
HEXGEN: Generative Inference of Large Language Model
over Heterogeneous Environment

Youhe Jiang * 1 Ran Yan * 1 Xiaozhe Yao * 2 Yang Zhou 3 Beidi Chen 3 Binhang Yuan 1

Abstract
Serving generative inference of the large language
model is a crucial component of contemporary
AI applications. This paper focuses on deploy-
ing such services in a heterogeneous and cross-
datacenter setting to mitigate the substantial in-
ference costs typically associated with a single
centralized datacenter. Towards this end, we pro-
pose HEXGEN, a flexible distributed inference
engine that uniquely supports the asymmetric
partition of generative inference computations
over both tensor model parallelism and pipeline
parallelism and allows for effective deployment
across diverse GPUs interconnected by a fully
heterogeneous network. We further propose a
sophisticated scheduling algorithm grounded in
constrained optimization that can adaptively as-
sign asymmetric inference computation across
the GPUs to fulfill inference requests while main-
taining acceptable latency levels. We conduct an
extensive evaluation to verify the efficiency of
HEXGEN by serving the state-of-the-art LLAMA-
2 (70B) model. The results suggest that HEX-
GEN can choose to achieve up to 2.3× lower
latency deadlines or tolerate up to 4× more re-
quest rates compared with the homogeneous base-
line given the same budget. Our implementa-
tion is available at https://github.com/
Relaxed-System-Lab/HexGen.

1. Introduction
Large language models are distinguished by the vast scale
of parameters being trained over a substantial pre-train cor-

*Equal contribution 1Department of Computer Science and
Engineering, The Hong Kong University of Science and Technol-
ogy, Hong Kong, China 2Department of Computer Science, ETH
Zurich, Zürich, Switzerland 3Department of Electrical and Com-
puter Engineering, Carnegie Mellon University, Pittsburgh, Penn-
sylvania. Correspondence to: Binhang Yuan <biyuan@ust.hk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

pus. Such extensive training enables them to be remark-
ably adaptable across a broad spectrum of downstream
tasks (Bommasani et al., 2021). In fact, large language mod-
els such as GPT-4 (Bubeck et al., 2023), Llama2-70B (Tou-
vron et al., 2023), and Falcon-180B (Institute, 2023) have
essentially revolutionized the way AI systems are devel-
oped and deployed, which have nourished a large number
of advanced applications. In such an ecosystem, serving
the generative inference requests for large language models
presents a critical challenge — given the unprecedented
model scale, unlike classic machine learning models, paral-
lel inference strategies have to be leveraged to accommodate
the high computational and memory demands while ensur-
ing low-latency generative inference outcomes.

The state-of-the-art inference service of the large language
model is usually hosted in a single centralized data center
with homogeneous high-performance GPUs, which can be
very expensive in terms of the cloud service fee. The high
cost of such deployment potentially limits the democrati-
zation of this great technique. Alternatively, the deploy-
ment of the large language model inference over a hetero-
geneous cross-datacenter environment can be a promising
direction to reduce the inference cost, which has not been
fully explored. The heterogeneous environment for founda-
tion model inference service can encompass a wide range
of options, including more affordable cloud services (such
as spot instances (Thorpe et al., 2023; Athlur et al., 2022)
and serverless computing (Guo et al., 2022)) to even fully
decentralized platforms (Yuan et al., 2022; Borzunov et al.,
2023) that leverage a diverse set of GPUs contributed by
volunteers in an extreme setting.

However, deploying large language model inference across
a heterogeneous environment presents some unique chal-
lenges. Unlike traditional machine learning models, large
language model inference consists of two different phases: a
prompt phase that handles a sequence of input tokens at once
and a decoding phase where output tokens are generated
step-by-step. Additionally, large language models require
the adoption of specialized parallel inference strategies to
effectively distribute the intensive computations across mul-
tiple GPUs. The two most commonly employed approaches
are tensor model parallelism and pipeline parallelism. In

1

https://github.com/Relaxed-System-Lab/HexGen
https://github.com/Relaxed-System-Lab/HexGen

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

terms of coordinating such a complicated distributed com-
putation, there are some fundamental challenges stemming
from the heterogeneity:
• Heterogeneous GPU computation capacity. To fully

leverage the economic GPU computation power, it is es-
sential to employ a range of GPU types, each has distinct
peak FLOPS, GPU device memory bandwidth, and GPU
device memory constraints. However, most (if not all)
distributed implementations of large language model infer-
ence frameworks do not accommodate this GPU diversity,
as they typically assume a homogeneous GPU cluster con-
figuration. This results in an implementation that enforces
complete symmetry in the distribution of the inference
computation, e.g., requiring every pipeline stage to adhere
to the same tensor model parallel degree, which essen-
tially limits the performances of the distributed inference
over heterogeneous GPUs.

• Heterogeneous GPU connection. The heterogeneity of
the cross-GPU connection is even more significant. In a
standard homogeneous setting, the intra-machine GPU
connections usually rely on the same NVLink or PCIe,
and the inter-machine GPU connections are often based
on RDMA. While in a fully heterogeneous setting, the
connections between each pair of GPUs can vary sig-
nificantly, including both fast NVLink or PCIe connec-
tions and cross-geo-region slow connections. This het-
erogeneity of connections forces a scheduling algorithm
to consider exponentially many more distinct allocation
strategies when compared with the homogeneous setting.

In order to overcome these challenges, we propose HEX-
GEN, a large language model inference system that coordi-
nates distributed inference computation over a set of GPUs
with different computation capacities connected by hetero-
geneous connections. We provide flexible support of asym-
metric parallel execution within the scope of tensor model
parallelism and pipeline parallelism to accommodate the het-
erogeneous GPU computation capacity. We also propose a
scheduling algorithm to determine an efficient allocation of
inference computation under diversified connections. Con-
cretely, we make the following contributions:

Contribution 1. We implement the HEXGEN system with
the support of asymmetric tensor model parallelism and
pipeline parallelism. Essentially, HEXGEN allows each
pipeline parallel stage to be assigned with a different num-
ber of layers and tensor model parallel degrees to flexibly
accommodate the heterogeneity of different GPUs and fully
unleash the potential of heterogeneous GPU powers.

Contribution 2. We formally define the scheduling prob-
lem of serving the inference of multiple copies of the same
foundation model concurrently over a set of heterogeneous
GPU devices as a constrained optimization problem. We
concretely define computation cost, communication cost,
and memory limits for such inference workflow. We then

propose a two-phase optimization solution, where we use
a dynamic programming algorithm to define the optimal
layer of each pipeline, and a heuristic-based evolutionary
algorithm to efficiently search for the optimal layout.

Contribution 3. We evaluate HEXGEN by conducting a
comprehensive empirical study to compare the system and
economic efficiency between the heterogeneous setting en-
abled by HEXGEN and the standard homogeneous setting
within a centralized data center serving the state-of-the-art
LLAMA-2 (70B) model. We show that given the same bud-
get in terms of cloud service fees, HEXGEN can choose to
achieve up to 2.3× lower latency deadlines or tolerate up
to 4× more traffic request rate compared with the homo-
geneous baseline. Additionally, when given only half of
the budget, HEXGEN can still maintain a similar level of
inference service compared to the homogeneous baseline.

Overview. The rest of the paper is organized as follows.
We provide some preliminaries in Section 2; introduce our
asymmetric parallel implementation for the generative in-
ference in Section 3 and scheduling algorithm in Section
4; present the experimental results in Section 5, summarize
related work in Section 6, and conclude in Section 7.

