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ABSTRACT

Recent progress in training unnormalized models through denoising score matching
with Langevin dynamics (SMLD) and denoising diffusion probabilistic modeling
(DDPM) has made unnormalized models a competitive model class for generative
modeling. Unlike earlier work on energy based models, these recent works con-
struct generative models by directly parameterizing the score function of the model
density, rather than the density itself. Such unconstrained score models are not
guaranteed to output a conservative vector field, meaning they do not correspond
to the gradient of any function, unlike constrained score models that are obtained
through explicitly differentiating a parameterized energy function. Explicit energy
based models thus seem to have a theoretical advantage, but empirical evidence
currently points to unconstrained score models performing better in practice. Here
we compare both methods for modeling the score of the data distribution, finding
that constrained score models, i.e. energy based models, can perform just as well
as unconstrained models when using a comparable model structure.

1 TRAINING SCORE-BASED GENERATIVE MODELS

SMLD (Song & Ermon, 2019) and DDPM (Sohl-Dickstein et al., 2015; Ho et al., 2020) are generative
models that train a sequence of denoising autoencoders on Gaussian-perturbed data at multiple noise
scales, producing samples at test time by running processes similar to Langevin dynamics using the
denoising autoencoders as vector fields in data space. More specifically, SMLD trains on denoising
score matching losses (Vincent, 2011):
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and therefore, under ideal conditions, sθ(x, t) learns the true scores ∇x log pt(x) for all t. Sampling
proceeds by running multiple Langevin dynamics steps for each t = T, . . . , 1 using sθ(x, t) as the
gradient, warm-starting the first sample for step t from the final sample from step t+ 1.
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where αt = 1− βt and ᾱt =
∏t
s=1 αs. Training is performed by maximizing the variational lower

bound treating the noisy data xt as latent variables, which can be shown to be equivalent to optimizing
the score matching losses for some weights γ̃t:

T∑
t=1

Ex0
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where above pt(x) =
∫
p̃t(x |x0)p(x0)dx0 is the marginal distribution of the forward process.

Sampling is defined to be ancestral sampling from pθ(xt−1 |xt), which, by examining (3), resembles
a warm-started Langevin dynamics on sθ(x, t) similar to SMLD.

Both methods learn a function sθ(x, t) modeling the score of of noisy data, either pt(x) or p̃t(x),
but successful implementations currently parameterize sθ(x, t) as an unconstrained neural network,
not as the gradient of a parameterized energy function. Our work here investigates whether sθ(x, t)
networks constrained to be the gradient of a parameterized energy function are able to attain sample
quality results similar to those of unconstrained networks.

2 CONSERVATIVE VECTOR FIELDS AND HIGHER ORDER GRADIENTS

The goal of score-based generative modeling is to approximate the score of the data distribution
∇x log pt(x) with the learned score model sθ(x, t). Here, we know that ∇x log pt(x) is a conser-
vative vector field, which means that the line integral between two points

∫ x2

x1
∇x log pt(x)dx is

independent of the path taken from x1 to x2. This property is essential in guaranteeing that MCMC
sampling based on ∇x log pt(x) indeed samples x1 and x2 according to their relative probability
under pt(x). When sθ(x, t) is parameterized as the gradient of a (smooth) energy function, i.e.
sθ(x, t) = −∇xEθ(x, t), our model is guaranteed to give a conservative vector field. This is not true
for the general case where sθ(x, t) is modeled by an unconstrained neural network.

A related property that is satisfied by the ground-truth score is that ∂i[∇x log pt(x)]j =
∂j [∇x log pt(x)]i, i.e. the Jacobian of the score is symmetric. This property is hard to reproduce in
feedforward neural nets, as discussed by Saremi (2019).

It makes intuitive sense to add these properties as constraints when constructing our model sθ(x, t),
by parameterizing it as the gradient of an energy function. However, in personal communication
multiple researchers in this area indicated that they did not obtain good results following this approach.
In Section 3 we investigate how to build in these constraints in a way that does not hurt results.

