
Imagine, Verify, Execute: Memory-Guided Agentic
Exploration with Vision-Language Models

Seungjae Leea∗, Daniel Ekpoa∗, Haowen Liua

Furong Huanga,b†, Abhinav Shrivastavaa†, Jia-Bin Huanga†

a University of Maryland, College Park, b Capital One
{sjaelee, daniekpo, hwl, furongh, abhinav, jbhuang}@umd.edu

∗ Equal contribution † Equal advising
Project Page: https://ive-robot.github.io/

Abstract: Exploration is essential for general-purpose robotic learning, especially
in open-ended environments where dense rewards, explicit goals, or task-specific
supervision are scarce. Vision-language models (VLMs), with their semantic rea-
soning over objects, spatial relations, and potential outcomes, present a compelling
foundation for generating high-level exploratory behaviors. However, their outputs
are often ungrounded, making it difficult to determine whether imagined transitions
are physically feasible or informative. To bridge the gap between imagination
and execution, we present IVE (Imagine, Verify, Execute), an agentic exploration
framework inspired by human curiosity. Human exploration is often driven by the
desire to discover novel scene configurations and to deepen understanding of the
environment. Similarly, IVE leverages VLMs to abstract RGB-D observations into
semantic scene graphs, imagine novel scenes, predict their physical plausibility,
and generate executable skill sequences through action tools. We evaluate IVE in
both simulated and real-world tabletop environments. The results show that IVE
enables more diverse and meaningful exploration than RL baselines, as evidenced
by a 4.1 to 7.8× increase in the entropy of visited states. Moreover, the collected
experience supports downstream learning, producing policies that closely match or
exceed the performance of those trained on human-collected demonstrations.

Keywords: Exploration, Agentic System, Vision-Language Model

Verbalize goal

Novel Scene

(a) Human explorer (b) Reinforcement learning explorer (c) IVE: Agentic exploration (Ours)

Action tools

Scene describer

Explorer

Verifier
Memory

Intrinsic reward or
uncertainty-driven goal sampling

Reward
model

Understand

Physical env

Semantic
information

Action

Memorize

Policy
model Physical env

Action

Observation

Goal
Sampling

or+

Physical env

Figure 1: Comparison of human, RL, and IVE exploration strategies. (a) Humans explore by seeking
novel scene configurations and understanding the environment [1, 2], often enhanced by goal verbalization [3].
(b) RL agents explore using a range of techniques, including intrinsic reward or goal sampling, to maximize
the coverage of visited states. (c) IVE (ours) leverages VLMs to structure exploration via scene description,
exploration, verification, memory, and action tools, each aligned with key aspects of human exploration.

1 Introduction

Exploration is a fundamental capability for general-purpose robotic learning, particularly in open-
ended environments where dense rewards, explicit goals, or demonstrations are scarce. In such
settings, agents must autonomously discover diverse and meaningful interactions to support down-
stream learning and generalization [4, 5, 6, 7]. Reinforcement learning (RL) has been a dominant
paradigm, often using intrinsic rewards to promote novelty [8, 9, 10] or goal sampling to broaden

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://ive-robot.github.io/

C
om

m
on

 O
bj

ec
ts

Ta
ng

ra
m

s

Remote Control

Tennis Ball Apple

Green Block

Rubik’s Cube

Stacked on
Near

Corresponding
scene graphs:

Green Block

Rubik’s Cube

Remote ControlGreen Block

Rubik’s Cube

Figure 2: Autonomous scene exploration with IVE. IVE enables autonomous exploration of the scene with
diverse objects, e.g., a tangram (top) or common objects (bottom).

state-space coverage [11, 12]. While effective in simulation or low-dimensional tasks, RL methods
often struggle in real-world robotic settings where environments are high-dimensional, semantically
rich, and subject to physical constraints and safety risks. In these settings, the undirected or stochastic
behaviors often encouraged by RL not only inefficient but also potentially hazardous.

Vision-language models (VLMs) offer a promising alternative. Their broad semantic knowledge and
reasoning capabilities have enabled advances in robotic perception, reasoning, and high-level decision
making [13, 14, 15, 16]. Building on these strengths, VLMs also offer a promising foundation for
guiding exploration by generating hypothetical transitions, or quantifying novelty [17, 18, 19, 20].
However, their imagination often lacks grounding in physical dynamics: transitions may appear
semantically plausible yet prove physically infeasible, redundant, or unsafe to execute [21, 22, 23].
Moreover, VLMs operate without structured memory of prior interactions, making it difficult to
reason about which states have already been visited or which actions have been attempted. This
absence of memory and grounding often leads to redundant, implausible, or low-diversity generations
that hinder effective exploration and downstream learning.

To address this challenge, we introduce IVE (Imagine, Verify, Execute), a fully automated, VLM-
guided system for agentic exploration, inspired by human exploration—by generating self-directed
goals, reacting to new information, and refining their understanding through experience [1, 2, 3, 24].
IVE enables agents to imagine novel future configurations, predict their feasibility based on recent
interaction history, and execute selected behaviors via a library of skills. IVE integrates imagination,
verification, memory, and action execution into a closed loop, enabling exploration that is both
semantically rich and physically grounded. The experience generated by IVE is not only physically
grounded and semantically rich, but also directly reusable for downstream policy learning and world
model learning. In this work, we make the following key contributions:

• Curiosity-Driven Exploration via Imagination and Verification. We introduce IVE, that com-
bines memory-guided imagination with physical plausibility prediction to emulate human-like
curiosity in embodied agents, achieving a 4.1 to 7.8× increase in state entropy over RL baselines.

• Reward-Free Data Collection with VLMs. We develop a fully automated, vision-language
model-guided agentic system for generating semantically meaningful interaction data—without
requiring external rewards, demonstrations, or predefined goals, achieving 82% to 122% of the
scene diversity exhibited by expert humans.

• Validation Across Downstream Tasks. We provide extensive experiments in both simulated
and real-world tabletop environments, demonstrating that IVE improves exploration diversity and
enables stronger policy learning and world model training compared to RL-based baselines.

2 Related Work

Exploration for Robotic Learning. Exploration is a fundamental challenge in enabling robots, and
plays a critical role in building accurate models of environmental dynamics, discovering affordances,
and identifying effective strategies for control. To tackle the challenge of exploration, many prior
methods have often leveraged RL via intrinsic reward or goal sampling [25]. Intrinsic reward methods

2

encourage exploration using prediction error [8, 26, 9], entropy [10, 27], or state visitation [28, 29],
but often lack semantic understanding about the task, leading the agent to focus on perceptual
novelty rather than task-relevant behaviors. In contrast, goal sampling methods guide exploration by
sampling goals using temporal distance [30, 31, 32], uncertainty [33, 12], or coverage [11, 34, 35, 36].
While often more directed than intrinsic rewards, these methods still lack mechanisms to identify
meaningful goals, and struggle in high-dimensional observation spaces, where learning a reliable
latent representation or estimating uncertainty becomes challenging.

Vision-language models for Robotics. VLMs have emerged as powerful tools for bridging visual
perception and language-driven understanding. VLMs have demonstrated strong generalization across
diverse tasks, enabling applications in robotic task generation [37], autonomous data collection [38],
evaluation [39], and serving as high-level planners for low-level action tools [22, 40]. While
VLMs offer rich semantic understanding, leveraging them specifically for guiding exploration
remains relatively underexplored. Recent efforts include using VLMs to improve goal-conditioned
policies [38] or explore by ranking observations based on semantic interestingness [20]. Similarly,
we use a VLM in our work to guide exploration by prompting the VLM to imagine and propose
physically plausible actions that will lead to novel scene configurations.

