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Abstract

Geometric diffusion models have shown remarkable success in molecular dynamics
and structure generation. However, efficiently fine-tuning them for downstream
tasks with varying geometric controls remains underexplored. In this work, we pro-
pose an SE(3)-equivariant adapter framework (GeoAda) that enables flexible and
parameter-efficient fine-tuning for controlled generative tasks without modifying
the original model architecture. GeoAda introduces a structured adapter design:
control signals are first encoded through coupling operators, then processed by a
trainable copy of selected pretrained model layers, and finally projected back via
decoupling operators followed by an equivariant zero-initialized convolution. By
fine-tuning only these lightweight adapter modules, GeoAda preserves the model’s
geometric consistency while mitigating overfitting and catastrophic forgetting. We
theoretically prove that the proposed adapters maintain SE(3)-equivariance, ensur-
ing that the geometric inductive biases of the pretrained diffusion model remain
intact during adaptation. We demonstrate the wide applicability of GeoAda across
diverse geometric control types, including frame control, global control, subgraph
control, and a broad range of application domains such as particle dynamics, molec-
ular dynamics, human motion prediction, and molecule generation. Empirical
results show that GeoAda achieves state-of-the-art fine-tuning performance while
preserving original task accuracy, whereas other baselines experience significant
performance degradation due to overfitting and catastrophic forgetting.

1 Introduction

Diffusion models have emerged as powerful generative frameworks across a wide range of domains,
including image synthesis [44, 38], robotics [36, 27], and molecular generation [23, 41, 39, 42]. In
particular, geometric diffusion models [11] which incorporate spatial and symmetry-aware inductive
biases have shown strong empirical performance in tasks such as particle dynamic prediction [15, 17,
28], molecular generation [3, 14] and protein-ligand binding structure prediction [8]. By modeling
data in an equivariant network, these models are able to capture complex geometric relationships
essential for physical and chemical systems.

However, despite their strong task-specific performance, existing geometric diffusion models lack the
ability to generalize across tasks. In particular, it remains unclear how a model pretrained on one
geometric generation task can be effectively adapted to a new task involving additional or different
control signals. This limitation is especially pronounced in real-world molecular applications, where
the available data across tasks are often highly imbalanced, and collecting labeled pretraining data for
every new condition is costly and time-consuming. Without a mechanism for transfer, models must
be retrained from scratch for each new task, which is inefficient and often leads to overfitting or loss
of previously learned capabilities.
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Figure 1: Overall framework of GeoAda. The model integrates diverse control signals, including frame, global
type, and subgraph controls through lightweight equivariant adapters inserted into the frozen pretrained denoiser.

To this end, we propose a general and efficient framework(GeoAda) that enables the transfer of
geometric diffusion models across diverse downstream tasks with minimal computational overhead.
Inspired by the success of ControlNet [44] in conditional image generation, we introduce an equivari-
ant adapter module that augments a pretrained geometric diffusion model with task-specific control
capability. The Equivariant Adapter comprises two key components: 1) The equivariant adapter
block that operates through a structured sequence—where control signals are encoded via coupling
operators, processed by a trainable copy of selected pretrained model layers, and then decoded via
decoupling operators. 2) Equivariant zero convolution, which acts as a safeguard for the original
score by zeroing out the conditional contribution at initialization without blocking gradient updates.
This design preserves the model’s SE(3)-equivariance and allows modular, task-specific adaptation
without altering the original model architecture. In addition to being lightweight and flexible, the
adapter is parameter-efficient and implicitly regularized, thereby mitigating overfitting and preserving
the performance of the pretrained model.

In summary, we make the following contributions: 1. We propose an equivariant adapter framework
(GeoAda) for geometric diffusion models that enables efficient task adaptation with minimal overhead.
The adapter modules are lightweight and operate as plug-and-play components, allowing flexible
conditioning on new control signals without architectural modifications to the pretrained model. 2.
GeoAda is parameter-efficient, introducing minimal overhead for downstream tasks compared to
full fine-tuning, which updates the entire model and incurs substantial memory and computational
costs. 3. By freezing the pretrained model and introducing trainable adapters, GeoAda imposes
implicit regularization, helping to mitigates overfitting and avoids catastrophic forgetting, thereby
preserving performance on the pretraining task. 4. We carefully design the adapter architecture to
be SE(3)-equivariant, ensuring that the adapted model retains the geometric inductive bias and the
theoretical benefits of equivariant diffusion models, including SE(3)-invariant marginal distributions
during generation. 5.We evaluate GeoAda across diverse geometric control types, including Frame
Fontrol, Global Type Control, Subgraph Control, and a wide range of application domains, such as
particle dynamics, molecular dynamics, human motion prediction, and molecule generation. GeoAda
consistently matches or outperforms full fine-tuning baselines on downstream task, while avoiding
performance degradation on the original pretrain task—a common failure mode of naive tuning and
prompt-base approaches.

2 Related Work

Geometric diffusion models. Recent diffusion models have been extended to 3D geometric data,
with SE(3) equivariance enabling physically consistent generation for tasks like molecular design and
trajectory modeling. One of the earliest efforts, EDM [14] introduced an SE(3)-equivariant framework
for 3D molecule generation that significantly improved sample quality. GeoDiff [42] pioneered this by
learning stable molecular conformations through SE(3)-invariant diffusion, while GeoLDM [41, 39]
advanced scalability and controllability via structured latent spaces. GCDM [23] advanced large
molecule generation by incorporating geometry-complete local frames and chirality-sensitive features
into SE(3)-equivariant networks. TargetDiff [9] further extended these models to structure-based



drug design by generating molecules conditioned on protein targets through an SE(3)-equivariant
processor. Beyond molecular applications, diffusion augmented with geometric inductive bias has
been explored in other domains such as 3D shape and scene generation [2] and robotics [36, 27].
Beyond static geometric modeling, GeoTDM [11] and EquiJump [5] address dynamic 3D systems
by introducing temporal attention mechanisms. However, existing geometric diffusion models lack
cross-task generalization. Our framework enables efficient adaptation to new controls.

Finetuning for (geometric) graphs. Finetuning for geometric GNNs generally falls into two
categories: prompt-based and adapter-based methods. Pioneering prompt-based approaches [34, 20]
introduce virtual class-prototype nodes with learnable links for edge prediction pre-trained models,
but lack generalizability to alternative pre-training strategies. Meanwhile, works like GPF [6] explore
universal prompt-based tuning by adding shared learnable vectors to all node features in the graph.
Adapter-based methods, exemplified by AdapterGNN [18], insert lightweight modules into GNN
layers, achieving parameter-efficient adaptation across diverse graph domains.

Finetuning diffusion models. Recent research has proposed various strategies for fine-tuning diffu-
sion models with improved efficiency, control [44], and alignment [37]. ELEGANT [35] formulates
fine-tuning as an entropy-regularized control problem, directly optimizing entropy-enhanced rewards
with neural SDEs. ControlNet [44] improves controllability by adding lightweight trainable branches
to frozen diffusion backbones. Prompt Diffusion [38] enables training-free in-context learning for
image-to-image tasks via example-based conditioning. However, fine-tuning diffusion models in
geometric domains (e.g., particles, molecules) remains underexplored. GeoAda addresses this gap by
enabling efficient and effective adaptation of diffusion models to geometric tasks.

3 Preliminaries

Geometric graphs and trajectories. We represent a geometric graph as G = (V, ) where V is
the set of nodes and £ is the set of edges. In particular, each node ¢ is equipped with certain node
feature h; € R* representing its type or physical property, and the Euclidean coordinate x; € R?
representing its spatial position. An edge exists between node ¢ and j if they bear certain connectivity
through, e.g., chemical bonds, or spatial proximity with a distance smaller than a cutoff. A trajectory

is a generalization of geometric graph in the dynamical setting where the coordinates x7 € R3xT

are augmented with an additional temporal dimension, where 7" is the number of framesl.
Geometric diffusion models. Geometric diffusion models are a family of generative models for
capturing the distribution of geometric graphs and/or trajectories. Given an input data point G, they
feature a forward noising process that gradually perturbs the clean data with a transition ¢(G,|Go)
where G converges to a tractable prior. A neural network €y(G,, 7) (a.k.a. the denoiser) is learned
to approximate the Stein score [33] through denoising score matching [31, 32, 13], which will be
leveraged to derive the transition kernel py (G- _1|G, ) in the reverse process at sampling time. Notably,
a core distinction of geometric diffusion models from others is that they enforce an SE(3)-invariant
marginal, i.e.,

po(Go) =po(g-Go), Vg€ SEQ), (M
by parameterizing the denoiser €y with an SE(3)-equivariant architecture [14, 42], i.e.,
€(9-Gr,7) =g €(Gr,7), 2

where SE(3) is the Special Euclidean group consisting of all rotations and translations in 3D.

