
MISSINGNESS BIAS CALIBRATION IN FEATURE ATTRIBUTION EXPLANATIONS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Popular explanation methods often produce unreliable feature importance scores
012 due to “missingness bias,” a systematic distortion that arises when models are
013 probed with ablated, out-of-distribution inputs. Existing solutions treat this as a
014 deep representational flaw that requires expensive retraining or architectural mod-
015ifications. In this work, we challenge this assumption and show that missingness
016 bias can be effectively treated as a superficial artifact of the model’s output space.
017 We introduce MCAL, a lightweight post-hoc method that corrects this bias by fine-
018 tuning a simple linear head on the outputs of a frozen base model. Surprisingly,
019 we find this simple correction consistently reduces missingness bias and is com-
020 petitive with, or even outperforms, prior heavyweight approaches across diverse
021 medical benchmarks spanning vision, language, and tabular domains.
022
023

1 INTRODUCTION

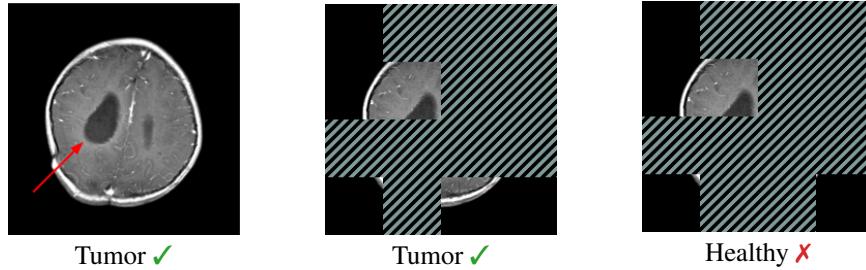
024 As black-box deep learning systems are increasingly deployed in high-stakes settings such as
025 medicine, finance, and law, there is increasing demand for reliable and trustworthy model expla-
026 nations. A common approach for explaining model predictions is to use feature attribution methods,
027 which assign importance scores to input features based on their influence on the output. Popular
028 methods, such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017), estimate these
029 scores by perturbing the input, typically by ablating selected features and measuring the change in
030 prediction. Because true feature removal is often infeasible (e.g., one cannot physically delete im-
031 age pixels or omit words from tokenized sequences), attribution methods approximate removal by
032 substituting the selected features with default or placeholder values, such as black pixels or special
033 tokens (Ancona et al., 2017; Sundararajan et al., 2017).

034 These substitutions often result in out-of-distribution inputs that deviate significantly from the
035 model’s training data, inducing a systematic distortion in predictions known as *missingness*
036 *bias* (Hase et al., 2021; Hooker et al., 2019; Jain et al., 2022). Such bias can severely undermine the
037 reliability of explanations. As illustrated in Figure 1, a classifier that accurately detects a brain tumor
038 from clean inputs fails to do so when irrelevant features are masked, demonstrating how seemingly
039 innocuous ablations can corrupt model behavior. Since perturbation-based attributions are derived
040 directly from these corrupted predictions, their reliability is fundamentally compromised, leading
041 to inconsistent feature importance scores (Duan et al., 2024; Goldwasser & Hooker, 2024; Hooker
042 et al., 2019). This also opens the door to adversarial manipulation: malicious actors can exploit this
043 vulnerability to design deceptive models that obscure their use of sensitive attributes such as race or
044 gender (Joe et al., 2022; Koyuncu et al., 2024; Slack et al., 2020).

045 A variety of mitigation strategies have been proposed to address missingness bias. *Replacement-
046 based* methods aim to reduce distributional shift by imputing masked features with more realistic
047 content (Agarwal & Nguyen, 2020; Chang et al., 2018; Kim et al., 2020; Sturmels et al., 2020).
048 *Training-based* methods fine-tune or retrain the model to better handle ablations (Hase et al., 2021;
049 Hooker et al., 2019; Park et al., 2024; Rong et al., 2022), while *architecture-based* approaches embed
050 robustness directly into the model via structural design changes (Balasubramanian & Feizi, 2023;
051 Jain et al., 2022).

