASA + UDISCAL 24.36∗ 18.29 25.43 21.01 19.79 22.49 19.25 20.4∗ 15.97∗ 22.42 20.94

SACrA 24.12 18.24 25.43↑ 21 20.07 22.49↑ 19.3↑ 20.18 15.79↑ 22.15 20.88↑

SACrA + UDISCAL 23.54 17.99 24.91 20.62 19.67 21.55 18.63 19.89 15.64 20.79 20.32

En-Fi

models 2015 2016 2016B 2017 2017B 2018 2019 average

Transformer 11.22 12.76 10.2 13.35 11.37 9.32 12.21 11.49

PASCAL 11.2 12.67 10.13 13.54 11.24 9.62 12.23 11.52

UDISCAL 10.87 12.78 10.23 13.51 11.43 9.2 11.99 11.43

SASA 11.37↑ 12.88↑ 10.52↑ 13.74↑ 11.5↑ 9.56 12.12 11.67↑

SASA + UDISCAL 11.56∗ 12.8 10.28 13.91∗ 11.52∗ 9.75∗ 12.64∗ 11.78∗

SACrA 11.48↑ 12.86↑ 10.41↑ 13.66↑ 11.49↑ 9.62 12.51↑ 11.72↑

SACrA + UDISCAL 11.06 12.6 10.13 13.43 11.26 9.23 12.05 11.39

En-Tr

models 2016 2017 2018 average

Transformer 8.43 8.55 8.1 8.36

PASCAL 8.5 8.76 7.98 8.41

UDISCAL 8.33 8.66 8.03 8.34

SASA 8.59↑ 8.86↑ 8.16↑ 8.54↑

SASA + UDISCAL 8.64∗ 8.87∗ 8.2∗ 8.57∗

SACrA 8.64↑ 8.81↑ 7.96 8.47↑

SACrA + UDISCAL 8.23 8.54 7.95 8.24

Table 3: BLEU scores for the baseline Transformer model, previous work that used syntactically infused models
– PASCAL and UDISCAL, our SASA and SACrA models, and models incorporating UDISCAL with SASA or
SACrA, across all WMT’s newstests. For every language pair, each column contains the BLEU scores over the
WMT newstest corresponding to the year the column is labeled with (e.g., for En-Ru, the scores under column
2015 are for En-Ru newstest2015). For some newstests, there was more than one version on WMT, each translated
by a different person. For those test sets, we included both versions, denoting the second one with a "B". In
addition, for every language pair, the right-most column represents the average BLEU scores over all the pair’s
reported newstests. For every test set (and for the average score), the best score is boldfaced. For each of the
semantic models (i.e., SASA and SACrA), improvements over all the baselines (syntactic and Transformer) are
marked with an arrow facing upwards. For models with both syntactic and semantic masks, improvements over
each mask individually are marked with an asterisk.
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4.3 Combining Syntax and Semantics435