4 Method

In this section, we detail our approach, equivariant adapter for geometric diffusion models. We first
specify three types of controls in § 4.1 that are ubiquitously enforced to geometric diffusion models
in various downstream tasks. In § 4.2, we propose an architecture-agnostic and principled recipe for
encoding such controls that seamlessly enables finetuning on the pretrained denoiser. In § 4.3, we
present our design of GeoAda, a plug-in-and-play adapter module tuned for each downstream task
that unlocks transferability.



4.1 Geometric Controls for Geometric Diffusion Models

In this work, we aim to transfer the generation capability of pretrained geometric diffusion models to
downstream tasks where additional geometric controls present. Specifically, we are concerned with
three different types of geometric controls, namely global type control Cg, subgraph control Cg, and
frame control Cg, as detailed below.

Global type control. Each global type control & € Cg is a vector in R¥ describing certain global
signal enforced on the geometric graph, such as an encoding of the class label, some quantum
chemical property of the molecule [14], or even the embedding of some text prompt [22].

Subgraph control. Each subgraph control G = (f/, £ ) € Cs is represented as a geometric graph
with the set of nodes V and edges E. Subgraph control widely exists in scenarios where generating
a geometric graph conditioned on another fixed subgraph is of interest. For example, in the task of
pocket-conditioned ligand generation [8], the protein pocket is viewed as the fixed subgraph G while
a geometric diffusion model is learned to generate the ligand, conditioned on Gg.

Frame control. Each frame control in Cr takes the form of a sequence of additional T frames,
namely iET] € R3*T for each node i. Frame controls are enforced in cases when, e.g., a trajectory
has been partially observed and the model is expected to generate the future or missing frames

conditioned on the observed frames.

4.2 Encoding Geometric Controls

In this subsection, we propose a simple yet effective approach for incorporating the geometric
controls into the denoiser without modifying its architecture. Such feature is critical since it enables
us to initialize the denoiser fully with the pretrained checkpoint when performing finetuning on
downstream tasks, thus significantly alleviating optimization overheads and potential inconsistencies
in the parameter space. More importantly, our design is also guaranteed to preserve the equivariance
of the denoiser, a fundamental principle that leads to the success of geometric diffusion models.

In form, given the denoiser €y(G., ), we seek to devise €9(G, 7,C) where C € Cg U Cs U Cp is any
of the control we specified in § 4.1. Our core observation lies in that each type of the control can be
encoded through certain coupling operator £(G,,C) of the input noised graph G, and control C, and a
corresponding decoupling operator g that extracts the scores on the nodes and frames in G, from the
output of €. We introduce our design of f and g with respect to different controls as follows.

Global type control. For global type control Cg = ¢ € RX, we design f as a node-wise addition of
the input node feature and a linear transformation of the control ¢, i.e., V', &' = £(V, £, C), where

V= ({xi} {hi+0@}), € =¢, 3)
where o : RX s R is an MLP that lifts the control signal to the node feature space. We use identity
function as the decoupling operator g.

Subgraph control. For subgraph control Cs := G, the coupling operator f is realized by computing
the supergraph of the input G and the control G, i.e., V', &' = f(V, £, C), where

V =Vu, g =EUE. 4)
The decoupling operator g is implemented by extracting the features of subgraph that corresponds to
the nodes in the input graph G from the output of €y.

Frame control. For frame control Cr := {)"{ET] }, we implement f as a concatenation of the input
frames and the frame control, i.e., V', & = £(V, E,C), where

V' = ({eoncat(" 1} (b)), & =€, 5)

and g performs the reverse operation by discarding the frames corresponding to [77] from the output
of €p.

Proposition 4.1 (Equivariance of control encoding). If the denoiser €y is SE(3)-equivariant, the
composition g o €g o f is also SE(3)-equivariant, for all controls C € C.

4.3 Equivariant Adapters
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To address these challenges, we draw inspiration from the ¢35k G, and processed by an equivariant

successful application of adapters on image diffusion mod-  adapter block. The adapter output is added
els, e.g., ControlNet [45], to devise a diffusion adapter for to the frozen denoiser and repeated B times
geometric diffusion models. Our approach, dubbed equiv- to produce the final output.

ariant adapter, is a lightweight tunable module plugged-in

on top of the pretrained model, which is optimized for each downstream task.

The equivariant adapter block. In detail, each equivariant adapter block is responsible for processing
the control signal and fusing it into the score produced by the pretrained model, whose parameters
are always freezed at finetuning stage. Each adapter block consists of, in a sequential manner,
the coupling operator f, a trainable copy of the corresponding layers in pretrained model €4/, the
decoupling operator g, followed by an equivariant zero-convolution layer.

Specifically, the composition g o €g/ o f, as depicted in § 4.2, functions altogether as a conditional
score network €¢/ (G, 7,C) that captures the bias of the control signal on the original score €y(G,, )
while ensuring the SE(3)-equivariance of the conditional score. Moreover, €g/ can be initialized as a
subset of the layers in the pretrained model €y, thus reducing the total number of tunable parameters
compared with SFT. While the selection strategy can be arbitrary, empirically we have found that
selecting the first layer for every K consecutive layers from the pretrained model performs more
favorably compared with naive choices such as the initial or last several layers, under the same
parameter budget (c.f., § 5.4).

Equivariant zero-convolution. While the equivariant adapter block offers an parameter-efficient
way of modeling the conditional score, its non-zero initialization introduces additional noise when
it is added to the original score €y, leading to instability at the beginning of the finetuning stage.
To alleviate such issue, we borrow insight from the zero-convolution module proposed in [44] that
acts as a safeguard of the original score by zeroing out the conditional score at initialization without
blocking the gradient update.

For any ({x;}, {h;}), equivariant zero-convolution is given by
zo({xi}, {hi}) = ({¢x - (xi = %)}, {¢n © hs}), ©)

where X = % ZZ\LI x; is the center-of-mass of the input graph, and ¢, € R, ¢ € R are
learnable parameters initialized all as zero. By such design, we guarantee that each equivariant
adapter block, when equipped with equivariant zero-convolution, yields a rotation-equivariant and
translation-invariant output, hence the SE(3)-equivariance of the conditional score after adding the
output to the original score. Furthermore, the output of equivariant adapter block will always be
zero at initialization, which does not affect the original score, thus enabling smooth and noiseless
optimization when tuning the adapter.

4.4 Overall Framework

The overall framework of our adapter is depicted in Fig. 2. In general, our adapter is comprised of
B equivariant adapter blocks, where each block is a sequential stack of the coupling operator f, the
trainable copy of one layer of the denoiser, the decoupling operator g, and a zero-convolution module.
At finetuning stage, all parameters in the original denoiser are freezed while the trainable copies and
coefficients in zero-convolution are updated through gradient coming from minimizing the denoising
loss

Lﬁnetune (9/5 ¢) = EENN(OJ),(g,C)N]D),TEUnif(O,T) Hee(g‘rv T) + SG’,¢(gTa T, C) - 6”%7 (7)



where D is the downstream dataset, G, is the noised graph drawn from ¢(G,|Go), and sg: 4 refers to
our proposed equivariant diffusion adapter. At inference time, we use €9(G,,7) + sgr (G-, T,C) as
the conditional score when computing the reverse transition kernel p(G,_1|G.,C).

Our GeoAda offers several key advantages over standard supervised fine-tuning (SFT):1. The adapter
modules are lightweight and operate as plug-and-play components, allowing flexible conditioning on
new control signals without architectural modifications to the pretrained model. 2. Parameter-efficient,
as only a subset of trainable adapter modules are introduced. 3. By freezing the Pretrained model and
only optimizing lightweight adapters, the method imposes implicit regularization, helping to prevent
overfitting. 4. Through the careful design of SE(3)-equivariant adapter blocks and zero convolutions,
GeoAda guarantees equivariance throughout the tuning process, thereby retaining the theoretical
benefits of geometric diffusion models.

S Experiment

We evaluate GeoAda across three categories of additional fine-tuning controls: (1) Frame control
during dynamic prediction (§ 5.1), (2) Global type control in human motion prediction(§ 5.2), and (3)
Subgraph control in molecule generation (§ 5.3). We also performed ablation studies on core design
choices and present some observations in §5.4.

Baselines. We compare with three types of baselines: (1) Fine-tuning methods, including Full FT
, which fine-tunes the entire model, and PARTIAL-L [12, 16, 45], which updates only the last &
layers of the pre-trained model; (2) Prompt-based methods, including GPF, GPF-plus [6], which
both inject learnable prompt features into the input space. And Prompt-Template maps new inputs
to pre-training-style inputs using manually designed graph templates, specifically for the conditional
case. (3) Head-only tuning methods, where MLP-k freezes the pre-trained model and uses a k-layer
MLP as the prediction head. To preserve equivariance, we replace the MLP with an EGTN block in
our implementation. More details can be found in App. 9.2.

