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Abstract

Linear attention methods offer a compelling alternative to softmax atten-
tion due to their efficiency in recurrent decoding. Recent research has
focused on enhancing standard linear attention by incorporating gating
while retaining its computational benefits. Such Gated Linear Attention
(GLA) architectures include highly competitive models such as Mamba
and RWKV. In this work, we investigate the in-context learning capabilities
of the GLA model and make the following contributions. We show that a
multilayer GLA can implement a general class of Weighted Preconditioned
Gradient Descent (WPGD) algorithms with data-dependent weights. These
weights are induced by the gating mechanism and the input, enabling the
model to control the contribution of individual tokens to prediction. To
further understand the mechanics of this weighting, we introduce a novel
data model with multitask prompts and characterize the optimization land-
scape of learning a WPGD algorithm. We identify mild conditions under
which there exists a unique global minimum, up to scaling invariance, and
the associated WPGD algorithm is unique as well. Finally, we translate
these findings to explore the optimization landscape of GLA and shed light
on how gating facilitates context-aware learning and when it is provably
better than vanilla linear attention.

1 Introduction

The Transformer (Vaswani, 2017) has become the de facto standard for language model-
ing tasks. The key component of the Transformer is the self-attention mechanism, which
computes softmax-based similarities between all token pairs. Despite its success, the self-
attention mechanism has quadratic complexity with respect to sequence length, making
it computationally expensive for long sequences. To address this issue, a growing body
of work has proposed near-linear time approaches to sequence modeling. The initial ap-
proaches included linear attention and state-space models, both achieving O(1) inference
complexity per generated token, thanks to their recurrent form. While these initial architec-
tures typically do not match softmax attention in performance, recent recurrent models such
as Mamba (Gu & Dao, 2023; Dao & Gu, 2024), mLSTM (Beck et al., 2024), DeltaNet (Yang
et al., 2024b;a), GLA Transformer (Yang et al., 2023), and RWKV-6 (Peng et al., 2024) achieve
highly competitive results with the softmax Transformer. Notably, as highlighted in Yang
et al. (2023), these architectures can be viewed as variants of gated linear attention (GLA),
which incorporates a gating mechanism within the recurrence of linear attention. Addi-
tionally, Behrouz et al. (2025a;b) unify those models as associative memory modules that
optimize internal objectives through iterative algorithms, revealing connections to online
optimization and memory management dynamics.

“Equal contribution.
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Given a sequence of tokens (z,')?;rll € RY*! and the associated query, key, and value

embeddings (g;, k;, vi)?jll C R, with d + 1 being the embedding dimension', the GLA
recurrence is given by

Si=G;®S;_1+vikj, and o;=Siq;, ic{l,...,n+1}. (GLA)

Here, §; € R(@+1)*(@+1) represents the 2D state variable with Sy = 0; 0; € R**! represents
the ith output token; and the gating variable G; := G(z;) € R@+1*(@+1) js applied to the
state §;_1 through the Hadamard product ©® and G represents the gating function. When G;
is a matrix of all ones, (GLA) reduces to causal linear attention (Katharopoulos et al., 2020).

The central objective of this work is to enhance the mathematical understanding of the
GLA mechanism. In-context learning (ICL), one of the most remarkable features of modern
sequence models, provides a powerful framework to achieve this aim. ICL refers to the
ability of a sequence model to implicitly infer functional relationships from the demon-
strations provided in its context window (Brown, 2020; Min et al., 2022). It is inherently
related to the model’s ability to emulate learning algorithms. Notably, ICL has been a major
topic of empirical and theoretical interest in recent years. For example, Ali et al. (2024)
show that Mamba embeds implicit attention matrices via data-controlled linear operators,
while Sieber et al. (2024) unify SSMs, attention, and RNNs within a dynamical-systems
framework. More specifically, a series of works have examined the approximation and
optimization characteristics of linear attention, and have provably connected linear attention
to the preconditioned gradient descent algorithm (Von Oswald et al., 2023; Ahn et al., 2024;
Zhang et al., 2024). Given that the GLA recurrence in (GLA) has a richer design space, this
leads us to ask:

What learning algorithm does GLA emulate in ICL?

Contributions: The (GLA) recurrence enables the sequence model to weight past informa-
tion in a data-dependent manner through the gating mechanism (G;)?_;. Building on this
observation, we demonstrate that a GLA model can implement a data-dependent Weighted
Preconditioned Gradient Descent (WPGD) algorithm. Specifically, a one-step WPGD with
scalar gating, where all entries of G; are identical, is described by the prediction:

j=x"PX'(yow). 1)

Here, X € R"*? is the input feature matrix; y € R" is the associated label vector; x € RY
represents the test/query input to predict; P € R?*? is the preconditioning matrix; and
w € R" weights the individual samples. When w is fixed, we drop “data-dependent” and
simply refer to this algorithm as the WPGD algorithm. However, for GLA, w depends on the
data through recursive multiplication of the gating variables. Building on this formalism,
we make the following specific contributions:

¢ ICL capabilities of GLA (§3): Through constructive arguments, we demonstrate that a
multilayer GLA model can implement data-dependent WPGD iterations, with weights
induced by the gating function. This construction sheds light on the role of causal
masking and the expressivity distinctions between scalar- and vector-valued gating
functions.

¢ Landscape of one-step WPGD (§4): The GLA<WPGD connection motivates us to ask:
How does WPGD weigh demonstrations in terms of their relevance to the query? To address
this, we study the fundamental problem of learning an optimal WPGD algorithm:
Given a tuple (X, y, x,y) ~ D, with y € R being the label associated with the query, we
investigate the population risk minimization:

* O ]
Lipep = min Lypp (P, w),
PER4 eR"

@

where EWPGD(P/ a)) = IED

(y —x' PX"(yo w))z} .

IThe sequence length and embedding dimension are set to 71 + 1 and d + 1 per the prompt definition
in (3).
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As our primary mathematical contribution, we characterize the loss landscape under
a general multitask data setting, where the tasks associated with the demonstrations
(X,y) have varying degrees of correlation to the target task (x,y). We carefully analyze
this loss landscape and show that, under mild conditions, there is a unique global
minimum (P, w) up to scaling invariance, and the associated WPGD algorithm is also
unique.

¢ Loss landscape of one-layer GLA (§5): The landscape is highly intricate due to the
recursively multiplied gating variables. We show that learning the optimal GLA layer
can be connected to solving (2) with a constraint w € W, where the restriction W is
induced by the choice of gating function and input space. Solidifying this connection,
we introduce a multitask prompt model under which we characterize the loss landscape
of GLA and the influence of task correlations. Our analysis and experiments reveal
insightful distinctions between linear attention, GLA with scalar gating, and GLA with
vector-valued gating.

2 Problem setup

Notations. RY is the d-dimensional real space, with R? and RY | as its positive and strictly
positive orthants. The set [n] denotes {1,...,n}. Bold letters, e.g., @ and A, represent vectors
and matrices. The identity matrix of size # is denoted by I,,. The symbols 1 and 0 denote the
all-one and all-zero vectors or matrices of proper size, suchas 1; € R? and 1,,.; € R¥*“. The
subscript is omitted when the dimension is clear from the context. The Gaussian distribution
with mean p and covariance X is written as NV (g, £). The Hadamard product (element-wise
multiplication) is denoted by ©, and Hadamard division (element-wise division) is denoted

by ©. Givenany a;,1,...,a; € R?, we define aij=aj1© - Gajfori <janda;; =1,.

The objective of this work is to develop a theoretical understanding of GLA through ICL.
The optimization landscape of standard linear attention has been a topic of significant
interest in the ICL literature (Ahn et al., 2024; Li et al., 2024b). Following these works, we
consider the input prompt

.
X1 ... Xp X

Z = [Zl .o 2Zn zl’l-‘rl]—r = yi o yz Vl0+1 c R(?’l“rl)x(d*‘rl), (3)
where tokens encode the input-label pairs (x;,y;)"_; C R? x R.

We aim to enable ICL by training a sequence model F : R("+1)*(@+1) _ R that predicts
the label y := vy, associated with the query x := x,;1. This model will utilize the
demonstrations (x;, y;)?_; to infer the mapping between x and y. Assuming that the data is
distributed as (y, Z) ~ D, the ICL objective is defined as

L(F) =Ep [(y— F(2))*]. @

Linear attention and shared-task distribution. Central to our paper is the choice of the
function class F. When F is a linear attention model, the prediction Jr := F(Z) takes the

form 9p = zIHWqWJ Z T ZW,h, where Wy, Wy, W, € R(@+1)*(@+1) are attention parameters,

and h € R is the linear prediction head.

We assume that the in-context input-label pairs follow a shared-task distribution, where
B ~ N(0,%p), x; are iid. with x; ~ N(0,Z), and y; ~ N(B"x;,0%), where ¢ > 0
represents the noise level. Under this shared-task distribution, it is shown (Von Oswald
etal., 2023; Ahn et al., 2024; Zhang et al., 2024) that the optimal one-layer linear attention
prediction coincides with the one-step optimal preconditioned gradient descent (PGD). In
particular, considering the data distribution discussed above, we have

Jr=x'B, where B=PXy, (5)
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and

T

2
P* := argmin E [(y—xTPXTy) ] with X:=[x; -~ x,] and y:=[y1 -~ ya] . (6)

PcRAxd

Linear attention and gating. Given the input prompt Z as in (3), let (g¢; k;,v;) =
(W, zi, W z;, W, z;) be the corresponding query, key, and value embeddings. The out-
put of causal linear attention at time i can be computed using (GLA) with G; = 1. This

recurrent form implies that linear attention has O(d?) cost, that is independent of sequence
length #, to generate per-token. GLA follows the same structure as linear attention but with
a gating mechanism (i.e., G; # 1), which equips the model with the option to pass or supress
the history. As discussed in Yang et al. (2023), the different choices of the gating function
correspond to different popular recurrent architectures such as Mamba (Gu & Dao, 2023),
Mamba?2 (Dao & Gu, 2024), RWKYV (Peng et al., 2024), etc.