Scene graph for observation abstraction. Scene graphs, which encode objects and their rela-
tionships as graph structures [41], emerged as a powerful tool for semantic scene understanding in
computer vision [42, 43, 44, 45, 46, 47]. Scene graphs have been integrated into robotic pipelines for
grounding language instructions into executable actions [48, 49], verifying plan feasibility [50], and
supporting open-vocabulary understanding [51]. Scene graph representation also enables hierarchical
systems [52, 53, 54], highlighting their role in bridging high-level semantic reasoning with low-level
physical execution. Similar to prior methods [50, 48], we use scene graphs as an intermediate
representation to the VLM. Beyond this role, we use scene graphs to measure the novelty of new
scenes, encouraging the VLM to explore diverse scenes.

3 Method

Overview. We propose a fully automated, VLM-driven exploration system, IVE, built on an agentic
architecture composed of three core modules: the Scene Describer, the Explorer, and the Verifier.
(An overview of the IVE system is shown in Figure 3.) IVE begins by constructing an abstract,
semantic representation of the current observation using the Scene Describer (Section 3.1). The
Explorer then proposes candidate future scenes along with skill sequences intended to achieve them
(Section 3.2). These candidate plans are evaluated by the Verifier, which predicts their physical
plausibility and utility before execution (Section 3.3). In addition to these core components, two
auxiliary modules support the system: the Memory module retrieves relevant past experiences to
inform both the Explorer and Verifier (Section 3.4), and the Action Tools module translates the skill
sequences into executable robot actions (Section 3.5).

3.1 Scene Describer

The Scene Describer module, powered by a VLM, constitutes the frontmost component of our system,
abstracting raw observations into structured scene graphs that capture semantic object relationships.
By converting high-dimensional visual inputs into compact, symbolic representations, this abstraction
reduces the complexity of reasoning over raw sensory data, enabling more efficient exploration of
novel scene configurations.

Given an observation ot (RGB image at timestep t), the scene describer produces a scene graph
Gt = (V,E), where V denotes the set of objects (nodes) and E encodes directed, typed semantic
relations (edges) between pairs of objects. Each object v ∈ V refers to a unique object name, and
edges E include spatial and functional relations such as Stacked on and Near. The design of the
scene graph can be adapted depending on the task, allowing flexibility in the level of abstraction and
the types of relations captured.

3

Scene graph	𝒢!

Explorer’s output

Explorer

No

Yes

Memory

Retrieve

(Real-time update)

Skill sequence 𝜇!":$

Action sequence	𝐴!":$

Scene
 describer

Feedbacks 𝑓!

IVE

Environment

Scene describer

Action tools

Relation-based placement
• placing relative to another object

Region-based placement
• placing into predefined workspace regions

Arranger
• decluttering to bare areas

Scene graph	𝒢!

Memory

Edit-distance-based
graph retrieval

“Nodes”: [“Rubik’s Cube”, “Lemon”, …]
“Edges”: [
 [“Red Block”, “Stacked on”, “Blue
Block”], …
]

Relevant
scene graphs

Desired scene graph	 &𝒢!%"
Skills	𝜇!":$

Action tools Query
scene graph

Explorer Verifier
Observation 𝑜!
Scene graph	𝒢!

Relevant scene graphs

Desired scene graph	 &𝒢!%"
Skills 𝜇!":$ to achieve it

Observation 𝑜!

Observation 𝑜!

Recent ℎ transitions

Feedbacks 𝑓!:
Yes

No, {reasons}

𝒢!"# , 𝜇!"#$:& , … , 𝒢!"$, 𝜇!"$$:&

Ask Explorer again with 𝑓!
Pass skills to Action tool

Verifier

Observation 𝑜!

: textual form
Memory

𝑜!

𝑜!

𝑜!

Figure 3: Overview of IVE. Given an observation ot, the Scene Describer constructs a semantic scene graph
Gt. The Explorer leverages this representation, along with the current observation and retrieved past scene
graphs, to generate (“imagine”) a candidate future scene graph Ĝt+1 and a sequence of skills µ1∶N

t . The Verifier
evaluates the feasibility of these imagined transitions using recent interaction history. If verified, the skills are
instantiated into low-level actions via the Action Tools and executed by the robot. Otherwise, the Explorer
receives feedback and replans. The iterative process enables structured, curiosity-driven exploration grounded in
semantic reasoning and informed by physical feasibility.

Illustrative Example. Consider a tabletop scene containing a red cup, a blue block, and a tray. The Scene
Describer may produce:

V = {Red cup,Blue block,Tray, . . .}
E = {(Blue block,Stacked on,Tray), (Red cup,Near,Tray)}

This abstract graph captures spatial relations without requiring dense 3D reconstruction. It allows the
Explorer module to hypothesize meaningful future configurations (e.g., “move the cup onto the tray”) while
enabling the Verifier to assess feasibility (e.g., “Is the tray already full?”) based on prior experiences.

3.2 Explorer

The Explorer module is a VLM-based component that takes as input the current RGB observation
ot, the corresponding scene graph Gt, and a set of relevant past experiences retrieved from memory
(Figure 3). Using this contextual information, the Explorer imagines a future scene graph, Ĝt+1, that
preserves the object set of Gt but alters the edge structure—representing new spatial or functional
relationships among objects. These imagined transitions enable the agent to reason about potential
next states beyond those encountered previously.

To promote novelty and avoid redundancy, the Explorer compares Ĝt+1 with retrieved scene graphs
from memory, encouraging transitions that are diverse and previously unseen. This memory-aware
imagination supports a form of curiosity-driven exploration over structured symbolic representations.

In parallel with the imagined graph, the Explorer generates a sequence of N high-level skills µ1∶N
t

intended to transition the agent from Gt to Ĝt+1. Each skill corresponds to a discrete, interpretable
action primitive from a predefined skill library. These skill sequences are then passed to the Verifier
for physical feasibility assessment prior to execution.

Continuing Example. Returning to our earlier example, suppose the current scene graph encodes that the
block is Stacked on the tray and the cup is Near the tray. The Explorer may propose a future graph where
the cup is now Stacked on the tray and the block is Near the tray. It may then generate a skill sequence
such as:

µ
1∶2
t = {move(Red cup,Stacked on,Tray),move(Blue block,To the left of,Tray)}

4

3.3 Verifier

The Verifier module supervises the sequence of skills µ
1∶N
t proposed by the Explorer, assessing

whether the imagined transition is plausible, physically feasible, and stable. Unlike the Explorer—
which operates on current context—the Verifier considers a broader temporal window by accessing
recent transitions {Gt−h, µ

1∶N
t−h ,⋯,Gt−1, µ

1∶N
t−1 }. This history provides insight into the agent’s prior

actions and their outcomes, allowing the Verifier to make informed judgments grounded in embodied
experience.

Given the current observation and proposed plan, the Verifier predicts the likely outcome and compares
it with the Explorer’s intended goal graph. Beyond semantic alignment, it also performs stability
checks—such as detecting precarious object placements, occlusions, or workspace clutter—that may
compromise successful execution. If the proposed plan is unsafe or unlikely to succeed, the Verifier
recommends corrective interventions, such as reordering skills, repositioning obstructing objects, or
decluttering the workspace.

The Verifier module returns a structured feedback signal ft composed of:

• a binary decision: “Yes” if the plan is executable or “No” otherwise;
• and, for “No” cases, an explanation detailing rejection reasons (e.g., infeasibility, instability, or

deviation from the goal).

Continuing Example. In our tabletop scenario, if the Explorer suggests stacking a cup on a tray that is
already full, the Verifier may reject the plan due to instability: It may return:

ft = No: Cannot place cup on tray — unstable configuration. Suggest removing the Blue block
from the Tray first, then placing the Red cup on the tray.