2. Preliminary
Generative inference computation. A typical generative
inference task of the transformer-based foundation model
consists of two stages: i) the prefill stage that takes a prompt
sequence to compute the key-value cache (KV cache) for
each transformer layer of the large language model; and ii)
the decoding stage which utilizes the previous KV cache
to generate new tokens step-by-step and appends the new
KV cache. The inference computation can be summarized
below. Denote the batch size by b, the prompt sequence
length by sin, the output sequence length by sout, the hidden
dimension of the transformer by H , and the total number
of transformer layers by L. Given the weight matrices
of a transformer layer specified by wκ

K ,wκ
Q,w

κ
V ,w

κ
O ∈

RH×H , wκ
1 ∈ RH×4H , and wκ

2 ∈ R4H×H . During the
prefill phase, the input of the κ-th layer is specified by xκ,
and key, value, query, and output of the attention
layer is specified xκ

K ,xκ
V ,x

κ
Q,x

κ
Out ∈ Rb×s×H . First, the

cached key, value can be computed by:

xκ
K = xκ ·wκ

K ; xκ
V = xκ ·wκ

V

The rest of the computation in the κ-th layer is:

xκ
Q = xκ ·wκ

Q

xκ
Out = fsoftmax

(
xκ
Qxκ

K
T

√
H

)
· xκ

V ·wκ
O + xκ

xκ+1 = frelu (x
κ
Out ·wκ

1) ·wκ
2 + xκ

Out

During the decode phase, given tκ ∈ Rb×1×H as the em-
bedding of the current generated token in the κ-th layer, the
inference computation needs to i) update the KV cache:

xκ
K ← Concat (xκ

K , tκ ·wκ
K) ; xκ

V ← Concat (xκ
V , t

κ ·wκ
V)

2

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

And ii) compute the output of the current layer:

tκQ = tκ ·wκ
Q

tκOut = fsoftmax

(
tκQxκ

K
T

√
H

)
· xκ

V ·wκ
O + tκ

tκ+1 = frelu (t
κ
Out ·wκ

1) ·wκ
2 + tκOut

Parallelism in generative inference. Given the scale of the
state-of-the-art large language models, distributed or parallel
execution is necessary. Two standard parallel strategies are
usually included in inference: Pipeline parallelism (Huang
et al., 2019; Narayanan et al., 2019) partitions the foundation
model into multiple stages and serves the inference compu-
tation as a pipeline, where each GPU or (group of GPUs)
handles a stage. During the inference computation, the
GPU(s) serving stage-(j) needs to send the activations to
the GPU(s) serving stage-(j+1). For inference computation,
pipeline parallelism cannot reduce the completion time for a
single request since only one stage can be active. However,
the communication volume included in pipeline parallelism
is much less when compared with tensor model parallelism,
which is beneficial for slow GPU connections. Tensor model
parallelism (Narayanan et al., 2021) partitions the inference
computation at the level of transformer layers over multiple
GPUs, where the weight matrices are distributed both row-
wisely and column-wisely. Two AllReduce operations
are required to aggregate each layer’s output activations.
Tensor model parallelism splits both the data scan and com-
putation among a tensor model parallel group, which can
effectively scale out the inference computation if the connec-
tion is fast among the group. However, when the intra-group
communication is not extremely fast (i.e., not by NVLink
or PCIe), tensor model parallelism can perform poorly.

3. Asymmetric Parallel Implementation
The current foundation model service systems (such as hug-
gingface Accelerate (HuggingFace, 2022), and FastTrans-
former (NVIDIA, 2022)) can only support a symmetric
inference setup — it has to set all the tensor model paral-
lel groups to share the same degree for each pipeline stage
serving the same number of transformer layers. We first
illustrate a case study about why asymmetric parallel sup-
port is necessary under heterogeneous environments and
enumerate our system implementation of this functionality.

3.1. Case Study: Parallelism over Heterogeneity
Consider a heterogeneous environment where we can use
three GPU instances to serve a LLAMA-2 (70B) model:
the first instance has 4×A6000-48G, the second in-
stance has 2×A5000-24G, and the third instance has
2×A4000-16G. We test a generative inference request
with an input length of 128, and output length of 64. The
results are shown in Figure 1. We have some interesting
observations: First, direct usage of pure tensor model paral-
lel parallelism (TP) or pipeline parallelism (PP) will cause

Naive TP(=8)

Naive PP(=8)

Adjusted PP(=8)

Adjusted TP(=4)+PP(=2)

HexGen Asymmetric

7.381 22.14

11.36 259.5

0 5 10 15 20 25 30 280

5.023 9.344

Prefill

Decode

Times (s)

\/\/\/

Figure 1: Case study of parallel strategy over heterogeneity.

the out-of-memory (OOM) error: for tensor model paral-
lelism, A4000-16G cannot host the evenly partitioned pa-
rameter shards; for naive pipeline parallelism, one need to
evenly partition the transformer layers, where A4000-16G
cannot hold 10 layers of LLAMA-2 (70B) model on its
stage. Second, simply partitioning pipeline stage accord-
ing to computation capacity leads to poor performance:
we test two layouts: i) set PP degree to 8, and partition
layer number proportionally with the GPU capacity, in this
case, since the pipeline is long where only one stage can
be active for computation, leading to slow inference; ii)
set PP degree to 2, and TP degree to 4, where we use
the first instance 4×A6000-48G to serve the first stage
handling 56 layers and the second and third instances
2×A5000-24G+2×A4000-16G to handle the rest 24
layers, in this case, the tensor model parallelism introduces
significant cross-machine communication that compromises
the performance. Lastly, fully asymmetric allocation un-
leashes the performance under heterogeneity: to avoid the
issue we encounter above, we show the performance of the
HEXGEN, where we let each machine serve a single stage
and handle 48, 20, 12 layers with TP degrees as 4, 2, 2,
respectively — we observe 2× and 19× speedup compared
with the symmetric parallel executions.

3.2. HEXGEN Asymmetric Parallel Implementation
In order to implement the asymmetric parallel support,
our essential change can be summarized as follows: each
pipeline parallel stage can be assigned with a different
number of layers and tensor model parallel degree. From
the perspective of the implementation, we make the fol-
lowing changes: i) when initializing the pipeline parallel
communication group, HEXGEN will take the configured
tensor model parallel degree for each stage along with their
corresponding number of allocated transformer layers; ii)
each stage will select a leader GPU which introduces low-
est communication latency to GPUs in the nearby stages,
and initialize an independent tensor model parallel group;
iii) when executing the inference through the pipeline, only
the leader GPU in each stage (i.e., tensor model parallel
group) will send the activation to the leader GPU in the
next stage; once the leader GPU receives the activation,
it will broadcast this activation among its tensor model

3

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

parallel group to execute the tensor model parallel compu-
tation. In terms of system implementation, we modify the
latest FlashAttention (Dao, 2023) framework by integrating
this new pipeline parallel design to enable this functionality.

4. Scheduling over Heterogeneity
We introduce our scheduling algorithm in this Section.

4.1. Problem Formalization
Notations. We first introduce the following notations: Let
D = {d1 . . . dN} be a set of N GPU devices, where Md

denotes GPU memory limit, md denotes GPU memory
bandwidth, and cd denotes tensor core computation power;
A ∈ RN×N

+ and B ∈ RN×N
+ be the communication matrix

between these devices describing the latency and bandwidth
respectively, where the latency and bandwidth between de-
vice d and d′ is αd,d′ and βd,d′ ; L denotes the total number
of layers in the model to be served. We summarize all nota-
tions used in this paper in Appendix A for easy reference.

Formalization of the scheduling problem. Given the
above notations, we can formalize our scheduling prob-
lem as follows: suppose di,j is a subset of GPU devices
that satisfies

⋃
i,j di,j ⊆ D, and di,j

⋂
di′,j′ = ∅, ∀i ̸=

i′ ∨ j ̸= j′, where we suppose that the union of subsets
of GPUs

⋃
j di,j serves the i-th model replica as an inde-

pendent pipeline, and the set of GPUs di,j serves the j-th
stage in the i-th pipeline that holds li,j transformer layers,
if ∥di,j∥ > 1, we indicate that the subset of GPUs di,j runs
tensor model parallelism. An assignment σ is a mapping:
D → {(di,j , li,j)}, corresponding to a layout of multiple
inference worker groups to serve multiple replicas of the
same model simultaneously. Consider a set of inference
tasks T that satisfy some distribution1 T ∼ P . An optimal
assignment σ∗ can be defined as:

σ∗ = argmax
σ∈Σ

ET∼P [SLO (Ccomm (σ) + Ccomp (σ))]

s.t. Cd
mem (σ) ≤Md ∀d ∈ D.

(1)

where Ccomm (σ), Ccomp (σ), Cd
mem (σ) represents communi-

cation cost, computation cost, and memory limit for layout
σ. Intuitively, the scheduling problem is to find an optimal
assignment that partitions the device set to represent multi-
ple independent inference pipeline groups that can maximize
the inference service level objective (SLO) considering the
computation cost, communication cost, and memory con-
sumption constraints. We summarize the estimation of the
computation cost, communication cost, and memory con-
sumption constraints in Table 1, and the detailed formulation
is enumerated in Appendix B. As one can see, solving this
problem is obviously NP-hard; thus, we adopt a two-phase
search algorithm to tackle the problem:

1The most commonly-used case is Poisson distribution; while
one can switch it for any particular distributions.

• We first generate a random partition of {di,∼} of D where
di,∼ is a set of GPU devices that can be leveraged to serve
an independent pipeline group; given this partition, we
determine the optimal layout of pipeline stage partition by
an efficient dynamic programming method (Section 4.2).