We will show that GLA can weigh the context window through gating, thus, its capabilities
are linked to the WPGD algorithm described in (8). This will in turn facilitate GLA to

effectively learn multitask prompt distributions described by y; ~ N (8] x;,0*) with g;’s not
necessarily identical.

3 What gradient methods can GLA emulate?

In this section, we investigate the ICL capabilities of GLA and show that under suitable
instantiations of model weights, GLA can implement data-dependent WPGD.

3.1 GLA as a data-dependent WPGD predictor

Data-Dependent WPGD. Given X and y as defined in (6), consider the weighted least
squares objective £(B8) = Y1 ; w; - (y; — B x;)? with weights w = [wy, w3, - -+, wy]T € R™
To optimize this, we use gradient descent (GD) starting from zero initialization, 8y = 0 with
a step size of 7 = 1/2. One step of standard GD is given by

n
Bi=Bo—nVLPBo) =) wi xyi=X" (wOy).
i=1
Given a test/query feature x, the corresponding prediction is § = x' 8 where g8 = ;.

Additionally, if we were using PGD with a preconditioning matrix P € R?*¢, 8y = 0, and
n = 1/2, then a single iteration results in

7=x"B, where B=pBy—nPVL(B) =PX (w®y). (7)

Above is the basic sample-wise WPGD predictor which weights individual datapoints, in
contrast to the PGD predictor as presented in (5). It turns out, vector-valued gating can
facilitate a more general estimator which weights individual coordinates. To this aim, we

introduce an extension as follows: Let Py, P, € R?*4 denote the preconditioning matrices,

and let Q € R"*¢ denote the vector-valued weighting matrix. Note that 2 is a weight matrix
that enables coordinate-wise weighting. Throughout the paper, we use w and Q) to denote
sample-wise and coordinate-wise weighting parameters, corresponding to scalar and vector
gating strategies, respectively. Then given (2, we can similarly define

B (P, Py, Q) = Py(XP O O) Ty (82)
as one-step of (generalized) WPGD. Its corresponding prediction on a test query x is:
9=x"B, where B= ﬂ%d(Pl, P, Q). (8b)

We note that by removing the weighting matrix ), (8) reduces to standard PGD (cf. (5)) and
setting () = a)ldT reduces to sample-wise WPGD (cf. (7)). Li et al. (2024b) has demonstrated
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that H3-like models implement one-step sample-wise WPGD, and they focus on the shared-
task distribution where 8; = B for all i € [n]. In contrast, our work considers a more general
data setting where tasks within an in-context prompt are not necessarily identical.

We introduce the following model constructions under which we establish the equivalence
between GLA (cf. (GLA)) and WPGD (cf. (8)), where the weighting matrix is induced by
the input data and the gating function. Inspired by prior works (Von Oswald et al., 2023;
Ahn et al., 2024), we consider the following restricted attention matrices:

P, 0 P, 0 0 0
Wk—[ok 0}, Wq—{oq 0}, and Wv—[dx"l J, 9)

where Py, P; € R74. Note that the (d + 1,d + 1)-th entry of W, is set to one for simplicity.
More generally, this entry can take any nonzero value, e.g., v € R. Parameterizing W, with
P, /v produces the same output as in (9).

Theorem 1. Recall (GLA) with input sequence Z = [z1 ... zu Zuy1]' defined in (3), the gating
G(z;) = G; € REFDXEHD) aud outputs (oi)f’jll. Consider model construction in (9) and take the
last coordinate of the last token output denoted by (0,,11) 441 as a prediction. Then, we have

- - d
fGLA(Z) = (0n+1)d+1 = xTﬁ, where ﬂ :ﬂ§ (Pk/ Pq,ﬂ).

Here, ,B%d(-) is a one-step WPGD feature predictor defined in (8a); Py and P, correspond to attention

weights following (9); and QO = [gru1 - &nns1] | € R"™4, where gi.,41,i € [n] is given by

* *
Zini1 = &1 O g2 guy1 ERY, and G = L,T *} : (10)
1

Here and throughout, we use * to fill the entries of the matrices that do not affect the final
output. Based on the model construction in (9), these entries can be assigned any value.

Observe that, crucially, since g; is associated with z;, z; influences the weighting of z; for all
j < i. We defer the proof of Theorem 1 to the Appendix D.1. It is noticeable that only d of
the total (d + 1)? entries in each gating matrix G; are useful due to the model construction
presented in (9). However, if we relax the weight restriction, e.g., W, = [O(d +1)xd ul’,

where # € R, then the weighting matrix Q in Theorem 1 is associated with all rows of
the G; matrices. We defer to Eqn. (27) and the discussion in Appendix D.1.

Capabilities of multi-layer GLA. Ahn et al. (2024) demonstrated that, with appropriate
construction, an L-layer linear attention model performs L steps of PGD on the dataset
(xi,yi)!_, provided within the prompt. In Appendix A, we extend this analysis to multi-
layer GLA and characterize the algorithmic class it can emulate. Importantly, Ahn et al.
(2024) does not account for causal masking, which is a fundamental aspect of multi-layer
GLA due to its recurrent structure as described in (GLA). Our main result, Theorem 6 in
Appendix A, establishes that an L-layer GLA implements L steps of WPGD, where the
gradients are computed in a recurrent form.

GLA with scalar gating. Theorem 1 establishes a connection between one-layer GLA
(cf. (GLA)) and one-step WPGD (cf. (8)), where the weighting in WPGD corresponds to the
gating G(z;) = G; in GLA, as detailed in Theorem 1. Now let us consider the widely used

types of gating functions, such as G; = cxil;lr+1 (Yang et al., 2023; Katsch, 2023; Qin et al.,
2024; Peng et al., 2024) or G; = fyil(dﬂ),(dﬂ) (Dao & Gu, 2024; Beck et al., 2024; Peng et al.,

2021; Sun et al., 2024), where ; € R**! and 7; € R. In both cases, the gating matrices in (10)
take the form of [g;;lr ﬂ for some g; € R, thus simplifying the predictor to a sample-wise
WPGD, as given by

foa(Z) =B"x, with B=PX"(w®y), (11)

where P = PqP,—{r and @ = [g1y41 -+ Sumt1)| € R In the remainder, we will mostly
focus on the one-layer GLA with scalar gating as presented in (11).
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4 Optimization landscape of WPGD

In this section, we explore the problem of learning the optimal sample-wise WPGD algo-
rithm described in (11), a key step leading to our analysis of GLA. The problem is as follows.
Recap from (6) that we are given the tuple (x,y, X,y) ~ D, where X € R"*? is the input
matrix, y € R" is the label vector, x € R? is the query, and y € R is its associated label. The
goal is to use X, y to predict y given x via the one-step WPGD prediction § = x ' 8, with 8 as
in (11). The algorithm learning problem is given by (2) which minimizes the WPGD risk

Ep|(y —x"PX(w @y))z].

Prior research (Mahankali et al., 2023; Li et al., 2024b; Ahn et al., 2024) has studied the
problem of learning PGD when input-label pairs follow an i.i.d. distribution. It is worth
noting that while Li et al. (2024b) establishes a connection between H3-like models and
(11) similar to ours, their work assumes that the optimal w consists of all ones and does
not specifically explore the optimization landscape of w when in-context samples are not
generated from the same task vector . Departing from this, we introduce a realistic model
where each input-label pair is allowed to come from a distinct task.
Definition 1 (Correlated Task Model). Suppose ; € R? ~ N (0, 1) are jointly Gaussian for all
i € [n+ 1]. Define

B:=PBui1, B:=[B1...B8]", R:= %]E[BBT], and r:= %]E[BB}. (12)
Note that in (12), we have R € R"*" and r € R", with normalization ensuring that the
entries of R and r lie in the range [—1, 1], corresponding to correlation coefficients. Further,
due to the joint Gaussian nature of the tasks, for any i,j € [n + 1], the residual 8; — riiB; is
independent of ;.

Definition 2 (Multitask Distribution). Let (3;) fjll be drawn according to the correlated task
model of Definition 1, (x;)'! € R? be i.i.d. with x; ~ N'(0,E), and y; ~ N (x; B;,0?) for all
ien+1].
Definition 3. Let the eigen decompositions of T and R be denoted by L = Udiag(s)U ' and
R = Ediag(A)E", wheres = [s1 -+ 5] € R4 and A= [Ay -+ Ay]T € R™. Let Sy and
Smax denote the smallest and largest eigenvalues of L, respectively. Further, let Apin and Amax
denote the smallest and largest nonzero eigenvalues of R. Define the effective spectral gap of X and
R, respectively, as

Ay, = Smax — Smin, and AR = Amax — Amin- (13)
Assumption 1. The correlation vector r from (12) lies in the range of E, i.e., r = Ea for some
nonzeroa = [ay --- ay]' € R™

Assumption 1 essentially ensures that r (representing the correlations between in-context
tasks) can be expressed as a linear transformation of a vector a with at least one nonzero
value. Note that since r lies in the range of the eigenvector matrix E, it also lies in the
range of R defined in (12). This guarantees that the correlation structure is non-degenerate,
meaning that all elements of r are influenced by meaningful correlations. Assumption 1
avoids trivial cases where there are no correlations between tasks. By requiring at least one
nonzero element in a, the assumption ensures that the tasks are interrelated.

The following theorem characterizes the stationary points (P, ) of the WPGD objective (2).

