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Abstract

Graph neural network (GNN) link prediction is increasingly deployed in cita-
tion, collaboration, and online social networks to recommend academic litera-
ture, collaborators, and friends. While prior research has investigated the dyadic
fairness of GNN link prediction, the within-group fairness and “rich get richer”
dynamics of link prediction remain underexplored. However, these aspects have
significant consequences for degree and power imbalances in networks. In this
paper, we shed light on how degree bias in networks affects Graph Convolu-
tional Network (GCN) link prediction. In particular, we theoretically uncover
that GCNs with a symmetric normalized graph filter have a within-group pref-
erential attachment bias. We validate our theoretical analysis on real-world cita-
tion, collaboration, and online social networks. We further bridge GCN’s pref-
erential attachment bias with unfairness in link prediction and propose a new
within-group fairness metric. This metric quantifies disparities in link predic-
tion scores between social groups, towards combating the amplification of de-
gree and power disparities. Finally, we propose a simple training-time strategy
to alleviate within-group unfairness, and we show that it is effective on cita-
tion, online social, and credit networks. Our code and data can be found at:
https://github.com/ArjunSubramonian/link_bias_amplification.

1 Introduction

Link prediction (LP) using GNNs is increasingly leveraged to recommend friends in social net-
works (Fan et al., 2019; Sankar et al., 2021), as well as by scholarly tools to recommend academic
literature in citation networks (Xie et al., 2021). In recent years, graph learning researchers have
raised concerns with the unfairness of GNN LP (Li et al., 2021; Current et al., 2022; Li et al., 2022).
This unfairness is often attributed to graph structure, including the stratification of social groups;
for example, online networks are usually segregated by ethnicity (Hofstra et al., 2017). However,
most fair GNN LP research has focused on dyadic fairness, i.e., satisfying some notion of parity
between inter-group and intra-group link predictions. This formulation neglects: 1) LP dynamics
within social groups (Kasy & Abebe, 2021); and 2) the “rich get richer” effect, i.e., the prediction
of links at a higher rate between high-degree nodes (Barabási & Albert, 1999). In the context of
friend recommendation systems, the “rich get richer” effect can increase the number of links formed
with high-degree individuals, which boosts their influence on other individuals in the network, and
consequently their power (Bashardoust et al., 2022).

In this paper, we shed light on how degree bias in networks affects GCN LP (Kipf & Welling,
2017). We theoretically and empirically find that GCNs with a symmetric normalized filter have
a within-group preferential attachment (PA) bias in LP. Specifically, GCNs often output LP scores
that are proportional to the geometric mean of the (within-group) degrees of the incident nodes
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when the nodes belong to the same social group. (We elaborate on PA and our motivation in §J.) We
focus on GCNs with symmetric and random walk normalized graph filters because they are popular
architectures for graph deep learning, and they provide us with a reasonable setting to develop a
rigorous theory of PA bias in GNN LP while leveraging tools from spectral graph theory.

Our finding can have significant implications for the fairness of GCN LP. For example, consider links
within the CS social group in the toy academic collaboration network in Figure 1. Because men in
CS, on average, have a higher within-group degree (deg = 3) than women in CS (deg = 1.25), a
collaboration recommender system that uses a GCN can suggest men as collaborators at a higher
rate. This has the detrimental effect of further concentrating research collaborations among men,
thereby reducing the influence of women in CS and reinforcing their marginalization in the field
(Yamamoto & Frachtenberg, 2022).

CS1

CS2

CS3

CS4

CS5

PHYS1

Figure 1: An academic collaboration network where nodes are Computer Science (CS) and Physics
(PHYS) researchers, thick edges are current or past collaborations, and dashed edges are collabora-
tions recommended by a GCN. Circular nodes are women and square nodes are men.

Our contributions are as follows:

1. We theoretically uncover that GCNs with a symmetric normalized graph filter have a within-
group PA bias in LP (§4.1). We validate our theoretical analysis on diverse real-world network
datasets (e.g., citation, collaboration, online social networks) of varying size (§5.1). In doing so,
we lay the foundation to study this previously-unexplored PA bias in the GNN setting.

2. We theoretically find that GCNs with a random walk normalized filter may lack a PA bias (§4.3),
but empirically show that this is not true (§5.1).

3. We bridge GCN’s PA bias with unfairness in LP (§4.2, §5.2). We contribute a new within-group
fairness metric for LP, which quantifies disparities in LP scores between social groups, towards
combating the amplification of degree and power disparities. To our knowledge, we are the first
to study within-group fairness in the GNN setting.

4. We propose a training-time strategy to alleviate within-group unfairness (§4.4), and we assess its
effectiveness on citation, online social, and credit networks (§5.3). Our experiments reveal that
even for this new form of unfairness, simple regularization approaches can be successful.

2 Related work

Degree bias in GNNs Numerous papers have investigated how GNN performance is degraded for
low-degree nodes on node representation learning and classification tasks (Tang et al., 2020; Liu
et al., 2021; Kang et al., 2022; Xu et al., 2023; Shomer et al., 2023). Liu et al. (2023) present a
generalized notion of degree bias that considers different multi-hop structures around nodes and
propose a framework to address it; in contrast to prior work, which focuses on degree equal oppor-
tunity (i.e., similar accuracy for nodes with the same degree), Liu et al. (2023) also study degree
statistical parity (i.e., similar prediction rates of each class for nodes with the same degree). Beyond
node classification, Wang & Derr (2022) find GNN LP performance disparities across nodes with
different degrees: low-degree nodes often benefit from higher performance than high-degree nodes.
In this paper, we find that GCNs have a PA bias in LP, and present a new fairness metric which
quantifies disparities in GNN LP scores between social groups. We focus on group fairness (i.e.,
parity between social groups) rather than individual fairness (i.e., treating similar individuals sim-
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ilarly); this is because producing similar LP scores for similar-degree individuals does not prevent
high-degree individuals from unfairly amassing links, and thus power (cf. Figure 1). We further
compare our work with prior research on degree bias in §K.

Fair link prediction Prior work has investigated the unfairness of GNN LP (Li et al., 2021; Cur-
rent et al., 2022; Li et al., 2022), often attributing it to graph structure, (e.g., stratification of social
groups). However, most of this research has focused on dyadic fairness, i.e., satisfying some notion
of parity between inter-group and intra-group links. Like Wang & Derr (2022), we examine how
degree bias impacts GNN LP; however, rather than focus on performance disparities across nodes
with different degrees, we study GCN’s PA bias and LP score disparities across social groups.

Within-group fairness Much previous work has studied within-group fairness, i.e., fairness over
social subgroups (e.g., Black women, Indigenous men) defined over multiple axes (e.g., race, gen-
der) (Kearns et al., 2017; Foulds et al., 2020; Ghosh et al., 2021; Wang et al., 2022). The motivation
of this work is that classifiers can be fair with respect to two social axes separately, but be unfair to
subgroups defined over both these axes. While prior research has termed this phenomenon intersec-
tional unfairness, we opt for within-group unfairness to distinguish it from the critical framework
of Intersectionality (Ovalle et al., 2023). We study within-group fairness in the GNN setting. In
particular, our theoretical and empirical findings reveal that GCN LP can further marginalize so-
cial subgroups; this relates to the “complexity” tenet of Intersectionality, which expresses that the
marginalization faced by, e.g., Black women, is non-additive and distinct from the marginalization
faced by Black men and white women (Collins & Bilge, 2020).

Bias and power in networks A wealth of literature outside fair graph learning has examined how
network structure enables discrimination and disparities in capital (Fish et al., 2019; Stoica et al.,
2020; Zhang et al., 2021; Bashardoust et al., 2022). Boyd et al. (2014) describe how an individ-
ual’s position in a social network affects their access to jobs and public health information, as well
as how they are surveilled. Stoica et al. (2018) observe that high-degree accounts on Instagram
overwhelmingly belong to men and recommendation algorithms further boost these accounts; com-
plementarily, the authors find that even a simple, random walk-based recommendation algorithm can
amplify degree disparities between social groups in networks modeled by PA dynamics. Similarly,
we investigate how GCN LP can amplify degree disparities in networks and further concentrate
power among high-degree individuals.