Naturally, our next question is whether combin-436

ing both semantic and syntactic heads will further437

improve the model’s performance. Therefore, we438

test the combination of SASA with either PASCAL439

or UDISCAL, retaining the hyperparameters used440

for the separate models. We find that combining441

with UDISCAL outperforms the former, and so442

we continue with it. Interestingly, En-De and En-443

Ru hardly benefit from the combination compared444

just to the SASA model. We hypothesize that this445

might be due to the fact that the syntax of each446

language pair is already quite similar, and there-447

fore the model mainly relies on it to separate the448

sentence that UCCA gives it as well. On the other449

hand, En-Fi and En-Tr do benefit from the combi-450

nation, both on average and in most of the test sets.451

Evaluating the performance using the chrF metric452

(see A.2) yields a similar behavior, which further453

confirms its validity. It leads us to hypothesize454

that language pairs that are more typologically dis-455

tant from one another can benefit more from both456

semantics and syntax; we defer a more complete457

discussion of this point to future work. In order458

to confirm that the combined version persistently459

outperforms each of the separate versions for ty-460

pologically distant languages, we compare each of461

the pairs using the sign-test (only on the test sets of462

En-Fi and En-Tr). We get a p-value of 0.02 for the463

comparison with SASA and 0.0008 for the compar-464

ison with UDISCAL. This suggests that for these465

language pairs, there is indeed a significant benefit,466

albeit small, from the infusion of both semantics467

and syntax.468

4.4 Scene-Aware Cross-Attention469

Following the analysis on the scene-aware self -470

attention, we wish to examine whether Transform-471

ers could also benefit from injecting source-side472

semantics into the decoder. For that, we develop473

the Scene-Aware Cross-Attention (SACrA) model,474

as described in §2.2. Table 3 presents the results of475

SACrA, compared to the Transformer baseline and476

SASA. We find that in general SASA outperforms477

SACrA, suggesting that semantics is more benefi-478

cial during encoding. With that said, for three out479

of the four language pairs, SACrA does yield gains480

over the Transformer, albeit small, and for one481

language pair (En-Fi) it even outperforms SASA482

on average. Moreover, comparing SACrA to the483

Transformer using the sign-test (see §A.4) shows484

significant improvement (p = 0.047). 485

Surprisingly, unlike its self-attention counterpart, 486

combining the SACrA model with UDISCAL does 487

not seem to be beneficial at all, and in most cases 488

is even outperformed by the baseline Transformer. 489

We hypothesize that this occurs because appoint- 490

ing too many heads for our linguistic injection is 491

inefficient when those heads cannot interact with 492

each other directly, as the information from the UD- 493

ISCAL head reaches the SACrA head only after 494

the encoding is done. One possible direction for 495

future work would be to find ways to syntactically 496

enrich the decoder, and then to combine it with our 497

SACrA model. 498

5 Conclusion 499

In this work, we suggest two novel methods for 500

injecting semantic information into an NMT Trans- 501

former model – one through the encoder (i.e. 502

SASA) and one through the decoder (i.e. SACrA). 503

The strength of both methods is that they both 504

do not introduce more parameters to the model, 505

and only rely on UCCA-parses of the source sen- 506

tences, which are generated in advance using an 507

off-the-shelf parser, and thus do not increase the 508

complexity of the model. We compare our methods 509

to previously developed methods of syntax injec- 510

tion, and to our adaptation to these methods, and 511

find that semantic information tends to be signifi- 512

cantly more beneficial than syntactic information, 513

mostly when injected into the encoder (SASA), but 514

at times also during decoding (SACrA). Moreover, 515

we find that for distinct languages, adding both 516

syntax and semantics further improves the perfor- 517

mance of the translation models. Future work will 518

further investigate the benefits of semantic structure 519

in Transformers, alone and in unison with syntactic 520

structure. 521
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A Appendix752