3.4 Memory Retrieval

To support novelty-based exploration and informed decision-making, IVE maintains a dynamic
memory module M that stores previously encountered scene graphs G derived from past observations.
These structured graphs serve as compact, symbolic summaries of prior interactions, enabling the
system to reason over what has already been seen and done.

Each G is instantiated using the NetworkX library, allowing efficient graph storage, manipulation,
and querying. At each timestep t, the Explorer queries M to retrieve a set of past scene graphs that
are structurally similar to the current scene graph Gt. Specifically, the retrieved set is defined as

{Gj ∈ M ∣ dist(Gt,Gj) < τ}, (1)

where dist(Gt, ⋅) denotes an edit-based graph distance from the current scene Gt, and τ is a predefined
similarity threshold. This retrieval process surfaces relevant prior experiences that guide the Explorer
in imagining transitions that are both novel (i.e., not previously observed) and physically plausible
given historical outcomes.

In parallel, the Verifier leverages the same memory to assess the feasibility of proposed skill sequences,
using previously executed transitions as empirical priors for prediction. Thus, memory plays a dual
role: enabling semantic novelty in the imagination process and providing a grounded context for
physical verification.

Continuing Example. Suppose the current scene Gt encodes a cup next to a tray, with a block positioned
above. The memory might retrieve a prior scene where the block was stacked on the cup and the tray was
empty, helping the Explorer avoid redundant imagination and providing the Verifier with context on whether
that configuration was previously successful or unstable.

5

3.5 Action Tools

(a) Find Object A (b) Find Object B

(e) Execute(Grasp)(d) Execute(Drop)

(c) Extract grasp poseAction
tools

Environment

Action
sequences	𝐴!":$

Skills 𝜇!":$
[move(tennis ball,

Stacked on,
white box),…]

Next observation 𝑜!"#

1:𝑁

…

Figure 4: Example of transforming skill to
action in a real-world environment.

To bridge the high-level skill sequence µ
1∶N
t generated

by the Explorer with real-world execution, we employ an
Action Tools module that translates each skill into a corre-
sponding low-level action sequence A

1∶N
t using RGB-D

observations of the current scene. We first instantiate each
skill µi

t with a predefined set of task-specific primitives
that are aligned with the robot’s embodiment and opera-
tional constraints. After executing a skill, IVE records the
resulting state, constructs the updated scene graph Gt+1,
and stores the transition tuple (Gt, µ

1∶N
t ,Gt+1) in memory,

completing a full imagination-verification-execution cycle.
Details of the categories and modularities of the action
tools are provided in the appendix D.

4 Experiments

Our experiments address three main questions. Exploration quality: How does IVE compare to
conventional exploration strategies in producing diverse and meaningful interactions (Figure 5)?
Component effectiveness: How does each module contribute to the overall performance of the
system (Figure 6)? Downstream utility: How useful is the collected data for downstream tasks
(Tables 1, 2)?

4.1 Experimental Setup

Simulation Environment. We use VimaBench [55], a simulated tabletop environment containing
multiple rigid objects with varied shapes and colors. The robot is equipped with a suction end-effector
and can execute pick-and-place in continuous action space. To efficiently explore this environment,
reasoning over spatial configurations while maintaining physical interaction constraints is required.

Real-World Environment. We use a 6-DoF UR5e robot arm with a parallel gripper to interact
with tabletop objects. A VLM, GPT-4o [56], observes the current scene and proposes high-level
actions, which are then parsed and executed through a low-level controller. We predict the Grasp
poses using AnyGrasp [57], with target objects segmented via LangSAM [58], closely following the
approaches introduced in [59, 60]. We apply a heuristic preference for top-down grasps for improved
reliability. We compute drop positions using depth data and segmentation masks. For the “Stacked on”
relationship, we first calculate the midpoint of the target object using the object’s segmentation mask,
then we calculate the drop height using the depth data for the object region. After each execution, we
collect the robot pose, task success status, and RGB data and add them to the experience buffer for
downstream tasks.

4.2 IVE Outperforms RL and Human Baselines in Exploration Diversity

We compare IVE against intrinsic motivation RL methods and three human-controlled strategies.
For RL baselines, we implement novelty-based intrinsic reward approaches such as RND [26] and
RE3 [10]. Human baselines include: Expert, given explicit objectives and operating the robot via
action tools; Novice, interacting freely via action tools, without instructions; and Moved by hand,
directly manipulates objects without involving the robot arm.

Figure 5 shows that IVE achieves 4.1 to 7.8× increase in state entropy over RL baselines and 82% to
122% of the scene diversity exhibited by expert humans. 1 We attribute this to humans gradually
forgetting previously encountered scenes, whereas IVE tracks all past configurations via retrieval.

1Refer to the Appendix A for details on how entropy and scene counts are computed.

6

When considering only the first 50 transitions, human performance in simulation closely matches that
of IVE. In the real world, IVE slightly underperforms compared to a human expert. See Appendix C
for details on the comparative capabilities of different VLMs.

Human
(Moved by hand)IVE(Ours) Human

(Expert)
SAC+RND
(Burda et al., 2019)

VIMA bench (5 objects) VIMA bench (4 objects) UR5 tabletop (5 objects)

SAC+RE3
(Seo et al., 2021)

Human
(Novice)

N
um

be
r o

f u
ni

qu
e

sc
en

e
gr

ap
h

0 50 100 150 200 250 350 350 400

En
tro

py

Number of interactions Number of interactions Number of interactions
0 10 20 30 40 50

0

25

50

75

100

125

150

175

200

0

10

20

30

40

50

60

70

80

0

5

10

15

20

25

30

35

40

0

1

2

3

4

5

0

1

2

3

4

0

1

2

3

4

N
um

be
r o

f u
ni

qu
e

sc
en

e
gr

ap
h

En
tro

py

N
um

be
r o

f u
ni

qu
e

sc
en

e
gr

ap
h

En
tro

py

0 50 100 150 200 250

Figure 5: Exploration capability evaluation across simulated and real-world environments. Top: Growth
curves of the number of unique scene graphs visited. Bottom: Diversity of visited states, measured by entropy
(see Appendix A for the definition and computation details for entropy, and 4.2 for baseline details.

Why RL Falls Short. RL-based baselines perform worse than both IVE and human participants.
We believe this reflects a limitation of RL-driven exploration that prioritizes pixel-level novelty over
semantically meaningful interactions, especially when they rely solely on intrinsic rewards, making
structured and meaningful exploration challenging. In contrast, IVE explores with semantic structure
and memory-based recall, enabling higher-level diversity without external rewards.

4.3 Ablations Reveal Memory, Explorer and Verifier Are Critical for Effective Exploration

We ablate components of IVE to quantify their impact on exploration performance (Figure 6). The
following variants are tested:

• Random Tool Selector uniformly samples action tools with no planning.
• w/o Explorer (Rule-Based Explorer) uses simple rules to generate scene graphs; retains VLM for

skill generation.
• w/o Memory disables retrieval-based grounding.
• w/o Verifier skips physical feasibility filtering.

0

25

50

75

100

125

175

200

150

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

1.0

2.0

3.0

4.0

5.0

0 50 100 150 200 250 350 350 400

(d) IVE (Ours)(c) w/o Verifier(b) w/o Memory(a) w/o Explorer

Random action tool Human(Expert)

Explorer

Verifier

Scene
describer

Action
 tools

Memory
Explorer

Verifier

Scene
describer

Action
 tools

ExplorerScene
describer

Action
 tools

MemoryScene
describer

Action
 tools

Memory

Rule-based
explorer

w/o Explorer (rule-based explorer) w/o memory w/o verifier IVE(Ours)
Number of interactions

Figure 6: Ablation study of IVE. (Top) Illustration of each variant, highlighting removed modules in gray.
(Bottom) Exploration performance is measured by the number of unique scene graphs, entropy, empowerment,
and information gain (see Appendix A for metric details).