3 Preliminaries

We have a simple, undirected n-node graph G = (V, E) with self-loops. The nodes have features
(xi)i∈V , with each xi ∈ Rd. We denote the adjacency matrix of G as A ∈ {0, 1}n×n and the degree

matrix as D = diag
((∑

j∈V Aij

)
i∈V

)
, with D ∈ Nn×n.

We consider two L-layer GCN encoders: (1) Φs : Rn×d → Rn×d′
(Kipf & Welling, 2017), which

uses a symmetric normalized graph filter, and (2) Φr : Rn×d → Rn×d′
, which uses a random walk

normalized filter. Φs and Φr compute node representations as, ∀i ∈ V:

Φs

(
(xj)j∈V

)
i
= s

(L)
i , Φr

(
(xj)j∈V

)
i
= r

(L)
i (1)

∀l ∈ [L], s
(l)
i = σ(l)

 ∑
j∈Γ(i)

W
(l)
s s

(l−1)
j√

DiiDjj

 , ∀l ∈ [L], r
(l)
i = σ(l)

 ∑
j∈Γ(i)

W
(l)
r r

(l−1)
j

Dii

 ,

(2)

where
(
s
(0)
i

)
i∈V

=
(
r
(0)
i

)
i∈V

= (xi)i∈V ; Γ(i) is the 1-hop neighborhood of i; W (l)
s and W

(l)
r

are the weight matrices corresponding to layer l of Φs and Φr, respectively; for l ∈ [L − 1], σ(l)

is a ReLU non-linearity; and σ(L) is the identity function. We now consider the first-order Taylor
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expansions of Φs and Φr around (0)i∈V :

s
(L)
i =

∑
j∈V

[
∂s

(L)
i

∂xj

]
xj + ξ

(
s
(L)
i

)
, r

(L)
i =

∑
j∈V

[
∂r

(L)
i

∂xj

]
xj + ξ

(
r
(L)
i

)
, (3)

where ξ is the error of the first-order approximations. This error is low when (xi)i∈V are close to 0,
which we validate empirically in §5.1. Furthermore, we consider an inner-product LP score function
fLP : Rd′ × Rd′ → R with the form:

fLP

(
h
(L)
i ,h

(L)
j

)
=
(
h
(L)
i

)⊺
h
(L)
j (4)

While it is common to use a vanilla GCN and inner-product score function for LP1, researchers have
proposed methods to improve the expressivity of node representations for LP by capturing subgraph
information (Zhang & Chen, 2018; Li et al., 2020; Chamberlain et al., 2023). Our theoretical find-
ings remain relevant to methods that ultimately use a GCN to predict links (e.g., (Zhang & Chen,
2018; Li et al., 2020)), as we do not make assumptions about the features passed to the GCN (i.e.,
they could be distance encodings, SEAL node embeddings, etc.) Our results may also be generaliz-
able to GNN architectures that use a degree-normalized graph filter (e.g., Graph Attention Networks
(Veličković et al., 2018)). Studying the fairness of more expressive LP methods is an interesting
direction for future research. Furthermore, although we only consider an inner-product LP score
function in our theoretical analysis, we also run experiments with a Hadamard product and MLP
score function (cf. §G.2), and we find that our theoretical analysis is still relevant to and reasonably
supports the experimental results.

4 Theoretical Analysis

We leverage spectral graph theory to study how degree bias affects GCN LP. Theoretically, we find
that GCNs with a symmetric normalized graph filter have a within-group PA bias (§4.1), but GCNs
with a random walk normalized filter may lack such a bias (§4.3). We further bridge GCN’s PA bias
with unfairness in GCN LP, proposing a new LP within-group fairness metric (§4.2) and a simple
training-time strategy to alleviate unfairness (§4.4). We empirically validate our theoretical results
and fairness strategy in §5. We provide proofs for all theoretical results in §A.

Our ultimate goal is to bound the expected LP scores E
[
fLP

(
s
(L)
i , s

(L)
j

)]
and

E
[
fLP

(
r
(L)
i , r

(L)
j

)]
for nodes i, j in the same social group in terms of the degrees of i, j.

We begin with Lemma 4.1, which expresses GCN representations (in expectation) as a linear
combination of the initial node features. In doing so, we decouple the computation of GCN
representations from the non-linearities σ(l).

Lemma 4.1. Similarly to Xu et al. (2018), assume that each path from node i → j in the com-
putation graph of Φs is independently activated with probability ρs(i), and similarly, ρr(i) for Φr

(cf. §L). Furthermore, suppose that E
[
ξ
(
s
(L)
i

)]
= E

[
ξ
(
r
(L)
i

)]
= 0, where the expectations

are taken over the probability distributions of paths activating; our results in §5.1 show that this
assumption is reasonable. We define αj =

(∏1
l=L W

(l)
s

)
xj , and βj =

(∏1
l=L W

(l)
r

)
xj . Then,

∀i ∈ V:

E
[
s
(L)
i

]
=
∑
j∈V

ρs(i)
(
D− 1

2AD− 1
2

)L
ij
αj , E

[
r
(L)
i

]
=
∑
j∈V

ρr(i)
(
D−1A

)L
ij
βj . (5)

Lemma 4.1 demonstrates that under certain assumptions, the expected GCN representations can be
expressed as a linear combination of the node features that depends on a normalized version of the
adjacency matrix (e.g., D− 1

2AD− 1
2 , D−1A).

1e.g., https://github.com/pyg-team/pytorch_geometric/blob/master/examples/link_
pred.py
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We now introduce social groups in G into our analysis. Suppose that V can be partitioned into B
disjoint social groups {S(b)}b∈[B], such that

⋃
b∈[B] S

(b) = V and
⋂

b∈[B] S
(b) = ∅. (If a group

comprises C > 1 connected components, it can be treated as C separate groups.) Furthermore, we
define G(b) as the induced subgraph of G formed from S(b). Let Â be a within-group adjacency
matrix that contains links between nodes in the same group, i.e., Â contains the link (i, j) if and
only if for some group S(b), i, j ∈ S(b). Without loss of generality, we reorder the rows and columns
of Â and A such that Â is a block matrix. Let D̂ be the corresponding degree matrix of Â.

4.1 Symmetric Normalized Filter

We first focus on analyzing Φs. We introduce the notation P = D− 1
2AD− 1

2 for the symmetric
normalized adjacency matrix. In Lemma 4.2, we present an inequality for the entries of PL in terms
of the spectral properties of A. We can then combine this inequality with Lemma 4.1 to bound

E
[
s
(L)
i

]
, and subsequently E

[
fLP

(
s
(L)
i , s

(L)
j

)]
.