A.1 Layer Hyperparameter-tuning for SASA753

In order to optimize the contribution of the SASA754

model, we tuned the hyperparameter of the best755

layers in the encoder to incorporate our model, us-756

ing the En-De newstest2013 as our development757

set. Table 4 presents the results.758

A.2 ChrF Results759

In order to reaffirm our results, we also evaluate760

the performance of all the models using the chrF761

metric (see 7). Indeed, all the different behaviors762

and trends we observed when evaluating using the763

Bleu metric (see §4) seem to be preserved when764

under the chrF metric. This further validates our765

results.766

A.3 Challenge Sets767

In addition to testing on the full newstests sets, we768

also experiment with sentences characterized by769

long dependencies, which were shown to present a770

challenge for Transformers (Choshen and Abend,771

2019). In order to acquire those challenge sets, we772

use the methodology described by Choshen and773

Abend (2019), which we apply on each of the new-774

stest sets. In addition, for the En-Tr task, which775

has a limited number of newstests, we generate776

additional challenge sets, extracted from corpora777

downloaded from the Opus Corpus engine (Tiede-778

mann, 2012): the Wikipedia parallel corpus (Wołk779

and Marasek, 2014), the Mozilla and EUbookshop780

parallel corpora (Tiedemann, 2012), and the bible781

parallel corpus (Christodoulopoulos and Steedman,782

2015). We observe (see 8) a similar trend to the783

general case, which reaffirms our results. In fact,784

there seem to be bigger gains over the Transformer,785

albeit not drastically, compared to the general case.786

A.4 Sign-Test787

In order to assess the consistency of the improve-788

ments of our models, we perform the Sign-Test on789

every two models (see 5). Evidently, SASA per-790

sistently outperforms the Transformer baseline and791

the syntactic models, as does the combined model792

of SASA and UDISCAL.793

A.5 SemSplit794

Following Sulem et al. (2020), we implement the795

SemSplit pipeline. First, we train a Transformer-796

based Neural Machine Translation model. Then,797

during inference time, we use the Direct Semantic798

Layers Bleu

1 20.3

2 20.33

3 20.1

4 20.37

1,2 20.2

2,3 20.17

3,4 20.3

Table 4: Validation Bleu as a function of layers incor-
porating SASA (for En-De).

`````````````̀BASELINE
BETTER PASCAL UDISCAL SASA SASA

+ UDISCAL SACrA SACrA
+ UDISCAL

Transformer >0.5 >0.5 <0.01 <0.01 0.047 >0.5
PASCAL 0.17 <0.01 <0.01 0.06 >0.5
UDISCAL <0.01 <0.01 0.06 >0.5
SASA 0.17 >0.5 >0.5
SASA + UDISCAL >0.5 >0.5
SACrA >0.5

Table 5: We perform a significance test over all
test sets across all languages for every cell, where
the null hypothesis is H0 : Bleu(modelrow) ≥
Bleu(modelcolumn)

Splitting algorithm (DSS; Sulem et al., 2018b) to 799

split the sentences, and then translate each sepa- 800

rated sentence separately. Finally, we concatenate 801

the translation, using a period (".") as a delimiter. 802

Table 6 presents the results, using the Bleu and 803

chrF metrics. We find that the architecture does not 804

have gains over the baseline Transformer. These 805

results can be accounted for by the fact that in their 806

work, Sulem et al. (2020) assessed the pipeline’s 807

performance using Human Evaluation and manual 808

analysis, rather than the Bleu and chrF metrics, 809

which punish for sentence separation in translation. 810

In addition, they tested their pipeline in a pseudo- 811

low resource scenario, and not in normal NMT 812

settings. 813

11



En-De

Metric Models 2012 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 17.6 20.55 22.17 25.46 19.7 28.01 26.84 17.71 16.94 21.66
Bleu