Theorem 2. Consider independent linear data as described in Definition 2. Suppose Assumption 1
on the correlation vector r holds. Define the functions hy : Ry — Ry and hy : [1,00) — R as

L ;a2 1 a? !
h(y) = i ! , 14
1(7) <1—21 1+ /\17)2> <z¥1 1+ Ai7)2> -
d §2 d $3 -1\ !
L R <l§ <M+sm2> (i_l <M+sm2> S
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where {s;}9_, and {A;}!_, are the eigenvalues of ¥ and R, respectively; {a;}"_, are given in
Assumption 1;and M = 0 + Y9 s;.
The risk function Lypep (P, w) in (2) has a stationary point (P*, w*), up to rescaling, defined as

* -1
pr=x: (7\4.2+1> 22, and " = (h(y*)-R+1)"'r, (15)

where v* is a fixed point of composite function hy(hp(7y)) + 1.

Theorem 2 characterizes the stationary points (P*, w*), which exist up to re-scaling. This
result presents the first landscape analysis of GLA for the joint learning of (P, w), while also
exploring the stationary points (P*, w*). In the following, we provide mild conditions on
effective spectral gaps of R and X under which a unique (global) minimum (P*, w*) exists.

Theorem 3 (Uniqueness of the WPGD Predictor). Consider independent linear data as given in
Definition 2. Suppose Assumption 1 on the correlation vector r holds, and

Ay - AR < M+ Smin, (16)

where Ay, and Ag denote the effective spectral gaps of ¥ and R, respectively, as given in (13); Smin is
the smallest eigenvalue of X; and M = o+ Z}’l:l S;.

T1. The function hy(hy(7y)) + 1 is a contraction mapping and admits a unique fixed point v = *.
T2. The loss Lypcp (P, w) has a unique (global) minima (P*, w*), up to re-scaling, given by (15).

Theorem 3 establishes mild conditions under which a unique (global) minimum (P*, w*)
exists, up to scaling invariance, and guarantees the uniqueness of the associated WPGD
algorithm. It provides the first global landscape analysis for GLA and generalizes prior
work (Li et al., 2024b; Ahn et al., 2024) on the global landscape by extending the optimization
properties of linear attention to the more complex GLA with joint (P, w) optimization.

Remark 1. An interesting observation about the optimal gating parameter w* is its connec-
tion to the correlation matrix R, which captures the task correlations in a multitask learning
setting. Specifically, the optimal gating given in (15) highlights how w* depends directly on
both the task correlation matrix R and the vector r, which encodes the correlations between
the tasks and the target task.

Remark 2. Condition (16) provides a sufficient condition for the uniqueness of a fixed point.
This implies that whenever Ay, - Ag < M + Spin, the mapping hy (hy(y)) + 1 is a contraction,
ensuring the existence of a unique fixed point. However, there may be cases where the
mapping hq (h2(y)) + 1 does not satisfy Condition (16), yet a unique fixed point (and a
unique global minimum) still exists. This is because the Banach Fixed-Point Theorem does
not provide a necessary condition.

Corollary 1. Suppose & = I. Then, Ay = 0, satisfying Condition (16), and we have hy(y*) =
dﬂfliz“/ which yields P* = I and * = (R + (d + 0 + 1)I)~'r. Thus, the optimal risk Lipq,
defined in (2) is given by

-1

o =d+o?—d-r’ (R+(@d+o2+1)I) r. (17)

5 Optimization landscape of GLA

In this section, we analyze the loss landscape for training a one-layer GLA model and
explore the scenarios under which GLA can reach the optimal WPGD risk.

5.1 Multi-task prompt model

Following Definitions 1 and 2, we consider the multi-task prompt setting with K correlated
tasks (B)K_, and one query task B. For each correlated task k € [K], a prompt of length
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Figure 1: We consider four different types of model training: LinAtt (blue solid): Standard linear
attention training. GLA (red solid): GLA training using prompts with delimiters (see (19)) and scalar
gating. GLA-wo (green solid): GLA training using prompts without delimiters and with scalar gating.
GLA-vector (cyan solid): GLA training using prompts with delimiters and vector gating. The blue
and black dashed curves represent the optimal linear attention and WPGD risks from (24) and (17),
respectively, as the number of in-context examples # increases. Implementation details are provided
in Appendix B.

ny is drawn, consisting of IID input-label pairs { (x;, yix) } 15, where y ~ N (B/ xjx, 0%) to

-
obtain sequence Z; = [;: o ;:’;’;] .Letn := Z,Ile Ng-

These sequences (Z;)K_ , along with the query token z,, 1 = [x,41 0], are concatenated to
form a single prompt Z. Recall (GLA), and let fg a(Z) denote the GLA prediction as defined

in Theorem 1. Additionally, consider the model construction in (9), where P, Py € RIxd
are trainable parameters. The GLA optimization problem is described as follows:

LGp = min Loa(Py, Py, G),
Py, P eR¥*4,Geg
(18)

where Lo a(Py, Py, G) = E [(y - fGLA(z))Z] .

Here, G(-) represents the gating function and G denotes the function search space, which is
determined by the chosen gating strategies (cf. Table 1 in Yang et al. (2023)).

Note that 1) the task vectors (By) ,Ile are not explicitly shown in the prompt, 2) in-context
features x;; are randomly drawn, and 3) the gating function is applied to the tokens (Z; )X _;.
Given the above three evidences, the implicit weighting induced by the GLA model varies
across different prompts, and it prevents the GLA from learning the optimal weighting. To
address this, we introduce delimiters to mark the boundary of each task. Let (dk)kK:1 be the
delimiters that determine stop of the tasks. Specifically, the final prompt is given by

.
Z=1z] d - Z{ dx znp41) - (19)

Additionally, to decouple the influence of gating and data, we envision that each token is
zi=[x] y; ¢]]" where ¢; # 0 € R” is the contextual features with p being its dimension
and (x;,y;) are the data features. Let &, - - - ,€x € R? be K + 1 contextual feature vectors.

¢ For task prompts Z;: Contextual features are set to a fixed vector ¢y # 0.

* For delimiters dj: Data features (e.g., x;, ;) are set to zero so that dy = [0;Jrl E;]T.

Explicit delimiters have been utilized in addressing real-world problems (Wang et al.,
2024a; Asai et al., 2022; Dun et al., 2023) due to their ability to improve efficiency and
enhance generalization, particularly in task-mixture or multi-document scenarios. To further

motivate the introduction of (dy)K_,, we present in Figure 1 the results of GLA training with
and without delimiters, represented by the red and green curves, respectively. The black
dashed curves indicate the optimal WPGD loss, L, under different scenarios. Notably,
training GLA without delimiters (the green solid curve) performs strictly worse. In contrast,
training with delimiters can achieve optimal performance under certain conditions (see
Figures 1a, 1b, and 1c). Theorem 4, presented in the next section, provides a theoretical
explanation for these observations, including the misalignment observed in Figure 1d.
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5.2 Loss landscape of one-layer GLA

Given the input tokens with extended dimension, to ensure that GLA still implements
WPGD as in Theorem 1, we propose the following model construction.

. v _ (W, 0 v _ |[Wo O
Wk—{o 0}, Wq—{o 0}, and Wv—{o 0]. (20)
Here, W, € R@+p+1)x(d+p+1) and Wigo € R@+1)>(@+1) are constructed via (9). The
main idea is to set the last p rows and columns of attention matrices to zeros, ensuring that
the delimiters do not affect the final prediction.

Assumption 2. Contextual feature vectors &, - - - , € are linearly independent, and activation
function ¢(z) : R — [0,1] is continuous, satisfying ¢(—oc0) = 0and ¢(+o0) = 1.

Assumption 3. The correlation between context tasks (,Bk)szl and query task B satisfies E LBl.Tﬂj] =
0and E|BB] < lejTﬂ]forall 1<i<j<K

Given context examples { (X, y) := (i, Vik) ;%1 }K_;, define the concatenated data (X, y):

x=[x/ - x/]TeR™, and y=1[y - yI] eR™. 1)

Based on the assumptions above, we are able to establish the equivalence between optimiz-
ing one-layer GLA and optimizing one-step WPGD predictor under scalar gating.

Theorem 4 (Scalar Gating). Suppose Assumption 2 holds. Recap the function Lypep(P, w) from
(2) with dataset (X, y) defined in (21). Consider (GLA) with input prompt Z defined in (19), the
model constructions described in (20), and scalar gating G(z) = qb(w;z)l(d 4 p+1)x (d4p+1), Where
wg is a trainable parameter. Then, the optimal risk L , defined in (18) obeys

A= £§Qg§, where Ly 1= min Lyecp (P, w). (22)

Here, W := {[wllll le,IK]T € R”

0<w<w <1, V1<i<j<K}.

Additionally, suppose Assumption 3 holds and n; = n;, for all i,j € [K]. Let Lyjpqp be the optimal
WPGD risk (cf. (2)). Then Ly , satisfies

‘CELA = EWPGD- (23)

Assumption 2 ensures that any w in W can be achieved by an appropriate choice of gating
parameters. Furthermore, Assumption 3 guarantees that the optimal choice of w under the
WPGD objective lies within the search space WW. The proof is provided in Appendix F.1.

In Figure 1, we conduct model training to validate our findings. Consider the setting
where K = 2 and let (ry,r2) = (E[B] B]/d,E[B, B]/d). In Figures 1a, 1b, and 1c, Assump-
tion 3 holds, and the GLA results (shown in solid red) align with the optimal WPGD risk
(represented by the dashed black), validating (23). However, in Figure 1d, since r; > 1,
Assumption 3 does not hold, and as a result, the optimal GLA loss L , obtained from (22)
is lower than the optimal WPGD loss L. Further details are deferred to Appendix B.

Loss landscape of vector gating. Till now, our discussion has focused on the scalar gating
setting. It is important to highlight that, even in the scalar-weighting context, analyzing the
WPGD problem remains non-trivial due to the joint optimization over (P, w). However, as
demonstrated in Theorem 4, scalar gating can only express weightings within the set W. If
Assumption 3 does not hold, £ , cannot achieve the optimal WPGD loss (see the misalign-
ment between red solid curve, presenting £f, ,, and black dashed curve, presenting Ljp¢p
in Figure 1d). We argue that vector gating overcomes this limitation by applying distinct
weighting mechanisms across different dimensions, facilitating stronger expressivity.

