
Plan Verification for LLM-Based Embodied Task
Completion Agents

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large language model (LLM) based task plans and corresponding human demon-1

strations for embodied AI may be noisy, with unnecessary actions, redundant2

navigation, and logical errors that reduce policy quality. We propose an iterative3

verification framework in which a Judge LLM critiques action sequences and4

a Planner LLM applies the revisions, yielding progressively cleaner and more5

spatially coherent trajectories. Unlike rule-based approaches, our method relies6

on natural language prompting, enabling broad generalization across error types7

including irrelevant actions, contradictions, and missing steps. On a set of manually8

annotated actions from the TEACh embodied AI dataset, our framework achieves9

up to 90% recall and 100% precision across four state-of-the-art LLMs (GPT o4-10

mini, DeepSeek-R1, Gemini 2.5, LLaMA 4 Scout). The refinement loop converges11

quickly, with 96.5% of sequences requiring at most three iterations, while improv-12

ing both temporal efficiency and spatial action organization. Crucially, the method13

preserves human error-recovery patterns rather than collapsing them, supporting14

future work on robust corrective behavior. By establishing plan verification as a15

reliable LLM capability for spatial planning and action refinement, we provide a16

scalable path to higher-quality training data for imitation learning in embodied AI.17

1 Introduction18

Recent advances in large language models (LLMs) have enabled sophisticated multi-agent systems19

for handling task plans in embodied AI. Embodied agents deployed in real-world environments20

are often tasked with executing extended sequences of actions in pursuit of high-level goals. For21

such agents to be effective, their plans must be accurate in terms of task completion, efficient in22

their use of time and actions, and safe in avoiding undesirable or unintended consequences. With23

the advent of LLMs, there has been growing interest in using these systems to generate and reason24

about structured plans from natural language input. Recent work has demonstrated that LLMs can25

decompose high-level goals into executable sub-goals and, in multi-agent setups, evaluate and revise26

each other’s outputs through structured dialogue ([1], [2]).27

Despite this progress, LLM-generated plans have been shown to be not perfect [3, among others],28

and need to be verified. Furthermore, the quality of the datasets used to train planning for embodied29

agents remains a significant bottleneck. Many widely used corpora, such as TEACh ([4]), a dataset30

of household interactions collected via human operation, contain a large number of suboptimal31

behaviors ([5]). These include, for example, picking up irrelevant or unnecessary items, leaving32

goals unaccomplished due to erroneous instruction, or toggling appliances that were never activated.33

While such issues result in unnecessarily lengthy plans and introduce noise in learning signals34

during imitation or reinforcement learning, they also present an underexplored opportunity: human35

demonstrations naturally contain error-recovery sequences that showcase how humans recognize and36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Figure 1: Diagram of Planning Agent and Judge LLM Interaction Process for Plan Verification

correct mistakes in real-time. Our verification framework, by explicitly identifying these erroneous37

actions, not only enables cleaner training data through removal but also facilitates future research38

into learning from human error recovery patterns, potentially yielding agents that exhibit human-like39

resilience and adaptability when facing unexpected situations or their own execution errors.40

To address these limitations, we propose a general verification framework based on a two-agent41

protocol. In our approach, a Planning Agent first generates a candidate plan for a given goal. This42

plan is then passed to a second agent – a Judge powered by an LLM – which analyzes the sequence43

step by step and flags actions that appear redundant, irrelevant, contradictory, or otherwise unjustified.44

Each flagged step is accompanied by a natural language explanation to support interpretability. The45

Planning Agent subsequently revises its plan in response to this feedback, and the process repeats46

until the Judge LLM returns no further objections or a predefined iteration limit is reached. This47

end-to-end sequence is described in Figure 1.48

This approach is fully language-based, model-agnostic, and does not rely on any handcrafted heuristics49

or domain-specific rule sets. Instead, it leverages the reasoning capabilities of pretrained LLMs via50

zero-shot prompting, using a concise set of common-sense criteria embedded in natural language.51

The Judge LLM operates independently of any environment simulator or visual input, making the52

method simple to integrate into a wide range of embodied AI pipelines.53

Our empirical evaluation focuses on the TEACh dataset, where we analyze 100 episodes spanning54