Lemma 4.2. We define P̂ = D̂− 1
2 ÂD̂− 1

2 , which has the form

P̂
(1) 0

. . .
0 P̂ (B)

. Each

P̂ (b) admits the orthonormal spectral decomposition P̂ (b) =
∑|S(b)|

k=1 λ
(b)
k v

(b)
k

(
v
(b)
k

)⊺
. Let(

λ
(b)
k

)
1≤k≤|S(b)|

be the eigenvalues of P̂ (b) sorted in non-increasing order; the eigenvalues fall

in the range (−1, 1]. By the spectral properties of P̂ (b), λ(b)
1 = 1. Following Lovász (2001), we de-

note the spectral gap of P̂ (b) as λ(b) = max

{
λ
(b)
2 ,

∣∣∣∣λ(b)

|S(b)|

∣∣∣∣} < 1; λ(b)
2 corresponds to the smallest

non-zero eigenvalue of the symmetric normalized graph Laplacian. Let P = P̂ +Ξ(0). If G is highly
modular or approximately disconnected, then Ξ(0) ≊ 0, albeit with negative and non-negative en-
tries. Finally, we define the volume vol

(
G(b)

)
=
∑

k∈S(b) D̂kk. Then, for i, j ∈ S(b):∣∣∣∣∣∣PL
ij −

√
D̂iiD̂jj

vol
(
G(b)

)
∣∣∣∣∣∣ ≤ ζs =

(
λ(b)

)L
+

L∑
l=1

(
L

l

)∥∥∥Ξ(0)
∥∥∥l
op

∥∥∥P̂∥∥∥L−l

op
(6)

And for i ∈ S(b), j /∈ S(b),
∣∣PL

ij − 0
∣∣ ≤∑L

l=1

(
L
l

) ∥∥Ξ(0)
∥∥l
op

∥∥∥P̂∥∥∥L−l

op
≤ ζs.

The proof of Lemma 4.2 is similar to spectral proofs of random walk convergence. When L is small

(e.g., 2 for most GCNs (Kipf & Welling, 2017)) and
∥∥Ξ(0)

∥∥
op

≊ 0,
∑L

l=1

(
L
l

) ∥∥Ξ(0)
∥∥l
op

∥∥∥P̂∥∥∥L−l

op
≊

0. Furthermore, with significant stratification between social groups (Hofstra et al., 2017) and high
expansion within groups (Malliaros & Megalooikonomou, 2011; Leskovec et al., 2008), λ(b) << 1.

In this case, ζs ≊ 0 and PL
ij ≊

√
D̂iiD̂jj

vol(G(b))
for i, j ∈ S(b). Combining Lemmas 4.1 and 4.2, Φs can

oversharpen the expected representations to E
[
s
(L)
i

]
≊ ρs(i)

√
D̂ii ·

∑
j∈S(b)

√
D̂jj

vol(G(b))
αj (Keriven,

2022; Giovanni et al., 2022). We use this knowledge to bound E
[
fLP

(
s
(L)
i , s

(L)
j

)]
in terms of the

degrees of i, j.

Theorem 4.3. Following a relaxed assumption from Xu et al. (2018), for nodes i, j ∈ S(b), we
assume that ρs(i) = ρs(j) = ρs(b). Then:∣∣∣∣∣∣E

[
fLP

(
s
(L)
i , s

(L)
j

)]
− ρ2s(b)

∥∥∥∥∥∥
∑

k∈S(b)

√
D̂kk

vol(G(b))
αk

∥∥∥∥∥∥
2

2

√
D̂iiD̂jj

∣∣∣∣∣∣ (7)

≤ ζsρ
2
s(b)

(√
D̂ii +

√
D̂jj

)∥∥∥∥∥∥
∑

k∈S(b)

√
D̂kk

vol(G(b))
αk

∥∥∥∥∥∥
2

(∑
k∈V

∥αk∥2

)
+ ζ2sρ

2
s(b)

(∑
k∈V

∥αk∥2

)2

(8)
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In simpler terms, Theorem 4.3 states that with social stratification and expansion, the expected LP

score E
[
fLP

(
s
(L)
i , s

(L)
j

)]
∝
√
D̂iiD̂jj approximately when i, j belong to the same social group.

This is because, as explained before Theorem 4.3, ζs ≊ 0, so the RHS of the bound is ≊ 0. This
demonstrates that in LP, GCNs with a symmetric normalized graph filter have a within-group PA
bias. If Φs positively influences the formation of links over time, this PA bias can drive “rich get
richer” dynamics within social groups (Stoica et al., 2018). As shown in Figure 1 and §4.2, such
“rich get richer” dynamics can engender group unfairness when nodes’ degrees are statistically
associated with their group membership (§4.2). An association between node degrees and group
membership depends on group size and homophily; in particular, when a group has many nodes and
intra-links (i.e., is homophilous), there may be more nodes with a high within-group degree. Beyond
fairness, Theorem 4.3 reveals that GCNs do not align with theories that social rank influences link
formation, i.e., the likelihood of a link forming between two nodes is proportional to the difference
in their degrees (Gu et al., 2018).

4.2 Within-Group Fairness

We further investigate the fairness implications of the PA bias of Φs in LP. We first introduce an
additional set of social groups. Suppose that V can also be partitioned into D disjoint social groups
{T (d)}d∈[D]; then, we can consider intersections of {S(b)}b∈[B] and {T (d)}d∈[D]. For example,
revisiting Figure 1, S may correspond to academic discipline (i.e., CS or PHYS) and T may corre-
spond to gender (i.e., men or women). For simplicity, we let D = 2. We measure the unfairness
∆(b) : Rd′ × Rd′ → R of LP for group b as:

∆(b)
(
h
(L)
i ,h

(L)
j

)
:=
∣∣∣Ei,j∼U((S(b)∩T (1))×S(b)) fLP

(
h
(L)
i ,h

(L)
j

)
− Ei,j∼U((S(b)∩T (2))×S(b)) fLP

(
h
(L)
i ,h

(L)
j

)∣∣∣ ,
(9)

where U(·) is a discrete uniform distribution over the input set. ∆(b) quantifies disparities in GCN
LP scores between T (1) and T (2) within S(b). In other words, this metric quantifies disparities in
how GCN allocates LP scores between social subgroups (i.e., are links with nodes in one subgroup
predicted at a higher rate than links with nodes in the other subgroup?). Our metric is motivated
by how GNN link predictions (e.g., in recommender systems) influence real-world link formation,
which has consequences for degree and power disparities. Based on Theorem 4.3 and §B.1, when
ζs ≊ 0, we can estimate ∆(b)

(
s
(L)
i , s

(L)
j

)
as:

∆̂(b)
(
s
(L)
i , s

(L)
j

)
=

ρ2
s(b)

|S(b)|

∥∥∥∥∑k∈S(b)

√
D̂kk

vol(G(b))
αk

∥∥∥∥2
2

∣∣∣∣∣∣∣∣∣∣
∑

j∈S(b)

√
D̂jj

(
E

i∼U(S(b)∩T (1))

√
D̂ii − E

i∼U(S(b)∩T (2))

√
D̂ii

)
︸ ︷︷ ︸

degree disparity

∣∣∣∣∣∣∣∣∣∣
(10)

This suggests that a large disparity in the degree of nodes in S(b) ∩ T (1) vs. S(b) ∩ T (2) can greatly
increase the unfairness ∆(b) of Φs LP. For example, in Figure 1, the large degree disparity between
men and women in CS entails that a GCN collaboration recommender system applied to the network
will have a large ∆(b). We empirically validate these fairness implications on diverse real-world
network datasets in §5.2. While we consider pre-activation LP scores in Eqn. 9 (in line with prior
work, e.g., Li et al. (2021)), we consider post-sigmoid scores σ

(
fLP

(
h
(L)
i ,h

(L)
j

))
(where σ is the

sigmoid function) in §5.2 and §5.3, as this simulates how LP scores may be processed in practice.