Theorem 5 (Vector Gating). Suppose Assumption 2 holds. Consider (GLA) with input prompt
Z from (19), the model constructions from (20) but with W, = [0pr1)xd ¥ O(ayps1) T

7
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and a vector gating G(z) = ¢(Wgz)1;+p+1. Recap Problem (18) with prediction defined as

fon(Z) == onTHh, where h € RYTPT s g linear prediction head. Here, u, W¢ and h are trainable
parameters. Let LF ,_, denote its optimal risk, and Ly be defined as in (2). Then, LE »., = Lipgo-

In Theorem 4, the equivalence between L£f , and Ly, is established only when both
Assumptions 2 and 3 are satisfied. In contrast, Theorem 5 demonstrates that applying
vector gating requires only Assumption 2 to establish £ , , = Lipgp- Specifically, under
the bounded activation model of Assumption 2, scalar gating is unable to express non-
monotonic weighting schemes. For instance, suppose there are two tasks: Even if Task 1 is
more relevant to the query, Assumption 2 will assign a higher (or equal) weight to examples
in Task 2 resulting in sub-optimal prediction. Theorem 5 shows that vector gating can
avoid such bottlenecks by potentially encoding tasks in distinct subspaces. To verify these
intuitions, in Figure 1d, we train a GLA model with vector gating and results are presented
in cyan curve, which outperform the scalar gating results (red solid) and align with the
optimal WPGD loss (black dashed).

Loss landscape of one-layer linear attention. Given the fact that linear attention is equiv-
alent to (GLA) when implemented with all ones gating, that is, G; = 1, we derive the
following corollary. Consider training a standard single-layer linear attention, i.e., by setting
G; = 1in (GLA), and let far7(Z) be its prediction. Let £3;; be the corresponding optimal
risk following (18).

Corollary 2. Consider a single-layer linear attention following model construction in (9) and let
linear data as given in Definition 2. Let R and r be the corresponding correlation matrix and vector
as defined in Definition 1. Suppose & = I. Then, the optimal risk obeys

d(17r)?
n(d+o2+1)+1TR1

‘C’ZTT = min »CWPGD(P/(U = 1) = d+0’2 —
PcRdxd

(24)

In the Figure 1, blue solid curves represent the linear attention results and blue dashed are
the theory curves following (24). The two curves are aligned in all the subfigures, which
validate our Corollary 2. More implementation details are deferred to Appendix B.

6 Discussion

Our analysis is currently limited to GLA models under specific weight construction as-
sumptions as outlined in Section 3, which may not capture the full expressivity of practical
GLA implementations. The theoretical framework we developed requires certain structural
constraints on the attention matrices (as specified in Equation 9) to establish the connection
with WPGD algorithms.

Several important directions for future research include:
1. Extending our analysis to more general GLA architectures without the weight con-

struction constraints, which would better reflect deployed models such as Mamba
(Gu & Dao, 2023; Dao & Gu, 2024) and RWKYV (Peng et al., 2024).

2. Investigating when delimiters are necessary for effective learning in multi-task
settings. Our experiments show that without delimiters, GLA models perform sub-
optimally, but a deeper theoretical characterization of this phenomenon is needed.

3. Exploring the GLA landscape where gating functions depend on input features in
more complex ways than our current formulation allows.

4. Analyzing the effects of incorporating MLP layers between GLA layers, which
could enhance the model’s expressive power beyond what we have characterized.

Addressing these limitations would further bridge the gap between our theoretical under-
standing and the practical performance of state-of-the-art GLA-based sequence models.

10
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A Capabilities of multi-layer GLA

Ahn et al. (2024) demonstrated that, with appropriate construction, an L-layer linear atten-
tion model performs L-step preconditioned GD on the dataset (x;,y;)? ; provided within
the prompt. In this work, we study multi-layer GLA and analyze the associated algorithm
class it can emulate. It is worth mentioning that Ahn et al. (2024) does not consider causal
masking which is integral to multilayer GLA due to its recurrent nature described in (GLA).
Our analysis will capture the impact of gating and causal mask through n separate GD
trajectories that are coupled.

Multi-layer GLA. For any input prompt Z € RE+Dx(E+) Jet GLA(Z) :=
01 02 -+ 0,11]" € RUHDX(@+D) denote its GLA output, as defined in (GLA). We
consider an L-layer GLA model as follows: For each layer ¢ € [L], let Z,; denote its input,
where we set Z; = Z, and let Wy », W, ;, W, ; denote the key, query, and value matrices for
layer ¢, respectively. After applying a residual connection, the input of the ¢-th layer is given
by

Zy:=Zy 1 +GLAy 1(Zy ). (25)

Here, GLA,(-) denotes the output of the /-th GLA layer, associated with the attention matrices
(Wg,0,Wie, Wy ) for all £ € [L]. In the following, we focus on the (d + 1)-th entry of

each token’s output at each layer (after the residual connection), denoted by 0; ; := [Z, +
GLA¢(Zy)]ig+1 foralli € [n+1] and £ € [L].

Theorem 6. Consider an L-layer GLA defined in (25), where Wy o, W, ; in the {'th layer param-
eterized by Py, — Py € R4, for all ¢ € [L] following (9). Let the gating be a function of the
features, e.g., G; = G(x;), and define Q¥ as in Theorem 1. Additionally, denote the masking as

M; = f)’ 8 € R™" and let By = B;y = 0 for all i € [n]. Recall that o, ; for all i € [n+ 1] and

¢ € [L] stands for the last entry of the i'th token output at the {'th layer. We have
e Foralli <n, o0y = y; —x; Biy, where Biy = Biy-1—Pgy (Viy O gins1);

® 0yp10 = —x'By where By = (1 —ap)Br1 — Poy (Ve @ guar), and oy =
x' P, Pl x.

Here, letting By = [B1y -+ Bus] ', Xo = XPyy © Q, and y, = diag(XB) ), we define
Vie =X, M;(y;—y).

We defer the proof of Theorem 6 to the Appendix D.2. Theorem 6 states that L-layer GLA (25)
implements L steps of WPGD with gradient in a recurrent form and additional weight decay
ay. To recap, given data (X,y) and prediction f, the gradient with respect to the squared
loss takes the form X T (X8 — y), up to some constant c. In comparison, Py (Vi@ gint1)
similarly acts as a gradient but incorporates layer-wise feature preconditioners (P, Py ),
data weighting (Q), and causality (g;.,+1, M;). Here, M; represents causal masking, ensuring
that at time 7, only inputs from j < i are used for prediction. Notably, the recurrent structure
of GLA allows the gating mechanism to apply context-dependent weighting strategies.

To simplify the theorem statement, we assume that the gating function depends only on the
input feature, e.g., G; = G(x;), ensuring that the corresponding data-dependent weighting
is uniform across all layers. This assumption is included solely for clarity in the theorem
statement, and if the gating function varies across layers or depends on the entire (d + 1)-
dimensional token rather than just the feature x;, each layer has its own gating Q, and
Xy = XP; © Q. Note that our inclusion of the additional term &, captures the influence
of the last token’s output on the next layer’s prediction. Based on the above L-layer GLA
result, we have the following corollary for multi-layer linear attention network with causal
mask in each layer.
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Corollary 3. Consider an L-layer linear attention model with causal mask and residual connection
in each layer. Let £'th layer follows the weight construction in (9) with Wy o, W, , parameterized by

Py, — P, ¢ as in Theorem 6 and define Py := PMPkT[,for ¢ € [L]. Let By = 0. Then, the (d +1)'th
entry of the last token output of each layer satisfies:

Ony1e = —x PBi, where Br=(1—ar)Br1—PiX (yo—y)
Here, we define ay = x ' Pyx and y, follows the same definition as in Theorem 6.

Note that Corollary 3 generalizes (Ahn et al., 2024, Lemma 1) by extending it to causal
attention. When considering full attention (i.e., without applying the causal mask), we
have y, = X3, and the expression X' (y; —y) = X' (XB, — y) corresponds to the standard
gradient of the squared loss. Furthermore, if we disregard the impact of the last token
(e.g., by incorporating the matrix M as in Eq. (3) of Ahn et al. (2024)), then «y = 0. These
results are also consistent with Ding et al. (2023), which demonstrate that causal masking
limits convergence by introducing sequence biases, akin to online gradient descent with
non-decaying step sizes.

Our theoretical results in Theorem 6 focus on multi-layer GLA without Multi-Layer Per-
ceptron (MLP) layers to isolate and analyze the effects of the gating mechanism. However,
MLP layers, a key component of standard Transformers, facilitate further nonlinear feature
transformations and interactions, potentially enhancing GLA’s expressive power. Future
work could explore the theoretical foundations of integrating MLPs into GLA and analyze
the optimization landscape of general gated attention models, aligning them more closely
with conventional Transformer architectures (Gu & Dao, 2023; Dao & Gu, 2024; Peng et al.,
2024).

B Experimental setup

B.1 Implementation detail

Data generation. Consider ICL problem with input in the form of multi-task prompt as
described in Section 5.1. In the experiments, we set K = 2, dimensions d = 10 and p = 5,
uniform context length n; = np = 7 where we have n = K7, and vary 7 from 0 to 50. Let

(r1,72) := (E[B] B]/d,E[B, B]/d) denote the correlations between in-context tasks 81, 8,
and query task 8. We generate task vectors as follows:

BB ~N(0,1;), and B~ N(rp1+rp, (1—13—13)y).

Input features are randomly sampled ((x;)" ;)X |, x,.1 ~ N(0,1;), and we have y; =
ﬁ,;rxik (¢ =0), k€ {1,2} and y,41 = B'x,,1. Additionally, delimiters &, --- ,&x are
randomly sampled from N (0,1,).