Implementation. The input data are processed as geometric graphs. For both trajectory and global
control settings, we follow the same experimental setup as GeoTDM [11], adopting EGTN as the
backbone model with three GeoAda blocks and a hidden dimension of 128. For subgraph control,
the base model follows the configuration of TargetDiff [8]. We use 7 = 1000 and linear noise
schedule [13]. More details in App. 9.1.

5.1 Frame Control

Task setup. For pre-training, we use the first 10 frames as the condition and train the model to
predict the trajectory over the following 20 frames. In the downstream task, we adopt a different
setup where the model observes 15 conditional frames and predicts the next 20 frames. We evaluate
all models on both the original task and the new task to assess their generalization and adaptability
across different settings.

Metrics. For conditional trajectory generation, we employ Average Discrepancy Error (ADE) and
Final Discrepancy Error (FDE), which are widely adopted for trajectory forecasting [43, 40], given by

ADE(xT], y!Tl) = L S5t S Vot x() — y @)y, and PDE(xT], y!T1) = & SOV (0 -

yETﬁl) |2 For probabilistic models, we report average ADE and FDE derived from K = 5 sam-
ples. For unconditional trajectory generation, we report three complementary scores: The Marginal
score measures statistical alignment by computing the mean absolute error (MAE) between binned
distributions of model-generated and ground-truth coordinates (or bond lengths for MD17). The Clas-
sification score is the cross-entropy of a binary classifier trained to distinguish generated trajectories
from real ones, offering insight into sample realism. The Prediction score measures the mean squared
error (MSE) of a sequence model trained on generated data and tested on real trajectories, reflecting
the utility of generated samples for downstream prediction. For more detailed metric definitions,
please refer to Appendix 9.5.



5.1.1 Particle Dynamic

Experimental Setup. We adopt the CHARGED PARTICLES dataset [17, 28] for particle dynamics
simulation. In this dataset, N = 5 particles with randomly assigned charges of either +1 or —1
interact via Coulomb forces, resulting in complex, non-linear trajectories. We use 3000 trajectories
for training, 2000 for validation, and 2000 for testing. We explore two settings: (1) Conditional
trajectory generation: we use the first 10 frames of each trajectory as input to predict the subsequent
20 frames during pretraining, and 15 frames as input during finetuning to predict the next 20 frames.
(2) Unconditional trajectory generation: we generate trajectories of length 20 from scratch during
pretraining. During finetuning, we condition on the first 10 frames and predict the next 20 frames.

Table 1: Comparisons on CHARGED PARTICLES dataset.(all results reported by x1071).(1) / () denotes
whether a larger / smaller number is preferred. "NaN" denotes generation collapse due to numerical instability,
typically observed in baseline models after fine-tuning on original task. "—"indicates that the baseline Prompt-
Tem requires explicit conditioning and cannot be applied when no conditioning frame is given.

Setting | Uncondition | Condition
Task ‘ Downstream Pretrain ‘ Downstream Pretrain

Metric | ADE(]) FDE(]) Marg(l)  Class(1) Pred(}) | ADE() FDE(}) ADE(]) FDE(})
Pretrain nan nan 0.079+0.000 5.149+0.285 0.109+0.004 | 11.826+0.133 20.395+0.249 1.177+0.018 2.815+0.037
Full FT 1.093 +0.014 2.676+0.024 1.025+0.000 nan nan 1.106+0.007  2.590+0.040 5.998 +0.041 11.75 +o0.107
Prompt-Tem - - - - 1.723+0.014  3.703 +0.061 nan nan
PARTIAL-k [12] | 1.685 +0.006 3.594 +0.040 1.016 +0.000 nan nan 1.409 +0.009 3.330+0.042 9.325 +0.064 11.94 +0.149
MLP-k 6.258 +0.947 9.111+2.628 1.01540.000 0.00+0.000 5.740 +2.914| 1.503+0.016 3.338+0.039 3924 3950
GPF [6] 1.643 +0.014 3.671 +0.020 1.027+0.000 nan nan 1.575 +o0.017  3.390+0.050 nan nan
GPF-plus [6] 1.596 +o0.011 3.574+0.024 1.023 +0.000 nan nan 1.648+0.009  3.670+0.030 nan nan
GeoAda 1.119 +0.019 2.669 +o0.022 0.079+0.000 5.134+0.247 0.111 +0.006 | 1.105+0.012 2.621+0.033 1.175+0.033 2.806-+0.033

Results. We present the results in Table 1, with the following observations. Under both the
unconditional and conditional trajectory generation settings, GeoAda achieves comparable or better
performance than Full FT on the downstream task (conditioning on the first 10 frames to predict the
next 20), while only tuning half the number of parameters. Furthermore, it consistently outperforms
other fine-tuning and prompt-based baselines, achieving 35.69% improvement on ADE and 21.29%
on FDE. On the original pretraining task, all baselines exhibit substantial performance degradation,
with some failing to generate valid diffusion samples, indicating that these methods suffer from
overfitting and catastrophic forgetting due to excessive adaptation to the downstream task."In contrast,
by leveraging equivariant zero convolutions, GeoAda retains the pretrained model’s performance.

5.1.2 Molecular Dynamics

Experimental setup. We employ the MD17 [3] dataset, which
contains the DFT-simulated molecular dynamics trajectories of
8 small molecules, with the number of atoms for each molecule
ranging from 9 (Ethanol and Malonaldehyde) to 21 (Aspirin).
For each molecule, 5000 trajectories are used for training and
1000/1000 for validation and testing, uniformly sampled along
the time dimension. Different from [40], we explicitly involve
the hydrogen atoms which contribute most to the vibrations of the o
trajectory, leading to a more challenging task. The node feature Figure 3: Visualization results of
is the one-hot encodings of atomic number [29] and edges are GeoAda on Malonaldehyde and
- . .~ Naphthalene from MD17 dataset.

connected between atoms within three hops measured in atomic

bonds [30].

Malonaldehyde Naphthalene

Results. As shown in Table 2, GeoAda achieves state-of-the-art performance across all five molecu-
lar systems in the MD17 dataset, indicating strong transferability in geometric diffusion models. In
downstream fine-tuning task, the method consistently matches or exceeds the performance of full
fine-tuning and outperforms other prior methods by an average of 18.94% in ADE and 18.22% in FDE.
Importantly, when returning to the original pretraining task, it retains performance comparable to the
pretrained model, while both fine-tuning and prompt-based methods exhibit significant degradation or
collapse due to overfitting. More experiment results on Malonaldehyde and Naphthalene in App. 10.1.



Table 2: Comparisons for Molecular Dynamics prediction on MD17 dataset (all results reported by x1071).
The best results are highlighted in bold. Results averaged over 5 runs. "NaN" denotes generation collapse due to
numerical instability, typically observed in baseline models after fine-tuning on the original task.

Scenarios | Aspirin | Benzene | Ethanol
Task | Downstream Pretrain | Downstream Pretrain | FT Pretrain

Metric ‘ ADE FDE ADE FDE ‘ ADE FDE ADE FDE ‘ ADE FDE ADE FDE
Pretrain 3.782+0.010 7.345+0.016  1.062+0.002 1.857+0.013 | 0.603+0.000 1.325+0.008  0.241+0.000 0.393+0.002 | 3.263+0.010 4.357+0.014  0.999=0.009 1.856-0.032
Full FT 0.929+0.002 005 1.323+0.003 2.280+0.016 | 0.217+0.001 0.360+0.002 nan nan 0.997+0.007 1.906+0.002 inf inf
PARTIAL-E [12] | 1.071x0.003 1.875x0.000  1.439+0.003 2.407+0.007 | 0.249+0.005 0.407+0.003 0.318+0.110/man 0.491+0.001/nan | 1.288+0.008 2.161+0.018  6.502+4.574 4.636+2.423
MLP-k 1.132x0.004  1.921x0.004  1.579+0.005 2.641x0.007 | 0.248+0.012 0.412+0.004 nan nan 1.301+0.001 2.275+0.021  2.228+0.004 2.716+0.022
Prompt-Tem 1.197x0.008 2.014x0.030  1.571+0.010 2.668+0.024 | 0.241+0.012 0.409+0.021 nan nan 1.207+0.018 2.194+0.081 nan nan
GPF [6] 1.130+0.006  1.909+0.024 3.260+0.015/inf 4.272+0.025/inf | 0.246+0.001 0.415+0.004 nan nan 1.239+0.023 2.233+0.050  2.420+0.156 3.519+0.056
GPF-plus [6] 1.014x0.006 1.962x0.021  2.243+0.009 3.349+0.018 | 0.234x0.010 0.331+0.057  1.1180.006 1.083x0.010 | 1.13740.025 2.048+0.046 3.240+0.081/inf 4.074 +o.171/inf
GeoAda 0.891 £0.003 1.533 +0.008  1.060-0.003 1.852 +0.012 | 0.191 0.000 0.319+0.002  0.240=0.002 0.394+0.005 | 0.905+0.007 1.745+0.010  0.995+0.005 1.867+0.019

5.2 Global Type Control

Experimental setup. The CMU Mocap dataset is a commonly used dataset for human pose
prediction, which includes 8 action categories. A single pose has 38 body joints in the original dataset,
among which we choose 25 joints following the configuration of MSR-GCN [4], using 10 frames as
input to predict the subsequent 25 frames. For pre-training, we construct a dataset by combining the
three most frequent actions: directing traffic, washing windows, and giving basketball signals. The
remaining five actions are used as the downstram task fine-tuning dataset.