SemSplit 12.16 14.25 14.46 17.53 13.18 19.39 18.46 15.12 14.93 15.50

Transformer 47.37 51.85 52.52 55.06 50.87 57.81 55.48 45.19 44.18 51.15
chrF

SemSplit 43.42 47.19 47.05 49.86 45.87 51.50 50.24 47.71 46.93 47.75

En-Ru

Metric Models 2012 2013 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 24.32 18.11 25.35 21.1 19.77 22.34 19 20.14 15.64 22.33 20.81
Bleu

SemSplit 15.29 10.9 16.43 13.28 12.79 14.61 11.95 12.56 9.92 15.25 13.30

Transformer 51.39 45.69 53.31 50.16 48.10 50.54 48.01 45.78 42.51 53.07 48.86
chrF

SemSplit 46.10 40.50 47.66 44.58 43.16 45.34 43.38 40.97 38.93 47.84 43.85

En-Fi

Metric Models 2015 2016 2016B 2017 2017B 2018 2019 average

Transformer 11.22 12.76 10.2 13.35 11.37 9.32 12.21 11.49
Bleu

SemSplit 6.97 7.72 6.55 8.75 7.54 6.18 7.73 7.35

Transformer 43.79 45.48 43.43 46.39 43.96 42.06 43.10 44.03
chrF

SemSplit 40.18 41.42 39.94 42.18 40.20 38.76 40.12 40.40

En-Tr

Metric Models 2016 2017 2018 average

Transformer 8.43 8.55 8.1 8.36
Bleu

SemSplit 6.15 6.07 5.37 5.86

Transformer 40.24 40.37 39.75 40.12
chrF

SemSplit 39.04 39.00 38.85 38.97

Table 6: Bleu and ChrF scores of the baseline Transformer and the SemSplit model.
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En-De

models 2012 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 47.37 51.85 52.52 55.06 50.87 57.81 55.48 45.19 44.18 51.15

PASCAL 47.27 51.87 52.82 54.73 50.83 57.65 55.28 44.80 43.78 51.00

UDISCAL 47.26 51.95 52.45 54.99 50.78 57.40 55.30 44.48 43.43 50.89

SASA 47.48↑ 52.03↑ 52.74 54.99 51.23↑ 57.88↑ 55.69↑ 45.03 43.99 51.23↑

SASA + UDISCAL 47.42 51.94 52.50 55.00∗ 50.86 57.74 55.62 44.72 43.62 51.05

SACrA 47.02 51.66 52.48 54.49 50.55 57.16 55.05 44.08 43.15 50.63

SACrA + UDISCAL 46.71 51.63 52.18 54.37 50.22 57.20 54.96 43.42 42.40 50.34

En-Ru

models 2012 2013 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 51.39 45.69 53.31 50.16 48.10 50.54 48.01 45.78 42.51 53.07 48.86

PASCAL 51.03 45.66 53.04 49.87 48.05 50.32 47.98 45.86 42.35 52.42 48.66

UDISCAL 51.26 45.73 53.45 50.01 48.57 50.50 48.27 46.03 42.60 52.89 48.93

SASA 51.34 45.81↑ 53.49↑ 50.32↑ 48.60↑ 50.67↑ 48.45↑ 45.81 42.76↑ 53.62↑ 49.09↑

SASA + UDISCAL 51.43∗ 45.67 53.56∗ 50.03 48.29 50.67 48.25 46.08∗ 42.81∗ 53.14 48.99

SACrA 51.28 45.57 53.50↑ 49.81 48.42 50.82↑ 48.28↑ 45.92 42.68↑ 52.76 48.90

SACrA + UDISCAL 50.58 45.31 52.90 49.40 47.77 50.03 47.49 45.26 42.33 51.93 48.30

En-Fi

models 2015 2016 2016B 2017 2017B 2018 2019 average

Transformer 43.79 45.48 43.43 46.39 43.96 42.06 43.10 44.03

PASCAL 43.91 44.93 42.99 46.02 43.57 41.88 42.60 43.70

UDISCAL 43.42 45.37 43.42 46.51 44.07 42.03 43.03 43.98

SASA 43.76 45.33 43.38 46.40 43.89 42.10↑ 43.02 43.98

SASA + UDISCAL 43.77∗ 45.20 43.17 46.74∗ 44.15∗ 42.34∗ 43.08∗ 44.07∗

SACrA 43.88 45.20 43.15 46.62↑ 44.02↑ 42.25↑ 43.23↑ 44.05↑

SACrA + UDISCAL 43.80 45.53∗ 43.52∗ 46.71∗ 44.19∗ 42.16 43.28∗ 44.17∗

En-Tr

models 2016 2017 2018 average

Transformer 40.24 40.37 39.75 40.12

PASCAL 40.59 40.64 39.89 40.37

UDISCAL 40.27 40.49 40.01 40.26

SASA 40.27 40.46 39.98 40.24

SASA + UDISCAL 40.61∗ 40.92∗ 40.12∗ 40.55∗

SACrA 40.44 40.68↑ 39.85 40.33

SACrA + UDISCAL 40.23 40.48 39.96 40.22

Table 7: ChrF scores for the baseline Transformer model, the baseline Syntactically infused models PASCAL
and UDISCAL, our SASA and SACrA models, and models incorporating UDISCAL with each of SASA and
SACrA, across all WMT’s newstests. For every language pair, each column contains the Bleu scores over the
WMT newstest equivalent to the column’s year (e.g., for En-Ru, the scores under column 2015 are for En-Ru
newstest2015). For some newstests, there was more than one version on WMT, each translated by a different
person. For those test sets, we included both versions, denoting the second one with a "B". In addition, for every