4.3 Random Walk Normalized Filter

We now follow similar steps as with Φs to understand how degree bias affects LP scores for Φr.
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Theorem 4.4. Let ζr = maxu,v∈V

√
D̂vv

D̂uu

(
λ(b)

)L
+
∑L

l=1

(
L
l

) ∥∥Ξ(0)
∥∥l
op

∥∥∥P̂∥∥∥L−l

op
. Furthermore,

for nodes i, j ∈ S(b), assume that ρr(i) = ρr(j) = ρr(b). Combining Lemmas 4.1 and A.1:∣∣∣∣∣∣E
[
fLP

(
r
(L)
i , r

(L)
j

)]
− ρ2r(b)

∥∥∥∥∥∥
∑

k∈S(b)

D̂kk

vol(G(b))
βk

∥∥∥∥∥∥
2

2

∣∣∣∣∣∣ (11)

≤ ζrρ
2
r(b)

∥∥∥∥∥∥
∑

k∈S(b)

D̂kk

vol(G(b))
βk

∥∥∥∥∥∥
2

(∑
k∈V

∥βk∥2

)
+ ζ2rρ

2
r(b)

(∑
k∈V

∥βk∥2

)2

(12)

In other words, if ζr ≊ 0, E
[
fLP

(
r
(L)
i , r

(L)
j

)]
is approximately constant when i, j belong to

the same social group. Based on Theorem 4.4 and §B.2, we can estimate ∆(b)
(
s
(L)
i , s

(L)
j

)
as

∆̂(b)
(
s
(L)
i , s

(L)
j

)
= 0. Theoretically, this would suggest that a large disparity in the degree of

nodes in S(b) ∩ T (1) vs. S(b) ∩ T (2) does not increase the unfairness ∆(b) of Φr LP. However, we
find empirically that this is not the case (§5.1).

4.4 Fairness Regularizer

We propose a simple training-time solution to alleviate within-group LP unfairness regardless of
graph filter type and GNN architecture. In particular, we can add a fairness regularization term Lfair
to our original GNN training loss (Kamishima et al., 2011):

Lnew = Lorig + Lfair = Lorig +
λfair

B

∑
b∈[B]

∆(b),

where λfair is a tunable hyperparameter that for higher values, pushes the GNN to learn fairer pa-
rameters. With our fairness strategy, we empirically observe a significant decrease in Lfair without a
severe drop in LP performance for GCN (§5.3).

5 Experiments

In this section, we empirically validate our theoretical analysis (§5.1) and the within-group fairness
implications of GCN’s LP PA bias (§5.2) on diverse real-world network datasets (including citation,
credit, collaboration, and online social networks) of varying size. We further find that our simple
training-time strategy to alleviate unfairness is effective on citation, online social, and credit net-
works (§5.3). We present experimental results with 4-layer GCN encoders and a Hadamard product
with MLP LP score function in §G, with similar conclusions.

5.1 Validating Theoretical Analysis

We validate our theoretical analysis on 10 real-world network datasets (e.g., citation networks, col-
laboration networks, online social networks), which we describe in §C. Each dataset is natively
intended for node classification; however, we adapt the datasets for LP, treating the connected com-
ponents within the node classes as the social groups S(b). This design choice is reasonable, as in all
the datasets, the classes naturally correspond to socially-relevant groupings of the nodes, or prox-
ies thereof (e.g., in the LastFMAsia dataset, the classes are the home countries of users). Because
we adopt the class labels for each dataset as the social group labels, the social groups are largely
homophilic; this aligns with our assumptions when interpreting Theorems 4.3 and 4.4 that social
groups are stratified in networks.

We train GCN encoders Φs and Φr for LP over 10 random seeds (cf. §E for more details). In
Figure 2, we plot the theoretic2 LP score that we derive in §4 against the GCN LP score for pairs

2We refer to the score as theoretic because it resulted from our theoretical analysis in §4; we reiterate that
our results in §4 rely on the assumptions that we state and the theoretic score is not a ground-truth value.
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of test nodes belonging to the same social group (including positive and negative links). In par-

ticular, for Φs, the theoretic LP score is ρ2s(b)

√
D̂iiD̂jj

∥∥∥∥∑k∈S(b)

√
D̂kk

vol(G(b))
αk

∥∥∥∥2
2

and the GCN

LP score is fLP

(
s
(L)
i , s

(L)
j

)
(cf. Theorem 4.3). In contrast, for Φr, the theoretic LP score is

ρ2s(b)
∥∥∥∑k∈S(b)

D̂kk

vol(G(b))
βk

∥∥∥2
2

and the GCN LP score is fLP

(
r
(L)
i , r

(L)
j

)
(cf. Theorem 4.4). For all

the datasets, we estimate ρ2s(b) and ρ2r(b) separately for each social group S(b) as the slope of the
least-squares regression line (through the data from S(b)) that predicts the GCN score as a function
of the theoretic score. Hence, we do not plot any pair of test nodes that is the only pair in S(b), as it
is not possible to estimate ρ2s(b). The test AUC is further consistently high, indicating that the GCNs
are well-trained. The large range of each color in the plots indicates a diversity of LP scores within
each social group.

We visually observe that the theoretic LP scores are strong predictors of the Φs scores for each
dataset, validating our theoretical analysis. This strength is further confirmed by the generally low
NRMSE and high PCC (except for the EN dataset). However, we observe a few cases in which our
theoretical analysis does not line up with our experimental results:

1. Our theoretical analysis predicts that the LP score between two nodes i, j that belong to the same
social group S(b) will always be non-negative; however, Φs can predict negative scores for pairs
of nodes in the same social group. In this case, it appears that Φs relies more on the dissimilarity
of (transformed) node features than node degree.

2. For many network datasets (especially from the citation and online social domains), there exist
node pairs (near the origin) for which the theoretic LP score underestimates the Φs score. Upon
further analysis (cf. Appendix H), we find that the theoretic score is less predictive of the Φs

score for nodes i, j when the product of their degrees (i.e., their PA score) or similarity of their
features is relatively low.

3. It appears that the theoretic LP score tends to poorly estimate the Φs score when the Φs score
is relatively high; this suggests that Φs conservatively relies more on the (dis)similarity of node
features than node degree when the degree is large.

We do not observe that the theoretic LP scores are strong predictors of the Φr scores. This could
be because the error bound for the theoretic scores for Φr, unlike for Φs, has an extra dependence

maxu,v∈V

√
D̂vv

D̂uu
on the degrees of the incident nodes (cf. ζr in Theorem 4.4). We explore this

further in §I.

5.2 Within-Group Fairness

We now empirically validate the implications of GCN’s PA bias for within-group unfairness in LP.
We run experiments on 3 real-world network datasets: (1) the NBA social network (Dai & Wang,
2021), (2) the German credit network (Agarwal et al., 2021), and (3) a new DBLP-Fairness citation
network that we construct. We describe these datasets in §D, including {S(b)}b∈[B] and {T (d)}d∈[D].

We train 2-layer GCN encoders Φs for LP (cf. §E). In Figure 3, for all the datasets, we plot ∆̂(b)

vs. ∆(b) (cf. Eqns. 9, 10) for each b ∈ [B]. We qualitatively and quantitatively observe that ∆̂(b) is
moderately predictive of ∆(b) for each dataset. This confirms our theoretical intuition (§4.2) that a
large disparity in the degree of nodes in S(b)∩T (1) vs. S(b)∩T (2) can greatly increase the unfairness
∆(b) of Φs LP; such unfairness can amplify degree disparities, worsening power imbalances in the
network. Many points deviate from the line of equality; these deviations can be explained by the
reasons in §5.1 and the compounding of errors.