Results We report short-term and long-term mo-
tion prediction results on the CMU Mocap dataset
in Tables 3 and 4. More results on jumping and soc-
cer scenarios are in App. 10.2. GeoAda consistently
achieves state-of-the-art performance across all ac-
tion categories and time horizons. In this setting,
the pretraining dataset is significantly larger than the
downstream task dataset (30k vs. 245-1345 data-
points). As a result, naive fine-tuning and prompt- A 2t
based methods are highly prone to overfitting to the Ground Truth Ours |
limited downstream training data, leading to notably
degraded performance. Moreover, they are more
likely to fail to generate valid samples on the original
pretraining task, indicating a severe loss of pretrained knowledge and catastrophic forgetting. In
contrast, GeoAda benefits from the implicit regularization effect of the adapter, which mitigates
overfitting and preserves the performance of the pretrained model.

Figure 4: Visualization of Running trajectory

Table 3: Comparisons for short-term prediction on 5 action categories of the CMU Mocap dataset. The best
results are highlighted in bold. Results averaged over 5 runs (std in App. 10.2).

scenarios | running pretrain | walking pretrain | basketball pretrain |
millisecond (ms) | 80 160 320 400 80 160 320 400 | 80 160 320 400 80 160 320 400 | 80 160 320 400 80 160 320 400
Pretrain 2874 57.99 12620 15937 7.941 1684 3991 5245 | 1549 3066 6871 89.23 7.941 1684 3991 5245 | 1792 3589 7848 10112 7.941 1684 39.91 5245
Full FT 2034 3526 6058 7020 nan  nan  nan  nan | 1001 1512 2398 2849 nan  nan  nan  nan | 1695 3033 5828 7193 nan  nan  nan  nan
PARTIAL-k [12] | 2047 3604 6815 8259 nan nan  nan  nan | 1047 1697 3097 37.69 17.26 3175 6629 8427 | 1754 3203 6296 7895 nan  nan  nan  nan
MLP-k 2335 4444 8427 10142 nan  nan  nan  nan | 1086 1874 3578 4486 nan  nan  nan  nan | 1760 3476 7290 8634 nan  nan  nan  nan
GPF [6] 1848 3194 5880 7356 2138 3544 6523 7955 | 1079 1679 2832 3348 2204 37.10 7124 8823 | 1848 3194 5880 73.56 2138 3544 6523 7955
GPF-plus [6] 19.11 3193 4985 5667 nan  nan  nan  nan | 10.17 1623 2629 3154 nan  nan  nan  nan | 1717 3186 5848 7271 nan  nan  nan  nan
GeoAda 1870 3356 5026 5554 7972 1691 4006 5261 | 892 1382 2299 2668 7.932 1690 3896 5254 | 1685 29.71 57.59 7119 7.898 1679 39.70 5250

Table 4: Comparisons for long-term prediction on 5 action categories of the CMU Mocap dataset. The best
results are highlighted in bold. Results averaged over 5 runs (std in App. 10.2).

scenarios \ running pretrain \ walking pretrain \ basketball pretrain
millisecond (ms) | 560 1000 560 1000 | 560 1000 560 1000 | 560 1000 560 1000
Pretrain 219.16 314.85 77.06 130.51 | 12943 21294 77.06 130.51 | 14349 22399 77.06 130.51
Full FT 85.14 97.02 nan nan 36.92 52.58 nan nan 94.59 132.34 nan nan
PARTIAL-k [12] | 102.85 108.47  nan nan 5136  84.72 118.82 182.88 | 106.84 146.27 nan nan
MLP-k 127.67 131.59  nan nan 62.97 102.34 nan nan 107.30  149.58 nan nan
GPF [6] 61.92 71.42 nan nan 42.37 5224 11943 171.74 | 97.16  128.29 nan nan
GPF-plus [6] 63.56  71.60 nan nan 41.31 56.47 nan nan 104.54 130.76 104.51 155.02
GeoAda 60.88 70.22 77.22 130.17 | 3452 5049 78.12 129.97 | 91.03 12035 76.94 129.81

5.3 Subgraph Control

Experimental setup. We adopt the QM9 [26] and GEOM-Drugs [1] dataset for pretraining a model
for molecule generation, use the CrossDocked2020 dataset [7] for finetuning protein-ligand pair gen-
eration. QMO [26] contains 130k small molecules with atom types (H, C, N, O, F). GEOM-Drugs [1]



Table 5: Summary of binding affinity and molecular properties of reference molecules and molecules generated
by GeoAda and baselines. (1) / () denotes whether a larger / smaller number is preferred.

Methods Vina Score (1) | Vina Min (]) | Vina Dock ({) | High Affinity(1) QED(1) SA(T) Diversity()

Avg.  Med. | Avg. Med. | Avg. Med. Avg. Med. | Avg. Med. | Avg. Med. | Avg. Med.
liGAN [25] - - - - -6.33  -6.20 | 21.1% 11.1% | 039 0.39 | 059 0.57 | 0.66 0.67
GraphBP [19] - - - - -480 470 | 142% 6.7% | 043 045 | 049 048 | 0.79 0.78
AR [21] =575  -5.64 | -6.18 -5.88 | -6.75 -6.62 | 379% 31.0% | 051 0.50 | 0.63 0.63 | 0.70 0.70

Pocket2Mol [24] | -5.14  -4.70 | -642 -582 | -7.15 -6.79 | 484% 51.0% | 0.56 0.57 | 0.74 0.75 | 0.69 0.71
TargetDiff [10] -547 -630 | -6.64 -6.83 | -7.80 -791 | 58.1% 59.1% | 048 048 | 0.58 058 | 0.72 0.71
GeoAda (qm9) -5.54 -631 | -6.64 -646 | -7.62 -7.64 | 574% 582% | 049 0.51 | 0.58 058 | 0.74 0.75

GeoAda (Geom) | -5.54 -6.01 | -6.68 -632 | -7.64 -7.71 | 583% 593% | 048 050 | 0.58 0.58 | 0.76 0.75
Reference -6.36  -6.41 | -6.71 -649 | -745 -7.26 - - 048 047 | 073 074 - -

Table 6: Jensen-Shannon divergence of  Table 7: Percentage of different ring sizes for reference and
bond distance distributions between refer- model generated molecules.

ence and generated molecules. (@) Ring Size| Ref. LGAN AR Pocket2Mol TargetDiff GeoAda(qm9) GeoAda (geom)

Bond ‘ liGAN AR  Pocket2Mol TargetDiff GeoAda (qm9) GeoAda (Geom) 3 1.7% 28.1% 29.9% 0.1% 0.0% 0.0% 0.0%

C-C| 0.601 0.609  0.496 0.369 0.243 0.269 4 0.0% 157% 0.0% 0.0% 2.8% 6.7% 5.8%
C=C| 0.665 0.620 0.561 0.505 0.377 0.393 g

C-N| 0.634 0474 0416 0.363 0.363 0.396 5 30'2;7[] 29'80% 16'0276 16'4? 30'8270 47'2276 45'8;70
CoN| 0749 0635 0629 035 0300 0299 6 67.4% 227% 51.2% 804%  50.7% 69.1% 78.2%
C-0| 0656 0492 0454 0421 0.418 0.428 7 07% 2.6% 17%  2.6% 12.1% 235 21.3%
C=0] 0.661 0.558 0.516 0.461 0.279 0.257 8 0.0% 08% 0.7% 0.3% 2.7% 5.3% 4.7%

C:C | 0.497 0451 0416 0.263 0.305 0.335

C:N | 0.638 0.552 0.487 0.235 0297 0.330 9 0.0% 0.3% 0.5% 0.1% 0.9% 3.8% 1.6%

is a large-scale dataset of 430k molecular conformers with heavy atoms, and we keep the lowest
energy conformation for each molecule. Following the common setup for CrossDocked2020 [10],
we obtain 100k complexes for training and 100 novel complexes for testing. Since CrossDocked2020
has different atom type configuration from QM9 and GEOM-Drugs, we limit the atom type to (H, C,
N, O, F, P, S, Cl). Following [10], proteins and ligands are expressed as 3D atom coordinates and
one-hot vectors containing the atom types.