• We propose an evolutionary algorithm that generates the
random partition to be used in the first step, where we first
define some hard constraints to reduce the search space of
the random partition, and then we define some effective
mutation operations that can be used to accelerate the
convergence of the searching algorithm (Section 4.3).

4.2. Optimizing the Layout of a Pipeline
We first introduce how to solve a sub-optimization prob-
lem to find the optimal layout for an independent pipeline.
Formally, given a set of GPUs di,∼, and a particular
layer partition represented by {li,j , j = 1, 2, ..., Si}, this
sub-optimization aims to find a local optimal assignment
di,∼ → {(di,j , li,j)} that minimizes the end-to-end infer-
ence cost over the i-th pipeline defined in Equation 2 below:

Ci
comp ({di,∼}) + Ci

comm ({di,∼})

=

Si∑
j=1

Ci,j
comp (di,j) +

Si∑
j=1

Ci,j
comm-tp (di,j) +

Si−1∑
j=1

Ci,j
comm-pp (di,j)

s.t. Cd
mem ({di,∼}) ≤ Md ∀d ∈

⋃
j

di,j

(2)

As one can notice, this sub-optimization problem is still NP-
hard. To reduce the search space, we adopt the following
heuristic: we force each tensor model parallel group to use
the same type of GPUs on the same machine to avoid ex-
tensive cross-machine communication overhead. Following
this heuristic, we use an additional notation to represent any
GPU set by a vector τ ∈ RNT , assuming that NT is the
total number of different GPU types, and τk represents the
number of the k-th type of GPU in this set.

Next, we introduce the following dynamic programming
(DP) algorithm to solve this problem. We define a memo-
rization buffer DP ∈ RSi×#1×#2...×#NT , where Si is the
total number of stages in this pipeline, #k, k = 1, ..., NT is
the total number of k-th type of GPUs in the GPU set di,∼,
the value DP [j; τ] represents the communication and com-
putation cost of assigning the first j stage(s) in the GPU set
represented by τ if the memory limit for the first j stage(s)
is satisfied2. For example, DP [1; [2, 0, ..., 0]] represents the
communication and computation cost of assigning the first
stage in two GPUs of the first type. If we initialize the val-
ues in DP to +∞ and set DP [0; τ] = 0, we can derive the
transition formula as:

DP [j; τ] = min
τk·ek⊂di,∼

{DP [j − 1; τ − τk · ek] +

Ci,j
comp (τk · ek) + Ci,j

comm (τk · ek)
} (3)

2DP [j; τ] = +∞ if the memory limit is violated for any stage.

4

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

Table 1: Modeling the generative inference cost and limit.

Description Notation Cost Formulation

Computation cost Ci,j
comp (di,j) max

d∈di,j

(
12H2Btypes

out
t

|di,j |md

)
· li,j+ max

d∈di,j

(
24bt

(
sin
t + sout

t

)
H2

|di,j | cd

)
· li,j

TP communication cost Ci,j
comm-tp (di,j) max

d∈di,j

 ∑
d′∈di,j−{d}

(
αd,d′ +

bts
in
t HBtype

|di,j |βd,d′

) · 4li,j + max
d∈di,j

 ∑
d′∈di,j−{d}

(
αd,d′ +

btHBtype

|di,j |βd,d′

) · 4sout
t li,j

PP communication cost Ci,j
comm-pp (di,j) min

d∈di,j ,d′∈di,j+1

(
αd,d′ +

bts
in
t HBtype

βd,d′

)
+ min

d∈di,j ,d′∈di,j+1

(
αd,d′ +

btHBtype

βd,d′

)
· sout

t

Memory limit Cd
mem (di,j)

(
12H2Btype

|di,j |
+

2bt
(
sin
t + sout

t

)
HBtype

|di,j |

)
× li,j + 4bt

(
sin
t + sout

t

)
HBtype

We formulate computation cost, tensor model parallel (TP) communication cost, memory limit of the j-th stage in the i-th pipeline, and the pipeline parallel (PP) communication
cost between the j-th stage and the j+1-th stage of the i-th pipeline for a particular inference task t ∈ T, where bt is the batch size, sin

t is the sequence length of input prompt
and sout

t is the number of output tokens, and Btype denotes the number of bytes for the precision of inference computation, e.g., Btype (FP16) = 2. (Details in Appendix B)

where τk · ek is the vector representation of a set of τk k-
th type GPUs, Ci,j

comp (τk · ek) is defined by Table 1, and
Ci,j

comm (τk · ek) is the sum of tensor parallel communication
cost and pipeline parallel communication cost follow the
formulation in Table 1. Notice these two value will be
set to +∞ if the memory limit Cd

mem (τk · ek) defined in
Table 1 is violated. Formally, we formalize a recursive
implementation of the dynamic programming algorithm in
Algorithm 1 to estimate the minimal cost of this pipeline —
the assignment of the pipeline stage can be implemented by
a standard back-track process over the memorization buffer
DP straightforwardly, which we do not enumerate here.

Complexity analysis. The computation of the cost defined
in Table 1 can be done in constant time. For each stage, the
proposed DP algorithm will visit at most

∏NT

k=1 #k different
subsets of GPUs; the maximal depth of the recursion is Si;
thus, the total time complexity of the proposed DP algo-
rithm is O

(
Si ·

∏NT

k=1 #k

)
. This is much more efficient

than the vanilla approach based on enumeration without the
heuristic of forcing tensor parallelism to use the same type
of GPUs — in that case, each stage has to consider 2|di, ∼|

different subsets of GPUs, where the total time complexity
grows to O

(
Si · 2|di, ∼|). In practice, even a highly hetero-

geneous GPU pool probably only includes a limited variety
of GPU types. The proposed DP algorithm can solve the sub-
optimization problem efficiently. This process can be further
accelerated by limiting the degree of tensor model paral-
lelism to a smaller candidate set, e.g. {1, 2, 4, 8}, which
reduces the total time complexity to O

(
Si · 4NT

)
.

4.3. Searching via Genetic Algorithm
Next, we introduce the genetic algorithm to solve the global
optimization problem. Concretely, given the global set of
GPUs D, this genetic optimization problem finds an opti-
mal partition of D, to some independent pipeline groups
di,∼ along with its stage partition {li,1, ..., li,j , li,Si

}. We
enumerate the details of this genetic algorithm as follows.

Initialization. A good initialization of the genetic algorithm

Algorithm 1 Estimate optimal pipeline cost.
Input: Memorization Buffer DP,

Current stage j = 1,
Assigned GPU set τ = ∅,
Unassigned GPU set τ = di,∼

function ESTIMATE-PIPELINE-COST(DP, j, τ , τ)
/* NT is number of different GPU types. */
for k = 1 to NT do

/* #k is number of type k-th GPU in τ . */
for τk = 1 to #k do

/* The current GPU set δ. */
δ ← τk · ek;
/* Compute current cost C. */
C ← DP [j−1; τ] + Ci,j

comp (δ) + Ci,j
comm (δ)

/* Update global memorization buffer. */
if C < DP [j; τ + δ] then

DP [j; τ + δ]← C;
end if
/* Recursively assign the next stage(s). */
if j < Si and τ−δ ̸= ∅ then

ESTIMATE-PIPELINE-COST(DP, j+1, τ+δ, τ−δ)
end if

end for
end for
end function

is usually helpful in accelerating the whole search process.
Thus, we initialize the population with a simple heuristic
based on the communication condition. Formally, given
the communication matrix A and B, we execute the vanilla
K-means algorithm to construct M independent pipeline
parallel groups, where the hyper-parameter M is determined
by the standard Elbow method. Intuitively, this helps the
assignment avoid using slow cross-region communication
links. Note that M is not fixed after initialization, as we can
change this by the mutation operations introduced next.

Mutation operations. We follow the vector representation
of a set of GPUs introduced earlier in Section 4.2 and define
three mutation operations in the genetic algorithm.

• Merge: Merge two pipeline groups into a single group.
Formally, given two independent pipeline groups noted as
τ 1 and τ 2, merge is defined as: τ 1, τ 2 → τ , where we

5

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

have τ = τ 1+τ 2.

• Split: Split a single pipeline group to two pipeline
groups evenly. Given any independent pipeline group
noted as τ , split is defined as: τ → τ 1, τ 2, where for any
GPU type indexed by k, we have τ1k = ⌊ τk2 ⌋, τ

2
k = ⌈ τk2 ⌉.