5.3 Fairness Regularizer

We evaluate our solution to alleviate LP unfairness (§4.2). In particular, we add our fairness regu-
larization term Lfair to the original training loss for the 2-layer Φs and Φr encoders. During each
training epoch, we compute ∆(b) post-sigmoid using only the LP scores over the sampled (positive
and negative) training edges. In Table 1, we summarize Lfair and test AUC for the NBA, German,
and DBLP-Fairness datasets with various settings of λfair. For both graph filter types, we gener-
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NRMSE (↓) PCC (↑) Φs Test AUC (↑)

CORA 0.038± 0.006 0.884± 0.008 0.927± 0.008
CITESEER 0.080± 0.005 0.806± 0.007 0.943± 0.007
DBLP 0.026± 0.002 0.820± 0.014 0.948± 0.001
PUBMED 0.061± 0.008 0.774± 0.018 0.927± 0.010
CS 0.036± 0.006 0.917± 0.019 0.932± 0.008
PHYSICS 0.042± 0.003 0.822± 0.021 0.946± 0.003
LASTFMASIA 0.064± 0.003 0.889± 0.004 0.962± 0.001
DE 0.025± 0.003 0.795± 0.043 0.913± 0.003
EN 0.041± 0.002 0.542± 0.013 0.876± 0.003
FR 0.030± 0.002 0.743± 0.026 0.910± 0.005

NRMSE (↓) PCC (↑) Φr Test AUC (↑)

CORA 0.101± 0.029 0.553± 0.024 0.942± 0.005
CITESEER 0.170± 0.016 0.363± 0.028 0.934± 0.003
DBLP 0.157± 0.012 0.235± 0.022 0.942± 0.002
PUBMED 0.155± 0.013 0.079± 0.029 0.896± 0.011
CS 0.101± 0.027 0.447± 0.070 0.939± 0.003
PHYSICS 0.107± 0.027 0.264± 0.038 0.951± 0.004
LASTFMASIA 0.123± 0.016 0.409± 0.017 0.949± 0.001
DE 0.024± 0.004 0.074± 0.016 0.862± 0.003
EN 0.065± 0.006 0.012± 0.005 0.850± 0.002
FR 0.028± 0.006 0.006± 0.003 0.865± 0.004

Figure 2: The plots display the theoretic vs. GCN LP scores for the Cora, CS, and LastFMAsia
datasets over 10 random seeds. (We include the plots for the remaining datasets in §F.) The top row
of plots corresponds to Φs, and the bottom row to Φr. In the plots, each circle corresponds to a
single pair of test nodes (between which we are predicting if a link exists). The center of each circle
represents the mean of the theoretic and GCN scores and its area captures the range of scores. The
color of each circle indicates the social group to which the node pair belongs. The plots include:
(1) the total number of test node pairs N ; (2) the number of social groups B; and (3) the line of
equality (represented by dashes) for easy comparison of the theoretic and GCN scores. For all the
datasets, the tables display: (1) the mean and standard deviation of the GCN test AUC on LP; and (2)
the mean and standard deviation of the range-normalized root-mean-square deviation (NRMSE) and
Pearson correlation coefficient (PCC) of the theoretic LP scores as predictors of the GCN scores.
The left table corresponds to Φs, and the right to Φr.

ally observe a significant decrease in Lfair (without a severe drop in test AUC) for λfair > 0.0 over
λfair = 0.0 (with the exception of Φr for German); however, the varying magnitudes by which Lfair
decreases across the datasets suggests that λfair may need to be tuned per dataset. As expected, we
observe a tradeoff between Lfair and the test AUC as λfair increases. Our experiments reveal that,
regardless of graph filter type, even simple regularization approaches can alleviate this new form
of unfairness. As this form of unfairness has not been previously explored, we do not have any
baselines.

Our fairness regularizer can be easily integrated into model training, does not require significant ad-
ditional computation, and directly optimizes for LP fairness. The time complexity of calculating the
regularization term is O

(∑B
b=1 |S(b) ∩ T (1)| · |S(b)|+ |S(b) ∩ T (2)| · |S(b)|

)
, as we have already

computed the LP scores for the cross-entropy loss term and simply need to sum them appropriately
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Figure 3: The plots display ∆̂(b) vs. ∆(b) for Φs for the NBA, German, and DBLP-Fairness datasets
over all b ∈ [B] and 10 random seeds. Each point corresponds to a social group S(b), for a different
random seed, and the color of the point corresponds to S(b). We compute ∆̂(b) and ∆(b) post-
sigmoid using only the LP scores over the sampled (positive and negative) test edges. The plots
display the NRMSE and PCC of ∆̂(b) as a predictor of ∆(b).

λfair Lfair (↓) Φs Test AUC (↑)

NBA 4.0 0.000± 0.001 0.753± 0.002
NBA 2.0 0.004± 0.003 0.752± 0.003
NBA 1.0 0.007± 0.004 0.752± 0.003
NBA 0.0 0.013± 0.005 0.752± 0.003

DBLPFAIRNESS 4.0 0.072± 0.018 0.741± 0.008
DBLPFAIRNESS 2.0 0.095± 0.025 0.756± 0.007
DBLPFAIRNESS 1.0 0.110± 0.033 0.770± 0.010
DBLPFAIRNESS 0.0 0.145± 0.020 0.778± 0.007

GERMAN 4.0 0.012± 0.006 0.876± 0.017
GERMAN 2.0 0.028± 0.017 0.889± 0.017
GERMAN 1.0 0.038± 0.016 0.897± 0.014
GERMAN 0.0 0.045± 0.013 0.912± 0.009

λfair Lfair (↓) Φr Test AUC (↑)

NBA 4.0 0.000± 0.000 0.585± 0.030
NBA 2.0 0.000± 0.000 0.584± 0.032
NBA 1.0 0.000± 0.000 0.581± 0.034
NBA 0.0 0.000± 0.000 0.583± 0.034

DBLPFAIRNESS 4.0 0.053± 0.015 0.715± 0.010
DBLPFAIRNESS 2.0 0.060± 0.016 0.731± 0.009
DBLPFAIRNESS 1.0 0.065± 0.022 0.746± 0.009
DBLPFAIRNESS 0.0 0.090± 0.028 0.758± 0.011

GERMAN 4.0 0.029± 0.011 0.830± 0.024
GERMAN 2.0 0.031± 0.019 0.843± 0.027
GERMAN 1.0 0.019± 0.012 0.864± 0.020
GERMAN 0.0 0.015± 0.005 0.883± 0.009

Table 1: Lfair and the test AUC for the NBA, German, and DBLP-Fairness datasets with various
settings of λfair. The left table corresponds to Φs, and the right to Φr.

with respect to the groups and subgroups. Furthermore, the time complexity of computing gradients
for the regularization term is on the same order as backpropagation for the cross-entropy loss term.

However, our fairness regularizer is not applicable in settings where model parameters cannot be
retrained or finetuned. Hence, we encourage future research to also explore post-processing fairness
strategies. For example, for Φs models, based on our theory (cf. Theorem 4.3), for each pair of
nodes i, j, we can decay the influence of GCN’s PA bias by scaling (pre-activation) LP scores by(√

D̂iiD̂jj

)−α

, where 0 < α < 1 is a hyperparameter that can be tuned to achieve a desirable

balance between Lfair and the test AUC.

6 Conclusion

We theoretically and empirically show that GCNs can have a PA bias in LP. We analyze how this
bias can engender within-group unfairness, and amplify degree and power imbalances in networks.
We further propose a simple training-time strategy to alleviate this unfairness. We encourage future
work to: (1) explore PA bias in other GNN architectures and directed and heterophilic networks; (2)
characterize the “rich get richer” evolution of networks affected by GCN’s PA bias; and (3) propose
pre-processing and post-processing strategies for within-group LP unfairness.
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clude the raw DBLP-Fairness dataset that we construct in our GitHub repository, and we detail all
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Supplementary Text

A Proofs

A.1 Proof of Lemma 4.1

Proof. Similarly to Xu et al. (2018); Tang et al. (2020), we compute the first-order partial derivatives
of Φs and Φr:
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i

∂xj
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s

Dp(l)p(l)

(14)

where p(l) is the l-th node on path p in the computation graph of Φs or Φr (p(L) is node i and p(0) is
node j); Ψγ

i→j is the set of all γ-length random walk paths from node i to j; and z
(l)

p(l) is pre-activated

s
(l)

p(l) or r(l)
p(l) .