15 high-level household tasks. We evaluate four LLMs in the Judge and Planning Agent role and55

report their effectiveness in identifying plan defects, measuring both precision and recall against a56

manually annotated ground truth. Our findings reveal a clear trade-off between conservative high-57

precision judges and more aggressive high-recall ones, with each offering complementary benefits58

for downstream applications.59

Our contributions are:60

1. Framework: We introduce a general-purpose language-based plan verification frame-61

work that incorporates iterative critique and revision into embodied planning workflows,62

represented in Figure 1.63

2. NL Prompt-Based Judge LLM: We demonstrate that simple natural language-based rules,64

encoded in prompts, are sufficient to guide LLM-based judges in identifying and explaining65

suboptimal actions.66

2

Figure 2: Diagram of Sample Workflow in TEACh Dataset

3. Empirical Study: We benchmark multiple Judge LLMs on the TEACh dataset and provide67

detailed analysis of their respective strengths, weaknesses, and trade-offs. The structure of68

these workflows is illustrated in Figure 2.69

This work lays the groundwork for scalable, language-driven refinement of human-authored task70

plans in embodied settings, with potential downstream benefits for both imitation learning and71

reinforcement learning paradigms.72

2 Related Work73

Our work on plan verification intersects with a broad effort to integrate LLMs into complex, multi-step74

reasoning pipelines. We situate our framework by synthesizing research across three major themes:75

the challenges and advancements in using LLMs as direct plan generators; the emergence of LLMs76

as verifiers and refiners in iterative feedback loops; and the broader context of the LLM-as-a-Judge77

ecosystem, including its benchmarks and known vulnerabilities.78

2.1 LLMs as Plan Generators79

In the earlier work, Gella et al. have demonstrated the dialogue act prediction based approach using80

the TEACh dataset [6]. This was a classification based approach trying to predict the next dialogue81

act given the action history and environment. They have expanded this work so as to use an LLM82

based planning approach in [3] to generate an entire action sequence from a high-level goal. Another83

work by Huang et al. [7] demonstrated that while large pre-trained models contain sufficient world84

knowledge to produce semantically plausible plans, these plans are often not executable because they85

fail to map onto an agent’s specific, admissible actions. This fundamental gap between plausible text86

and executable actions highlights the core challenge of grounding.87

Subsequent research has focused on closing this gap by providing LLMs with stronger environmental88

context. For instance, PROGPROMPT [8] structures the prompt as a Python program, providing89

the LLM with available actions as import statements and objects as a list, thereby constraining the90

generated output to be more syntactically correct and environmentally aware. Similarly, LLM-91

PLANNER [9] couples few-shot prompting with online simulator feedback, appending error traces to92

the prompt to enable replanning when a step fails. Other methods, like TAPA [10], inject explicit93

world state, such as an inventory table, directly into the prompt to reduce object hallucination. Our94

work is orthogonal to these plan generation methods; instead of improving the initial output, we95

focus on creating a robust post-hoc verification process to clean noisy, human-authored trajectories,96

ensuring that any downstream planner inherits a leaner and less ambiguous set of demonstrations.97

2.2 Verification and Refinement98

Given the difficulties in direct plan generation, a powerful alternative paradigm has emerged: using99

LLMs to critique, verify, and refine plans within an iterative loop. This approach often decomposes100

the problem into distinct agentic roles. The Reflexion framework, for example, splits an agent into an101

Actor, Evaluator, and Self-Reflection module, using verbal reinforcement to iteratively improve its102

policy without gradient updates [1]. Our Judge-Planner framework externalizes this critique process103

3

into an independent, two-agent system, which facilitates explicit precision-recall accounting and104

allows for modular substitution of the Judge LLM. This multi-agent perspective is echoed in broader105

frameworks like AUTOGEN, which coordinates specialized conversable agents [2], and COELA,106

which pairs a "Commander" LLM with domain-specific modules for robot teams [11].107