• Swap: Move one GPU from one pipeline group to another
pipeline group. Formally, given any two independent
pipeline groups noted as τ 1 and τ 2, swap is defined as:
τ 1, τ 2 → τ ′1, τ ′2, where for a particular sampled GPU
type index k̂, we have{

τ ′1k = τ1k , τ ′2k = τ2k if k ̸= k̂;
τ ′1k = τ1k+1, τ ′2k = τ2k−1 otherwise.

Notice that we also conduct some early checks for the off-
springs generated by the above mutation operations. For
example, after a split operation, if the total device mem-
ory of any of these two pipeline groups cannot even hold a
copy of model parameters, we can simply remove this off-
spring without running the dynamic programming algorithm
(Algorithm 1) to accelerate search.

Determine the pipeline partitions. We adopt a simple ex-
pectation maximization algorithm to determine any partic-
ular pipeline stage partition (i.e. {li,1, ..., li,j , li,Si}). Con-
cretely, we first generate an even partition for any new off-
spring generated by the mutation operations (li,j = L

Si
, j =

1, 2, ..., Si). Then after running the dynamic programming
algorithm (Algorithm 1), we adjust the pipeline partition pro-
portional to the total memory of the GPU set that currently
serves this stage. We find that this heuristic is effective to
find a good pipeline partition.

Put it together. We adopt a standard iterative procedure
of the genetic algorithm: for each iteration, we conduct
the mutation operation(s), run the dynamic algorithm to
determine the optimal pipeline assignments, and adjust the
pipeline partitions for the current off-springs. To estimate
the expected SLO, we adopt the inference task simulator
from AlpaServe (Li et al., 2023).

5. Evaluation
To evaluate the design and implementation of HEXGEN, we
ask the following essential questions:

• What is the cost performance trade-off between the cen-
tralized homogeneous deployment and HEXGEN over a
heterogeneous decentralized GPU pool?

• What is the end-to-end performance comparison between
HEXGEN and the state-of-the-art centralized and decen-
tralized generative inference systems?

• How effective is the scheduling algorithm in finding the
optimal assignment of the inference workflow?

5.1. Experimental Setup
Runtime. We perform evaluation in the following setups:

• Homogeneous GPUs in a centralized data center. We
rent two AWS on-demand p4d.24xlarge instances,
each equipped with 8×NVIDIA A100-40G GPUs
with a budget of $65.54/hour to represent the standard
homogeneous case in a data center.

• Heterogeneous GPUs across data centers. We rent GPUs
from FluidStack, a GPU cloud provider with services for
various GPUs. Concretely, we considered two settings
based on real availability: i) heterogeneous-full-price:
we rent two 3090Ti×8 instances in Iceland, two
3090Ti×3 instances in Norway, one A5000×8 in
Nevada, two A6000×8 instances, one A5000×8 in-
stances and one A40×4 instances in Illinois with a bud-
get of $65.04/hour; ii) heterogeneous-half-price: we rent
two 3090Ti×8 instances in Iceland, two 3090Ti×3 in-
stance in Norway, and one A5000×8 instance in Nevada
with a budget of $29.6/hour.3

Baselines. We carefully select state-of-the-art approaches
as baselines. To understand the cost performance trade-offs
and system efficiency of HEXGEN, we compare: i) HEX-
GEN under heterogeneous-full-price, ii) a truncated version
of HEXGEN without asymmetric parallel support under
heterogeneous-full-price (the allocation of model replicas is
still scheduled by our proposed search algorithm), iii) HEX-
GEN under heterogeneous-half-price, and iv) FLASHATTEN-
TION (Dao, 2023) under homogeneous-data-center setting.4

To understand end-to-end performance, we compare HEX-
GEN with HUGGINGFACE-TGI (HuggingFace, 2023) as
the state-of-the-art approach under the homogeneous setting
and PETALS (Borzunov et al., 2023) as the state-of-the-art
approach under decentralized heterogeneous setting. To
understand the efficiency of the proposed scheduling algo-
rithm, we compare its convergence with a strawman policy
based on random mutation.

Evaluation metrics. Following the generative inference
evaluation setup from AlpaServe (Li et al., 2023), we test
system performance based on SLO attainment, refers to
the proportion of requests that can be finished within a
predefined performance threshold. Specifically, we mea-
sure SLO attainment in terms of the percentage of requests
served within the time frame set by the SLO. We scale the
SLO to various multiples of the execution latency of A100

3In the cross data center setting, we measure the network la-
tency and bandwidth between GPUs in different regions by config-
uring a virtual private network through UDP hole punching, and
benchmark the NCCL performance: the intra-region latency and
bandwidth were 2 ms and 5 Gbps, while inter-region latency and
bandwidth range from 40 - 150 ms and 0.3 - 1.0 Gbps.

4Our implementation is identical to the standard FLASHAT-
TENTION implementation under a homogeneous setting.

6

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

8 28 49 69 90
10

40

70

100

SL
O

At
ta

in
m

en
t (

%
)

seq_len 32, req_rate 8.0
8 23 37 52 66

13

42

71

100

seq_len 32, req_rate 4.0
4 13 22 30 39

15

43

72

100

seq_len 32, req_rate 2.0
2 6 10 14 18

52

68

84

100

seq_len 32, req_rate 1.0
0 2 4 6 8

20

47

73

100

seq_len 32, slo_scale 20

6 16 27 38 48
15

43

72

100

SL
O

At
ta

in
m

en
t (

%
)

seq_len 64, req_rate 4.0
6 14 21 28 36

21

47

74

100

seq_len 64, req_rate 2.0
6 12 18 24 30

42

61

81

100

seq_len 64, req_rate 1.0
4 8 13 18 22

74

83

91

100

seq_len 64, req_rate 0.5
0 1 2 3 4

30

54

77

100

seq_len 64, slo_scale 20

4 13 22 30 39

SLO Scale

11

41

70

100

SL
O

At
ta

in
m

en
t (

%
)

seq_len 128, req_rate 1.0
4 10 15 21 27

SLO Scale

23

49

74

100

seq_len 128, req_rate 0.5
4 6 9 11 14

SLO Scale

80

87

93

100

seq_len 128, req_rate 0.25
4 6 8 10 12

SLO Scale

88

92

96

100

seq_len 128, req_rate 0.125
0.1 0.3 0.6 0.8 1.0

Request Rate (req/s)

32

55

78

100

seq_len 128, slo_scale 20

HexGen HexGen-symmetric HexGen-half-price FlashAttention-homo-datacenter

Figure 2: SLO attainment results to evaluate cost performance trade-offs. Each row corresponds to a particular output
sequence length (32, 64, 128). The first four columns correspond to different SLO scales ranging from 8 to 0.125 requests
per second. The last column represents the performance comparison of various settings at different request rates.

GPUs (SLO Scale in Figure 2), which allows us to evaluate
system performance under different levels of operational
stringency. We generate inference workload according to a
Poisson process parameterized by the request rate. The con-
secutive requests (inter-arrival times) follow an exponential
distribution. For a target SLO goal (e.g., 99%), we focus
on two metrics: i) the minimum latency deadline required
to achieve the desired attainment, and ii) the system’s re-
silience to peak request rate. We apply the most popular
open-source LLAMA-2 (70B) model on some real-world
prompts (Lmsys, 2023), and test output sequence lengths
from 32 to 128, and request rates varying between 0.125 -
10 requests per second.

5.2. Cost Performance Trade-off
Figure 2 illustrates a comprehensive comparison of the cost
performance trade-off in terms of SLO attainment among
HEXGEN w/wo asymmetric parallel group support under
the full budget in the heterogeneous setting, HEXGEN under
the half budget in the heterogeneous setting, and FLASHAT-
TENTION in the homogeneous setting. We want to highlight
some interesting results.

Cost efficiency. When given the relatively same budget,
HEXGEN under the full budget in the heterogeneous set-
ting clearly outperforms FLASHATTENTION in the homo-
geneous datacenter setting. In fact, HEXGEN reaches up
to 2.3× and on average 1.5× lower latency deadlines, and
is capable of handling a peak request rate that is up to 4×
higher (2× higher on average). Specifically, by analyzing
the scheduling results5 for heterogeneous-full-price cases,

5All the strategies chosen by the scheduling algorithm can be

we find that our scheduling approach always prioritizes intra-
machine tensor model parallelism to minimize single request
latency and employs inter-machine pipeline parallelism to
reduce communication over limited bandwidth. It avoids
cross-region communication due to ultra-low bandwidth and
aims to maximize device memory utilization by incorpo-
rating as many model replicas as possible, thereby enhanc-
ing parallel request processing. Furthermore, even when
we reduce the budget in the heterogeneous setting by half,
HEXGEN still reveals similar performance to FLASHATTEN-
TION in the homogeneous setting. We believe that this is
strong evidence to illustrate that a decentralized system such
as HEXGEN is capable of managing heterogeneous GPUs
to provide more economical foundation model inference
services without compromising service quality.