We evaluate these variants based on the number of unique scene graphs visited, entropy, empowerment,
and information gain. Figure 6 shows that removing the memory module and the explorer results in a

7

22% and 27% drop in unique scenes discovered, respectively, along with a reduction in entropy
and information gain—highlighting its importance for novelty-aware planning. Verifier removal
also degrades performance, although empowerment remains relatively stable—likely because the
verifier proposes fewer decluttering actions, and such actions are inherently more stochastic and less
goal-directed. The random tool selector baseline performs the worst, achieving less than half the
number of unique graphs discovered by IVE.

Table 1: Performance of goal-conditional and non-conditional behavior cloning across tasks in simulation. Our
method achieves human-level performance and significantly outperforms exploration RL baselines (RND [26]
and RE3 [10]), demonstrating the effectiveness of our exploration strategy in generating diverse and semantically
meaningful data. Example goal images used for the goal-conditioned tests are provided in Appendix E.

Non-conditional Goal-conditional

Exploration Method # of achieved tasks Entropy Success rate

VIMA Bench (5 objects)

SAC [61] + RND [26] 2.0 1.907 8.33%
SAC [61]+ RE3 [10] 2.1 1.754 0.00%
IVE (Ours) 4.1 2.283 58.33%
Human 3.6 2.021 50.00%

VIMA Bench (4 objects)

SAC [61] + RND [26] 2.0 1.907 0.00%
SAC [61] + RE3 [10] 1.2 1.959 0.00%
IVE (Ours) 3.1 1.528 41.67%
Human 4.2 1.897 33.33%

Table 2: Quantitative evaluation of World Model (WM) predictions using datasets collected by different
exploration methods, trained with DINO-WM [62].

Sim Env 1 Sim Env 2 Real World

Exploration Method SSIM (↑) LPIPS (↓) SSIM (↑) LPIPS (↓) SSIM (↑) LPIPS (↓)

SAC [61] + RND [26] 0.812 ± 0.039 0.198 ± 0.060 0.855 ± 0.036 0.168 ± 0.061 - -
SAC [61] + RE3 [10] 0.814 ± 0.040 0.199 ± 0.057 0.850 ± 0.034 0.168 ± 0.059 - -
IVE (Ours) 0.837 ± 0.032 0.129 ± 0.044 0.853 ± 0.032 0.160 ± 0.058 0.634 ± 0.075 0.181 ± 0.056
Human 0.833 ± 0.032 0.126 ± 0.042 0.862 ± 0.027 0.139 ± 0.047 0.653 ± 0.072 0.194 ± 0.056

4.4 IVE Enables Stronger Policy Learning and World Modeling

We evaluate two downstream tasks to validate the usefulness of the data from the exploration.
Performance is compared across datasets collected by three strategies: our method, RL-based
exploration (SAC [61] with RND [26] and RE3 [10]), and human demonstrations (WM only).

• World Model Accuracy (WM): Measures the prediction accuracy of a learned dynamics model
trained on the exploration data using DINO-WM [62].

• Behavior Cloning (BC): Evaluates how well a Diffusion Policy [63], trained on the exploration
dataset, can achieve novel goals presented as images.

As shown in Table 1, policies trained on IVE data outperform those trained on RL exploration data
by up to +58% in task success, and achieve performance on par with human demonstrations.
Similarly, in world model (WM) prediction tasks, Table 2 shows that IVE achieves performance
closest to that of human-collected data. The results on both policy learning and world model prediction
highlight the benefits of its structured and diverse exploration strategy for downstream tasks.

5 Conclusion

We introduced IVE, an agentic exploration framework that integrates imagination, verification, and
execution to enable efficient exploration in robotic systems. By leveraging the broad knowledge
of VLMs, our method enables robots to explore and interact with their environment autonomously.
The imagine-verify-execute cycle in IVE promotes high-level semantic diversity during exploration,
resulting in rich datasets for learning downstream tasks. In future work, we plan to expand the set of
action tools available to the system, enabling more complex interactions and improving the generality
of agentic exploration.

8

Limitations. While our method performs well, it shares common limitations of real-world robotic
systems. VLM-based reasoning introduces some latency, which could be reduced with lighter or
distilled models. Our action tools are manually defined, which limits scalability for complex tasks;
integrating learned policies as tools could address this limitation. Finally, our reliance on open-
vocabulary object detection can lead to failures with occluded or novel objects—future work could
incorporate multi-view perception or interactive discovery to improve robustness.

Acknowledgments

This work was partially supported by (a) NSF CAREER Award (#2238769) to AS, and (b) DARPA
TIAMAT (#80321), NSF Award (#2147276 FAI), DOD AFOSR Award (#FA9550-23-1-0048), and
Adobe, Capital One and JP Morgan faculty fellowships to FH. The authors acknowledge UMD’s
supercomputing resources made available for conducting this research. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of NSF, Adobe, Capital One, JP Morgan, or the U.S. Government. We thank
Amir-Hossein Shahidzadeh, Eric Zhu, and Mara Levy for their help and advice.

References
[1] A. Ten, P. Kaushik, P.-Y. Oudeyer, and J. Gottlieb. Humans monitor learning progress in

curiosity-driven exploration. Nature communications, 2021.

[2] A. Modirshanechi, K. Kondrakiewicz, W. Gerstner, and S. Haesler. Curiosity-driven exploration:
foundations in neuroscience and computational modeling. Trends in Neurosciences, 2023.

[3] A. Lidayan, Y. Du, E. Kosoy, M. Rufova, P. Abbeel, and A. Gopnik. Intrinsically-motivated
humans and agents in open-world exploration. arXiv preprint arXiv:2503.23631, 2025.

[4] A. Aubret, L. Matignon, and S. Hassas. An information-theoretic perspective on intrinsic
motivation in reinforcement learning: A survey. Entropy, 25(2), 2023.

[5] S. Lee, D. Cho, J. Park, and H. J. Kim. Cqm: Curriculum reinforcement learning with a
quantized world model. Advances in Neural Information Processing Systems, 2023.

[6] B. Sukhija, S. Coros, A. Krause, P. Abbeel, and C. Sferrazza. MaxinfoRL: Boosting exploration
in reinforcement learning through information gain maximization. In International Conference
on Learning Representations, 2025.

[7] G.-C. Anthony, K. Marino, and R. Fergus. Efficient exploration and discriminative world
model learning with an object-centric abstraction. In International Conference on Learning
Representations, 2024.

[8] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In International Conference on Machine Learning, 2017.

[9] R. Mendonca, O. Rybkin, K. Daniilidis, D. Hafner, and D. Pathak. Discovering and achieving
goals via world models. Advances in Neural Information Processing Systems, 2021.

[10] Y. Seo, L. Chen, J. Shin, H. Lee, P. Abbeel, and K. Lee. State entropy maximization with
random encoders for efficient exploration. In International Conference on Machine Learning,
volume 139, 2021.

[11] V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. Skew-fit: state-covering
self-supervised reinforcement learning. In International Conference on Machine Learning,
2020.

9

[12] E. S. Hu, R. Chang, O. Rybkin, and D. Jayaraman. Planning goals for exploration. In
International Conference on Learning Representations, 2023.

[13] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d value
maps for robotic manipulation with language models. In Conference on Robot Learning, 2023.