052 However, these strategies are often impractical. Replacement-based methods are usually specialized
053 to specific domains (e.g., text (Kim et al., 2020)) or might require training model-specific imputa-
054 tions (Chang et al., 2018). On the other hand, training-based solutions require intensive engineering

054
055
056
057
058
059
060
061
062



063 Figure 1: **Removing irrelevant features can cause a misdiagnosis.** A fine-tuned ViT (Dosovitskiy
064 et al., 2020) correctly predicts “tumor” on the clean image (left) and a subset of the relevant features
065 (middle). However, masking irrelevant features flips the prediction to “healthy”, despite the tumor
066 remaining visible (right). For visualization, gray stripes denote zero-valued pixels, and images are
067 contrast-boosted.

068
069

070 and computing resources, while architecture-based modifications require a deep understanding of
071 model internals. Moreover, it is also increasingly common that the model itself is a black-box, such
072 as when interacting with API-based LLM providers.

073 In this work, we question whether such complex interventions are necessary. We investigate a simple
074 yet surprisingly powerful strategy for mitigating missingness bias: finetuning a linear head on the
075 outputs of a frozen base model. This approach, which we call **MCal**, is *lightweight, model-agnostic,*
076 and *post-hoc*: it is significantly cheaper in implementation effort than training-based methods, does
077 not require model-specific adaptations like architecture-based and replacement-based methods, and
078 needs only access to the model’s output logits. In the following, we summarize the development of
079 MCAL and our contributions.

080

081 **A New Perspective on Missingness Bias.** We find that missingness bias, a problem often treated
082 as a deep representational flaw, can be effectively mitigated with a simple post-hoc correction in the
083 model’s output space. This finding suggests the bias is often a superficial artifact, challenging the
084 prevailing assumption that expensive retraining or architectural modifications are necessary.

085

086 **A Lightweight Method with Theoretical Guarantees.** We formalize this approach as MCAL,
087 a lightweight calibrator that is highly efficient to optimize (Section 3). Furthermore, our simple
088 formulation provides theoretical guarantees of convergence to a globally optimal solution, ensuring
089 a level of stability and reproducibility rare for deep learning interventions.

090

091 **A Strong and Practical Baseline.** We demonstrate MCAL’s effectiveness across diverse models
092 and data modalities, where it is often competitive with heavyweight approaches (Section 4). This
093 establishes a strong and practical baseline that can be immediately adopted by researchers and prac-
094 tioners to improve the reliability of their explanations.

095

096 2 UNDERSTANDING MISSINGNESS BIAS

097

098 Perturbation-based feature attribution methods like LIME (Ribeiro et al., 2016) and SHAP (Lund-
099 berg & Lee, 2017) evaluate models on inputs with ablated features, typically replaced by fixed
100 baseline values (e.g., zero-vectors or mean-pixel values). However, because these synthetic inputs
101 often fall outside the model’s training distribution, they can induce systematic prediction distortions,
102 a phenomenon known as *missingness bias*. This section provides a background on this bias and its
103 consequences for explanation reliability.

104

105 2.1 PATHOLOGY: SYMPTOMS AND MEASUREMENTS

106

107 The effects of missingness bias are not merely statistical curiosities; they manifest as tangible fail-
108 ures that undermine the reliability of explanation methods.

108
109
110
111
112
113
114
115
116
117
118
119

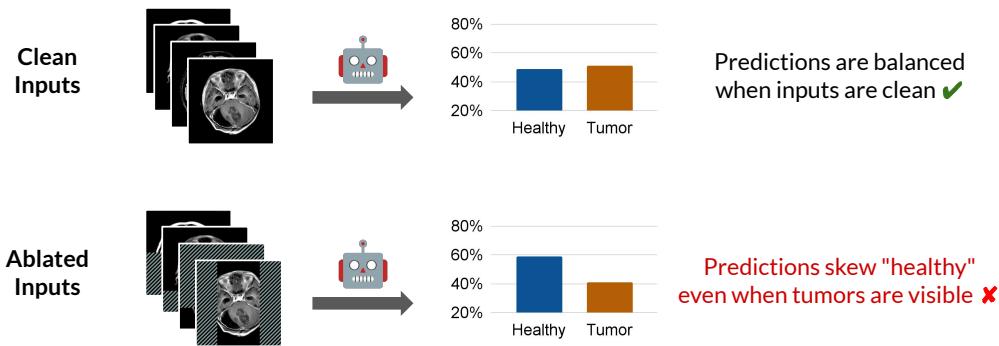


Figure 2: **Feature ablations induce class distribution shifts.** Masking non-critical regions skews predictions towards the “healthy” class, even when tumors remain visible. This effect, known as *missingness bias*, causes the model to misclassify inputs that retain relevant features, and undermines the reliability of feature attribution explanations.