Asymmetric parallelism implementation. We also con-
duct a group of benchmarks to compare HEXGEN w/wo
asymmetric parallel group support under the full budget in
the heterogeneous setting. The experimental results reveal
that the asymmetric parallelism implementation results in
up to 1.8× improvement in terms of reaching lower latency
deadlines than the original symmetric implementation from
FLASHATTENTION. Additionally, the asymmetric paral-
lelism implementation can manage up to 2× higher peak
traffic request rate (1.5× on average) compared to the sym-
metric counterpart. This indicates that besides effective
scheduling, the asymmetric parallelism implementation is
also necessary to unleash the potential of heterogeneous
computational power.
found in Appendix F.

7

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

8 28 49 69 90
10

40

70

100

SL
O

At
ta

in
m

en
t (

%
)

seq_len 32, req_rate 2.0
8 34 60 87 113

10

40

70

100

seq_len 32, req_rate 1.0
0.1 0.6 1.1 1.5 2.0

8

39

69

100

seq_len 32, slo_scale 50

6 21 35 50 65

SLO scale

8

39

69

100

SL
O

At
ta

in
m

en
t (

%
)

seq_len 64, req_rate 1.0
6 24 42 61 79

SLO scale

8

39

69

100

seq_len 64, req_rate 0.5
0.2 1.2 2.1 3.1 4.0

Request rate (req/s)

8

39

69

100

seq_len 64, slo_scale 50

HexGen Petals

Figure 3: HEXGEN and PETALS. Two rows correspond to
output sequence lengths of 32 and 64. First two columns
illustrate the results of different SLO scales. The last column
shows the effects of request rate on SLO attainment.

5.3. End-to-end System Performance
We compare the end-to-end system performance of HEX-
GEN with state-of-the-art approaches for heterogeneous
(PETALS) and homogeneous (HUGGINFACE-TGI) settings.

Compare with PETALS. We first compare HEXGEN with
PETALS, the state-of-the-art decentralized inference service
engine. Figure 3 illustrates the comparison — under the
half-price budget in the heterogeneous setting, HEXGEN
outperforms PETALS significantly by achieving up to 3.5×
lower latency deadline and managing to handle requests at
up to 10× higher rates. This is strong evidence to justify the
design of HEXGEN: PETALS is mainly built on top of swarm
parallelism (Ryabinin et al., 2023), which heavily depends
on dynamic adjustment of the collective learning paradigm
to ensure the elasticity in a decentralized machine learning
system; however, such a dynamic design compromises the
inference service performance significantly when comparing
with a system like HEXGEN that is equipped with the careful
design of static scheduling of the inference workflow.

To evaluate HEXGEN over dynamic GPU pools, we test a
scenario where 4 GPUs leave the current allocation sched-
uled by HEXGEN. In this case, HEXGEN will re-run the
search algorithm to find the new optimal allocation. Inter-
estingly, we find this simple policy is very effective—the
genetic algorithm is based on local search, which demands
much less iteration of searching when only a small portion
of GPUs dynamically join or leave. We notice that HEXGEN
can rerun the searching algorithm in less than 30 seconds to
find the new optimal allocation. Figure 4 illustrates HEX-
GEN’s performance before and after the 4 GPUs become
offline. We see the performance gap is considerably small
under such dynamics. In addition, we find that the perfor-
mance of HEXGEN with 4 GPUs offline is still significantly
better than PETALS.

2 9 16 23 30

SLO Scale

12

41

71

100

SL
O

At
ta

in
m

en
t (

%
)

seq_len 32, req_rate 2.0
2 13 24 35 46

SLO Scale

5

37

68

100

seq_len 32, req_rate 4.0
2 15 28 40 53

SLO Scale

6

37

69

100

seq_len 64, req_rate 2.0

HexGen HexGen with 4 GPUs offline

Figure 4: SLO attainment results of HEXGEN compared
with HEXGEN with 4 GPUs offline.

0 11 22 33 44
0

33

67

100

SL
O

At
ta

in
m

en
t (

%
)

seq_len 32, req_rate 8.0
0 8 16 24 32

0

33

67

100

seq_len 32, req_rate 4.0
0.1 0.6 1.1 1.5 2.0

77

85

92

100

seq_len 32, slo_scale 10

0 7 13 20 27

SLO scale

0

33

67

100

SL
O

At
ta

in
m

en
t (

%
)

seq_len 64, req_rate 4.0
0 6 12 18 24

SLO scale

0

33

67

100

seq_len 64, req_rate 2.0
0.2 1.2 2.1 3.1 4.0

Request rate (req/s)

58

72

86

100

seq_len 64, slo_scale 10

HexGen TGI

Figure 5: HEXGEN v.s. HUGGINGFACE-TGI. Two rows
represent output sequence lengths of 32 and 64. First two
columns show the result of different SLO scales. The last
column shows the effects of request rate on SLO attainment.

Compare with HUGGINGFACE-TGI. We also compare
HEXGEN under the full budget in heterogeneous setting
with HUGGINGFACE-TGI in the homogeneous data center
settings. In this case, HEXGEN gets almost the same end-
to-end performance in both latency and request handling,
achieves up to 1.25× lower latency deadlines, and is able to
handle requests at the same level of rates.

5.4. Effectiveness of the Scheduling Algorithm

0 75 150 225 300
Iterations

58

69

81

92

Es
tim

at
ed

 S
LO

 A
tta

in
m

en
t (

%
)

0 75 150 225 300
Iterations

52

62

72

82

full price half price

Ours Random mutate

Figure 6: Convergence comparison of the proposed search
strategy and random mutation.

To evaluate the effectiveness of the scheduling algorithm,
we disable the advanced mutation strategies introduced in
Section 4.3 by replacing this part with random mutation
and comparing the convergence behavior with the proposed
algorithm. We benchmarked the full-price and half-price
cases, where we set the output sequence length to 32, and
the SLO scale as 5. Figure 6 illustrates the result. The pro-
posed search strategy takes 2.1 and 1.5 minutes to identify

8

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

2 9 16 23 30

SLO Scale

5

37

68

100

SL
O

At
ta

in
m

en
t (

%
)

seq_len 32, req_rate 2.0
2 24 46 68 91

SLO Scale

5

37

68

100

seq_len 32, req_rate 4.0
2 17 32 48 63

SLO Scale

6

37

69

100

seq_len 64, req_rate 2.0

HexGen Random Mutated Random Initialized

Figure 7: SLO attainment results of HEXGEN compared
with random mutation based results and results w/o any
searching efforts.

the optimal assignments for full-price and half-price hetero-
geneous scenarios. This search process runs once before the
system is initially deployed, which makes its time cost negli-
gible. We see that our proposed constrained mutation policy
significantly outperforms random mutation — the proposed
strategy can find assignments that can manage around 26%
more SLO attainments than random mutation and converges
much faster, while random mutation gets stuck in some local
minimum. Additionally, we verified that in both cases, the
estimated SLO attainments (92% and 82%) closely align
with the actual attainments (94% and 86%) demonstrated
in Figure 2. We also provide a direct performance compar-
ison between random initialized allocation (the allocation
after executing the initialization method mentioned in sub-
section 4.3), random mutated policy through evolution and
HEXGEN’s result in the heterogeneous-half-price scenario.
The results are illustrated in Figure 7.

6. Related Work
Foundation model inference optimization. There have
been many efforts to accelerate the inference service in
terms of both system optimization and algorithm design. On
the system side, research efforts have focused on enhancing
hardware efficiency through meticulous system optimiza-
tions (Fang et al., 2021; Yu et al., 2022; Li et al., 2023;
Kwon et al., 2023; Dao et al., 2022). On the algorithm
side, some advanced algorithm designs have also been pro-
posed (Leviathan et al., 2023; Yao et al., 2022; Liu et al.,
2023), including speculative decoding (Spector & Re, 2023),
multiple-head decoding mechanism (Cai et al., 2023) and
low precision computation such as quantization (Yao et al.,
2022; Frantar et al., 2022; Xiao et al., 2022; Lin et al., 2023),
sparsification (Frantar & Alistarh, 2023; Liu et al., 2023)
and distillation (Kwon et al., 2022).