3 CONSTRAINED AND UNCONSTRAINED SCORE MODELS

Recent work on score-based generative modeling (Song & Ermon, 2019; Ho et al., 2020) models
the score as an unconstrained convolutional neural network, i.e. sθ(x, t) = fθ(x, t), where fθ(x, t)
maps from Rd to Rd for a d-dimensional input image x. In contrast, earlier work on energy
based model usually modeled the score by taking the derivative of a parameterized energy function,
sθ(x, t) = −∇xEθ(x, t), with Eθ(x, t) a feedforward neural network mapping from Rd to R. In
addition to guaranteeing a conservative vector field sθ(x, t), the latter approach allows us to use
standard architectures from the image classification literature for specifying Eθ(x, t). When Eθ(x, t)
is chosen as such a classifier, it enables combining image generation and classification in interesting
ways (Grathwohl et al., 2019).

Although elegant, specifying the score model by taking the gradient of an image classifier has so
far not produced competitive results in image generation. We hypothesize that the reason is that
the function ∇xEθ(x, t) is severely restricted when Eθ(x, t) is a standard feedforward classifier.
Standard image classifiers are not designed to preserve all the detailed information in x needed to
accurately model the high dimensional score of the data distribution, but instead use deep stacks of
layers with downsampling to arrive at more abstract representations. In contrast, Ho et al. (2020)
obtain their best results when specifying sθ(x, t) as a U-Net (Ronneberger et al., 2015), with many
short-cut connections specifically designed to propagate fine details from the inputs x to the high-
dimensional output.

To combine the strengths of the U-net model fθ(x, t) used by Ho et al. (2020) with the guarantees of
using an energy function, we propose specifying the energy as follows:

Eθ(x, t) =
1

2σ(t)
||x−fθ(x, t)||2, (5)
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When taking the gradient of the energy function in (5), we get

− sθ(x, t) = ∇xEθ(x, t) =
1

σ(t)
(x−fθ(x, t))−

1

σ(t)
(x−fθ(x, t))∇xfθ(x, t). (6)

The first term in this equation, (x−fθ(x, t))/σ(t) is equivalent to one of the score models explored
by Song & Ermon (2019), and is closely related to the model of Ho et al. (2020) that directly predicts
the noise that was used to perturb x. The second term in the equation is new, and this is what
guarantees the score model sθ(x, t) to be a conservative vector field. As we show in Section 4, this
additional term does not hurt the performance of the generative model.

4 EXPERIMENTS

To empirically investigate the questions posed above, we train unconditional generative models on
the CIFAR-10 dataset of small images. Here we compare the three different model types discussed
in Section 3: A: an unconstrained U-net style model as used successfully by Ho et al. (2020),
corresponding to just the first term of (6), B: an energy-based constrained U-net model corresponding
to both terms of (6), guaranteed to give a conservative vector field, and C: an energy-based model
based on a standard feedforward ResNet (He et al., 2016) as often used for image classification.
Otherwise we follow the same setup used by Ho et al. (2020) in their experiments.

4.1 ENERGY BASED MODELS PERFORM ON PAR WITH UNCONSTRAINED SCORE MODELS

As Table 1 shows, energy based models perform on par with unconstrained score models when
keeping the model structure the same, while standard feedforward energy models perform less well.

Model type Conservative? Short-cuts to inputs? FID ↓ Inception Score ↑
A: Unconstrained U-net no yes 6.5 9.2
B: Energy-based U-net yes yes 6.8 9.3
C: Energy-based ResNet yes no 21 7.8

Table 1: Results on unconditional CIFAR-10 image modeling after 300k steps of training. The constrained
and unconstrained U-net models perform similarly, with one being better on FID and the other being better on
Inception Score. The model with the more commonly used feedforward ResNet energy model does not perform
well.

(a) Unconstrained U-Net (b) Energy-based U-Net (c) Feedforward ResNet

Figure 1: Unconditional CIFAR-10 samples from the three score models we consider.
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5 CONCLUSION

The recent success of score based generative modeling gives rise to some fundamental questions
about energy based models: Do we actually need to model an energy function, or is it enough to
model its gradient directly? Can unconstrained neural networks learn to approximate the gradient of
a function, or does this constraint need to be built in? Are energy based models, i.e. constrained score
models, empirically less powerful than unconstrained models? Here we explore some first steps in
trying to answer these questions: By comparing constrained and unconstrained score models in a way
that minimizes the difference in the resulting model structure we find that constrained score models,
i.e. energy based models, can perform just as well as unconstrained models for image generation.
This suggests that future work in energy-based models and score-based models can focus on concrete
modeling architectures, without getting distracted by differences in the model formalism, enabling
the two approaches to build on each other’s results.
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