[14] D. Shah, B. Osiński, S. Levine, et al. Lm-nav: Robotic navigation with large pre-trained models
of language, vision, and action. In Conference on Robot Learning, 2023.

[15] H. Etukuru, N. Naka, Z. Hu, S. Lee, C. Paxton, S. Chintala, L. Pinto, and N. M. M. Shafiullah.
Robot utility models: General policies for zero-shot deployment in new environments. In CORL
Workshop, 2024.

[16] A. H. Tan, A. Fung, H. Wang, and G. Nejat. Mobile robot navigation using hand-drawn maps:
A vision language model approach. arXiv preprint arXiv:2502.00114, 2025.

[17] Y. Kuang, H. Lin, and M. Jiang. Openfmnav: Towards open-set zero-shot object navigation via
vision-language foundation models. In ICLR Workshop, 2024.

[18] W. Jiang, B. Lei, K. Ashton, and K. Daniilidis. Multimodal llm guided exploration and active
mapping using fisher information. arXiv preprint arXiv:2410.17422, 2024.

[19] H. Jiang, B. Huang, R. Wu, Z. Li, S. Garg, H. Nayyeri, S. Wang, and Y. Li. RoboEXP: Action-
conditioned scene graph via interactive exploration for robotic manipulation. In Conference on
Robot Learning, 2024.

[20] C. Sancaktar, C. Gumbsch, A. Zadaianchuk, P. Kolev, and G. Martius. SENSEI: Semantic
exploration guided by foundation models to learn versatile world models. In Workshop on
Training Agents with Foundation Models at RLC, 2024.

[21] L. Li, J. Xu, Q. Dong, C. Zheng, X. Sun, L. Kong, and Q. Liu. Can language models understand
physical concepts? In Conference on Empirical Methods in Natural Language Processing,
2023.

[22] Y. Hu, F. Lin, T. Zhang, L. Yi, and Y. Gao. Look before you leap: Unveiling the power of gpt-4v
in robotic vision-language planning. In ICRA Workshop, 2024.

[23] M. Elnoor, K. Weerakoon, G. Seneviratne, R. Xian, T. Guan, M. K. M. Jaffar, V. Rajagopal, and
D. Manocha. Robot navigation using physically grounded vision-language models in outdoor
environments. CoRR, 2024.

[24] L. Gaven, T. Carta, C. Romac, C. Colas, S. Lamprier, O. Sigaud, and P.-Y. Oudeyer. Magellan:
Metacognitive predictions of learning progress guide autotelic llm agents in large goal spaces.
In International Conference on Machine Learning. Proceedings of Machine Learning Research,
2025.

[25] C. Colas, T. Karch, O. Sigaud, and P.-Y. Oudeyer. Autotelic agents with intrinsically motivated
goal-conditioned reinforcement learning: a short survey. Journal of Artificial Intelligence
Research, 74, 2022.

[26] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.
In International Conference on Learning Representations, 2019.

[27] D. Kim, J. Shin, P. Abbeel, and Y. Seo. Accelerating reinforcement learning with value-
conditional state entropy exploration. Advances in Neural Information Processing Systems,
2023.

[28] J. Martin, S. S. Narayanan, T. Everitt, and M. Hutter. Count-based exploration in feature space
for reinforcement learning. In International Joint Conference on Artificial Intelligence, 2017.

10

[29] A.-H. Shahidzadeh, S. J. Yoo, P. Mantripragada, C. D. Singh, C. Fermüller, and Y. Aloimonos.
Actexplore: Active tactile exploration on unknown objects. In International Conference on
Robotics and Automation, 2024.

[30] I. Durugkar, S. S. Hansen, S. Spencer, and V. Mnih. Wasserstein distance maximizing intrinsic
control. In NeurIPS Workshop, 2021.

[31] M. Klissarov and M. C. Machado. Deep laplacian-based options for temporally-extended
exploration. In International Conference on Machine Learning, 2023.

[32] J. Bae, K. Park, and Y. Lee. Tldr: Unsupervised goal-conditioned rl via temporal distance-aware
representations. In Conference on Robot Learning, 2024.

[33] D. Cho, S. Lee, and H. J. Kim. Outcome-directed reinforcement learning by uncertainty\&
temporal distance-aware curriculum goal generation. In International Conference on Learning
Representations, 2023.

[34] S. Pitis, H. Chan, S. Zhao, B. Stadie, and J. Ba. Maximum entropy gain exploration for long
horizon multi-goal reinforcement learning. In International Conference on Machine Learning,
2020.

[35] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Reinforcement learning with prototypical
representations. In International Conference on Machine Learning. Proceedings of Machine
Learning Research, 2021.

[36] S. V. Mahankali, Z.-W. Hong, A. Sekhari, A. Rakhlin, and P. Agrawal. Random latent explo-
ration for deep reinforcement learning. In International Conference on Machine Learning,
2024.

[37] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, et al. Do as i can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022.

[38] Z. Zhou, P. Atreya, A. Lee, H. R. Walke, O. Mees, and S. Levine. Autonomous improvement of
instruction following skills via foundation models. In Conference on Robot Learning, 2024.

[39] Z. Zhou, P. Atreya, Y. L. Tan, K. Pertsch, and S. Levine. Autoeval: Autonomous evaluation of
generalist robot manipulation policies in the real world. In CORL Workshop, 2025.

[40] R. Shah, A. Yu, Y. Zhu, Y. Zhu, and R. Martín-Martín. Bumble: Unifying reasoning and
acting with vision-language models for building-wide mobile manipulation. arXiv preprint
arXiv:2410.06237, 2024.

[41] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. Shamma, M. Bernstein, and L. Fei-Fei. Image
retrieval using scene graphs. In IEEE Conference on Computer Vision and Pattern Recognition,
2015.

[42] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li,
D. A. Shamma, et al. Visual genome: Connecting language and vision using crowdsourced
dense image annotations. International Journal on Computer Vision, 123, 2017.

[43] J. Ji, R. Krishna, L. Fei-Fei, and J. C. Niebles. Action genome: Actions as compositions of
spatio-temporal scene graphs. In IEEE Conference on Computer Vision and Pattern Recognition,
2020.

[44] J. Johnson, A. Gupta, and L. Fei-Fei. Image generation from scene graphs. In IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[45] O. Ashual and L. Wolf. Specifying object attributes and relations in interactive scene generation.
International Conference Computer Vision, 2019.

11

[46] H. Dhamo, A. Farshad, I. Laina, N. Navab, G. Hager, F. Tombari, and C. Rupprecht. Semantic
image manipulation using scene graphs. In IEEE Conference on Computer Vision and Pattern
Recognition, 2020.

[47] R. Herzig, A. Bar, H. Xu, G. Chechik, T. Darrell, and A. Globerson. Learning canonical
representations for scene graph to image generation. In European Conference on Computer
Vision, 2020.

[48] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, and N. Suenderhauf. Sayplan: Ground-
ing large language models using 3d scene graphs for scalable robot task planning. In Conference
on Robot Learning, 2023.

[49] Z. Ni, X. Deng, C. Tai, X. Zhu, Q. Xie, W. Huang, X. Wu, and L. Zeng. Grid: Scene-graph-based
instruction-driven robotic task planning. In International Conference on Intelligent Robots and
Systems, 2024.

[50] D. Ekpo, M. Levy, S. Suri, C. Huynh, and A. Shrivastava. Verigraph: Scene graphs for execution
verifiable robot planning. arXiv preprint arXiv:2411.10446, 2024.

[51] Q. Gu, A. Kuwajerwala, S. Morin, K. M. Jatavallabhula, B. Sen, A. Agarwal, C. Rivera, W. Paul,
K. Ellis, R. Chellappa, et al. Conceptgraphs: Open-vocabulary 3d scene graphs for perception
and planning. In International Conference on Robotics and Automation, 2024.