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

Systematic Skew in Predictions. The most direct failure mode of missingness bias is a systematic skew in model predictions (Jain et al., 2022). As illustrated in Figure 2, the model’s accuracy degradation is not random but systematic: it develops a consistent bias towards one class (in this case, “healthy”) even when the core evidence for the correct class remains visible. This failure mode is particularly pernicious, persisting even when we selectively avoid masking the central image patches most likely to contain the tumor.

140
141
142
143
144
145
146

Unreliable Feature Attributions. Another consequence of this degraded accuracy is that any feature attributions derived from the model are fundamentally unreliable. If a model’s predictions are incorrect on ablated inputs, the importance scores computed from these predictions cannot be trusted to reflect the model’s true reasoning. Empirical findings support this; for instance, Jain et al. (2022) show that feature importance scores from models with high missingness bias fail standard robustness tests such as top- k removal. Prior work has also shown that minor changes to the ablation process can yield vastly different explanations, suggesting they reflect perturbation artifacts rather than genuine model logic (Hooker et al., 2019).

147
148

$$\text{MissingnessBias}(f) = D_{\text{KL}}\left(\mathbb{E}_{x' \sim \mathcal{D}'} \text{Class}(f(x')) \parallel \mathbb{E}_{x \sim \mathcal{D}} \text{Class}(f(x))\right), \quad (1)$$

149
150
151
152
153
154

where \mathcal{D}' is the distribution of inputs where each feature is i.i.d. ablated with some given probability, and let $\text{Class}(f(x))$ be the one-hot vector representation of the class predicted by f on x . The above can then be understood as a measure of information-theoretic “surprise” when f is evaluated on *unbiased* ablations, supposing only knowledge of its behavior on clean inputs. In particular, Jain et al. (2022) specifically introduces this to measure missingness bias, rather than of adjacent phenomena, such as prediction sensitivity with respect to top- k feature selections (Hase et al., 2021).

155
156
157
158
159

2.2 THE CHALLENGE OF MITIGATION

A variety of strategies have been proposed to address missingness bias, which can be broadly categorized as follows:

160
161

- *Replacement-based.* These methods aim to make ablated inputs appear more in-distribution. Beyond simple values (e.g., zero and mean-valued (Hase et al., 2021)), more complex variants include marginalization, which averages outputs over plausible replacement values (Chirkova

162
163
164
165
166
167

168 Figure 3: **MCAL corrects class distribution shifts induced by input ablations.** The ablated input
169 initially predicts “healthy”. MCAL applies a learned transformation R_θ to adjust the output proba-
170 bilities, thereby restoring alignment with expected class distributions. This calibration method is
171 model-agnostic, requiring only the classifier’s output probabilities of each class.

172
173

174 et al., 2023; Frye et al., 2020; Haug et al., 2021; Kim et al., 2020; Vo et al., 2024), random
175 noising (Rong et al., 2022), and generative modeling, which uses a secondary model to in-paint
176 realistic content (Agarwal & Nguyen, 2020; Chang et al., 2018). However, these approaches are
177 often computationally expensive and can introduce their own artifacts.

178
179
180
181
182

- *Training-based.* This approach treats feature ablations as a form of data augmentation. Methods like ROAR (Hooker et al., 2019) and GOAR (Park et al., 2024) retrain or fine-tune the model on masked inputs to align its train and test distributions. Although effective at building robust representations, this strategy is computationally expensive and only possible when the model can be modified.
- *Architecture-based.* These methods embed robustness directly into the model’s design. For example, modified vision transformers (Dosovitskiy et al., 2020; Jain et al., 2022) and CNNs (Balasubramanian & Feizi, 2023) can be altered to use dedicated mask tokens or explicitly suppress the influence of ablated regions. However, these changes are often non-trivial, architecture-specific, and not generalizable.