Implementation. Following prior work [10], we use the Adam optimizer with a learning rate of
0.001 and g values of (0.95, 0.999). Batch size is set to 4 and gradient clipping set to 8. To balance
the atom type and position losses, we scale the atom type loss by a factor of A = 100.

Results. We evaluate molecular properties and molecular structures of the proposed model and
baselines on target-aware molecule generation in Table 5, 6, and 7. Baseline models are trained
on CrossDocked2020 under explicit protein conditioning. GeoAda matches, and in multiple cases
surpasses the strongest baselines on all metrics, generating ligand molecules that maintain realistic
structures, high binding affinity, comparable drug-likeness and sythetic accessibility. The lightweight
adapter can inject subgraph (pocket) control into a broadly pretrained geometric diffusion model,
achieving or surpassing task-specific baselines that rely on end-to-end training with protein context.

5.4 Ablations and Observations

Observation of the sudden convergence phenomenon Similar to the phenomenon observed
in ControlNet [44], we also observe a sudden convergence phenomenon in our training process.
As shown in Figure 5, between step 4500 and 4700, both training loss and validation MSE drop
abruptly rather than gradually. To investigate this behavior, we conducted inference using the saved
checkpoints from steps 3600 and 5600, and observed a notable performance jump between steps
4400 and 4800, which corresponds to significant reductions in ADE and FDE by 68.3% and 73.4%.

Epoch Training Loss Validation MSE ADE and FDE over Training Steps
0.06 4 —— Epoch Train Loss 0.045 4 Validation MSE 4500 4700 —e— FDE
2 ADE
0.040 4
 0.054
3
S & 0.035 4
= 0.04
| § 0.030 -
= =
4 0039 ;(-f 0.025 1
S <
2 0.021 > 0.020 4
0.015 4
0.014
0 50000 100000 150000 200000 250000 300000 0 50000 100000 150000 200000 250000 300000 3600 4000 ~ 4400 4800 5200 5600
Step Step Step

Figure 5: The sudden convergence phenomenon

Parameter efficiency analysis As shown in Appendix 10.3.1, we explore the impact of varying the
number of equivariant zero layers. Increasing the number of trainable copy layers generally improves



performance, but introduces more parameters and computational cost, revealing a trade-off between
performance and efficiency. We also reported the number of tunable parameters for different tuning
strategies in Table 21. Except for full fine-tuning, which is substantially larger, all other methods,
including GeoAda, use comparable parameter sizes.

Ablation on Equivariant Zero Convolutions We evaluate two variants to assess the role of
equivariant zero convolution: (1) replacing it with Gaussian-initialized standard convolutions, and (2)
replacing each trainable copy with a single convolution layer (see App. 10.3.2). Both modifications
result in notable performance drops, underscoring the importance of zero initialization and structural
design for stable and effective fine-tuning.

6 Conclusion

We present GeoAda, a parameter-efficient and SE(3)-equivariant adapter framework for geometric
diffusion models. It enables effective adaptation to diverse geometric control tasks without modifying
the pretrained backbone, preserving both performance and geometric consistency.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Introduction clearly state the main contributions, which
include the proposal of GeoAda, an SE(3)-equivariant adapter framework for efficient fine-
tuning of geometric diffusion models. The claims cover parameter efficiency, preservation
of geometric consistency/equivariance, mitigation of overfitting and catastrophic forgetting,
and wide applicability across diverse geometric control types and domains. These claims
appear to be supported by the theoretical proofs (discussed in Section 4 and Appendix 7)
and experimental results presented (Section 5).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Discussed in App. 11.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper states in the abstract that it theoretically proves the proposed adapters
maintain SE(3)-equivariance. Proposition 4.1 (Section 4.2) addresses the equivariance of
control encoding. Section 4 (Method) details the design to ensure SE(3)-equivariance.
Appendix 7 is explicitly titled "Proof", and Appendix 8.5.4 and 8.5.5 discuss theoretical
aspects like Theorem 8.1 and 8.2 with related assumptions.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 5 (Experiment) details the experimental setup, including datasets, task
setups for pre-training and fine-tuning, evaluation metrics, and baselines. Section 5 also
mentions implementation details. Further specifics are provided in Appendix 8, including
Appendix 8.2 (Hyper-parameters), Appendix 8.3 (Baselines), and Appendix 8.4 (Details of
the datasets).

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The paper provides detailed descriptions of the experimental setup, datasets,
and implementation details in Section 5 and Appendix 8, which support reproducibility.
However, it does not explicitly state that the code and data are open access or provide URLs
to repositories.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 (Experiment) outlines experimental setups for different tasks, includ-
ing dataset descriptions and fine-tuning specifics. Implementation details are mentioned
within Section 5. Appendix 8 provides further details, with Appendix 8.2 specifying hyper-
parameters (Table 5), Appendix 8.1 discussing compute resources, Appendix 8.3 detailing
baselines, and Appendix 8.4 giving dataset statistics including splits.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The tables in Section 5 (e.g., Table 1, Table 2, Table 3, Table 4) and Appendix
9 (e.g., Table 8, Table 9, Table 10) report mean results along with what appear to be standard
deviations (e.g., "11.826 +0.133" from Table 1). Captions for these tables often state "Results
averaged over 5 runs" and some explicitly mention "(std in App. 9.4)".

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix 8.1 ("Compute Resources") specifies the use of "4 Nvidia A6000
GPUs," training times for different datasets ("NBody and ETH-UCY take around 12 hours
while each MD17 training phase takes about a day"), and that "CPUs were standard intel
CPUs."

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There is no indication of ethical violations from the research described.
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Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Discussed in Appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The research focuses on geometric diffusion models for scientific applications
such as molecular and particle dynamics, and human motion prediction using established
datasets. These applications and datasets do not typically fall into the high-risk category for
misuse in the same vein as large language models generating text or image generators creat-
ing photorealistic fakes of individuals, which would necessitate specific, explicit safeguards
mentioned in the paper beyond standard responsible research conduct.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper credits the original sources of the datasets used (e.g., MD17, QM9,
GEOM-Drugs, CrossDocked2020, CHARGED PARTICLES, CMU Mocap) by citing the
relevant publications in Section 5 and the References section. While the specific license
for each dataset is not reiterated within this paper’s text, citing the original publication is
standard academic practice for acknowledging the source and implicitly, adherence to their
terms of use.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper is not about a new dataset or a standalone software/model asset in
the sense that requires separate documentation released alongside an asset. The proposed
method itself is documented within the paper (Section 4).

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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15.

16.

Justification: The paper utilizes existing datasets, such as the CMU Mocap dataset for human
motion studies (Section 5.2). It does not describe any new crowdsourcing efforts or new
research involving direct data collection from human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research relies on pre-existing, publicly available datasets (e.g., CMU
Mocap, mentioned in Section 5.2). The paper does not detail new experiments involving
human subjects that would necessitate a new IRB approval process to be described within
this work.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology of the paper revolves around geometric diffusion models
and equivariant adapters (Section 4). There is no mention or indication that Large Language
Models (LLMs) are an important, original, or non-standard component of the research
methods presented.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

8 Proof
Below is the explanation and proof of Proposition 4.1:

Proof. Since €y is SE(3)-equivariant by assumption, we have for any h € SE(3),
€o(h-G')=h-€(G"), whereG =f£(G,,C).

We consider each component:

* The coupling operator f augments G- with control C in a way that respects the SE(3) structure:
global controls modify features invariantly; subgraph controls are merged geometrically;
frame controls concatenate along the temporal axis. Thus, f is SE(3)-equivariant.

» The decoupling operator g selects a subset of nodes or frames without altering their coordi-

nates. Therefore, it commutes with SE(3) action: g(h - G"”) = h - g(G").

Combining the above, we explicitly see that for any h € SE(3) defined as h(x) = Rx + d, we have:
goeof(h-(G,,C))
=g(ep (h-1(G7,0)))
=g (h- € (£(G7,0)))
=h-g(€o (£(G7,C)))
—R-(goeyof(d,.C))+d
=h-(goeof(G,,C))

Therefore, the composed function g o €y o f is SE(3)-equivariant.

9 More Details on Experiments

9.1 Hyper-parameters
We provide the detailed hyper-parameters of GeoAda in Table 8. We adopt Adam optimizer with

betas (0.9,0.999) and € = 10~%. For all experiments, we use the linear noise schedule per [13] with
ﬂstart = 0.02 and Bend = 0.0001.