[52] Z. Ravichandran, L. Peng, N. Hughes, J. D. Griffith, and L. Carlone. Hierarchical representations
and explicit memory: Learning effective navigation policies on 3d scene graphs using graph
neural networks. In International Conference on Robotics and Automation, 2022.

[53] G. Zhai, X. Cai, D. Huang, Y. Di, F. Manhardt, F. Tombari, N. Navab, and B. Busam. Sg-bot:
Object rearrangement via coarse-to-fine robotic imagination on scene graphs. In International
Conference on Robotics and Automation, 2024.

[54] S. Amiri, K. Chandan, and S. Zhang. Reasoning with scene graphs for robot planning under
partial observability. IEEE Robotics and Automation Letters, 2022.

[55] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu,
and L. Fan. Vima: General robot manipulation with multimodal prompts. In International
Conference on Machine Learning, 2023.

[56] OpenAI. Gpt-4o: Openai’s new multimodal model. https://openai.com/index/gpt-4o,
2024. Accessed: 2024-04-30.

[57] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie, and C. Lu. Anygrasp:
Robust and efficient grasp perception in spatial and temporal domains. IEEE Transactions on
Robotics, 2023.

[58] L. Medeiros. Lang segment anything. https://github.com/luca-medeiros/
lang-segment-anything, 2023.

[59] P. Liu, Z. Guo, M. Warke, S. Chintala, C. Paxton, N. M. M. Shafiullah, and L. Pinto. Dynamem:
Online dynamic spatio-semantic memory for open world mobile manipulation. In CORL
Workshop, 2024.

[60] P. Liu, Y. Orru, J. Vakil, C. Paxton, N. M. M. Shafiullah, and L. Pinto. Ok-robot: What really
matters in integrating open-knowledge models for robotics. In ICRA Workshop, 2024.

[61] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, 2018.

12

https://openai.com/index/gpt-4o
https://github.com/luca-medeiros/lang-segment-anything
https://github.com/luca-medeiros/lang-segment-anything

[62] G. Zhou, H. Pan, Y. LeCun, and L. Pinto. Dino-wm: World models on pre-trained visual
features enable zero-shot planning. arXiv preprint arXiv:2411.04983, 2024.

[63] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics
Research, 2023.

13

A Evaluation Metrics for Exploration Capability

To quantitatively evaluate the agent’s ability to explore its environment, we use the following metrics
that capture diversity, informativeness, and control capacity over future states, as described in [3].
We treat the state space S (s ∈ S) as a discrete set of scene graphs to enable interpretable analysis.

• Unique Scene Graphs: The number of distinct scene graphs encountered during exploration. A
higher count reflects greater semantic diversity.

• State Entropy: Measures the entropy of the agent’s state visitation distribution. Let Ns denote the
number of visits to state s. Then p(s) = Ns/∑s′ Ns′ , and entropy is given by:

H(S) ∶= −∑
s

p(s) log p(s)

• Information Gain (IG): Quantifies how much new information is acquired in each episode. Define
N

e
s,a as the count of action a taken in state s up to episode e. The information gain for episode e is:

IG
e
∶=

∑(s,a) IG
e
0(s, a) − IG

e−1
0 (s, a)

∑(s,a) N
e
s,a −Ne−1

s,a

,

where IG
e
0(s, a) ∶= log(1 +N

e
s,a).

• Empowerment: Captures the agent’s control over future outcomes. Defined as the mutual
information between actions and resulting states:

E ∶= max
p(a)

I(s′; a ∣ s) = max
p(a)

∑
s′,a

p(s′∣a)p(a) log p(s′∣a)
∑a′ p(s′∣a′)p(a′)

Since exact computation is intractable, we approximate p(s′∣a) via sampling and scene graph
transition statistics.

For fair comparison, we quantize observations into scene graphs using methods that differ from those
employed in IVE. In simulation, we construct scene graphs using a heuristic based on ground-truth
object positions, encoding relative distances and spatial relationships. In the real world, where
ground-truth positions are unavailable, we generate scene graphs using a separate perception pipeline.
Importantly, both the prompt design and scene graph structure used for evaluation are distinct from
those used in IVE. Please note that in both settings, none of the agents—including IVE and all
baselines—have access to the ground-truth object positions or the internal graphs used for evaluation.

B Real world robot setup

The system is implemented on a Universal Robot UR5e robot arm with a Robotiq 2F-85 gripper.
An Intel Realsense D435i depth camera is mounted on the robot end-effector. The workspace is
a tabletop workspace with predefined boundaries. All robot poses are clipped to the workspace
boundaries for safety.

B.1 Grasp Planning and Execution

The system implements two grasp strategies. The primary strategy uses Anygrasp [57] for grasp pose
detection, which provides the grasp pose in the camera frame. We transform this to the robot base
frame using the camera calibration and convert the 4× 4 matrix to an axis-angle rotation vector using
the Rodrigues method. The execution sequence moves to a clearance height 0.1m above the grasp
pose, aligns rotation, descends to the grasp pose with a z-offset of −0.048m. The object is lifted to a
clearance height to avoid collision and then moved to the destination pose.

The tangram grasp strategy uses a centroid-based approach. We compute the object centroid using
image moments, project it to 3D using the pinhole camera model, and transform to the robot base
frame. The grasp pose is set to the centroid position with a z-offset of −0.01m and a fixed rotation of
[0,−π, 0].

14

B.2 Relation-based Placement and Tangram Manipulation

The system implements six spatial relationships: STACKED ON, IN_FRONT_OF, BEHIND,
TO_LEFT_OF, TO_RIGHT_OF, and ARRANGE. For each relationship, we compute the drop
point using a relationship-specific algorithm.

• STACKED ON relationship calculates the drop height by finding the maximum z-coordinate of the
target object in the depth image and adding a drop height offset of 0.01m.

• IN_FRONT_OF and BEHIND relationships compute a y-offset of ±0.08m from the target object’s
bounding box.

• TO_LEFT_OF and TO_RIGHT_OF relationships use an x-offset of ±0.08m.
• ARRANGE relationship employs a depth-based ground plane detection algorithm. We create

a ground mask by thresholding the depth image at the table height, erode it using a kernel size
proportional to the manipulated object’s dimensions, and apply boundary constraints excluding
regions very close to the workspace edges. From the valid placement regions, we randomly sample
a placement point to introduce diversity while maintaining safety constraints.

For tangram manipulation, we implement a specialized edge alignment system that first detects
polygon edges using contour detection with an epsilon ratio of 0.02. The system then compares the
source and destination masks to find the optimal edge alignment. For each pair of edges, we compute
the alignment angle by finding the angle between the edge vectors, considering both parallel and
anti-parallel alignments. Since tangram pieces are constrained to rotate only in the z-axis, we compute
the rotation matrix around the z-axis using the alignment angle. The translation is determined by
computing the vector between the midpoints of the aligned edges, with additional jitter sampling to
account for small variations in placement. We evaluate each potential alignment by computing the
contact length between the edges and applying an occlusion penalty based on the overlap between the
source and destination masks. The system selects the alignment with the maximum contact length
while minimizing occlusion. All coordinate transformations between camera and robot frames are
handled using standard eye-in-hand calibration and the pinhole camera model.

B.3 Region-based Placement

To enable the Vision-Language Model (VLM) to refer to specific spatial locations in the workspace,
we introduce a Region-Based Placement Tool that discretizes the environment into a labeled grid map
(Figure 7). The workspace is overlaid with a checkerboard-style grid, where each cell is uniquely
indexed (e.g., A1 to E10). This grid is rendered as an image and passed to the VLM.