language pair, the right-most column represents the average Bleu scores over all the pair’s reported newstests. For
every test set (and for the average score), the best score is boldfaced. For each of the semantic models (i.e., SASA
and SACrA), improvements over all the baselines (syntactic and Transformer) are marked by an arrow facing
upwards. For models with both syntactic and semantic masks, improvements over each mask individually are
marked by an asterisk.
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En-De

models 2012 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 15.08 16.94 17.36 21.11 14.84 23.43 22.42 16.79 15.75 18.19

PASCAL 14.96 17.45 17.85 20.22 14.66 23.76 21.28 16.9 16.22 18.14

UDISCAL 14.46 17.84 17.7 21.26 15.48 23.75 22.36 16.37 15.37 18.29

SASA 14.67 17.68 18.04↑ 20.89 15.09 24.8↑ 22.86↑ 16.85 15.76 18.52↑

SASA + UDISCAL 15.39∗ 17.07 17.38 20.42 15.35 23.53 22.87∗ 16.79 15.98∗ 18.31

SACrA 14.67 17.03 16.89 19.69 14.45 22.21 22.08 16.64 15.6 17.70

SACrA + UDISCAL 15.07∗ 17.23 16.52 20.82 14.6 22.38 22.61∗ 16.53 15.81∗ 17.95

En-Ru

models 2012 2013 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 23.4 14.67 24 16.82 17.52 19.74 17.78 17.12 13.39 19.47 18.39

PASCAL 22.6 15.67 23.56 17.08 17.79 19.46 17.9 16.13 13.7 19.44 18.33

UDISCAL 23.19 14.75 23.46 17.06 18.17 19.67 18.32 15.7 13.44 21.14 18.49

SASA 23.53↑ 15.38 23.9 17.77↑ 18.37↑ 20.12↑ 18.33↑ 16.55 13.37 20.88 18.82↑

SASA + UDISCAL 23.77∗ 14.67 23.65 16.96 18.21 19.8 18.06 17.15∗ 13.57∗ 20.02 18.59

SACrA 23.83↑ 15.15 22.86 18.09↑ 18.13 19.98↑ 18.7↑ 17.1 13.83↑ 19.41 18.71↑

SACrA + UDISCAL 22.98 14.58 23.16 16.76 17.37 18.89 17.4 16.07 13.18 18.53 17.89

En-Fi

models 2015 2016 2016B 2017 2017B 2018 2019 average

Transformer 9.57 11.05 8.8 11.45 9.99 7.78 10.22 9.84

PASCAL 9.75 10.77 8.72 11.43 10.11 8.06 10.24 9.87

UDISCAL 9.04 10.85 8.63 11.46 10.1 7.7 9.85 9.66

SASA 9.65 10.87 9.03↑ 11.62↑ 10.1 7.99 10.53↑ 9.97↑

SASA + UDISCAL 9.45 10.96∗ 8.91 11.88∗ 10.33∗ 8.42∗ 10.62∗ 10.08∗

SACrA 10.26↑ 10.95 8.89↑ 11.57↑ 10.13↑ 8.17↑ 10.76↑ 10.10↑

SACrA + UDISCAL 9.42 10.84 8.83 11.51 9.9 7.71 10.7 9.84

En-Tr

models 2016 2017 2018 wikipedia Eubookshop mozilla bible average

Transformer 7.99 8.15 8.06 7.55 4.87 3.34 0.36 5.76

PASCAL 7.81 7.83 7.69 7.52 5.04 3.41 0.54 5.69

UDISCAL 7.68 7.83 7.4 7.63 4.92 3.34 0.49 5.61

SASA 8.2↑ 8.31↑ 8.12↑ 7.63 5.21↑ 3.09 0.52 5.87↑

SASA + UDISCAL 7.81 7.92 8.1 7.58 5.28∗ 3.36∗ 0.35 5.77

SACrA 7.75 8.33↑ 7.51 7.68↑ 5.11↑ 3.59↑ 0.5 5.78↑

SACrA + UDISCAL 8.23∗ 8.54∗ 7.95∗ 7.51 5.22∗ 3.45 0.52∗ 5.92∗

Table 8: Bleu scores of challenge sentences for the baseline Transformer model, the baseline Syntactically infused
models PASCAL and UDISCAL, our SASA and SACrA models, and models incorporating UDISCAL with each
of SASA and SACrA, across all WMT’s newstests. For every language pair, each column contains the Bleu scores
over the WMT newstest equivalent to the column’s year (e.g., for En-Ru, the scores under column 2015 are for En-
Ru newstest2015). For some newstests, there was more than one version on WMT, each translated by a different
person. For those test sets, we included both versions, denoting the second one with a "B". In addition, for every
language pair, the right-most column represents the average Bleu scores over all the pair’s reported newstests. For
every test set (and for the average score), the best score is boldfaced. For each of the semantic models (i.e., SASA
and SACrA), improvements over all the baselines (syntactic and Transformer) are marked by an arrow facing
upwards. For models with both syntactic and semantic masks, improvements over each mask individually are
marked by an asterisk.
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