Table 8: Hyper-parameters of GeoAda in the experiments.

n_layer hidden time_emb_dim T batch_size learning_rate

N-body 6 128 32 1000 128 0.0001
MD 6 128 32 1000 128 0.0001
CMU Mocap 6 64 32 100 128 0.0001

9.2 Baselines

Full FT.

Full FT fully fine-tunes the pre-trained model f during downstream training. The entire model is
updated to fit the target task.
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PARTIAL-L.

PARTIAL-% fine-tunes only the last k layers of the model f, while freezing the remaining layers.
This method balances adaptability with parameter efficiency by limiting the number of updated layers.

Graph Prompt Feature (GPF).

In GPF, the pre-trained encoder f is kept frozen, and a learnable prompt vector p is injected into the
input feature space. During training, only the prompt vector p and the prediction head 6 are optimized.
This method enables task adaptation through a lightweight, task-specific prompt without modifying
the backbone model. In our implementation, we replace the original MLP head with a three-layer
Equivariant Geometric Trajectory Network (EGTN), which ensures the projection head maintains
geometric consistency with the model.

Graph Prompt Feature-Plus (GPF-plus).

Extending GPF, this variant constructs node-wise prompt vectors using k learnable basis vectors
..., pz and a set of learnable linear weights a1, . . ., ai. These components are used to compute
node-specific prompts p; via a compositional mechanism. The model f remains frozen, while
prediction head 6, learnable basis vectors p?, andlearnable linear weights a; are optimized.

Prompt-Template

We prepend a learnable prompt layer(Equivariant Geometric Trajectory Network) to adapt new inputs
to the distribution seen during pretraining, following with prediction head 6.

MLP-£ (EGTN-k).

This baseline freezes the entire pre-trained model f and replaces the prediction head with a k-layer
multilayer perceptron (MLP). To preserve equivariance in our setting, we replace the MLP with an
Equivariant Geometric Trajectory Network (EGTN) block. Only the EGTN-based head is trained
during the downstream task.

9.3 Details of the datasets
9.3.1 Global Type Control

Pretrain Dataset The statistics of the pretrained datasets on Global Type Control are presented in
Table. 9.

Table 9: Pretrain Dataset statistics by Global Type.
Type Washwindow Directing Traffic Basketball Signal Pretrain

train 12126 9557 7776 29459
val 1342 2346 1920 5588
test 1342 2346 1920 5588

Downstream datasets The statistics of the downstream datasets utilized for the models pretrained
on Global Type Control are presented in Table. 10.

Table 10: Downstream Dataset statistics by Global Type.

Type Running Walking Jumping Basketball Soccer

train 245 869 1345 1044 1210
val 47 145 1008 254 264
test 47 145 1008 254 264

9.4 Model

9.4.1 Geometric Trajectory Diffusion Models

Unconditional Generation For unconditional generation, we model the trajectory distribution
subject to SE(3)-invariance. The following theorem provides constraints for the prior and transition
kernel.
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Theorem 9.1. If the prior pT(xg]) is SE(3)-invariant, and the transition kernels p,_1(x [TT]I

xr ]) Vr € {1,---,T} are SE(3)-equivariant, then the marginal pT(x[T ]) at any step T €
{O -, T}is also SE(3)-invariant.

Prior in the translation-invariant subspace. The prior is built on a translation-invariant subspace
Xp C X, induced by a linear transformation P:

1
P=Ip® (ITN — TJV]-TN]-;N>

which results in a restricted Gaussian distribution supported only on the subspace, denoted N (0,1),
and is isotropic and SO(3)-invariant. To sample, one samples from A (0, I) and projects it onto the
subspace.

Transition kernel. The transition kernel is parameterized in the subspace A’p, given by:

po (&, | 1) = N(jag (=1, 7). o71)
where the mean function fig is SO(3)-equivariant. The function is re-parameterized as:
1 .
o1, = = (31— ) )
where €g = P o fg is an SO(3)-equivariant adaptation of the proposed EGTN.

Training and inference. The VLB is optimized for training, with the objective:

_ ) o
Euncond . Ex([)T],éNN(O,I),TwUnif(l,T) |:||6 (X )” :|

The inference process involves projecting intermediate samples onto the subspace Ap.

Conditional Generation In conditional generation, the target distribution is SE(3)-equivariant with
respect to the given frames. The following theorem provides constraints for the prior and transition
kernel.

Theorem 9.2 If the prlor pT(XT | xFe ]) is SE(3)-equivariant, and the transition kernels

Pre 1( \ x el ), Vr € {1,---, T} are SE(3)-equivariant, the marginal pT(xT 7l | xLFe ])

VT € {0 -, T} is SE(3)-equivariant.

Flexible equivariant prior. We provide a guideline for distinguishing feasible prior designs. The

prior N (p(x [TC])7 I) is SE(3)-equivariant if ,u(xETC}) is SE(3)-equivariant. The mean function

p(xe [ C]) serves as an anchor to transition geometric information from the given frames to the target
d1str1but10n For instance, the anchor can be defined as:

T =1y 3wzl

s€(Te]
where the weights satisfy Zsem] w®) = 1.

The weights w(*) are derived as:

- W, ifs<T.—1
W, =[yohll], e RV wh) = * _ ,
t,s [y c ]t,s 1y — ZZ;O2 W,, ifs=T, 1.
where v € R are learnable parameters, ensuring the constraint for translation equivariance.

Transition kernel. To match the proposed prior, we modify both the forward and reverse processes.
The forward process is defined as:

G ) = Wi+ VT B (o =), 80),

which ensures that q(xT] \xc ) matches the equivariant prior x,. (proof in App. ??). The reverse
transition kernel is:

pra (7 T Ty = N (g (71, 7, (1), 021).
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We adopt the noise prediction objective for the reverse process, rewriting ftg as:

1 B
o (e <,y = x4 —— (X[TT] B =i T>> ’
where the denoising network €g is implemented as an EGTN with translation invariance, ensuring
the translation equivariance of fg.

Training and inference. Optimizing the VLB of our diffusion model leads to the following objective:

‘Ccond = Ex([)T],x[cT“] ,e~N(0,I),7~Unif(1,7T) |:H€ — €9 (XLT] ) X[CTC] ) T) ||2:| :

9.5 Evaluation Metrics in the Unconditional Case

All these metrics are evaluated on a set of model samples with the same size as the testing set.

Marginal score is computed as the absolute difference of two empirical probability density functions.
Practically, we collect the z, y, z coordinates at each time step marginalized over all nodes in all
systems in the predictions and the ground truth (testing set). Then we split the collection into 50
bins and compute the MAE in each bin, finally averaged across all time steps to obtain the score.
Note that on MD17, instead of computing the pdf on coordinates, we compute the pdf on the length
of the chemical bonds, which is a clearer signal that correlates to the validity of the generated MD
trajectory, since during MD simulation the bond lengths are usually stable with very small vibrations.
Marginal score gives a broad statistical measurement how each dimension of the generated samples
align with the original data.

Classification score is computed as the cross-entropy loss of a sequence classification model that
aims to distinguish whether the trajectory is generated by the model or from the testing set. To be
specific, we construct a dataset mixed by the generated samples and the testing set, and randomly
split it into 80% and 20% subsets for training and testing. Then the model is trained on the training
set and the classification score is computed as the cross-entropy on the testing set. We use a 1-layer
EqMotion with a classification head as the model. The classification score provided intuition on how
difficult it is to distinguish the generated samples and the original data.

Prediction score is computed as the MSE loss of a train-on-synthetic-test-on-real sequence to
sequence model. In detail, we train a 1-layer EqMotion on the sampled dataset with the task of
predicting the second half of the trajectory given the first half. We then evaluate the model on the
testing set and report the MSE as the prediction score. Prediction score provides intuition on the
capability of the generative model on generating synthetic data that well aligns with the ground truth.