Given this structured input, the VLM can issue explicit placement instructions using symbolic
coordinates: move(object_name, target_grid). For instance, the command move(red_cross,
B8) indicates that the object referred to as red_cross should be placed in cell B8. This discrete
representation allows the model to generate unambiguous spatial commands and simplifies the
mapping from language to robot actions.

Figure 7: The Region-Based Placement Tool overlays the workspace with a labeled grid, allowing the VLM to
reference specific spatial locations when issuing placement commands.

15

C Comparative Exploration Capabilities Across VLMs

In this section, we present the exploration performance of IVE when paired with different types of
Vision-Language Models (VLMs).

IVE(Gemini-2.0) IVE(LLaMA-4) IVE(GPT-4o)

0.0

1.0

2.0

3.0

4.0

0.0

1.0

2.0

3.0

0.0

0.2

0.4

0.6

0

20

40

60

80

100

120

0 50 100 150 200 250
Number of interactions

IVE(Qwen3) Human(Expert)

Growth of Unique Scene Graphs (SG) Entropy Empowerment Information Gain

Figure 8: Exploring with Embodied Agents: This figure compares the exploration capabilities of our method,
IVE, powered by different Vision-Language Models (VLMs) rather than GPT-4o. Notably, IVE, regardless of
the VLM used, matches or surpasses the human expert in generating unique scene graphs, achieving higher state
diversity, and gaining more information.

D Action Tool Details

Tool Categories. Our action toolset includes three discrete types of manipulators:

1. Relation-Based Placement Tools: Execute relational actions that position objects with
respect to others (e.g., “To the left of,” “Stacked on”) as shown in Figure 4.

2. Region-Based Placement Tools: Place objects at specific locations on a predefined 2D
layout (e.g., grid cells).

3. Arranger Tool: Manages workspace cleanliness by moving unreferenced or obstructive
objects to free, uncovered regions, enabling subsequent actions.

Modularity. The design of the Action Tools module is deliberately modular and extensible—new
primitives or skills can be incorporated seamlessly without requiring architectural changes to other
components. This modularity ensures that IVE can adapt to diverse task domains and hardware
platforms by swapping or extending action capabilities.

E Evaluations on Downstream Tasks

Initial observation Target observations

Initial observation Target observations

5
ob

je
ct

s
4

ob
je

ct
s

Figure 9: To evaluate the performance of the behavior cloning policy, we train Diffusion Policy [63] on each
dataset and evaluate it on goal-conditioned tasks, where the initial observation is fixed and the agent is tested
with six different goals.

16

G
T

O
ur
s

S
A
C
+R

N
D

S
A
C
+R

E
3

H
um

an
G
T

O
ur
s

H
um

an

Figure 10: Qualitative examples of World Model (WM) predictions using datasets collected by different
exploration methods. Red rectangles highlight regions with notable prediction errors.

F Prompts for IVE

F.1 Scene Describer

The Scene Describer takes an RGB image and produces a structured scene graph that captures object
identities and spatial relations. This module enables symbolic reasoning by abstracting the raw
observation into a graph-structured representation. The prompt below guides a vision-language model
to construct this graph iteratively.

The process consists of three main stages:

• Step 1 - QnA Section: For each object, the model predicts its closest objects and describes their
spatial relationship from that object’s perspective.

• Step 2 - Iterative Scene Graph Construction: The scene graph is built incrementally by adding one
object at a time and determining its relation to previously introduced objects.

• Step 3 - Final Scene Graph Output: The final graph is compiled from all previously gathered
information, listing nodes (objects) and edges (relations) using only allowed relation types.

Below is the exact prompt used to guide the model:

Prompt.

Your Task
You are an expert image analyzer tasked with identifying the ** exact **

placement and spatial relationships of specific objects. Your job
is to generate a scene graph describing these spatial relations

** solely ** based on the objects ’ visible positions in the image.

As an image analyzer , Follow Step 1~3 below.

17

Step 1: Fill the Answer in QnA Section

Step 2: Iterative Scene Graph Construction
1. Begin with one object.
2. Add one new object at a time , to your partial scene graph.
3. For each newly added object:

- Determine its spatial relation(s) to the objects already in the
scene graph.

- **Use only** the Allowed Relations in the scene graph.
- Do not assign more than one relation for the same object pair ‘(

new_object , existing_object)’ == ‘(existing_object , new_object)
’

- You may introduce multiple relations at once if the new object
relates to multiple existing objects.

Step 3: Final Scene Graph Output
1. **Once all objects ** have been introduced and verified , compile a

** complete scene graph **:
- **List all nodes ** (the objects in the final scene).
- **List all verified relations ** between pairs of objects , using

the Allowed Relations in the scene graph.
2. **Use only** objects from the "Global Object Names ."
3. Even if there ’s missing nodes or edges in a final scene graph (

because at least one object is missing), you must still provide a
complete ** scratch pad** and **scene graph** with existing
relations.

Scene Graph Representation

- Nodes: Objects present in the scene.
- Relations: Spatial relationships between object pairs.
- Allowed Relations in the scene graph:

- ** Stacked On**: Object A is physically resting on Object B. This
requires clear direct contact -Object A is visibly supported

by Object B from below.
- **Near **: Object A is positioned close to Object B without being

stacked. Use this only when the objects are almost touching.

Global Object Names
‘<GLOBAL_OBJECTS_HERE >’

Output Format
Please structure your final output exactly as shown below (without the

lines). **Use the precise section titles **:

[Step 1: Fill the Answer in QnA Section]
<QNA_FOR_OBJECT_RELATION >
[Step 2: Iterative Scene Graph Construction]
Iteration 1:
- Added obj_a.
- Explanation of how you confirmed its presence in the image.
Iteration 2:
- Added obj_b.
- <obj_b , relation_type , obj_a > or <obj_a , relation_type , obj_b > (

include any additional relations or notes)

18

- Explanation of how you verified this relation.
... (continue until all objects are added and checked)
[Step 3: Final Scene Graph Output]
<start_graph >
Nodes: obj_a , obj_b , ...
Relations: <obj_a , Near , obj_b >, <obj_b , Near obj_c >, <obj_d , Stacked

On , obj_c >, ...
<end_graph >

QnA section. Below is an example of a generated QnA section, filled out based on a set of sample
object names:

[Step 1: Fill the Answer in QnA Section]
Object 1: red cube

What are the closest 0~3 objects from red cube? What are their

relations from red cube ’s perspective?
Answer: The red cube is near the blue cylinder and stacked on the

green base.

Object 2: blue cylinder

What are the closest 0~3 objects from blue cylinder? What are their

relations from blue cylinder ’s perspective?
Answer: The blue cylinder is near the red cube.

Object 3: green base

What are the closest 0~3 objects from green base? What are their

relations from green base ’s perspective?
Answer: The green base has the red cube stacked on top.

F.2 Explorer

The Scene Explorer module performs planning over an environment with objects. It receives a
current scene graph and predict a valid action sequence that results in a novel configuration. This task
challenges the model to reason about physics, constraints, and symbolic novelty.

The prompt includes:

• Action history: Provides the model with previously executed action sequence.
• Scene graph history: Supplies the model with previously visited scene graphs (which is retrived

from memory), encouraging novelty.

Your Task
You are an expert spatial planner. Given the Current Image , your job

is to generate a sequence of actions that discover a new scene
configuration -one that has not been seen before.

- In addition to the action sequence , you must provide the predicted
future scene graph (desired scene graph) that results from these
actions.

- You have two images taken from different camera viewpoints.
- You should provide at most ‘<NUM_STEPS_HERE >’ actions.