More directly, recent work has built systems specifically for pre-execution plan verification. Veri-108

fyLLM [12] proposes a verification architecture that analyzes action sequences to identify logical109

inconsistencies, missing prerequisites, and redundancies, using Linear Temporal Logic (LTL) as a110

formal intermediate representation to guide the LLM’s analysis. The principle of using an LLM to111

verify an intermediate output is not limited to robotics; LLatrieval [13] employs an LLM to iteratively112

verify and refine the documents retrieved by a RAG system, demonstrating the general power of this113

verification-and-update pattern. Our framework contributes to this line of work by demonstrating that114

effective, high-recall verification can be achieved using zero-shot natural language critique alone,115

without requiring formal methods like LTL.116

2.3 "LLM-as-a-Judge" Ecosystem117

Casting an LLM in a verification role makes it an instance of an "LLM-as-a-Judge," a rapidly growing118

field with its own set of tools and challenges. A systematic analysis by Li et al. [14] formally evaluates119

the distinct contributions of LLMs as solvers, verifiers, and heuristic functions, concluding that LLMs120

are often more effective at providing comparative feedback than at generating correct solutions from121

scratch – a finding that strongly motivates our verification-centric approach.122

However, the reliability of LLM judges is not guaranteed. Research into their adversarial robustness123

has shown that simple, universal triggers can inflate judge scores, highlighting the fragility of naive124

evaluation [15]. To promote standardized evaluation, public benchmarks such as MT-BENCH and the125

CHATBOT ARENA have been developed to provide open, crowd-validated tests where models like126

GPT-4 have achieved human-level agreement [16]. Our work adopts their strict evaluation protocols.127

Furthermore, systematic surveys have begun to chart the field, offering taxonomies of judgment tasks128

and techniques for bias mitigation [17, 18], which inform the design of our evaluation suite. Finally,129

within the embodied domain, benchmarks like PARTNR provide large-scale, multi-agent tasks with130

built-in verification checkpoints [19]. We instead target the TEACh dataset for its organic, noisy131

human demonstrations, which better approximate the data our framework is designed to clean.132

3 Methodology133

Our objective is to automatically refine human-authored embodied task trajectories by identifying134

and correcting actions that are irrelevant, redundant, contradictory, or missing relative to the stated135

goal. We cast this process as an interaction between two language model-based agents: a Judge136

LLM, which critiques a proposed plan, and a Planning Agent, which applies those critiques to137

produce an updated plan. This modular design yields a transparent, fully language-driven verification138

loop that can be applied to existing datasets without retraining.139

3.1 Formal Problem Definition140

Let Π denote the space of action sequences (plans). A plan π ∈ Π is a finite sequence141

π = (a1, a2, . . . , aT),

where each at is an atomic manipulation such as PickUp, ToggleOn, or Place. Not all actions in π142

are correct. We consider an error set E(π) containing the positions of erroneous actions in π. Errors143

arise in three forms:144

1. Redundant actions (unnecessary repetitions or canceling operations).145

2. Contradictory actions (steps that oppose earlier actions or the task goal; treated as REMOVE).146

3. Missing actions (omissions required for successful task completion).147

Objective. Given a natural language goal g and an initial plan π(0), our task is to produce a refined148

plan π∗ that achieves g while minimising length:149

π∗ = argmin
π̃
|π̃| s.t. π̃ achieves g.

4

This formulation permits insertions when necessary, but penalises unnecessary actions.150

Verification Operator. The Judge implements a critique function151

J : (g, π) 7→ C = {(i, type, reason)},
where type ∈ {REMOVE, MISSING} and each critique specifies an action index i, a correction type,152

and a rationale. The Planner applies these critiques deterministically:153

P : (π, C) 7→ π′.

We define the verification operator as the composition154

V = P ◦ J,
so that π′ = V (g, π). We assume V is conservative, i.e.155

E[E(V (π))] ≤ E(π),

where E(π) = |E(π)| is the error count.156

Iterative Refinement. Verification is applied iteratively. At iteration k, the Judge produces critiques157

C(k) = J(g, π(k)), and the Planner incorporates them:158

π(k+1) = P (π(k), C(k)).