With our assumption that the path from node i → j in the computation graph of Φs is independently
activated with probability ρs(i), and similarly, ρr(i) for Φr:
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Then, recalling Eqn. 3:
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A.2 Proof of Lemma 4.2

Proof. For j ∈ S(b), we can re-express P̂L
ij =

(
P̂ (b)

)L
ij
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e(j)3. By the spectral
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Then, by Cauchy-Schwarz:
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3For simplicity, we abuse notation here:
(
P̂ (b)

)L
ij

is not the entry at row i and column j, but rather the

entry at the row corresponding to node i and column corresponding to node j. Similarly, e(i) is the standard
basis vector with a 1 at the entry corresponding to node i.
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A.3 Proof of Theorem 4.3

Proof. For u, v ∈ V , let |δuv| ≤ ζs. Combining Lemmas 4.1 and 4.2, by our assumption that the
computation graph paths to i, j are activated independently:
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Then, by Cauchy-Schwarz and the triangle inequality:∣∣∣∣∣∣∣∣∣∣∣∣∣
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A.4 Lemma A.1

Lemma A.1. We introduce the notation P = D−1A. We further define P̂ = D̂−1Â. Fix i ∈ S(b).
Then, for j ∈ S(b):∣∣∣∣∣PL

ij −
D̂jj

vol
(
G(b)

) ∣∣∣∣∣ ≤
√

D̂jj

D̂ii

(
λ(b)

)L
+

L∑
l=1

(
L

l

)∥∥∥Ξ(0)
∥∥∥l
op

∥∥∥P̂∥∥∥L−l

op
(40)
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Proof. Similar to the proof of Lemma 4.2:
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A.5 Proof of Theorem 4.4

Proof. For u, v ∈ V , let |δuv| ≤ ζr. Combining Lemmas 4.1 and A.1, by our assumption that the
computation graph paths to i, j are activated independently:
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Then, by Cauchy-Schwarz and the triangle inequality:∣∣∣∣∣∣∣∣∣∣∣
E
[
fLP

(
r
(L)
i , r

(L)
j

)]
− ρ2r(b)

∥∥∥∥∥∥
∑

k∈S(b)

D̂kk

vol(G(b))
βk

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
∝ constant

∣∣∣∣∣∣∣∣∣∣∣
(50)

≤ ζrρ
2
r(b)

∥∥∥∥∥∥
∑

k∈S(b)

D̂kk

vol(G(b))
βk

∥∥∥∥∥∥
2

(∑
k∈V

∥βk∥2

)
+ ζ2rρ

2
r(b)

(∑
k∈V

∥βk∥2

)2

(51)

21



B Approximation of ∆(b)

B.1 Approximation of ∆(b) for Φs
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B.2 Approximation of ∆(b) for Φr
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C Datasets Used in §5.1

In our experiments in §5.1, we use 10 real-world network datasets from Bojchevski & Günnemann
(2018), Shchur et al. (2018), Rozemberczki & Sarkar (2020), and Rozemberczki et al. (2021), cov-
ering diverse domains (e.g., citation networks, collaboration networks, online social networks). We
provide a description and some statistics of each dataset in Table 2. All the datasets have node
features and are undirected. We were unable to find the exact class names and their label correspon-
dence from the dataset documentation.

• In all the citation network datasets, nodes represent documents, edges represent citation
links, and features are a bag-of-words representation of documents. We row-normalize the
features to sum to 1, following Fey & Lenssen (2019)4. The classification task is to predict
the topic of documents.

• In the collaboration network datasets, nodes represent authors, edges represent coauthor-
ships, and features are embeddings of paper keywords for authors’ papers. The classifica-
tion task is to predict the most active field of study for authors.

• In the LastFMAsia network dataset, nodes represent LastFM users from Asia, edges rep-
resent friendships between users, and features are embeddings of the artists liked by users.
The classification task is to predict the home country of users.

• In the Twitch network datasets, nodes represent gamers on Twitch, edges represent follow-
erships between them, and features are embeddings of the history of games played by the
Twitch users. The classification task is to predict whether or not a gamer streams adult
content.

We only run experiments on datasets that can fit without sampling nodes on a single NVIDIA
GeForce GTX Titan Xp Graphic Card with 12196MiB of space. Furthermore, we only consider
the three largest datasets (i.e., with the most nodes) from Rozemberczki et al. (2021). We use Py-
Torch Geometric to load and process all datasets (Fey & Lenssen, 2019).

Name Domain # Nodes # Edges # Features # Classes
Cora citation 19793 126842 8710 70
CiteSeer citation 4230 10674 602 6
DBLP citation 17716 105734 1639 4
PubMed citation 19717 88648 500 3

CS collaboration 18333 163788 6805 15
Physics collaboration 34493 495924 8415 5

LastFMAsia online social 7624 55612 128 18
Twitch-DE online social 9498 315774 128 2
Twitch-EN online social 7126 77774 128 2
Twitch-FR online social 6551 231883 128 2

Table 2: Summary of the datasets used in our experiments.

4https://github.com/pyg-team/pytorch_geometric/blob/master/examples/link_pred.py
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D Datasets Used in §5.2

We run experiments on 3 real-world network datasets: (1) the NBA social network (cf. §D.1), (2) the
German credit network (cf. §D.2), and (3) a new DBLP-Fairness citation network that we construct
(cf. §D.3). All the datasets have node features and are undirected. We do not pass sensitive attributes
as features to the models that we train. For all the datasets, we min-max normalize node features to
fall in [−1, 1], following Dai & Wang (2021) and Agarwal et al. (2021). For all datasets, D = 2.

D.1 NBA Dataset

The NBA network (Dai & Wang, 2021) has 403 nodes representing NBA basketball players who are
connected if they follow each other on Twitter. There are 21242 links. Each node has 95 features,
with an average degree of 52.71± 35.14. We consider two sensitive attributes per node:

• Age {S(b)}b∈[B]: how old the payer is, i.e., YOUNG (≤ 25 years) or OLD (> 25 years).

• Nationality {T (d)}d∈[D]: from where the player is, i.e., UNITED STATES or OVERSEAS.

D.2 German Dataset

The German network (Agarwal et al., 2021) comprises 1000 nodes representing clients in a German
bank who are connected if they have similar credit accounts. The German network is not natively a
graph dataset; synthetic edges were created by Agarwal et al.. There are 44484 links. Each node has
27 features (e.g., loan amount, account-related features), with an average degree of 44.48 ± 26.52.
We consider two sensitive attributes per node:

• Foreign worker {S(b)}b∈[B]: whether the client is a foreign worker, i.e., YES or NO.

• Gender {T (d)}d∈[D]: the gender with which the client identifies, i.e., MAN or WOMAN.

D.3 DBLP-Fairness Dataset

In this subsection, we detail how we construct the DBLP-Fairness dataset. We build DBLP-Fairness,
as there are only a few natively-graph network datasets with sensitive attributes that are appropriate
for graph learning (Subramonian et al., 2022).

We begin with the version of the DBLP-Citation-network V12 dataset from (Tang et al., 2008) that
was processed by Xu et al. (2021). This dataset has 3658127 nodes. Each node represents a paper
and each edge represents a citation link. We consider five node features:

• Team size: the number of authors on the paper.
• Mean collaborators: the average number of collaborators with whom the authors have pre-

viously published.
• Gini collaborators: the Gini coefficient of the number of collaborators with whom the

authors have previously published.
• Mean productivity: the average number of papers that the authors have previously pub-

lished.
• Gini productivity: the Gini coefficient of the number of papers that the authors have previ-

ously published.

We also consider two sensitive attributes per node:

• Field {S(b)}b∈[B]: the field to which the paper belongs, i.e., PROGRAMMING LANGUAGES
or DATABASES.

• Nationality {T (d)}d∈[D]: the country where most authors reside, i.e., UNITED STATES or
CHINA.