Implementation setting. We train 1-layer linear attention and GLA models for solving
multi-prompt ICL problem as described in Section 5.1. For GLA model, we consider
sigmoid-type gating function given by scalar gating: G(z) = 4’(W;Z)1(d+p+1)x(d+p+1)/ or
vector gating: G(z) = </)(Wgz)1;+p+l where ¢(z) = (1 + ¢7?)~! is the activation function.
Note that although the theoretical results are based on the model constructions (c.f. (9) and
(20)), we do not restrict the attention weights in our implementation. We train each model
for 10000 iterations with batch size 256 and Adam optimizer with learning rate 10~3. Similar
to the previous work (Li et al., 2024b), since our study focuses on the optimization landscape,
ICL problems using linear attention/GLA models are non-convex, and experiments are
implemented via gradient descent, we repeat 10 model trainings from different model
initialization and data sampling (e.g., different choice of delimiters) and results are presented
as the minimal test risk among those 10 trails. Results presented have been normalized by d.
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Figure 2: Multi-layer GLA experiments with (r1,72) = (0,1).

Experimental results. Based on the experimental setting, we can obtain the correlation
matrix and vector following Definition 1

11, 0 T
R= [ ”0” lﬁl,ﬂ and r=[rl, nl]]| .
Then dotted curves display our theoretical results derive using X = I and R, r above.
Specifically, in Figure 1, black dashed curves represent Ljpg, following (17) and blues
dashed curves represent L , following (24). We consider scenarios where (r,72) €
{(0,1),(0.2,0.8),(0.5,0.5),(0.8,0.2) } and results are presented in Figures (1a), (1b), (1c)
and (1d), respectively.

® GLA-wo achieves the worst performance among all the methods. We claim that it is due
to the randomness of input tokens as discussed in Section 5.1. Thanks to the introduction
of delimiters as described in (19), data and gating is decoupled and a task-dependent
weighting is learnt. Hence, GLA is able to achieve comparable performance to the optimal
one (Lypep, red dashed). Note that GLA-wo performs even worse than LinAtt. It comes from
the fact the weighting induced by GLA-wo varies over different input prompts and it can not
implement all ones weight.

e The alignments between LinAtt (blue solid) and blue dashed curves validate our Corol-
lary 2. In Figures 1la, 1b and 1c, the alignments between GLA (red solid) and Lypgp (black
dashed) verify our Theorem 4, specifically, Equation 23. While in 1c and 1d, GLA achieves
the same performance as LinAtt. It is due to the fact that GLA can not weight the history
higher than its present. Then the equal-weighting, e.g., w = 1, is the optimal weighting
given such constraint. What’s more, the alignment between GLA-vector (cyan curves) and
red dashed in Figure 1d validates our vector gating theorem in Theorem 5.

B.2 Multi-layer experiments

In this section, we present additional experiments on multi-layer GLA models. We adopt
the same experimental setup as described in Figure 1a and Appendix B, with parameters
setting to (r1,72) = (0,1). The results are displayed in Figure 2, where the blue, red, and
green curves correspond to the performance of one-, two-, and three-layer GLA models,
respectively, with the y-axis presented in log-scale. According to Theorem 6, an L-layer
GLA performs L steps of WPGD, suggesting that deeper models should yield improved
predictive performance. The experimental findings in Figure 2 align with the theoretical
predictions of Theorem 6.

C Related work

Efficient sequence models. Recent sequence model proposals — such as RetNet (Sun et al.,
2023), Mamba (Gu & Dao, 2023), xLSTM (Beck et al., 2024), GLA Transformer (Yang et al.,
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2023), RWKV-6 (Peng et al., 2024) — admit efficient recurrent forms while being increasingly
competitive with the transformer architecture with softmax-attention. However, we have a
rather limited theoretical understanding of these architectures, especially, when it comes
to their optimization landscape and ICL capabilities. Park et al. (2024); Grazzi et al. (2024)
demonstrate that Mamba is effective and competitive with a transformer of similar size in
various ICL tasks, whereas Arora et al. (2024); Jelassi et al. (2024) establish theoretical and
empirical shortcomings of recurrent models for solving recall tasks. It is worth mentioning
that, GLA models also connect to state-space models and linear RNNs (De et al., 2024;
Orvieto et al., 2023; Gu et al., 2021; Fu et al., 2022), as they could be viewed as time-
varying SSMs (Dao & Gu, 2024; Sieber et al., 2024). Finally, GLA models are also closely
related to implicit self-attention frameworks. For example, the work by Zimerman et al.
(2024) on unified implicit attention highlights how models such as Mamba (Gu & Dao,
2023) and RWKYV (Peng et al., 2023) can be viewed under a shared attention mechanism.
Additionally, Zong et al. (2024) leverage gated cross-attention for robust multimodal fusion,
demonstrating another practical application of gated mechanisms. Both approaches align
with GLA’s data-dependent gating, suggesting its potential for explainability and stable
fusion tasks.

Theory of in-context learning. The theoretical aspects of ICL has been studied by a
growing body of works during the past few years (Xie et al., 2022; von Oswald et al., 2023;
Gatmiry et al.,, 2024; Li et al., 2023b; Collins et al., 2024; Wu et al., 2023; Fu et al., 2023;
Lin & Lee, 2024; Akytirek et al., 2023; Zhang et al., 2024). A subset of these follow the
setting of Garg et al. (2022) which investigates the ICL ability of transformers by focusing
on prompts where each example is labeled by a task function from a specific function class,
such as linear models. Akytirek et al. (2023) focuses on linear regression and provide a
transformer construction that can perform a single step of GD based on in-context examples.
Similarly, Von Oswald et al. (2023) provide a construction of weights in linear attention-only
transformers that can replicate GD steps for a linear regression task on in-context examples.
Notably, they observe similarities between their constructed networks and those resulting
from training on ICL prompts for linear regression tasks. Building on these, Zhang et al.
(2024); Mahankali et al. (2023); Ahn et al. (2024) focus on the loss landscape of ICL for linear
attention models. For a single-layer model trained on in-context prompts for random linear
regression tasks, Mahankali et al. (2023); Ahn et al. (2024) show that the resulting model
performs a single preconditioned GD step on in-context examples in a test prompt, aligning
with the findings of Von Oswald et al. (2023). In contrast, real-world LLMs incorporate
additional components (e.g., softmax attention, causal masking, MLPs) that enable more
sophisticated learning and lead to expected performance gaps (Shen et al., 2024). GLA
models helped bridge the gap from linear attention to transformers. More recent work
(Ding et al., 2023) analyzes the challenges of causal masking in causal language models
(causalLM), showing that their suboptimal convergence dynamics closely resemble those
of online gradient descent with non-decaying step sizes. Additionally, Li et al. (2024b)
analyzes the landscape of the H3 architecture, an SSM, under the same dataset model. They
show that H3 can implement WPGD thanks to its convolutional /SSM filter. However, their
WPGD theory is restricted to the trivial setting of equal weights, relying on the standard
prompt model with IID examples and shared tasks. In contrast, we propose novel multitask
datasets and prompt models where nontrivial weighting is provably optimal. This allows
us to characterize the loss landscape of WPGD and explore advanced GLA models, linking
them to data-dependent WPGD algorithms.

Optimization landscape of attention mechanisms. The optimization behavior of attention
mechanisms has become a rapidly growing area of research (Deora et al., 2023; Huang et al.,
2023; Tian et al., 2023; Fu et al., 2023; Li et al., 2024a; Tarzanagh et al., 2024; 2023; Deng
et al., 2023; Makkuva et al., 2024; Jeon et al., 2024; Zheng et al., 2023; Collins et al., 2024;
Chen & Li, 2024; Li et al., 2023a; Ildiz et al., 2024; Vasudeva et al., 2024b; Bao et al., 2024;
Chen et al., 2024; Huang et al., 2024; Wang et al., 2024b; Sun et al., 2025). Particularly
relevant to our work are studies investigating convex relaxation approaches to optimize
attention models (Sahiner et al., 2022; Ergen et al., 2022), gradient-based optimization
methods in vision transformers (Jelassi et al., 2022), optimization dynamics in prompt-
attention (Oymak et al., 2023; Tarzanagh et al., 2024), implicit bias of gradient descent
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for attention optimization (Tarzanagh et al., 2024; 2023; Julistiono et al., 2024; Li et al,,
2024a; Thrampoulidis, 2024; Zhao et al., 2024; Vasudeva et al., 2024a; Sheen et al., 2024),
and optimization geometry analysis of next-token prediction (Zhao & Thrampoulidis,
2025). While these works mainly focus on standard attention, our work provides the first
optimization landscape analysis of gated attention, establishing conditions for a unique
global minimum and providing comprehensive insights into the implications of data-
dependent weighting in the optimization dynamics encountered during training.