The error counts form a non-increasing sequence {E(k)}. Under the conservative assumption, there159

exists δ > 0 such that160

E[E(k+1)] ≤ (1− δ)E[E(k)],

suggesting geometric convergence to a fixed point E∗ ≥ 0. Empirically, convergence occurs within161

three iterations in 96.5% of cases.162

3.2 Evaluation Metrics163

We evaluate the Judge’s ability to detect errors against human annotations.164

• Recall = TP
TP+FN : fraction of erroneous actions flagged.165

• Precision = TP
TP+FP : fraction of flagged actions that were truly erroneous.166

• F1 score: harmonic mean of precision and recall.167

Here positives are erroneous actions (REMOVE or MISSING); contradictory errors are subsumed168

under REMOVE. Task-level outcomes (e.g., plan success rate, average length reduction) are reported169

separately.170

3.3 Iterative Verification Algorithm171

Algorithm 1 instantiates the operator V = P ◦ J as an iterative refinement loop.172

4 Results173

We report results from both the single-pass (zero-shot) and multi-pass (iterative) evaluation settings.174

These results are obtained by manual annotations that assess the final Planning Agent output based175

on the action sequence accurately achieving the goal set by the Commander of each TEACh action176

sequence.177

4.1 Static (Zero-Shot) Verification Performance178

Table 1 summarizes the recall and precision of each Judge LLM when applied directly to raw TEACh179

plans. GPT o4-mini achieved the highest overall recall (80%) while maintaining a strong precision of180

93%. DeepSeek-R1 exhibited perfect precision (100%) but with a lower recall of 68%, indicating181

a more conservative judging style. Gemini 2.5 and LLaMA 4 Scout provided moderately strong182

recall (74%) with slightly reduced precision (90% and 85%, respectively). The rule-based baseline183

underperformed across both metrics, as shown in Table 1.184

5

Algorithm 1 Iterative Plan Verification (Judge–Planner Composition)
Require: Goal g, initial plan A = (a1, . . . , an), Judge LLM J , Planner LLM P
Ensure: Refined plan A′

A′ ← A
for i = 1 to 5 do ▷ Maximum refinement rounds

critiques ← J.evaluate(g,A′)
if critiques = ∅ then

return A′ ▷ No errors detected
end if
A′ ← P.apply_critiques(A′, critiques)
A′ ← reindex(A′)

end for
return A′ ▷ Return last refined plan if critiques persist

Judge LLM Recall Precision
GPT o4-mini 80% 93%
DeepSeek-R1 68% 100%
Gemini 2.5 74% 90%
LLaMA 4 Scout 74% 85%
Rule-based 22% 71%

Table 1: Single-pass plan verification performance.

4.2 Iterative Critique-and-Revise Performance185

We now examine how plan quality improves over multiple critique–and-revise rounds. Each Planning186

Agent LLM proposes a revised plan after receiving feedback from the Judge LLM, and this loop187

continues until the Judge LLM raises no new issues.188

As shown in Table 2, iterative refinement boosts recall by 5–10% on average across all Judge–Planner189

combinations. For instance, GPT o4-mini’s recall improves from 80% (static) to 88–90% when paired190

with itself or other Planner LLMs. Similarly, Gemini 2.5 sees recall rise to 89% with multiple planner191

pairings. Precision generally remains stable or improves slightly.192

To understand the efficiency of the iterative refinement process, we analyzed the convergence behavior193

across all each of the individual steps over all actions cumulatively judged and planned by the LLM194

agents. Figure 3 illustrates the cumulative percentage of sequences that reach their final state after195

each iteration.196

Figure 3: Cumulative convergence of action sequences across iterations. Most sequences (62%) are
corrected after the first iteration, with near-complete convergence (96.5%) by iteration 3.

6

Our analysis reveals:197

• Iteration 1: 62% of sequences require no further modifications198

• Iteration 2: 89% cumulative convergence (+27%)199

• Iteration 3: 96.5% cumulative convergence (+7.5%)200

• Iterations 4-5: Only 3.5% of sequences benefit from additional rounds201

This rapid convergence suggests that most plan defects are straightforward and can be identified in a202

single pass, while a smaller subset requires iterative reasoning to resolve complex interdependencies203

between actions.204

Judge LLM Planner LLM – Recall (%) / Precision (%) / F-score
GPT o4-mini DeepSeek-R1 Gemini 2.5 LLaMA 4 Scout

GPT o4-mini 88 / 90 / 89.0 90 / 80 / 84.7 85 / 91 / 87.8 89 / 87 / 87.9
DeepSeek-R1 65 / 99 / 78.5 68 / 100 / 80.9 62 / 100 / 76.5 66 / 98 / 78.9
Gemini 2.5 84 / 98 / 90.7 86 / 97 / 91.2 89 / 99 / 93.9 89 / 96 / 92.2
LLaMA 4 Scout 76 / 92 / 83.5 81 / 90 / 85.3 79 / 93 / 85.9 75 / 89 / 81.6