In DBLP-Fairness, we only include papers whose nationality is UNITED STATES or CHINA; we
do this, as American and Chinese citation networks are known to be stratified (Zhao et al., 2022).
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We also only include papers whose field is PROGRAMMING LANGUAGES or DATABASES; we infer
the field of a paper using its keywords (i.e., whether they contain “programming language” and
“database”), and discard papers which include both ‘programming language” and “database” in its
keywords. Furthermore, we filter out all papers from before 2010. Our filtering choices with regards
to field and year may appear arbitrary; however, we sought DBLB-Fairness to be of comparable size
to the citation networks in §C. Following filtering, we were left with 14537 nodes and 24844 edges.
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E Models

For all experiments, we use GCN encoders (Kipf & Welling, 2017) to get node representations. Each
encoder has two layers (128-dimensional hidden layer, 64-dimensional output layer) with a ReLU
nonlinearity in between. We only use two layers, as this is common practice in graph deep learning to
prevent oversmoothing (Oono & Suzuki, 2020); however, we run experiments with four layers in §G.
We do not use any regularization (e.g., Dropout, BatchNorm). The encoders are explicitly trained
for LP with the inner-product LP score function in Eqn. 4, binary cross-entropy loss, and the Adam
optimizer with full-batch gradient descent and a learning rate of 0.01 (Kingma & Ba, 2014). We use a
random link split of 0.85-0.05-0.1 for train-val-test, following the PyTorch Geometric LP example5.
We train the encoders for 100 epochs, with a new round of negative link sampling during every
epoch; we use a 1:1 ratio of positive to negative links. We ultimately select the model parameters
with the highest validation ROC-AUC. Although we do not do any hyperparameter tuning, the test
ROC-AUC values (displayed in the figures in §5) indicate that the encoders are well-trained. We
use PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019) to train all the
encoders on a single NVIDIA GeForce GTX Titan Xp Graphic Card with 12196MiB of space.

5https://github.com/pyg-team/pytorch_geometric/blob/master/examples/link_pred.py
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F Remaining Plots

Figure 4: Theoretic vs. GCN LP scores for citation network datasets.
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Figure 5: Theoretic vs. GCN LP scores for collaboration network datasets.
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Figure 6: Theoretic vs. GCN LP scores for online social network datasets.
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G Additional Experiments

G.1 Additional experiments for §5.1 (4-layer Encoders)

We run the experiments from §5.1 for Φs with the same settings, except we use 4-layer (instead
of 2-layer) encoders (128-dimensional hidden layers, 64-dimensional output layer). We run these
additional experiments because the error bound for the theoretic LP scores for Φs depends on the
number of encoder layers L. We find that the experimental results continue to support our theoretical
analysis, both qualitatively and quantitatively (cf. Table 3, Figure 7); the NRMSE and PCC values
are comparable to or better than those from the experiments with the 2-layer encoders (especially
for the EN dataset).

NRMSE (↓) PCC (↑) Φs Test AUC (↑)

CORA 0.044± 0.006 0.858± 0.026 0.853± 0.028
CITESEER 0.057± 0.006 0.890± 0.017 0.861± 0.026
DBLP 0.021± 0.002 0.885± 0.054 0.887± 0.019
PUBMED 0.056± 0.009 0.802± 0.024 0.900± 0.006
CS 0.039± 0.006 0.918± 0.008 0.949± 0.004
PHYSICS 0.030± 0.002 0.077± 0.013 0.950± 0.004
LASTFMASIA 0.040± 0.004 0.938± 0.005 0.949± 0.002
DE 0.014± 0.003 0.918± 0.025 0.882± 0.002
EN 0.034± 0.005 0.752± 0.036 0.846± 0.008
FR 0.019± 0.003 0.833± 0.038 0.896± 0.003

Table 3: The test AUC of the 4-layer Φs encoders on the real-world network datasets, and the
NRMSE and PCC of the theoretic LP scores as predictors of the Φs scores.
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Figure 7: Theoretic LP score vs. 4-layer Φs LP score for all network datasets.
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G.2 Additional experiments for §5.1 (Hadamard product and MLP LP score function)

We also run the experiments from §5.1 for Φs with the same settings, except we use the following
LP score function:

fLP

(
h
(L)
i ,h

(L)
j

)
= fMLP

(
h
(L)
i ⊙ h

(L)
j

)
,

where ⊙ is the Hadamard product and fMLP is a 2-layer MLP with a 64-dimensional hidden layer
and ReLU nonlinearity. We run these additional experiments because a Hadamard product and MLP
score function is often used in the literature. We find that that our theoretical analysis is still relevant
to and reasonably supports the experimental results, both qualitatively and quantitatively (cf. Table
4, Figure 8). This could be because MLPs have an inductive bias towards learning simpler, often
linear functions (Nakkiran et al., 2019; Valle-Pérez et al., 2019), and our theoretical findings are
generalizable to linear LP score functions. Notably, in this setting, Φs makes a higher number
of negative link predictions. For a few datasets (e.g., Cora, CiteSeer, LastFMAsia), a handful of
theoretic LP scores are negative because the regression (incorrectly) predicts ρ2s(b) for 1-2 groups
S(b) to be negative.

NRMSE (↓) PCC (↑) Φs Test AUC (↑)

CORA 0.034± 0.004 0.830± 0.015 0.915± 0.001
CITESEER 0.090± 0.014 0.365± 0.070 0.913± 0.008
DBLP 0.026± 0.003 0.652± 0.029 0.933± 0.004
PUBMED 0.054± 0.007 0.813± 0.038 0.932± 0.003
CS 0.047± 0.008 0.677± 0.036 0.970± 0.001
PHYSICS 0.055± 0.007 0.566± 0.026 0.976± 0.001
LASTFMASIA 0.049± 0.008 0.682± 0.035 0.960± 0.003
DE 0.030± 0.008 0.683± 0.047 0.935± 0.001
EN 0.039± 0.006 0.463± 0.022 0.905± 0.002
FR 0.031± 0.006 0.654± 0.067 0.935± 0.002

Table 4: The test AUC of the Φs encoders with an fMLP score function on the real-world network
datasets, and the NRMSE and PCC of the theoretic LP scores as predictors of the Φs scores.
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Figure 8: Theoretic LP score vs. Φs LP score (with Hadamard product and MLP) for all network
datasets.
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G.3 Additional experiments for §5.2

Figure 9: The plots display ∆̂(b) vs. ∆(b) for 4-layer Φs for the NBA, German, and DBLP-Fairness
datasets over all b ∈ [B] and 10 random seeds.

G.4 Additional experiments for §5.3

λfair Lfair (↓) Φs Test AUC (↑)

NBA 4.0 0.000± 0.000 0.752± 0.001
NBA 2.0 0.006± 0.001 0.752± 0.001
NBA 1.0 0.011± 0.001 0.753± 0.001
NBA 0.0 0.014± 0.001 0.753± 0.001
DBLPFAIRNESS 4.0 0.090± 0.041 0.793± 0.009
DBLPFAIRNESS 2.0 0.070± 0.015 0.800± 0.007
DBLPFAIRNESS 1.0 0.099± 0.009 0.804± 0.007
DBLPFAIRNESS 0.0 0.122± 0.028 0.820± 0.009
GERMAN 4.0 0.012± 0.008 0.817± 0.004
GERMAN 2.0 0.018± 0.007 0.827± 0.015
GERMAN 1.0 0.018± 0.008 0.856± 0.025
GERMAN 0.0 0.028± 0.007 0.874± 0.011

λfair Lfair (↓) Φr Test AUC (↑)

NBA 4.0 0.000± 0.000 0.581± 0.029
NBA 2.0 0.000± 0.000 0.574± 0.021
NBA 1.0 0.000± 0.000 0.580± 0.025
NBA 0.0 0.000± 0.000 0.589± 0.031

DBLPFAIRNESS 4.0 0.034± 0.012 0.769± 0.009
DBLPFAIRNESS 2.0 0.045± 0.021 0.788± 0.007
DBLPFAIRNESS 1.0 0.074± 0.013 0.797± 0.006
DBLPFAIRNESS 0.0 0.095± 0.015 0.811± 0.006

GERMAN 4.0 0.027± 0.009 0.765± 0.013
GERMAN 2.0 0.023± 0.007 0.765± 0.011
GERMAN 1.0 0.031± 0.010 0.786± 0.030
GERMAN 0.0 0.030± 0.009 0.838± 0.025

Table 5: Lfair and the test AUC for the NBA, German, and DBLP-Fairness datasets with various
settings of λfair. The left table corresponds to 4-layer Φs, and the right to 4-layer Φr.
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H Theory Pitfalls

To understand the second pitfall from §5.1, we separately investigate the association between the

degree product
(√

D̂iiD̂jj

)
and the absolute deviation of the theoretic LP scores from the Φs

scores, and the association between the (transformed) feature similarity

(∥∥∥∥∑k∈S(b)

√
D̂kk

vol(G(b))
αk

∥∥∥∥2
2

)
and the absolute deviation (cf. Figure 10). We observe that the absolute deviation is highest for the
node pairs with a relatively small degree product (i.e., nodes with a low PA score) and low feature
similarity.