D GLA & WPGD

D.1 Proof of Theroem 1

Proof. Recap the problem settings from Section 2 where in-context samples are given by

Xn  Xp41

x .
Z:[Zl"'znzn-&-l]—rz yi o Yn 0

and let the value, key and query embeddings at time i be
v; = Wszi, ki = Wszi, and ¢; = Wqui.
Then we can rewrite the GLA output (cf. (GLA)) as follows:
0,=S8;q; and S;=G;®S;_1 —Q-vl-kiT
=GO GLOVIk +-+GOvi 1k | +vik]

i
_ T
= E Gj;,‘ @V]'k]' ’
=1

where we define
Gji = Gj11 ©Gjp---Gj, j<i, and Gij = Lz 1)x(d+1)-
Consider the prediction based on the last token, then we obtain
n+1 T
On+1 = Spuy1qn+1 and  Syp1 =) Gy Ovik; .

j=1
Construction 1: Recall the model construction from (9) where

P, 0 P, 0 0y 0
sz{o 0], Wq:[oq 0] and WU:{OX 1l (26)

Then, given each token z; = [x;' y;] T, i € [n], single-layer GLA returns

Ty, Ty,
v, = |:;Z:| , ki = |:Pk0xl:| , and q; = |:Pq0xl:| ,

and we obtain

0 0
T ixd : T
vik; = [yixfpk 0} ,i<n, and vopak, g = 0341) < (d41)-

Therefore, since only d entries in v;k; matrix are nonzero, given ® as the Hadamard product,
only the corresponding d entries in all G; matrices are useful. Based on this observation, let

* * d * *
6| 2] e aum g )

where gj;j = gj11 © gj42- - & € R forj <iand gi;; = 1,.
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Combing all together, and letting X, y follow the definitions in (6), we obtain

0441 = Snt1qn+1

n+1 T
= Y G0 viki | qni1

=1
_ [ (_)rdxd . 0} {Pq x]
Yiayix PO g, 0|0

0
- L:TP‘7 (XP® Q)Ty}

where ,
Q= [g1n41 &unr1 - &unmy1) € RW
Then if taking the last entry of 0,41 as final prediction, we get

fGLA(Z) = xTPq (XPk ® Q)Ty

which completes the proof of Theorem 1. ]

Construction 2: Based on the construction given in (26), only d elements of G; matrices are
useful. One might ask about the effect of other entries of G;. Therefore, in the following, we
introduce an other model construction showing that different row of G; implements WPGD
with different weighting. Similarly, let Wy, W, be the same as (26) but with W;, constructed
by

-
Wo = [0s1)xa ] where u=[ujuy - ug4q]’ € R,
Then, the value embeddings have the form of v; = y;u, which gives

vikj =u[yx[ P 0].

Next, let
(g)" (g,)"
(g2)" (&))" =
G; = Z , and Gj; = " ,
AT X )
(&) = (g}ifl)T *

./ . ./ . . .
where g! € R4 corresponds to the i’-th row of G; and g}:i = g} 1 © g;- 41 & - Then we get
the output

1 ulij]_TrPk © (g]i;nﬂ): 0 xTPy (XP,©0y)  y
2;121 u2yjx; P © (g]':nJrl) 0 Plx xTPq (XPk © QZ)Ty
Ont+1 = . 6 = . ’
' d+1 ' T
Yiq uapayix Pe© (g555) " 0 X Py (XP© Qi) y
where . . . ;
O = u; [gll:n-‘rl gIZ:rH-l T gi’l:l’l-i—l] € R"* , i<d+ L (27)

Therefore, consider (d + 1)-dimensional output 0,,41. Each entry implements a 1-step WPGD
with same preconditioners Py, P; and different weighting matrices ()’s. The weighting
matrix of i’th entry is determined by the i’th row of all gating matrices. Note that if consider
the last entry of 0,11 as prediction, it returns the same result as Construction 1 above, where
only last rows of G;’s are useful.

Additionally, suppose that the final prediction is given after a linear head A, thatis, foa(Z) =
h'o,.1,andleth = [h hy - hy,1]T € R¥TL Then

foa(Z) =hT 0, =x P (XPLO Q) y, (28)
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where
o d+l d+1 A , , ;
Q= Z hini = Z hiui [gll:n+l gZZ:n+1 e g;:nJrl] € R"*%. (29)
i=1 i=1

Then, single-layer GLA still returns one-step WPGD with updated weighting matrix.

D.2 Proof of Theorem 6

In this section, we first prove the following theorem, which differs from Theorem 6 only in
that W, ; is parameterized by P, ; instead of —P, . Theorem 6 can then be directly obtained

by setting P, ; to — P, .
Theorem 7. Consider an L-layer GLA with residual connections, where each layer follows the weight
construction specified in (9). Let Wy o and W, ; in the £'th layer parameterized by Py ¢, Py € RY*4,
for € € [L]. Let the gating be a function of the features, e.g., G; = G(x;), and define Q) as in
Theorem 1. Additionally, denote the masking as M; = [{; 8] € R™", and let By = Bio =0 for
all i € [n].
Then, the last entry of the i'th token output at the {'th layer (o0; ;) is:

o Foralli <mn, 00 =y; —x; Biy, where Biy = Biy 1+Pgs (Vie © gint1),

® Opy1p = —x'Py where By = (14 ag)Bry + Pgy (Ve @ guy1), and ap =
xTPMPkT,Zx.
Here, letting By = [B1 - - BM}T, X)=XP, ©Q,andy, = diag(XBéT), we define
Vie =X/ M;(y;—y).
Proof. Suppose that the input prompt for ¢'th layer is

~ - . T
zo= B0 B Eua ) geex(a) (30)
Yi oo Yn Yn+1

and let k; 4, g; ¢, v; , be their corresponding key, query and value embeddings. Recap the

model construction from (9) and follow the same analysis in Appendix D.1. Let S¢,i € [n+ 1]
be the corresponding states. We have

i
0 _ ¢ T
Si = ;Gj:i Ok,
]:

_ [ ‘ 0,4 , 0}
Y1 7% Pre © (gj) " 0

where
*

G/ =G(x) = {(gf)T I] and  Gj; = [(gfi)T I]

Additionally, recap that we have M; = [f; 8] and © denotes Hadamard division. Let
C_ [l L
= [gi:n+1 e gn:n—',—l] :
Then, defining
X = [%1 % - .fn]—r e R and y=1[ g2 - gn]T € R",

and letting 0; s, i € [n + 1] be their outputs, we get:

22



Published as a conference paper at COLM 2025

e Fori<mn,
i

]

~ pl = 4 /
Eyij,Kx]' © gj:nJrl) @ 8in+1
1 4

1
T o ¢
GiProXi © g = (

j=1

0sxd - 0 |:P‘7T€fi:|
((XPu@Qe)TMii®gfm+1) 0 0

and

¢
0i0=S8qi1=

@)

0
% P ((XPM o0 TMFo gﬁnﬂ)] :
e Fori=n+1,
" T ¢ & NT T
YiPy % © 8ji = (XP,0Q7) §+ Un+1Py pXnt1,
i=1

]

and
[ 045a 0

Ont10 = | (/% ¢ T [P‘IZX"H}
T (RPy @ QYT+ Gua P ) 0) [0

[ 0
~ [FaaPas ((ka,é o0y + ?n+1PkT,zfn+1)]
[ 0
Jn1%, 1 Py P Fngn + %, Py ((XPk,e‘ ® QZ)Ti’) :

] (32)

From (31) and (32), the first d entries of all the (d + 1)-dimensional outputs (e.g, 0;,, i €
[n+1]) are zero. Given the multi-layer GLA as formulated in (25) where residual connections
are applied, we have that the first 4 dimension of all the input tokens remain the same. That
is, # = x;. Additionally, since gating only depends on the feature x;, then all the layers

return the same gatings (e.g, Gf =G)).

Note that if the gating function varies across layers or depends on the entire token rather than

just the feature x;, each layer will have its own gating, leading to G! # G;. In this theorem,
we assume identical gating matrices across layers for simplicity and clarity. However, an
extended version of this theorem, without this assumption, can be directly derived.

Therefore, we obtain
0 1<n
0' = Lvd 7 _—
W x Py (X MiF @ ginin)

0
Ont1l = {?nﬂxTPq,ePkT,gx + xTPM (X;i @ gn+1)} ‘
where we define X, := XP; , © Q).

Since we focus on the last/(d + 1)’th entry of each token output, we have

050 = x/ Py (Xér Miy© gi:n+1) , 1<m, )
Ont1,0 = }7n+1xTPq,eP;I(gx + xTPq,g (ij’ @ gn+1) .

It remains to get the j; for each layer’s input. Let inputs of (¢ — 1)’th and ¢’th layer be

X1 ... Xp X X{ ... Xy X
Z) 1= _ - _ and Z, = .
o [vf bt 1} ! {yf Vi yg]
Define /—1 /—1 —11T
y =1y oy ] ERL
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e Fori < n, from (33) and (25), we have
vi =y Py (X My T O i)
= }/f - }/f_l = szPq,é (XeTMiyé_l @ gi:n+1> .
Suppose that y; — yf =x ,Bf. Then

yo=y—[x B - x/ BT =y—diag(XB") (34)

and
vi =] B = (i — = B) = x] Py (X] Mi(y — diag(XBT)) © gin-1)
:>x1—rﬁzé = x?ﬁfil - szPq,K (X;Mi(y - diag(XBT)) @ gi:n+1> .

Hence,
vl =yi—x B where B =B~ Py (X Mi(y— diag(XBT)) © gins1 )
(35)
e Fori=n+1, from (33) and (25), we have
y _yz 1+y(/ 1 quéPkaer qu(X @gn+1)
Setting ay = x Pq’gP]I X and recalling y! from (34), we get
v = A+ a)y ™ xRy (X] (v — diag(XBT))) © g1 ) -
Additionally, let y* = —x'g’. Then,
B = (1) B xRy, (xgT (y — diag(XBT))) @ gnﬂ) .
Hence,
y'=—x"p" where B'=(1+a)p ' —Py (X; (y — diag(XB"))) ®gn+1)
(36)
Combining (35) and (36) together completes the proof. O

E Optimization landscape of WPGD

We first provide the following Lemma.

Lemma 1 (Existence of Fixed Point). Consider the functions hy(y) and hy(vy) defined in (14a)
and (14b), respectzvely The composite functzon hy (hz( )) + 1 has at least one fixed point y* > 1,
i.e., there exists v* > 1 such that hy(ha(7*)) +1 = v*.

Proof. We prove existence using continuity and boundedness arguments along with the
intermediate value theorem. Note that hl( ) and hy(7y) are continuous functions. Thus,
their composition f(y) := h1(ha(vy)) + 1 is continuous for all y > 1.

We examine the behavior of f(7y) at the boundaries of its domain: Aty = 1, we have (1) =
co > 0, where ¢ is a positive constant. Therefore, f(1) = hy(ha(1)) +1 = hi(co) +1 > 0,
which is finite and positive since h; is positive for all non-negative inputs. As ¢y — oo,
ha(y) = ceo > 0, where ¢ is a positive constant.