Table 2: Iterative recall and precision (%): Recall is the percentage of ground-truth RE-
MOVE/MISSING actions correctly flagged; precision is the percentage of flagged actions that were
genuinely erroneous

4.3 Qualitative Analysis and Error Patterns205

Our manual analysis of Judge LLM outputs reveals systematic patterns in both successful corrections206

and failure modes. We categorize these findings by error type and precision/recall failures.207

4.3.1 Model Behavior208

Our analysis reveals distinct behavioral patterns among the four Judge LLMs evaluated. DeepSeek-209

R1 emerges as the most conservative judge, achieving near-perfect precision (98-100%) across all210

planner pairings but at the cost of significantly lower recall (62-68%). This conservative approach211

means DeepSeek-R1 only flags actions when absolutely certain, resulting in many problematic actions212

passing through undetected. While this minimizes false positives, it fails to identify approximately213

one-third of the errors in human-authored plans, limiting its effectiveness for comprehensive plan214

refinement.215

In contrast, GPT o4-mini demonstrates a more balanced but aggressive approach, achieving the216

highest recall rates (85-90%) while maintaining respectable precision (80-91%). This model excels217

at catching subtle errors that other judges miss, particularly when paired with DeepSeek-R1 as the218

planner (90% recall). However, its eagerness to flag potential issues occasionally leads to over-219

correction, with precision dropping to 80% in some configurations. This trade-off makes GPT220

o4-mini ideal for scenarios where catching all errors is paramount, even if some valid actions are221

incorrectly flagged.222

Gemini 2.5 presents the most well-rounded performance profile, consistently achieving high F1-223

scores (90.7-93.9) that indicate excellent balance between precision and recall. With recall rates of224

84-89% and precision consistently above 96%, Gemini 2.5 demonstrates sophisticated judgment225

capabilities that avoid both the over-conservatism of DeepSeek-R1 and the occasional over-eagerness226

of GPT o4-mini. Notably, Gemini 2.5 performs best when paired with itself or LLaMA 4 Scout as227

planners, suggesting strong internal consistency in its evaluation criteria.228

LLaMA 4 Scout occupies a middle ground, with moderate recall (75-81%) and good precision229

(89-93%). While it doesn’t excel in any particular metric, its consistent performance across different230

planner pairings suggests robustness to varying input styles. LLaMA 4 Scout appears to focus on231

identifying the most obvious errors while being cautious about borderline cases, making it a reliable232

if unspectacular choice for plan verification tasks.233

The interaction effects between judge-planner pairs also reveal interesting patterns. Models generally234

perform best when paired with themselves (as seen in the diagonal of our results table), suggesting235

7

that each model has internally consistent standards for what constitutes correct action sequences.236

However, some cross-model pairings yield surprising benefits: GPT o4-mini as judge with DeepSeek-237

R1 as planner achieves the highest recall (90%), while Gemini 2.5 consistently achieves the best238

overall performance regardless of planner choice, indicating its superior generalization capabilities.239

4.3.2 Successful Corrections240

Judge LLMs consistently identify and correct:241

• Premature toggles: REMOVE: Driver toggles off microwave before turning242

it on243

• Irrelevant objects: REMOVE: Driver picks up RemoteControl – not needed244

for cooking task245

• Incomplete sequences: MISSING: Task incomplete – bread sliced but246

sandwich not assembled247

4.3.3 Recall Failures (Missed Errors)248

The Judge LLMs systematically miss certain error patterns, which are marked by the annotator’s249

notes (AN) in the examples below:250

Context-dependent redundancies. In sequences where objects are picked up early but used much251

later, judges fail to recognize the inefficiency:252

// GOAL: Clean the bathroom253

Driver.PickUp(’Soap’) // Picked up early254

Driver.Move(5.0) // Multiple intervening actions255

Driver.Turn(90)256

Driver.PickUp(’Sponge’)257

Driver.Place(’Sink’) // Soap finally used here258

// AN: Judge fails to flag early pickup as inefficient259

4.3.4 Precision Failures (False Positives)260

Judge LLMs occasionally over-correct valid sequences:261

Multi-step preparations. Judges sometimes flag necessary preparatory actions as redundant:262