Decentralized computation platform. Recently, there
have been some emerging research attempts on deploying
machine learning computations across a variety of decen-
tralized and heterogeneous computational resources (Ali
et al., 2022; Miao et al., 2023b; Zhang et al., 2023; Sto-
ica & Shenker, 2021; Bhat et al., 2023), e.g., distributed
training in a collaborative environment (Diskin et al., 2021;
Yuan et al., 2022; Ryabinin et al., 2023). However, most

of this work does not focus on the system implementation
and scheduling for generative inference workflows. Perhaps
the most relevant effort is Petals (Borzunov et al., 2022),
which allows users to donate different GPUs to perform
inference and small-scale fine-tuning. However, Petals is
mainly based on dynamic coordination from swarm paral-
lelism (Ryabinin et al., 2023), whose performance is limited
by the lack of scheduling of the decentralized inference.

7. Conclusion
In this paper, we explore the opportunity to deploy the in-
ference service of foundation models via a heterogeneous
regime with devices of different computation capacities con-
nected over a heterogeneous network. Toward this end, we
propose HEXGEN, a generative inference framework with
asymmetric parallel support and an effective scheduling al-
gorithm to accommodate such deployment. Our empirical
study suggests that when given the same budget, HEXGEN
can outperform the centralized homogeneous deployment by
either achieving 2.3× lower latency deadlines or tolerating
up to 4× more traffic request rate; additionally, HEXGEN
also significantly outperforms Petals, the state-of-the-art de-
centralized collaborative inference prototype by 10× more
traffic request rate. We will make the HEXGEN system fully
open-sourced and hope that such a system can contribute to
the democratization of the usage of foundation models.

Acknowledgments
This work is supported by the HKUST startup grant R9895
from CSE, the UCloud research grant, and the HKUST-
WeBank Joint Lab project.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Ali, A., Pinciroli, R., Yan, F., and Smirni, E. Optimizing

inference serving on serverless platforms. Proceedings
of the VLDB Endowment, 15(10):2071–2084, 2022.

Athlur, S., Saran, N., Sivathanu, M., Ramjee, R., and Kwa-
tra, N. Varuna: scalable, low-cost training of massive
deep learning models. In Proceedings of the Seventeenth
European Conference on Computer Systems, pp. 472–487,
2022.

Bhat, S., Chen, C., Cheng, Z., Fang, Z., Hebbar, A., Kan-
nan, S., Rana, R., Sheng, P., Tyagi, H., Viswanath, P.,

9

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

et al. Sakshi: Decentralized ai platforms. arXiv preprint
arXiv:2307.16562, 2023.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

Borzunov, A., Baranchuk, D., Dettmers, T., Ryabinin, M.,
Belkada, Y., Chumachenko, A., Samygin, P., and Raffel,
C. Petals: Collaborative inference and fine-tuning of
large models. arXiv preprint arXiv:2209.01188, 2022.
URL https://arxiv.org/abs/2209.01188.

Borzunov, A., Baranchuk, D., Dettmers, T., Riabinin, M.,
Belkada, Y., Chumachenko, A., Samygin, P., and Raffel,
C. Petals: Collaborative inference and fine-tuning of
large models. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume
3: System Demonstrations), pp. 558–568, 2023.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Cai, T., Li, Y., Geng, Z., Peng, H., and Dao, T. Medusa:
Simple framework for accelerating llm generation with
multiple decoding heads. https://github.com/
FasterDecoding/Medusa, 2023.

Cheatham, T., Fahmy, A., Stefanescu, D., and Valiant, L.
Bulk synchronous parallel computing—a paradigm for
transportable software. Tools and Environments for Par-
allel and Distributed Systems, pp. 61–76, 1996.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Diskin, M., Bukhtiyarov, A., Ryabinin, M., Saulnier, L.,
Sinitsin, A., Popov, D., Pyrkin, D. V., Kashirin, M.,
Borzunov, A., Villanova del Moral, A., et al. Distributed
deep learning in open collaborations. Advances in Neural
Information Processing Systems, 34:7879–7897, 2021.

Fang, J., Yu, Y., Zhao, C., and Zhou, J. Turbotransformers:
an efficient gpu serving system for transformer models.
In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp.
389–402, 2021.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Guo, R., Guo, V., Kim, A., Hildred, J., and Daudjee, K. Hy-
drozoa: Dynamic hybrid-parallel dnn training on server-
less containers. Proceedings of Machine Learning and
Systems, 4:779–794, 2022.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

HuggingFace. Hugging face accelerate. https://
huggingface.co/docs/accelerate/index,
2022.

HuggingFace. Text generation inference.
https://huggingface.co/docs/
text-generation-inference/index, 2023.

Institute, T. I. Falcon 180b, 2023. URL https://
falconllm.tii.ae/falcon-180b.html.

Kwon, S. J., Kim, J., Bae, J., Yoo, K. M., Kim, J.-H., Park,
B., Kim, B., Ha, J.-W., Sung, N., and Lee, D. Alphatun-
ing: Quantization-aware parameter-efficient adaptation of
large-scale pre-trained language models. arXiv preprint
arXiv:2210.03858, 2022.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, Z., Zheng, L., Zhong, Y., Liu, V., Sheng, Y., Jin, X.,
Huang, Y., Chen, Z., Zhang, H., Gonzalez, J. E., et al.
{AlpaServe}: Statistical multiplexing with model paral-
lelism for deep learning serving. In 17th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 23), pp. 663–679, 2023.

LibP2P. A modular network stack, 2023. URL https:
//libp2p.io/.

10

https://arxiv.org/abs/2209.01188
https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://huggingface.co/docs/accelerate/index
https://huggingface.co/docs/accelerate/index
https://huggingface.co/docs/text-generation-inference/index
https://huggingface.co/docs/text-generation-inference/index
https://falconllm.tii.ae/falcon-180b.html
https://falconllm.tii.ae/falcon-180b.html
https://libp2p.io/
https://libp2p.io/

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Liu, Z., Wang, J., Dao, T., Zhou, T., Yuan, B., Song, Z.,
Shrivastava, A., Zhang, C., Tian, Y., Re, C., et al. Deja
vu: Contextual sparsity for efficient llms at inference time.
In International Conference on Machine Learning, pp.
22137–22176. PMLR, 2023.

Lmsys. Chatbot arena conversations. https:
//huggingface.co/datasets/lmsys/
chatbot_arena_conversations, 2023.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z., Wong,
R. Y. Y., Chen, Z., Arfeen, D., Abhyankar, R., and Jia,
Z. Specinfer: Accelerating generative llm serving with
speculative inference and token tree verification. arXiv
preprint arXiv:2305.09781, 2023a.

Miao, X., Shi, Y., Yang, Z., Cui, B., and Jia, Z. Sdpipe: A
semi-decentralized framework for heterogeneity-aware
pipeline-parallel training. Proceedings of the VLDB En-
dowment, 16(9):2354–2363, 2023b.

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. Pipedream: generalized pipeline parallelism for
dnn training. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pp. 1–15, 2019.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V., Vainbrand, D., Kashinkunti, P.,
Bernauer, J., Catanzaro, B., et al. Efficient large-scale
language model training on gpu clusters using megatron-
lm. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis, pp. 1–15, 2021.

NVIDIA. Fastertransformer. https://github.com/
NVIDIA/FasterTransformer, 2022.

Ryabinin, M., Dettmers, T., Diskin, M., and Borzunov,
A. Swarm parallelism: Training large models can be
surprisingly communication-efficient. arXiv preprint
arXiv:2301.11913, 2023.

Spector, B. F. and Re, C. Accelerating llm inference with
staged speculative decoding. In Workshop on Efficient
Systems for Foundation Models@ ICML2023, 2023.

Stoica, I. and Shenker, S. From cloud computing to sky
computing. In Proceedings of the Workshop on Hot Topics
in Operating Systems, pp. 26–32, 2021.

Thorpe, J., Zhao, P., Eyolfson, J., Qiao, Y., Jia, Z., Zhang,
M., Netravali, R., and Xu, G. H. Bamboo: Making pre-
emptible instances resilient for affordable training of large
{DNNs}. In 20th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 23), pp. 497–513,
2023.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Xiao, G., Lin, J., Seznec, M., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. arXiv preprint
arXiv:2211.10438, 2022.

Yang, Z., Wu, Z., Luo, M., Chiang, W.-L., Bhardwaj, R.,
Kwon, W., Zhuang, S., Luan, F. S., Mittal, G., Shenker, S.,
et al. {SkyPilot}: An intercloud broker for sky computing.
In 20th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 23), pp. 437–455, 2023.

Yao, X. Open Compute Framework: Peer-to-Peer
Task Queue for Foundation Model Inference Serving,
September 2023. URL https://github.com/
autoai-org/OpenComputeFramework.