For sufficiently large 7, we can establish that f() < 7. To see this, note that we have shown
that hp(y) — e @s ¥ — o, where co is a fixed positive constant. Further, for any fixed
positive value %, the functlon h1(¥) is bounded, i.e., h1(7) < max;<<, A;, which follows
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from the fact that 11 () is a weighted average of the A; values. Therefore, there exists a
constant K such that f(y) < K for all v > 1. Hence, it follows that for all v > K, we have

fly) <K<17.

Now, consider the function f(y) = f(7) — 7, which is continuous on [1, c0) since both f ()
and vy are continuous. We have f(1) = f(1) — 1 = hy(co) > 0 and for some y; > K, we
have f(71) = f(71) — 11 < 0. Since f is continuous and changes sign from positive to

negative on the interval [1, 1], by the Intermediate Value Theorem, there exists at least one
*

* € (1,71) such that f(9*) = 0. This implies f(7*) — 7* = 0, or equivalently, f(7*) = 7*.
Therefore, there exists at least one fixed point y* > 1 for the function hy (hy(7y)) + 1. o

E.1 Proof of Theorem 2

Proof. Recapping the objective from (2) and following Definitions 1 and 2, we have
2
L(P,w)=E {(y —x' PX(w @y)) ]
2
=E {yz} —2E [yxTPX(w @y)} +E [(xTPX(w @y)) ] .

Lety =x'B+¢andy; = x'B; + &, foralli € [n], where ¢,&; ~ N (0,0?) are iid. Then,
E[y*) = E[(x'B+¢)*] = tr (£) + 7,

and

E [yxTPX(w @y)} —E|[B x+)x'P i wixi(x] Bi + &)
i=1

=E

n
Txx'P Z a)l-xix;rﬂi}
i=1

=tr (ZPZ

n

wiE [ﬁﬂ)

=tr (ZZP) w'r.

i=1

Here, the last equality comes from the fact that since B; — r;;B; is independent of g; for
i,j € [n+ 1] following Definition 1, we have E [Bi8"] = r;,111; and ¥ wE [BiB"]
returns w ' r - 1;.

Hence,

E {(xTPX(w(Dy)Y} —E

x'P (iwi(xiTﬁi‘i‘gi)xi) (iwix?(x;ﬂi“‘gi)) P'x
i= i

n
=tr <PTZP]E P(x/ Bi+ i) xix] D
i=1
+tr (PTZP]E Y wiw;(x B+ &i)xix] (x] B; + &) ) ’
i
where
n n
tr <PTZP1E Y W x! B+ Ci)zxixiT1> = tr (PTZPIE Y W (x BB xi +(72)x1-x?]>
i=1 i=1

=[], tr (PTEP (E [xx"xx"] +0°E) )

= |||, (tr (EPTEP) (tr () +0?) +2tr (£2PTEP)),
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and
tr <PTZPIE Zwiwj(xiT,Bi + Ci)xix]-'r(ijﬁj +¢j) ) = tr (PTZPIE Zwiwjxix;rﬁiﬁ]ijx]T
i#] i#]
=tr (PTZP) Zwlw]IELBZTﬂ]]

i#]
= tr (ZzPTZP> o' (R-IDow.
Combining all together and letting M := tr (L) + ¢, we obtain
L(P,w) =M —2tr (ZZP) o'r
+ M |w|f?, tr (}:PT)ZP> + (w2, + " Ro)tr (ZZPT2P> . (37)
For simplicity, and without loss of generality, let

P= VIPVI. (38)
Then, we obtain

L(P,w) =M —2tr (ZP) o'r

I s 39)
+ Mol tr (PTP) + (Jolf, + o Rw)tr (ZPTP).
Further, the gradients can be written as
ViL(P,w) = =20 L+ 2M ||0|[}, P+2(|w||}, + © " Rw)EP, (40)

VoL (P,w) = —2tr (ZP) r + 2Mtr (PTP) w+2tr (}:PTP) (I, + R)o.  (41)

Using the first-order optimality condition, and setting VL(P,w) = 0 and V,L(P,w) =0,
we obtain

~ -1
pP= (M lol2 1+ (Jo|? + aﬁRw)z) Tw'r

2 -1
w'r <|w|g2+wTRwI El>

= 2 2 42a
Mlol?, \ " Mlol?, (422)
T -1
wr i -1
= (. I+X
2 7
Mol <M )
where
o Rw
][,
Further,

w=((Mmtr (PTP) + tr (SBTP)) 1+ tr (ZPTP)R) tr (ZP)r

- tr (ZP) - tr (ZPTP) AR
T Mt (PP e (ZP P\ M (PR e (@B B )
Let
Eyi= 2 I+E7

26
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Then, we get

w(E@P'P) ), (PP
Mir (PTP) 4 tr (TP P) | tr(zP D)
r(z;? o
(1+M (=) )
tr(ZZJZ)
d s2 d S R
_ 1+Ml; (Mt 75,2 (g (M+'Ysz)2>

=: Ty ().

Here, the last equality follows from eigen decomposition £ = Udiag(s)U' with s =
[Sl,...,Sd]T S ]RiJr

Now, plugging P defined in (42a) within w given in (42b), we obtain
B tr (ZP)
- Mtr (PTP) +tr (ZPTP)

“(hy(y)-R+1)7'r. (43)

Using the above formulae for w, we rewrite v = w ' Rw/ HwH%z +1as

r' (ln(V)R+1)"'R(ha(v)R+ 1)~

[ rT<h2<v>R+1>—2r
o a2 n a2 - (44)
&7 1+h2( A <; (1+h2(7)/\i)2>
=:hi(ha(7)),
where the second equality follows from Assumption 1 where r = Ea with a =

[a,-+ ,a4] " € R", and the fact that R = Ediag(A)E' denotes the eigen decomposition of
R, withd=[A,..., A" € RL.

It follows from Lemma 1 that there exists v* > 1 such that i (h2(y*)) + 1 = *. From (42a)
and (43), we obtain

_ ¥*

P=C(r,o,X) | —

(r %) (M

w=c(rwX) (hh(v") R —l—I)_1 r

-1
J4+x7h) d
+ ) an (45)

Ty . tr(ZP)
for some C(r,w,X) = Ml and ¢(r,w,X) = Ner (PP 1o (TP F)

Now, using the our definition P = +/ZP /I, we obtain

-

-1
P(v")=C(r,0,X)-X72 (K/{ Z+I> 2, and

(1) = c(r,w,5) - (la(y") - R+1) 7.

This completes the proof. o

E.2 Proof of Theorem 3

We first provide the following Lemma.
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Lemma 2. Consider the functions hy () and hy(7y) defined in (14a) and (14b), respectively, where

Ai > 0,a; # 0 for at least one i, s; > 0, and M = o+ 2?21 s; > 0. Suppose Ay, - AR < M + Smin,
where Ay and Ag denote the effective spectral gaps of T and R, respectively, as given in (13); and

Smin 15 the smallest eigenvalue of X.. We have that

oy ohy| _ ARAG
8’)’ ohy| — (M + Smirl)2 .
Proof. Let
d 3 d §2 C
Y =y Ay =1+ MED
i=1 M+75) i=1 (M +7s;)

The derivatives of B(vy) and C(y) are
) M
-2 _—
iz (M + i) = (M+si)°
The gradient of hi () = A(y) " !is

ohy (

- M —
oy A(v)B

It can be seen that

IR R A S A
(i) < (Borir) (Bar) -

which implies that

where
= 52 (M + s )s +sf Sj 2(M + vs;)
—sfs (M +8)) — 57 (M + s1)s?
= s2s]2 (M : (s]- + 82 — 25;5 i) + 'y(s-s]Z + slzs]- — sisjz- - s%s]-)) .
Thus, substituting (47a) and (47b) into (46), we obtain

-2
d slzs]z(si - s]‘)2

ohy

o7

28
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< M- M- (lzl M+’)/S) > i,]'Z::1 (M+7Si)3(M+7sj)3.

(46)

(47a)

(47b)

(47¢)

(48)
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oy

IR Let

Next, we derive

We have
L A2q? w Aja?
D'(§)= -2 L El'(g)=-2 i
W= hany PO 2L ey
The derivative of h; with respect to ¥ is given by
oy [ .
E A (]5(,7)> (E(7)D'(7) = D(V)E'(7)) - (49)
Substituting into (49), we get
-2
1 \? w a?
== | = =3 | (50a)
(Em) <§ <1+m>2>
and
, , n 2242 n a2
E(3)D'(7) — D(T)E' (%) =2 i i
(M)D(7) = D(VE(T) 1221(1+M1)3i:21(1+7)u)2
1 Aja? 1 a2\,
) it i/M
1; (1+7A1)? ; (14 72:)°
non _ij (50b)
B ;; (14724314 74))°
n, o a2a? (A2 422 - 2:2))
“ Ll A AP
Here,

Tij = Afa7a; (14 ¥A)) +af (14 7A)Aza7
—Aa(l—i—’y)\)a‘)t a/\)\a(1+’y)t) (50¢)
= a}a] (/\2(1 FAA) + (1 FADAZ = Ai(1+ FA)A; — AiAj(1+ 7)\]-)) .

Hence, substituting (50a) and (50b) into (49) gives

-2
G SO S T S 1 L 51)
8'7’ i=1 (1 + '7)\1')2 ij=1 (1 =+ ,7,)\1,)3(1 + ’7’/\]')3

Now, for the combined derivative, we have
-2
(i 2 ) i slzs]z(s,» —sj)?
S (M)’ i1 (M 4vs)° (M + ’ysj)3

i -2 i aizaJZ-(Al- — /\])2
i—1 1+')’/\ ) ij=1 (1+'7/\i)3(1+'?/\j)3.