// GOAL: Make coffee263

Driver.PickUp(’Mug’) // REMOVE (AN: Incorrectly flagged)264

Driver.Place(’Counter’)265

Driver.PickUp(’CoffeeFilter’)266

Driver.Place(’CoffeeMachine’)267

Object reuse patterns. When objects serve multiple purposes, judges may incorrectly remove268

secondary uses:269

// GOAL: Set dinner table270

Driver.PickUp(’Plate’)271

Driver.Place(’DiningTable’)272

Driver.PickUp(’Plate’) // REMOVE (AN: Incorrectly flagged)273

Driver.Place(’DiningTable’) // Actually placing second plate274

These error patterns suggest that while current Judge LLMs excel at surface-level logical inconsisten-275

cies, they may struggle with long-range dependencies and context-sensitive reasoning.276

5 Conclusion277

This paper presents a general-purpose, language-driven framework for verifying human-authored278

embodied task plans via structured LLM-based critique. By casting plan verification as a modular279

8

dialogue between a Planning Agent and a Judge LLM, we enable scalable, interpretable, and model-280

agnostic refinement of noisy demonstration datasets without the need for task-specific heuristics or281

environment simulators.282

We evaluated the four LLMs GPT o4-mini, DeepSeek-R1, Gemini 2.5, and LLaMA 4 Scout as283

Judges on a curated slice of the TEACh dataset comprising 1,408 human-generated actions. Our284

findings reveal consistent advantages of natural language-based verification over rule-based baselines,285

with zero-shot prompting alone yielding up to 80% recall and 100% precision depending on the286

model. Moreover, we demonstrate that iterative critique-and-revise loops provide a consistent 5–10%287

boost in recall without sacrificing precision, underscoring the complementary power of multi-round288

plan inspection and LLM collaboration. Qualitative analysis confirms that Judge LLMs produce289

human-interpretable, step-level rationales that support transparent auditability – providing a more290

interpretable alternative. We also identify trade-offs between precision-focused and recall-focused291

Judge LLMs, suggesting hybrid ensembles or confidence-calibrated prompts as promising future292

directions.293

These results establish plan verification as a distinct, language-level capability of LLMs, with strong294

implications for both dataset curation and agent performance in downstream learning tasks. Future295

work will extend this framework to vision-grounded settings, explore adversarial robustness of judge296

prompts, and test the framework’s scalability on larger multi-agent corpora such as PARTNR [19].297

6 Limitations298

Our study introduces a robust verification framework utilizing natural language-based critique-and-299

revision loops to refine action plans within embodied task scenarios. However, several limitations300

must be acknowledged. Firstly, our evaluation is conducted exclusively on a subset of the TEACh301

dataset, covering 15 common household goals, and the generalizability of our findings to broader,302

more diverse embodied tasks and environments (e.g., industrial settings, healthcare, or complex303

outdoor environments) remains untested. Further, our results depend significantly on manual labeling304

of actions as necessary or unnecessary, and although careful and systematic, this process inherently305

introduces subjective judgment and potential inconsistencies, suggesting that future research should306

explore automated or semi-automated annotation methods to enhance consistency and efficiency.307

The efficacy of our approach hinges on the quality and reliability of the Judge LLMs used as well,308

and the zero-shot prompting method, while effective, may be limited by the LLM’s inherent biases,309

knowledge cutoff dates, and potential hallucinations or inaccuracies. These issues could potentially be310

mitigated through fine-tuning or hybrid approaches integrating external knowledge bases. Moreover,311

while our iterative critique-and-revise loop is computationally lightweight once the Judge LLM re-312

sponses are cached, the initial computational overhead of generating Judge LLM responses, especially313

with large-scale datasets or more complex tasks, could be considerable, necessitating optimizations314

or more efficient prompting strategies for scalability. Finally, our method currently relies solely315

on natural language cues for identifying redundant or erroneous actions, and integrating stronger316

environmental grounding (e.g., visual object recognition or physical simulations) may enhance the317

accuracy and reliability of the verification process. Addressing these limitations through further318

research will be essential to fully realize the potential of natural-language verification approaches in319

diverse and complex real-world embodied tasks.320

References321

[1] Noah Shinn, Federico Cassano, Eric Berman, Ashwin Gopinath, Karthik Narasimhan, and322

Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv preprint323

arXiv:2303.11366, 2023.324

[2] Qianqian Wu, Gagan Bansal, Jinghao Zhang, Yizhe Wu, Boya Li, Eddie Zhu, Longshaokan325

Jiang, Ximing Zhang, Shijie Zhang, Jianfeng Liu, Ahmed H. Awadallah, Ryen W. White, Doug326

Burger, and Chenguang Wang. Autogen: Enabling next-gen llm applications via multi-agent327

conversation. arXiv preprint arXiv:2308.08155, 2023.328

[3] Aishwarya Padmakumar, Mert Inan, Spandana Gella, Patrick Lange, and Dilek Hakkani-Tur.329

Multimodal embodied plan prediction augmented with synthetic embodied dialogue. In Houda330

9

Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical331

Methods in Natural Language Processing, pages 6114–6131, Singapore, December 2023.332

Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.374. URL333

https://aclanthology.org/2023.emnlp-main.374/.334

[4] Aishwarya Padmakumar, Jesse Thomason, Anjali Shrivastava, Patrick Lange, Anjali Narayan-335

Chen, Spandana Gella, Robinson Piramuthu, Gokhan Tur, and Dilek Hakkani-Tur. Teach:336

Task-driven embodied agents that chat. arXiv preprint arXiv:2110.00534, 2021.337

[5] Sewon Y. Min, Hao Zhu, Ruslan Salakhutdinov, and Yonatan Bisk. Don’t copy the teacher:338

Data and model challenges in embodied dialogue. arXiv preprint arXiv:2210.04443, 2022.339

[6] Spandana Gella, Aishwarya Padmakumar, Patrick Lange, and Dilek Hakkani-Tur. Dialog acts340

for task-driven embodied agents. arXiv preprint arXiv:2209.12953, 2022.341

[7] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as342

zero-shot planners: Extracting actionable knowledge for embodied agents, 2022. URL https:343

//arxiv.org/abs/2201.07207.344

[8] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay,345

Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task346

plans using large language models, 2022. URL https://arxiv.org/abs/2209.11302.347

[9] Jingcheng Song, Fei Zhang, Yonggang Zhao, Jingwen Xu, Xiaowei Hu, and Yuxiang Zhang.348

Llm-planner: Few-shot grounded planning with large language models. arXiv preprint349

arXiv:2302.07899, 2023.350

[10] Hanwen Wu, Shitong Song, Yuanhang Wang, Yueqi Duan, Fei Hu, Song-Chun Zhu, Joshua B.351

Tenenbaum, and Chuang Gan. Tapa: Task-aware planning agents grounded with scene objects.352

arXiv preprint arXiv:2305.08865, 2023.353

[11] Jiafei Zhang, Yuzheng Li, Chen Wang, Yufei Duan, and Tao Xu. Coela: Cognitive-inspired354

embodied learning agents with gpt-4. arXiv preprint arXiv:2308.07521, 2023.355

[12] Danil S. Grigorev, Alexey K. Kovalev, and Aleksandr I. Panov. Verifyllm: Llm-based pre-356

execution task plan verification for robots, 2025. URL https://arxiv.org/abs/2507.357

05118.358

[13] Xiaonan Li, Changtai Zhu, Linyang Li, Zhangyue Yin, Tianxiang Sun, and Xipeng Qiu. Lla-359

trieval: Llm-verified retrieval for verifiable generation, 2024. URL https://arxiv.org/360

abs/2311.07838.361

[14] Haoming Li, Zhaoliang Chen, Songyuan Liu, Yiming Lu, and Fei Liu. Systematic analysis of362

llm contributions to planning: Solver, verifier, heuristic, 2024. URL https://arxiv.org/363

abs/2412.09666.364

[15] Vyas Raina, Adian Liusie, and Mark Gales. Is llm-as-a-judge robust? investigating universal365

adversarial attacks on zero-shot llm assessment. arXiv preprint arXiv:2402.14016, 2024.366