Yao, Z., Aminabadi, R. Y., Zhang, M., Wu, X., Li, C., and
He, Y. Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. arXiv preprint
arXiv:2206.01861, 2022.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A distributed serving system for {Transformer-
Based} generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 521–538, 2022.

Yuan, B., He, Y., Davis, J., Zhang, T., Dao, T., Chen, B.,
Liang, P. S., Re, C., and Zhang, C. Decentralized training
of foundation models in heterogeneous environments.
Advances in Neural Information Processing Systems, 35:
25464–25477, 2022.

Zhang, Q., Li, J., Zhao, H., Xu, Q., Lu, W., Xiao, J., Han,
F., Yang, C., and Du, X. Efficient distributed transaction
processing in heterogeneous networks. Proceedings of
the VLDB Endowment, 16(6):1372–1385, 2023.

11

https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
https://huggingface.co/datasets/lmsys/chatbot_arena_conversations
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/autoai-org/OpenComputeFramework
https://github.com/autoai-org/OpenComputeFramework

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

Contents: In Section A, we summarize the notations throughout this paper for easy reference. In Section B, We enumerate
how we formulate the generative inference cost in terms of computation time and communication time in the tensor model
and pipeline parallelism and the corresponding memory limit. In Section C, we present an extended discussion on HEXGEN
system implementation about the task coordinator. In Section D, we discuss the limitation of batching implementation for
HEXGEN. In Section E, we elaborate on the extended version of related works.

A. Summarization of Notations
We summarize the notations used for the scheduling algorithm of this paper in Table 2 for easy reference.

Table 2: Table of notations.

Symbol Description
N Total number of GPUs to serve generative inference.
NT Total number of distinct GPU types.
D Set of N GPU devices.
Md Memory limit of device d.
md GPU memory bandwidth of device d.
cd Tensor core computation power of device d.
A Communication matrix between devices describing the latency.
B Communication matrix between devices describing the bandwidth.

αd,d′ Latency between devices d and d′.
βd,d′ Bandwidth between devices d and d′.
L Total number of layers in the model to be served.
H Size of the hidden dimension in a transformer block.

Btype Byte size for computational precision.
sin
t Length of input sequence for task t.

sout
t Length of output sequence for task t.
bt Batch size allocated for inference task t.
di,j Set of GPUs serves the j-th stage in the i-th pipeline.
li,j Number of transformer layers in the j-th stage of the i-th pipeline.
σ Mapping of models to devices.
T Set of inference tasks.
P Distribution of inference tasks.
Si Number of stages in the i-th pipeline.
k Identifier for a GPU type.
#k Total number of k-th type of GPUs in the GPU set di,∼.
τ Vector denoting any GPU set.
τk Number of the k-th type of GPU in τ .

τk · ek Vector denoting a set of τk k-th type GPUs, where ek denotes k-th standard basis vector.
M Number of independent pipeline parallel groups.

B. Modeling the Generative Inference Cost
We enumerate how we formulate the generative inference cost in terms of computation time and communication time in the
tensor model and pipeline parallelism and the corresponding memory limit. Following the notation introduced in Sections 2
and 4.1. Let Btype be the number of bytes for the precision of inference computation, e.g., Btype (FP16) = 2; for a particular
inference task t ∈ T, where bt is the batch size, sin

t be the sequence length of input prompt and sout
t be the sequence length

of output token generation. Comprehensively, given a particular assignment σ output noted as {di,j}, we estimate the
communication cost, the computation cost, and the memory limit as follows:

Model the computation time. Recall the introduction of inference computation in Section 2; one can notice that most of
the computation is spent on matrix multiplications in a transformer block, while only a very small portion of computation
is spent on other components, such as no-linear activation functions, batch normalization, etc. To simplify the modeling,
we model the computation time that mainly comes from two sources: (i) scanning the model parameters through GPU
high memory bandwidths to tensor cores, since usually bt ≪ H , we ignore the time to scan the intermediate computation
results; (ii) the computation w.r.t the matrix multiplications in the transformer block, here we assume the computation time
is only determined by the total float number operations in the transformer block and the devices’ peak FLOPS, ignores other
potential dynamic factors that can influence the execution time. Given a particular layer running tensor model parallelism

12

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

over a set of GPU devices noted as di,j (j-th stage in i-th pipeline), the computation time of li,j layer of transformers noted
as Ci,j

comp (di,j) can be determined by the following formula:

Ci,j
comp (di,j) = max

d∈di,j

(
12H2Btypes

out
t

|di,j |md

)
· li,j + max

d∈di,j

(
24bt

(
sin
t + sout

t

)
H2

|di,j | cd

)
· li,j (4)

where the first part is to estimate the memory scan cost — the model parameter has to be scanned sout
t times for all the

generated tokens; 12H2 represents the total number of parameters in a transformer layer (e..g, the κ-th layer includes
the weights wκ

K ,wκ
Q,w

κ
V ,w

κ
O ∈ RH×H , wκ

1 ∈ RH×4H , and wκ
2 ∈ R4H×H); the second part is about the matrix

multiplication — for each layer, there are 24bts
in
t H

2

|di,j |cd float point operations for the prefill phase and 24btH
2

|di,j |cd float point
operations for each token. To be more specific, the total number of float point operations for a matrix multiplication between
matrix X ∈ RH1×H2 and matrix Y ∈ RH2×H3 can be calculated by 2H1H2H3 — 24bts

in
t H

2

|di,j |cd and 24btH
2

|di,j |cd are calculated
by accumulating the float point operations of matrix multiplications in the prefill phase and for one generated token in the
decoding phrase as we introduced in Section 2. Notice that if ∥di,j∥ = 1, Equation 4 still holds, which represents only one
GPU serves this stage without running tensor model parallelism.

Model the communication time. We make the following assumptions about modeling the communication cost: (i) for the
point-to-point communication, we use the α−β cost model, where the communication time can be estimated by α+ B

β , and
B is the number of bytes that needs to be communicated; (ii) for collective communications, we adopt the bulk synchronous
parallel (BSP) model (Cheatham et al., 1996) — the communication execution is subdivided into supersteps, each associated
with a global synchronization; and the total cost of a superstep is the max over all processors at that superstep.

We first model the communication in tensor model parallelism. In tensor model parallelism, each GPU needs to conduct two
AllReduce operations for each transformer block. By the BSP model, we assume the tensor that needs to be aggregated
by AllReduce will be partitioned to equal chunks, and accomplished by two supersteps (phases) (ReduceScatter and
AllGather), in the ReduceScatter phase, each GPU sends its chunk to every other GPU and conduct the aggregation
for its chunk; in the AllGather phase, each GPU sends its aggregated chunk to every other GPU. Formally, given a
particular layer running tensor model parallelism over a set of GPU devices noted as di,j (j-th stage in i-th pipeline), the
tensor model parallel communication time of li, j layer of transformers noted as Ci,j

comm-tp (di,j) can be determined by the
following formula:

Ci,j
comm-tp (di,j) = max

d∈di,j

 ∑
d′∈di,j−{d}

(
αd,d′ +

bts
in
t HBtype

|di,j |βd,d′

) · 4li,j
+ max

d∈di,j

 ∑
d′∈di,j−{d}

(
αd,d′ +

btHBtype

|di,j |βd,d′

) · 4sout
t li,j

(5)

Where the first part is to estimate the tensor model parallel communication cost in prefill phase, while the second term
corresponds to the decoding phrase. Notice that one can verify that if ∥di,j∥ = 1, Ci,j

comm-tp (di,j) = 0, which illustrate that
there is no communication cost if only one GPU is serving this stage.

Next, we model the communication cost in pipeline parallelism. To estimate the communication cost between nearby
stages (di,j and di,j+1) in pipeline parallelism, we model this communication process by using the fastest link between
these two stages. Formally, the pipeline parallel communication cost noted as Ci,j

comm-pp (di,j) can be formalized as:

Ci,j
comm-pp (di,j) = min

d∈di,j ,d′∈di,j+1

(
αd,d′ +

bts
in
t HBtype

βd,d′

)
+ min

d∈di,j ,d′∈di,j+1

(
αd,d′ +

btHBtype

βd,d′

)
· sout

t (6)

Where the first part is to estimate the pipeline model parallel communication cost in prefill phase, while the second term
corresponds to the decoding phrase.