10 More Experiments and Discussions

10.1 Molecular

Additional experimental results on the Malonaldehyde and Naphthalene are shown below:

Table 11: Comparisons for Molecular Dynamics prediction on MD17 dataset (all results reported by x1071).
The best results are highlighted in bold. Results averaged over 5 runs

Scenarios Malonaldehyde Naphthalene

Task Downstream Pretrain Downstream Pretrain

Metric ADE FDE ADE FDE ‘ ADE FDE ADE FDE
Pretrain 3.235+0.012 5.189+0.023  0.962+0.007 1.584+0.021 | 1.416+0.003 2.268+0.005 0.714+0.002 0.972+0.006
FT 0.897+0.002 1.511+0.009  1.405+0.006 2.237+0.023 |0.555+0.001 0.867+0.010 nan nan
PARTIAL-E [12]| 0.981+0.004 1.675+0.015  1.230+0.003 2.110+0.006 | 0.653+0.002 0.903+0.003 2.083+0.009 1.629+0.007
MLP-k 0.997+0.005 1.694+0.010 1.291+0.004 2.051+0.015 |0.718+0.001 0.969+0.005 nan nan
Prompt-Tem 1.092+0.019 2.003+0.056  2.323+0.024 3.351+0.081 | 0.972+0.006 1.593+0.021 nan nan
GPF [6] 1.176+0.012 1.931+0.030 282.1+157.9/inf 24.97+24.43/inf | 0.758+0.002 1.005+0.005 nan nan
GPF-plus [6] 1.018+0.003 1.793+0.010  3.527+0.501 4.719+1.397 | 0.717+0.003 0.873+0.006 1.891+0.056 2.674+0.156
GeoAda 0.862 +0.002 1.414 +0.014  0.963+0.007 1.573+0.018 |0.581+0.002 0.822+0.004 0.714+0.001 0.969+0.007

10.2 Human Motion

Additional experimental results on the jumping and soccer scenarios are presented below. We also
report the standard deviations across all experiments.
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Table 12: Short-term prediction on running from the CMU Mocap dataset.

scenarios \ running \ pretrain

millisecond (ms) | 80 160 320 400 \ 80 160 320 400
Pretrain 28.74+0.3¢  57.99+0.33  126.20 +0.93 159.37+1.15 | 7.941+0.02 16.84 +0.04 39.91+0.43 52.45 +o0.07
Full FT 20.34 +0.32 3526 £0.19  60.58+1.14  70.20 +1.36 nan nan nan nan
PARTIAL-% 20.47+0.32  36.04 +0.40  68.15+0.70 82.59+0.86 nan nan nan nan
MLP-k 23.35 +0.39  44.44+0.71 84.27 +1.58  101.42+2.11 nan nan nan nan
GPF 19.17+0.28  32.85+0.66 52.83+1.03 60.90 +1.54 | 21.38 +0.97 35.44+1.05 65234176 79.55 +1.11
GPF-plus 19.11+0.54  31.93+0.81  49.85 +1.21  56.67+1.39 nan nan nan nan
GeoAda 18.70 +0.37  33.56+0.25 50.26+0.42 55.54+0.36 | 7.972+0.02 16.91+0.05 40.06+0.42 52.61+0.07

Table 13: Short-term prediction on walking from the CMU Mocap dataset.

scenarios | walking | pretrain

millisecond (ms) ‘ 80 160 320 400 ‘ 80 160 320 400
Pretrain 15.49+0.07  30.66+0.16 68.71+0.33 89.23 +0.43 | 7.941+0.02 16.84 +0.04 39.91+0.43 52.45 +0.07
Full FT 10.01 +0.17  15.12 +0.14 23.98+0.13  28.49 +0.19 nan nan nan nan
PARTIAL-k 10.47 +o0.81 1697 +0.43  30.97+0.60 37.69 +0.60 | 17.26+0.23 31.75+0.36  66.29+0.44 84.27+0.79
MLP-k 10.86+1.07  18.74 +1.37  35.78+1.92 44.86+1.35 nan nan nan nan
GPF 10.79+0.14  16.79 +0.16  28.32+0.21  33.48+0.22 | 22.04+0.38 37.10 +0.40 71.24+0.39  88.23+0.97
GPF-plus 10.17 0.16  16.23+0.12  26.29+0.22  31.54 +0.19 nan nan nan nan
GeoAda 8.92+1.02 13.82+1.26  22.99+1.30 26.68+1.31 | 7.9324+0.03 16.90+0.04 38.96+0.47 52.54+0.10

Table 14: Short-term prediction comparison on the basketball action from the CMU Mocap dataset.

scenarios | basketball | pretrain

millisecond (ms) | 80 160 320 400 | 80 160 320 400
Pretrain 17.924+0.06  35.89+0.12  78.48+0.47 101.12+0.69 | 7.941+0.02 16.84+0.04 3991 +0.43 52.45+0.07
FT 16.95+0.11  30.33 +0.17  58.28+0.41  71.93+0.54 - - - -
PARTIAL-k 17.54+0.12  32.03+0.43 62.96+0.86  78.95+0.98 - - - -
MLP-k 17.60+0.50  34.76+1.26  72.90+2.36  86.34 +1.53 - - - -
GPF 18.48+0.09  31.94+0.14 58.80+0.28 73.56+0.20 | 21.38+0.11 35.44+0.27  65.23+0.30 79.55+0.51
GPF-plus 17.17 +0.07  31.86+0.15 58.48+0.32 72.71 +0.24 - - - -
GeoAda 16.85+0.24  29.71+0.41 57.59+0.39  71.19+0.48 | 7.898+0.05 16.79 +0.05 39.70 +0.04 52.50+0.07

Table 15: Short-term prediction comparison on the jumping action from the CMU Mocap dataset.

scenarios \ jumping \ pretrain
millisecond (ms) | 80 160 320 400 \ 80 160 320 400
Pretrain - - - - 7.941 £0.02  16.84 +0.04 3991 +0.43  52.45+0.07
FT - - - - 26.67+0.10  50.83+0.29  94.13+0.58  112.66+0.71
PARTIAL-k 26.01+0.08 49.19 +0.09 95.84+0.13 116.24 +0.23 | 19.08+0.17  38.53+0.3¢  79.77+0.52  99.85+1.07
MLP-k 22.63/nan  44.68/man  88.93/nan 108.43/nan 15.32+0.30  31.92+0.26  66.50+0.42  82.55+0.93
GPF 28.74+0.19  51.97+0.19  97.80+0.34 117.94 +0.37 +0.08 - - - -
GPF-plus - - - - - - - -
GeoAda 25.91+0.09 48.83+0.83 91.51+0.07 109.24+0.60 | 7.956 +0.03 16.82 +0.04 39.55 +0.47  52.57 +0.09
Table 16: Short-term prediction comparison on the soccer action from the CMU Mocap dataset.
scenarios | soccer | pretrain
millisecond (ms) \ 80 160 320 400 \ 80 160 320 400
Pretrain - - - - 7.941+0.02 16.84+0.04 3991 +043 52.45+0.07
FT 17.65 +0.17  31.43 +0.35  59.76+0.44  74.30 +0.54 - - - -
PARTIAL-k 18.83+0.10  32.86+0.07 64.58+0.37 81.53 +0.50 | 14.14+0.41  24.95+0.38 50.89 +0.40 64.24+0.51
MLP-k - - - - - - - -
GPF 19.28+0.10  32.18+0.14  69.58+0.42 73.63+0.63 | 15.70+0.30 2831 +0.28 58.57+0.42  74.28+0.61
GPF-plus 19.11+0.18  32.03+0.31  59.67+0.46 74.25 +0.65 | 15.22+0.23  26.22+0.29  52.02+0.47  65.17+0.53
GeoAda 17.04+0.14  30.03+0.12  53.51+0.25 64.78+0.42 | 7.961 +0.02 16.90+0.03 39.46 +0.41 52.43 +0.09
Table 17: Long-term prediction on CMU Mocap: Running and Walking.
scenarios \ running pretrain \ walking pretrain
millisecond (ms) | 560 1000 560 1000 | 560 1000 560 1000
Pretrain 219.16+2.18  314.85+3.03 77.06 +0.47 130.51 +0.27 | 129.43 +0.77 21294 +1.90 77.06 +0.47  130.51 +o.27
Full FT 85.14 +2.36 97.02+1.45 nan nan 36.92+1.37 52.58+0.62 nan nan
PARTIAL-L [12] | 102.85 +1.68 108.47+2.03 nan nan 51.36+1.93 84.72+0.67 118.82+0.58  182.88+0.79
MLP-£ 127.67+2.46  131.59+2.90 nan nan 62.97+1.45 102.34+0.86 nan nan
GPF [6] 61.92+1.02 71.42+1.27 nan nan 42.37+0.31 52.24 +0.38  119.43+0.60 171.74+0.55
GPF-plus [6] 63.56+1.54 71.60+0.95 nan nan 41.31+0.35 56.47+0.4 nan nan
GeoAda 60.88 +0.82  70.22+2.02  77.22 +0.45 130.17 +0.26 | 34.52 +2.26  50.49 +0.33  78.12 +0.49 129.97 +0.30
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Table 18: Long-term prediction on CMU Mocap: Jumping and Soccer.