29
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Note that M + s; and 1 + A, are nonnegative for all 7, j. Hence,

i 2 -2
oy 9| _ (ks (M+93)
ary af? B i=1 (M + 7Si)3
i s7st- A (M+s)) (M +9s))
’ 3
i1 (MA49s)° (M +7s;)
-2
. Z ”12(1 + ’W\i)
i=1 (1 + '7/\1')3
i al?a]? Dy - (14 9A4) (1+74)
= AT ()’
where ( )2 ( )2
S; — S]' )\1' — /\]
A1 := max ,  Ar :=max — — . 52
VTR Mrs) M)’ 2T DR T+ 44) 2

Here, S = {i € [n] | A; # 0} C [n].

Finally, setting 4 = hy(7y), since v > 1 and by our assumption Ay - Ag < M + Spin, We
obtain

ohy oy AZ . A2

W (h H === .= _X TR
I (ha()) - ()| = |52 - S e

where Ay and Ag are the spectral gaps of X and R; and spy, is the smallest eigenvalue of X;
and M = 0%+ Y% ;s o

<A1-Ap < < 1.

Proof of Theorem 3. It follows from Lemma 1 that there exists v* > 1 such that hy (ha(7*)) +
1 = *. Further, Lemma 2 establishes that the mapping 11 (h2(7y)) + 1 is a contraction map-
ping, since it satisfies |0k (hy(y)) /97| < 1. Therefore, by the Banach fixed-point theorem,
there exists a unigue fixed-point solution, denoted by 7*, satisfying v* = hy(ha(v*)) + 1.
This completes the proof of statement T1..

Next, we establish T2.. First, from Theorem 2, the stationary point (P*, w*), up to rescaling,
is defined as

* -1
Pr=x: (K/I~Z+1> L2 and o = (h(y") - R+D)'r

where 7* is a fixed point of composite function iy (h2(7y)) + 1.

Given the coercive nature of the loss function £(P, ), a global minimum exists. Since the
global minimum must satisfy first-order optimality conditions, it must lie within the set of
stationary points characterized by Theorem 2.

Now, consider arbitrary global minimizers (P, ®). Define scaling factors a, 8 > 0 and write
(P,») = (aP*, Bw*). Substituting this scaling into the loss function gives:

L(aP*, pw*) = M — 2aptr (ZZP*) w* |+ Ma2B%||w*|2tr (Z‘.P*TZ‘.P*)
+ 2B (|w* | + o* | Reo*)tr (ZZP*TZP*) . (53)

Differentiating this expression with respect to @ and p and setting the derivatives equal to
zero, we obtain the equation

—2A+2ap(MCB+ (C+D)E) =0, (54a)
where we define
A= tr (ZZP*) o r, B:i=tr (ZP*TZP*) )

C:= ||a)*||2, D:= ' Rw*, E:=tr (EZP*TZP*> . (54b)
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Equation (54) implies a unique constraint on the product af, ensuring no independent
rescaling beyond a fixed ratio can further minimize the loss. Hence, no distinct minimizers
exist other than scaling the original (P*, w*) pair. Thus, the stationary point (P*, w*) from
Theorem 2 is indeed a unique minimizer up to rescaling.

O
E.3 Proof of Corollary 1

Proof. Since by assumption X = I, it follows from (14b) that

d 1 d 1 N
() = (14 (d+ 2
2(')/) ( U)izzl(d+0-2+,y*+1)2 <il(d+(72+r),*_|_1)2>
_ 1
Cd4o?+ 1
Substituting this into (15) gives

) -1
P =1 and "= (R—i—(d—i—a —|—1)I) r.
Now, recall that the objective function is given by
2 2
L(w) =M —2tr (ZZP) o r+Mo|? tr ():PTZP) + (||, + o' Ro)tr (ZZPTZP) )
and, by assumption, M = ¢2 +d.

Substituting P* = I and w* = (R+ (d + 0>+ 1)I) ~!rinto the objective (37), and using
X = I, we get:

L) = (2 +d)—2-d-rTw" + (2 +d) |o*)?d+d (\|w*||2 + w*TRa)*) .
The expression simplifies as

-1
L(w*) = (P +d)—2d-r" (R +d+*+ 1)1) r+ (0% +d)d||jw* > +d (||w*\|2 + w*TRw*) .

Next, we compute ||w*||2 and w* ' Rw*. By definition, we have

-2
lw* |2 = rT (R +d+o+ 1)1) r,

and
1

1 _
o Ro* =r' (R +d+o?+ 1)1) R (R +d+a?+ 1)1) r.
Thus,
-1
d+0?+1)|w|* + o Ro* =r" (R+ d+0+ 1)1)
-1
(@+P+ DI+ R) (R4 @+ + 1))
-1
=r' (R+(d+02+1)1) r.

Substituting this result back into the objective function gives

L(w)=(c?+d)—d-r’ (R+(d+¢72+1)1)71r.
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F Loss landscape of 1-layer GLA

E1 Proof of Theorem 4

Proof. We first prove that under Assumption 2, £ , = minpcgaxa ,e)y Lweeo (P, @) where
W is the search space of weighting vector w € IR" defined as

W = {[wllzl wKIZK}T eR"

D<w<w1Mi<j<k}).

Step 1: Define a set W := {[w1 ce wn]T eR"

ngigwjgl,V1§i§j§n}and

we have W € W. Given scalar gating G; = {g ;T j , following (11), the weighting vector
1

returns

© = QL1 gn:n+1]T-
Since GLA with scalar gating valued in [0, 1] following Assumption 2, that is, g; € [0,1], we
have g;.y 11 < gjint1 for 1 <i < j < n. Therefore, any weighting vector w implemented by

GLA gating should be inside W.

Step 2: Next, we will show that

w* €W where " =arg min Lypep(P, ).

PweW
Define the weighting vector ® = [w] -+ w{]' € R" where we have v, =
[w%k) w,(i)]T € R™. For any w ¢ W, there exist (i,j,k) with i = j— 1 such that
a)l.(k) < w](k). Given gradient in (41), we have that

VL=Vt =2 (Mer (PTP) +tr (2PTP)) (Y — ).

Here, (42a) gives that (optimal) P # 0 and therefore, we have that
(Mtr (PTP)+tr (EP"P)) > 0 and V. wL <V _wL. Therefore either increasing

]
wl.(k) (if Vw“‘) L < 0) or decreasing w/(k) (if Vw<k) L > 0) will reduce the loss. This results in
i j

(k)

showing that the optimal weighting vector w* satisfies w;"’ = w](k) forany i,j € [ng] and

k € [K]. Hence, 0* € W.

Step 3: Finally, we will show that any w € W can be obtained via the GLA gating. Let
w = [w 1;1 e wKI;,FK]T be any vector in W and assume that wg = « < 1 without loss of
generality. Then such sample weighting can be achieved via the gating

T
JL I R DL/ S JLIC o
o wik e Wik K wkk

Let w; := % and let wy be in the form of
k:K
0
wg — |: E..l,+1:| c ]Rd-i-fi-l-l.
We

Then, it remains to show that there exists w, satisfying

1, k=0,
wy, ke[K].

o050 = {

The linear independence assumption in Assumption 2 implies that the problem is feasible,
which completes the proof of (22).
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Proof of (23): Recap the optimal weighting from (15) which takes the form of

w* = (h(y*)-R+1)"'r,

where hp(7*) > 0. Since Assumption 3 holds and ny = ny = -+ = ng := 7, R is block
diagonal matrix, where each block is an all-ones matrix. That is

Lixa 0 - 0

71X
0 1,07 --- 0
Therefore, we get

Since Rr = 7ir, then

w*

O RSN

Therefore, the optimal weighting (up to a scalar) is inside the set }. Combining it with (22)
completes the proof.

]

F2 Proof of Theorem 5

Proof. Following the similar proof of Theorem 4, and letting W =
{ (w1l - wily, ] Te ]R”}, we obtain

min B £WPGD(P/ w) = min ﬁprD(P, a))
PR weW PeR4%d ()eR"

Therefore, it remains to show that any w € W can be implemented via some gating function.
Let w = [wy I,Tl e cuKlnTK]T be arbitrary weighting in JW. Theorem 4 has shown that if
w1 < wy < -+ - < wg, GLA with scalar function can implement such increasing weighting.

Now, inspired from Appendix D, Construction 2 and (29) that all dimensions in the output
implement individual WPGD, the weighting can be a composition of up to d + 1 different
weights (u is (d + 1)-dimensional). Therefore, for any wyq, - ,wx € R, we can get K
separate weighting:

w| = Wq [l;ll—l e lijHK]T/
T 4T TIT
wr = (wZ - wl)[onl lnz T an] ’
T T 1T TIT
w3 = (CU3 - WZ)[Onl 0}'12 1713 o 11’![(] 4
T ol ol T T1T
WK = (a)K — a)K_l)[Onl Onz 0n3 s 0,”(71 an] .

Recap from Appendix D and (29), and consider the construction W, =
[0t pt1)xa 0(d+p+1)xp]T- Assumption 2 implies that K < p < d + p + 1.

From (28) and (29), let i’th dimension implements the weighting w; for i € [K]. Specifically,

let i"th row of each gating matrix G; implement weighting [O,I1 e 0;27 . I,I, e I,Ik] (which
is feasible due to Theorem 4) and set u;h; = w; — w;_1 with wy = 0. Then the composed
weighting following (29) returns w = 25:1 wy, which completes the proof. O
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E3 Proof of Corollary 2

Proof. Recap from (42a) that given X = Iand w =1,

-1

P = @+l + (n+1"ROI) 177
_ 17r

-~ n(d+024+1)+1TR1

Then taking it back to the loss function (c.f. (37)) obtains

I:.=cl.

LP,0=1)=d+0c*—2cdl"r+ (d+0%)c*nd + (n+1"R1)c*d
=d+o*—cdl'r.

It completes the proof.
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