Model the memory constraint. The GPU memory footprint mainly comes from three sources during inference computation:
(i) to store the model parameters; (ii) to store the intermediate results including key and value for each transformer blocks;
and (iii) some activation caches—in an efficient implementation, such memory buffer will be reused during the computation
for all transformer blocks, in our implementation the number of such buffer is 4. Formally the memory constraint Cd

mem (di,j)

13

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

for a device d ∈ di,j can be formalized as:

Cd
mem (di,j) =

(
12H2Btype

|di,j |
+

2bt
(
sin
t + sout

t

)
HBtype

|di,j |

)
× li,j + 4bt

(
sin
t + sout

t

)
HBtype (7)

Performance alignment. To evaluate the accuracy of our cost model, we conduct a suite of micro-benchmarks to validate
the output of our cost estimation by comparing it with the actual execution time. The results are listed in Table 3 and suggest
that our cost model can align with the actual execution accurately.

Table 3: Comparison of Benchmarked and Estimated Performance Metrics.

Input/Output
Length

Parallel
Configuration

Prefill Time -
Benchmarked

Prefill Time -
Estimated

Decode Time -
Benchmarked

Decode Time -
Estimated

256/32 TP=8 2.72s 2.99s 2.43s 2.46s
TP=4 PP=2 3.79s 3.85s 2.25s 2.14s
TP=2 PP=4 5.26s 5.25s 3.29s 3.04s
PP=8 8.04s 7.83s 6.04s 5.60s

512/64 TP=8 3.04s 3.10s 4.76s 4.92s
TP=4 PP=2 4.16s 4.10s 4.32s 4.28s
TP=2 PP=4 5.57s 5.63s 6.65s 6.08s
PP=8 8.27s 8.49s 12.4s 11.2s

C. Task Coordinator
To deploy HEXGEN in a real heterogeneous decentralized environment, we implement a task coordinator. The task
coordinator manages the GPUs from the heterogeneous pool and organizes the independent pipeline parallel worker groups
according to the optimal allocation based on the approach we introduced in Section 4. Concretely, the task coordinator
is mainly based on an open-source implementation of decentralized computation coordination (Yao, 2023) that utilizes
libP2P (LibP2P, 2023) to establish connections among the work groups in a peer-to-peer network. When an inference
request is received by the task coordinator, the request will be directed to an appropriate worker group according to the
scheduling result.

D. Limitation of Batching Implementation
When we compare HEXGEN with HUGGINGFACE-TGI, we realize that one particular reason that actually limits HEXGEN
from reaching its full potential when compared with HUGGINGFACE-TGI — state-of-the-art foundation model inference
services usually include some advanced batching policy to improve the hardware efficiency significantly; the current version
of HEXGEN has not integrated this feature yet since the batching policy under the heterogeneous setting issues some unique
challenges given the diversified executing time and memory limit of each independent pipeline groups, which makes the
current batching policy difficult to integrate. We acknowledge this limitation in the current version of HEXGEN and leave
this as an important future work to further improve HEXGEN’s end-to-end inference performance under the heterogeneous
setting.

E. Extended Related Works
Foundation model inference optimization. There have been many efforts to accelerate the inference service in terms
of both system optimization and algorithm design. On the system side, research efforts have focused on enhancing
hardware efficiency through meticulous system optimizations (Fang et al., 2021; Yu et al., 2022; Li et al., 2023; Kwon
et al., 2023; Dao et al., 2022). For example, AlpaServe (Li et al., 2023) proposes a concrete analysis of model parallel
strategies and model placement to improve inference service efficiency; PagedAttention (Kwon et al., 2023) introduces an
advanced memory management system to batch inference jobs inspired by the classic design of virtual memory and paging;
FLashAttention (Dao, 2023) leveraged GPU memory hierarchy to reduce GPU memory access significantly, leading to
runtime speedup. On the algorithm side, some advanced algorithm designs have also been proposed (Leviathan et al., 2023;
Yao et al., 2022; Liu et al., 2023). For example, speculative decoding (Leviathan et al., 2023; Miao et al., 2023a; Spector &
Re, 2023) based algorithms improve the system efficiency by leveraging a small approximation model for prediction and the

14

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

original model for parallel verification. A similar idea has been explored by Medusa (Cai et al., 2023), which implements a
multiple-head decoding mechanism for parallel token verification. Low precision computation has also been explored to
speed up generative inference, such as quantization (Yao et al., 2022; Frantar et al., 2022; Xiao et al., 2022; Lin et al., 2023),
sparsification (Frantar & Alistarh, 2023; Liu et al., 2023) and distillation (Kwon et al., 2022).

Decentralized computation platform. Recently, there have been some emerging research attempts on deploying machine
learning computations across a variety of decentralized and heterogeneous computational resources (Ali et al., 2022; Miao
et al., 2023b; Zhang et al., 2023). For example, sky computing (Stoica & Shenker, 2021; Yang et al., 2023) builds an
additional layer above classic cloud platforms to access more economic computation resources and enable interoperability
between multi-clouds; SAKSHI (Bhat et al., 2023) has proposed a blueprint to advocate for the hosting and delivery of
reliable AI models in the landscape of AI services. There have also been some attempts to deploy machine learning training
in a collaborative environment (Diskin et al., 2021; Yuan et al., 2022; Ryabinin et al., 2023). However, most of this work
does not focus on the system implementation and scheduling for generative inference workflows. Perhaps the most relevant
effort is Petals (Borzunov et al., 2022), which allows users to donate different GPUs to perform inference and small-scale
fine-tuning. However, Petals is mainly based on dynamic coordination from swarm parallelism (Ryabinin et al., 2023),
whose performance is limited by the lack of scheduling of the decentralized inference as we illustrated in Section 5.3.

F. Case Study of the Scheduling Result
We list the partition results generated by HEXGEN in the heterogeneous-full-price scenario. We use the following
representation to describe the scheduled results. We use an array to specify one independent inference pipeline, and the
number represents the degree of tensor parallelism for this pipeline stage. For example, [4,2] indicates a two-stage pipeline,
where the first stage has a tensor parallel degree of 4, and the second stage has a tensor parallel degree of 2. The scheduled
results are listed in Table 4.

Partition breakdown. In Iceland, two 8 × 3090Ti instances deploy [4,4] strategy to support two model replicas, each
function within a single machine. Two 3 × 3090Ti instances in Norway employ a [2,1,1,2] strategy; cross-machine pipeline
parallelism communication happens between the 2nd and 3rd stage. In Nevada, 8 × A5000 GPUs deploy a [4,4] strategy. In
Illinois, 12 × A6000 GPUs serve four model replicas, each with strategy [2,1]. The remaining 4 × A6000 / 4 × A40 is split
into four groups, each 2 × A6000 / 2 × A40 and another 2 × A5000 deploys a [2,2] strategy, inter-machine communication
is finished by pipeline parallelism.

Table 4: GPU Deployment and Strategy by Region.

Region GPU Configuration Strategy
Iceland 8× 3090Ti [4, 4]

8× 3090Ti [4, 4]
Norway 3× 3090Ti + 3× 3090Ti [2, 1, 1, 2]
Nevada 8× A5000 [4, 4]
Illinois 3× A6000 [2, 1]

3× A6000 [2, 1]
3× A6000 [2, 1]
3× A6000 [2, 1]
2× A6000 + 2× A5000 [2, 2]
2× A6000 + 2× A5000 [2, 2]
2× A40 + 2× A5000 [2, 2]
2× A40 + 2× A5000 [2, 2]

Interesting insight. In a homogeneous setting, the 16 A100 GPUs can serve 4 LLAMA-2 (70B) model replicas. While in a
heterogeneous setting, the 58 cloud GPUs with various types can serve a maximum of 12 LLAMA-2 (70B) model replicas
with various hybrid parallel configurations within the same budget. Here are some interesting insights:

• In this scenario, although individual inference tasks in a heterogeneous environment may experience increased latency,
the overall performance of the system significantly improves.

15

HEXGEN: Generative Inference of Large Language Model over Heterogeneous Environment

• Comprehensively, our scheduling approach prioritizes intra-machine tensor model parallelism to minimize single
request latency and employs inter-machine pipeline parallelism to reduce communication over limited bandwidth. It
avoids cross-region communication due to ultra-low bandwidth and aims to maximize device memory utilization by
incorporating as many model replicas as possible.

• Additionally, asymmetric parallelism plays a significant role in enhancing system performance, primarily by allowing
the adoption of more adaptable parallel strategies to minimize extensive communication via low-bandwidth links. For
instance, consider a scenario with 4 A5000 GPUs on one machine and 2 on another. Given the exceptionally low
intercommunication bandwidth and the requirement for at least 6×24 GB GPUs to support a 70B model replica, the
optimal configuration involves establishing a tensor model parallel group of 4 as the first pipeline stage and a group of
2 as the second. This setup is preferred because pipeline parallel communication demands are substantially lower than
those of tensor model parallelism.

16