Figure 10: Associations of absolute deviation with degree product and with feature similarity.
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I Error Analysis of Φr Theoretic Scores

We find in Figure 11 that the relative error (as measured by NRMSE and PCC) of the theoretic LP

scores for Φr is not lower for lower values of the max term maxu,v∈V

√
D̂vv

D̂uu
.

Figure 11: Weak associations of max term with NRMSE and PCC of theoretic LP scores for Φr

across all datasets described in §C.

Furthermore, Figure 12 reveals that Φr LP scores are not higher for incident nodes with larger
degrees.

Figure 12: Weak associations of mean Φr LP scores (over 10 random seeds) with degree of each
incident node and product of degrees of both incident nodes. Colors correspond to different groups.

There are intimate connections between Theorem 4.4 and the steady-state probabilities of random
walks. The stationary probabilities of random walks are the same regardless of the starting node.
This is why Φr produces similar representations for all the nodes in each social group, regardless
of the degree of the node; in fact, with a larger number of layers, Φr would oversmooth all the
representations to the same vector (Keriven, 2022). Hence, Φr LP scores do not have a degree
dependence, theoretically or empirically.
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J Preferential Attachment and Motivation

Preferential attachment Preferential attachment (PA) describes the propensity of links to form
with high-degree nodes6. Network scientists have studied for decades how links in real-world net-
works exhibit PA. For example, in the iterative Barabasi-Albert model of network formation, each
new node s forms links with existing nodes t with probability proportional to the degree of t, i.e.,
P((s, t) ∈ E) ∝ deg(t). In the context of our paper, PA describes how a GCN with an inner-
product LP score function often predicts links between nodes i, j with score ∝

√
deg(i) · deg(j)

approximately (Theorem 4.3).

Motivation A wealth of literature in network science and the social sciences has examined the
PA properties of real-world networks and how these properties contribute to unfair (non-neural)
algorithms (§2). For example, Stoica et al. (2018) find that Instagram accounts run by men have a
significantly higher following than those run by women due to gender discrimination; this degree
disparity is only amplified by link recommendation algorithms that suggest accounts to follow (i.e.,
recommending accounts with higher degree to follow, which makes the rich get richer), revealing
that these algorithms have a PA bias. Moreover, many papers outside graph learning have discussed
the intersectional unfairness of machine learning (§2).

However, despite the increasing real-world deployment of GNNs for LP, their unfairness has not
been studied from the perspectives of PA and intersections of social groups. Our paper fills this gap
by providing thorough theoretical and empirical evidence that GCNs (Kipf & Welling, 2017) have a
PA bias when predicting links between nodes in the same social group. This finding is nontrivial as
GCNs leverage a combination of features and local structural context to make link predictions.

Our research question is challenging from a technical perspective, as it requires uncovering proper-
ties of short random walks on graphs (since most GNNs are shallow); in contrast, most random walk
results in the literature concern random walks at convergence. Our research question is further im-
portant because GNNs with a PA bias can amplify degree disparities, which translates to increased
discrimination and disparities in social influence among nodes.

As we uncover this new form of unfairness, there are no existing solutions to this unfairness in
the literature. We propose a training-time regularization-based fairness method that alleviates this
unfairness without greatly sacrificing the test AUC of LP. While capping the number of positive link
predictions per node is a possible solution, doing so with utility in mind requires identifying a utility-
maximizing subset of link predictions. As our theoretical and empirical results reveal, GCN LP
scores are often inherently proportional to the geometric mean of the degrees of the incident nodes,
which can make them a poor indicator of prediction confidence; from a calibration perspective, GCN
naturally makes overconfident predictions for links between high-degree nodes.

While we describe methods for alleviating degree bias in §2, these methods address degraded perfor-
mance for low-degree nodes, not PA bias. We do not study performance issues but rather how GCN
scales node representations proportionally to the square root of their within-group degree, which
affects the magnitude of their LP scores (cf. §K).

In summary, we augment the field’s understanding of degree bias beyond performance disparities
across nodes. We further lay a foundation to study PA bias and within-group unfairness in GNN LP
more broadly (e.g., SOTA contrastive methods for LP), which is a critical and interesting direction
of research.

6https://networkx.org/documentation/stable/reference/algorithms/generated/
networkx.algorithms.link_prediction.preferential_attachment.html
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K Comparison to Prior Research on Degree Bias

Studies concerning degree bias have observed that low-degree nodes experience degraded perfor-
mance compared to high-degree nodes. They have thus often formulated degree bias from a per-
formance perspective, focusing on equal opportunity. In particular, these studies seek to satisfy
P(ŷv = y|yv = y, deg(v) = d) = P(ŷv = y|yv = y, deg(v) = d′) for all possible degrees d, d′,
where ŷv is the prediction for node v and yv is its ground-truth label. This fairness criterion treats
the degree of a node as a sensitive attribute, requiring that a GNN’s accuracy is consistent across
nodes with different degrees.

However, in this paper, we seek to ensure that degree disparities in networks are not amplified by
GNN LP. We cannot adopt the equal opportunity formulation of degree bias because it is concerned
with performance while we are concerned with degree disparity amplification. For example, even
if we consistently predict links with the same accuracy across nodes with different degrees, high-
degree nodes can still receive higher LP scores than low-degree nodes. In this way, the “degree bias”
discussed by other studies is not compatible with our unfairness metric (Eqn. 9). We also cannot
simply adopt common LP fairness metrics like dyadic fairness, as they do not capture the new type
of unfairness that we uncover.

Roughly, we care that E[ŷuv|deg(u) = d] = E[ŷuv|deg(u) = d′], where ŷuv is the GNN score for a
link prediction between nodes u, v. In other words, we do not want GNN LP scores to be higher for
high-degree nodes vs. low-degree nodes. This is what motivates our fairness metric (Eqn. 9).

Our theoretical analysis (Theorem 4.3) and empirical validation reveal that GCN fundamentally
predicts links between nodes i, j with score ∝

√
deg(i) · deg(j) approximately because of its sym-

metric normalized filter. This finding of a preferential attachment bias allows us to express our
unfairness metric in terms of degree disparity (Eqn. 10), but this degree disparity is not related to
the “degree bias” that has been discussed by other papers; this is a new fairness paradigm.
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L Justification of Assumptions in Lemma 4.1

The independence of path activation probabilities may not always hold true in practice. However,
we verify that this assumption is plausible via our extensive experiments on real-world datasets
that validate our theoretical analysis (§5.1). This assumption also aligns with findings that deep
neural networks have an inductive bias towards learning simpler, often linear, functions (Nakkiran
et al., 2019; Valle-Pérez et al., 2019). Furthermore, a variant of our assumption (where ρ(i) = ρ
is constant for all nodes) has been used in the literature to simplify theoretical analysis (e.g., (Xu
et al., 2018; Tang et al., 2020)); our assumption may be more realistic than this variant, as it captures
that the probability of paths activating can differ across nodes (e.g., due to differences in features,
neighborhood structure).
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