Scene Graph Representation
- Nodes: Objects present in the scene.
- Relations: Spatial relationships between object pairs.
- Allowed Relations in the scene graph:

- ** Stacked On**: Object A is physically resting on Object B. This
requires clear direct contact -Object A is visibly supported

by Object B from below.

19

- **Near **: Object A is positioned close to Object B without being
stacked. Use this only when the objects are almost touching.

Global Object Names
‘<GLOBAL_OBJECTS_HERE >’

<ACTION_TYPES >

Current Scene Graph
‘<CURRENT_SCENE_GRAPH >’

Scene Graph History
Shows previously visited scene graphs most similar to your current

scene.
<SCENEGRAPH_HISTORY >

Action History
‘<ACTION_HISTORY >’

Output Format
Your output format should look exactly like the content between the

‘-----’. **Do not** number the actions. It ’s important to wrap the
action sequence between ‘<start_action_sequence >’ and ‘<

end_action_sequence >’. Also , write down the predicted future scene
graph (desired scene graph - the final arrangement after all

actions) between ‘<start_graph >’ and ‘<end_graph >’.

<start_scratch_pad >
Explain your reasoning:
- Why this is a novel scene
- Why the action sequence makes sense
- If there were oddities or contradictions in the histories , how did

you account for possible collisions , suction errors , or clutter?
<end_scratch_pad >
Predict (Desired) Future Scene Graph:
<start_desired_scene_graph >
Nodes: obj_a , obj_b , ...
Relations: <obj_a , Near , obj_b >, <obj_b , Near obj_c >, <obj_d , Stacked

On , obj_c >, ...
<end_desired_scene_graph >
Next Action Sequence:
<start_action_sequence >
<ACTION_SEQUENCE_EXAMPLE >
<end_action_sequence >

Important Considerations
1. Order Matters: Plan your actions so that preconditions are

satisfied before you move an object.
2. Scene Boundaries: If an object is near the scene boundary , avoid

pushing it further toward the edge or placing new objects in a
risky position.

3. Manipulation (Suction) Constraints:
- The suction can only reliably pick the topmost exposed surface.
- In cluttered areas , an attempt to move one object may cause

unintended collisions or shifts in neighboring objects.
- Stacking another object on top of an unstable object can lead to

the object toppling over.
4. Note: The list of allowed relations in Action Types and the

relations used in Scene Graph Representation ([Stacked On , Near])
may differ. Desired Scene Graph should use relations among <
SCENEGRAPH_RELATIONS > only , same as other Scene Graphs. Please
keep this in mind when planning your actions.

Action types.

20

Actions available to the scene explorer fall into the following categories. These are symbolic
commands grounded in real-world physical execution, and the model may extend this vocabulary
when necessary.

Action Types

Actions are formatted in two ways:

1. ‘move(obj_a , RELATION , obj_b)’
e.g., ‘move(white cup , Stacked On, red plate)’
- Moves one object to a position relative to another.
- Allowed RELATION list: ‘[In Front Of, Behind , To The Left Of, To

The Right Of, Stacked On]’

2. ‘move(obj_a , GRID_ID)’
e.g., ‘move(blue ball , B3)’
- Moves an object to a grid location on the image. (‘["A1", "B3",

..., "E10"]’)

3, ‘arrange(obj_a)’
e.g., ‘arrange(red block)’
- Pick up the objects and organize them in a clear area on the

Workspace.

F.3 Verifier

The Scene Verifier is responsible for checking the validity and physical feasibility of a proposed action
sequence in dynamic environments. It assesses whether the actions, when executed from the current
scene, would produce the desired result without causing instability or unintended configurations.

One core component of this process is the transition history, a temporally ordered trace of the
environment, alternating between scene graphs and actions:

Scene Graph1 → Action1 → Scene Graph2 → Action2 → ... → Scene Graphn

This history provides concrete grounding to reason about object configurations and action effects,
enabling the verifier to anticipate unintended side-effects like toppling, occlusions, or manipulation
errors.

The verifier simulates outcomes, checks for physical plausibility, and may provide targeted sugges-
tions or recommend a decluttering strategy in edge cases.

Your Task
You are a spatial reasoning expert responsible for ** verifying action

plans** in physically dynamic environments.
You ensure that a proposed sequence of actions logically leads from

the current state to the desired scene graph , without triggering
unintended outcomes.

You may also provide ** targeted suggestions ** or , in rare but
necessary cases , recommend a ** temporary shift to a decluttering
strategy **.

Goals
Given the current image (from two camera views), transition history ,

desired scene graph , and a proposed action sequence:
1. ** Simulate ** the effect of the action sequence from the current

scene
2. ** Predict ** the resulting scene graph
3. ** Compare ** the predicted graph with the desired one
4. ** Evaluate physical feasibility and execution stability **
5. ** Provide a judgment **:

- Valid and feasible

21

- Invalid (with reason)
- Valid but risky (suggest a targeted fix)
- Too unstable to proceed (recommend declutter mode)

<ACTION_TYPES >

Transition History
A sequence of alternating scene graphs and actions showing the

environment ’s evolution.
‘<TRANSITION_HISTORY >’

Output Format

<start_scratch_pad >
Step -by-step analysis:
- Simulate and predict the resulting scene graph.
Scene Stability Check:
- Are any objects in clearly unstable or unreachable positions?
- Do previous transitions indicate failures or ambiguous changes?
- Are cluttered zones , deep stacks , or occlusions affecting safety or

reliability?
Decision:
- Is the action sequence logically valid and does it produce the

desired scene graph?
-> YES or NO

If NO:
- Explain which actions fail and why.
- Point out mismatches or invalid transitions.
If issues are detected:
- Identify objects or areas causing risk (e.g., unstable stacks ,

blocked objects).
- Suggest fine -grained intervention (e.g., "move obj_A before

continuing ").
If the environment is severely cluttered and unsafe:
- Recommend a temporary shift to a decluttering mode
<end_scratch_pad >
<start_decision >
YES or NO
<end_decision >
<start_reason >
[If NO: Brief but clear explanation of what failed or was mismatched]
- risky: Warning message with suggestion , e.g., "Unstable stack: move

obj_b before continuing"
- Too unstable: "Scene too cluttered. Recommend temporary declutter

mode."
[If YES and no issues: Leave this part empty]
<end_reason >

Scene Stability Considerations
Clutter or instability **does not always require full decluttering **.

Consider recommending targeted fixes first.
Examples of Minor Intervention:
- ‘"obj_b is stacked on obj_a , which is already supporting obj_c.

Recommend moving obj_b first to prevent instability ."’
- ‘"obj_d is partially occluded and may be hard to suction. Recommend

shifting nearby obj_e first."’
Examples of Decluttering (rare):
- ‘"Multiple overlapping clusters and deep stacks suggest high

instability. Recommend decluttering of current layout before
further scene exploration ."’

22

	Introduction
	Related Work
	Method
	Scene Describer
	Explorer
	Verifier
	Memory Retrieval
	Action Tools

	Experiments
	Experimental Setup
	IVE Outperforms RL and Human Baselines in Exploration Diversity
	Ablations Reveal Memory, Explorer and Verifier Are Critical for Effective Exploration
	IVE Enables Stronger Policy Learning and World Modeling

	Conclusion
	Evaluation Metrics for Exploration Capability
	Real world robot setup
	Grasp Planning and Execution
	Relation-based Placement and Tangram Manipulation
	Region-based Placement

	Comparative Exploration Capabilities Across VLMs
	Action Tool Details
	Evaluations on Downstream Tasks
	Prompts for IVE
	Scene Describer
	Explorer
	Verifier