scenarios | jumping pretrain | soccer pretrain
millisecond (ms) | 560 1000 560 1000 | 560 1000 560 1000
Pretrain - - 77.06+0.47  130.51+0.27 - - 77.06+0.47  130.51+0.27
Full FT - - 145.76+1.23  199.34+2.01 | 101.44 +0.51  157.11+0.96 - -
PARTIAL-k [12] | 149.06+0.37 181.52+0.81 135.25+0.92 186.16+1.58 | 113.88 +0.75  170.50+1.98  89.63 +1.62 142.41+1.84
MLP-k 140.11/nan 184.77/man  111.71+0.74 158.55+1.37 - - - -
GPF [6] 151.50+0.65  194.94+0.34 - - 100.23+0.88  151.84+1.23 104.03+0.81 161.56+1.31
GPF-plus [6] - - - - 101.15 +0.86 153.43 +0.79  90.12 +1.10  142.30+1.12
GeoAda 139.46 +0.29 184.01+0.60 76.98+0.51  130.72+0.26 | 84.91+t0.46 12591 +0.75 77.19 +0.48  130.06-+0.31

Table 19: Long-term prediction on CMU Mocap: Basketball.

scenarios \ basketball pretrain
millisecond (ms) | 560 1000 560 1000
Pretrain 143.49+1.19  223.99+2.23  77.0640.47 130.51+0.27
Full FT 94.59+0.58 132.34+1.30 nan nan
PARTIAL-k [12] | 106.84 +1.00 146.27 +1.24 nan nan
MLP-k& 107.30+2.76 ~ 149.58+2.24 nan nan
GPF [6] 97.16+0.35 128.2940.43 nan nan
GPF-plus [6] 104.54 +0.26  130.76+1.28  104.51+0.57 155.02 +0.51
GeoAda 91.03+0.33 120.35+0.44  76.94+0.45  129.81-+0.30

10.3 Ablations
10.3.1 Parameter efficiency analysis

As shown in Table 20, we explore the impact of

Table 20: Different numbers of adapter blocks

varying the number of equivariant adapter blocks.

Increasing the number of trainable copy layers gen- Number ADE FDE
erally improves performance, but introduces more ] 1321 3.088
parameters and computational cost, revealing a trade- 2 1291  2.968
off between performance and efficiency. We have 3 1.108 2.621
computed the number of tunable parameters for all 4 1.104 2.588
baselines and GeoAda. The statistics are presented in 5 1.106  2.686

Table 21. Except for Full Fine-Tuning, all methods
have a comparable number of tunable parameters, ensuring a fair comparison.

Table 21: The number of tunable parameters for different tuning strategies.

Dataset Tuning Strategy  Total Parameters = Tunable Parameters
Full FT 1418252 ~541 MB 1418252 ~5.41 MB
PARTIAL-k 1418252 ~5.41 MB 711302 ~2.71 MB
MLP-k 2125202 ~8.11 MB 711302 ~2.71 MB
Charged Particle Prompt-Tem 1418252 ~5.41 MB 711302 ~2.71 MB
GPF 2125266 ~8.11 MB 711366 ~2.71 MB
GPF-plus 2125847 ~8.11 MB 711947 ~2.72 MB
GeoAda 2125691 ~8.11 MB 711791 ~2.72 MB
Full FT 1424268 ~5.43 MB 1424268 ~5.43 MB
PARTIAL-k 1424268 ~5.43 MB 716166 ~2.73 MB
MLP-k 2132370 ~8.13 MB 716166 ~2.73 MB
MD17 Prompt-Tem 1424268 ~5.43 MB 716166 ~2.73 MB
GPF 2132434 ~8.13 MB 716230 ~2.73 MB
GPF-plus 2135079 ~8.14 MB 718875 ~2.74 MB
GeoAda 2132844 ~8.14 MB 716640 ~2.73 MB
Full FT 368012 ~1.40 MB 368012~1.40 MB
PARTIAL-k 368012 ~1.40 MB 185990~0.71 MB
CMU Mocap MLP-k 550034 ~2.10 MB 185990~0.71 MB
GPF 550098 ~2.10 MB 186054 ~0.71 MB
GPF-plus 553259 ~2.11 MB 189215 ~0.72 MB
GeoAda 550075 ~2.10 MB 186031~0.71 MB
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10.3.2 Ablative Architectures

We study the following ablative architectures as shown in Figure 6, Figure 7, Figure 8:

Geometric Control C ‘Geometric Control C Geometric Control C
\ [}
Input Noised Graph | oupling Operator Input Noised Graph oupling Operator £(G,
A ‘ > [ Coul 50p+‘ 16.0) g Nobsd Groph | 1> (coms GO‘T‘ ()
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Pretrained Denoiser e block ‘ ‘Trainble Copy e, Pretrained Denoiser € block ‘Trainble Copy ¢,/ Pretrained Denoiser g block ‘
L Decoupling Operator & (freczed) Decoupling Operator & l (freezed)
_ T B R— I - T
® T
¥ ’ :
: Equivariant Adapter Block : :
) )
Output €4(¢'+,7,C) Output €5(¢',7,C) Output €9(G'5,7,C)
Figure 6: GeoAda Figure 7: w/o zero convolution Figure 8: w/o trainable copy

Proposed GeoAda. The proposed architecture in the main paper.

Without Zero Convolution. Replacing the zero convolutions with standard convolution layers
initialized with Gaussian weights.

Lightweight Layers. This architecture does not use a trainable copy, and directly initializes single
convolution layers.

Results We present the results of this ablative study in Table 22, Table 23, Table 24 and Table 25.

Table 22: Comparisons for Molecular Dynamics prediction on MD17 dataset (all results reported by x10™1).
The best results are highlighted in bold. Results averaged over 5 runs

Scenarios Aspirin Benzene
Task Downstream Pretrain Downstream Pretrain
Metric ADE FDE ADE FDE \ ADE FDE ADE FDE

2.232 +0.008 3.501 +0.022 2.197 +o0.007 3.449+0.010
0.929 +0.002 1.61940.009 1.203+0.009 1.975+0.018
0.891 +0.003 1.533 +0.008 1.060+0.003 1.852 +o0.012

0.607+0.002 0.952+0.010 0.584+0.002 0.948+0.006
0.214+0.001  0.359+0.004 0.291+0.001 0.469+0.007
0.191 +0.000 0.319+0.002 0.240+0.002 0.394+0.005

w/o trainable copy
w/o zero conv
GeoAda

Table 23: Ablation study of Short-term prediction on running from the CMU Mocap dataset.
scenarios \ running \ pretrain
millisecond (ms) | 80 160 320 400 | 80 160 320 400

44.52+0.48 76.98+1.20 134914204 159.75+2.45 | 198.16+2.97 139.24+0.23 270.04+0.56 314.89+0.68
19.07+0.37 34254082  51.75+1.39 55.74+1.53 nan nan nan nan
18.70 £0.37  33.56+0.25  50.26+0.42 55.54+0.36 7.972+0.02 16.91+0.05 40.06+0.42 52.61+0.07

w/o trainable copy
w/o zero conv
GeoAda

Table 24: Ablation study of Short-term prediction on walking from the CMU Mocap dataset.
scenarios | walking | pretrain
millisecond (ms) | 80 160 320 400 | 80 160 320 400

23.77+0.15  43.43+0.31  84.79+0.77  105.08+1.28
12.62+0.07  20.67+0.20 36.75+0.52  44.69+0.45
8.92+1.02 13.82+1.26 22.99+130 26.68+1.31

w/o trainable copy
w/o zero conv
GeoAda

nan nan nan nan
36.18+0.12  58.18+0.08 102.06+0.05 123.82+0.04
7.932+0.03 16.90+0.04  38.96+0.47  52.54+0.10

Table 25: Ablation study of long-term prediction on running, walking from the CMU Mocap dataset.

scenarios | running | pretrain | walking | pretrain
millisecond (ms) | 560 1000 560 1000 | 560 1000 560 1000
w/o trainable copy | 198.16+2.97 228.41+2.96 365.41+0.63 374.74+0.48 | 143.35+2.26 214.78+2.82 nan nan
w/o zero conv 64.69+0.97  74.64=0.66 nan nan 60.28+1.07  93.99+1.41  165.86+0.15  249.90+0.38

GeoAda 60.88 +0.82  70.22+2.02  77.22 +0.45 130.17 +0.26 | 34.52 +2.26 50.49 +0.33  78.12 +0.49  129.97 +0.30
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10.4 Standard Deviations

We have already provided the standard deviations in App. 10.2.

11 Discussion

Limitation While GeoAda demonstrates strong empirical performance and theoretical grounding
in preserving SE(3)-equivariance during fine-tuning, several limitations remain: The effectiveness
of GeoAda hinges on the design of coupling and decoupling operators for control injection. While
theoretically sound, these handcrafted designs may not generalize well to control signals with high-
dimensional or structured semantics. Moreover, although GeoAda is validated across multiple
domains (e.g., particles, molecules, human motion), the evaluations are limited to medium-scale
datasets and relatively small models. Assessing its scalability to larger systems—such as full proteins
or macromolecular assemblies—remains an important direction for future work.
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