[16] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, et al. Judging llm-as-a-judge with mt-bench and367

chatbot arena. In Advances in Neural Information Processing Systems, 2023.368

[17] Jiawei Gu, Xuhui Jiang, Zhichao Shi, et al. A survey on llm-as-a-judge. arXiv preprint369

arXiv:2411.15594, 2025.370

[18] Dawei Li, Bohan Jiang, Liangjie Huang, et al. From generation to judgment: Opportunities and371

challenges of llm-as-a-judge. arXiv preprint arXiv:2411.16594, 2025.372

[19] Matthew Chang, Gunjan Chhablani, Alexander Clegg, Mikael Dallaire Cote, Ruta Desai, Michal373

Hlavac, Vladimir Karashchuk, Jacob Krantz, Roozbeh Mottaghi, Priyam Parashar, Siddharth374

Patki, Ishita Prasad, Xavier Puig, Akshara Rai, Ram Ramrakhya, Daniel Tran, Joanne Truong,375

John M. Turner, Eric Undersander, and Tsung-Yen Yang. Partnr: A benchmark for planning376

and reasoning in embodied multi-agent tasks. arXiv preprint arXiv:2205.08866, 2022. Work377

done at FAIR Meta. Alphabetical author order.378

10

https://aclanthology.org/2023.emnlp-main.374/
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2209.11302
https://arxiv.org/abs/2507.05118
https://arxiv.org/abs/2507.05118
https://arxiv.org/abs/2507.05118
https://arxiv.org/abs/2311.07838
https://arxiv.org/abs/2311.07838
https://arxiv.org/abs/2311.07838
https://arxiv.org/abs/2412.09666
https://arxiv.org/abs/2412.09666
https://arxiv.org/abs/2412.09666

A Judge LLM and Planning Agent Prompts379

The following prompt was used to instruct the LLMs to evaluate and flag unnecessary or erroneous380

actions.381

A.1 Judge LLM Prompt382

You are a Judge Agent for embodied AI task planning. Your role is to provide383

thoughtful,natural language feedback on action sequences. You should:384

1. Analyze each action’s purpose and relevance to the goal385

2. Explain your reasoning in clear, conversational language386

3. Point out redundant or unnecessary actions with detailed explanations387

4. Identify missing actions needed to complete the goal388

5. Focus on being helpful and constructive in your feedback389

Provide your feedback as natural language commentary, using #REMOVE and390

#MISSING tags only when necessary. Prioritize clear explanations.391

Please evaluate this action sequence for achieving the following goal:392

GOAL: {goal}393

Action Sequence: {actions_text}394

Provide line-by-line analysis of each action. For each action, explain what395

it does and whether it’s necessary for the goal. Use this format:396

ACTION: [copy the exact action]397

ANNOTATION: [explain what this action does and whether it’s needed for the goal.398

If the action should be removed, include "#REMOVE: reason".399

If it’s good, just explain why.]400

After analyzing all actions, if any steps are missing to complete the goal, add:401

#MISSING: [describe what actions are needed]402

Be thorough and conversational in your explanations. Focus on helping someone403

understand why each action is or isn’t necessary for achieving the goal.404

Your line-by-line analysis:405

A.2 Planning Agent Prompt406

You are a Planning Agent for embodied AI tasks. Your role is to:407

1. Analyze action sequences and identify their goals408

2. Modify action sequences based on feedback from a Judge409

3. Remove redundant actions and add missing actions as needed410

4. Ensure action sequences are efficient and complete411

Always preserve the original format and only make necessary changes.412

Analyze the following action sequence and determine the overall413

Context: {context}414

Actions:{actions_text}415

Provide a concise goal statement starting with "GOAL: "416

11

	Introduction
	Related Work
	LLMs as Plan Generators
	Verification and Refinement
	"LLM-as-a-Judge" Ecosystem

	Methodology
	Formal Problem Definition
	Evaluation Metrics
	Iterative Verification Algorithm

	Results
	Static (Zero-Shot) Verification Performance
	Iterative Critique-and-Revise Performance
	Qualitative Analysis and Error Patterns
	Model Behavior
	Successful Corrections
	Recall Failures (Missed Errors)
	Precision Failures (False Positives)

	Conclusion
	Limitations
	Judge LLM and Planning Agent Prompts
	Judge LLM Prompt
	Planning Agent Prompt