183
184
185
186
187
188
189
190
191
192

While often effective, the high cost and complexity of these methods make them impractical for many modern use cases, especially those involving large-scale, pre-trained foundation models. Furthermore, such approaches are entirely infeasible when working with API-based models that do not permit retraining or architectural changes. This gap highlights the need for a practical, lightweight, and model-agnostic approach to mitigating missingness bias that we introduce next.

193
194

3 MCAL: A LIGHTWEIGHT CALIBRATOR FOR MISSINGNESS BIAS

195
196
197
198

Having established the pathology of missingness bias and the practical limitations of existing heavy-weight solutions, we now introduce our method. We propose **MCAL**, a lightweight, post-hoc correction that is surprisingly effective at mitigating missingness bias.

199
200

3.1 ARCHITECTURE AND OPTIMIZATION

201
202
203
204
205

The calibration process is illustrated in Figure 3. A base classifier $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ first processes an input x to output the *raw logits* $z = f(x)$. A calibrator $R_\theta : \mathbb{R}^m \rightarrow \mathbb{R}^m$ then transforms the raw logits into the *calibrated logits* $R_\theta(z)$. Specifically, we implement this as an affine transform:

$$R_\theta(z) = Wz + b, \quad (2)$$

206
207
208

where the calibrator is parametrized by $\theta = (W, b)$, with $W \in \mathbb{R}^{m \times m}$ and $b \in \mathbb{R}^m$. To fit the calibrator, we use a standard cross-entropy objective that aligns the calibrated prediction on an ablated input with the base model’s prediction on the clean input:

209
210
211

$$\mathcal{L}(\theta) = \mathbb{E}_{(x, x') \sim \mathcal{D}} \text{CrossEntropy}[R_\theta(f(x')), \text{Class}(f(x))], \quad (3)$$

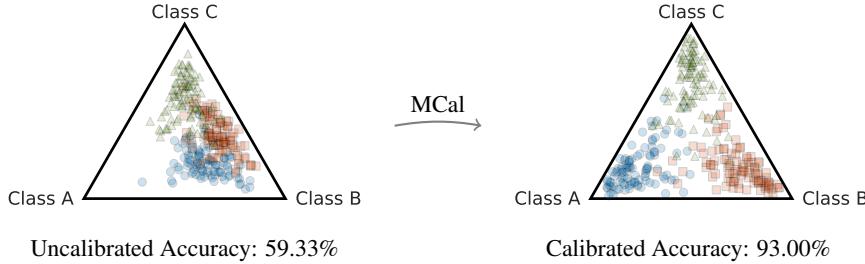
212
213

where $(x, x') \sim \mathcal{D}$ are samples of a clean input x and its ablated version x' , and $\text{Class}(f(x))$ denotes the one-hot prediction on the clean input.

214
215

Our approach is deliberately minimalist, prioritizing efficiency without compromising performance. We apply a standard cross-entropy objective, identical to that used in heavyweight retraining methods (Hooker et al., 2019), but only to a lightweight matrix-scaling calibrator (Guo et al., 2017). This

216
217
218
219
220
221
222
223
224
225
226



227 **Figure 4: Geometric intuition of MCal on a synthetic dataset.** Missingness bias causes the uncalibrated outputs to shift. For instance, the Class A cluster (blue circles) is pulled towards the Class 228 B vertex, leading to systematic misclassification and low accuracy. MCal applies an optimal affine 229 transformation to the uncalibrated outputs, correcting the shift and improving accuracy. 230

231
232 design is highly efficient, with orders of magnitude fewer parameters ($m^2 + m$) than fine-tuning or 233 even parameter-efficient methods like LoRA (Hu et al., 2022). Our experiments in Section 4 234 confirm that this minimalist approach is, in fact, sufficient to yield competitive performance with more 235 engineering-intensive approaches like retraining the model or architecture modifications. Furthermore, 236 this simple design also comes with strong theoretical guarantees on its optimization process, 237 which we detail next.

238 3.2 THEORETICAL GUARANTEES AND GEOMETRIC INTERPRETATION

241 Our affine parametrization of R_θ means that standard gradient-based optimization will provably 242 converge to an optimal solution, which we formalize as follows.

243 **Theorem 3.1** (Guaranteed Optimal Convergence). *The MCal objective $\mathcal{L}(\theta)$ is convex in θ .*

245 *Proof.* The function $\mathcal{L}(\theta)$ is convex in θ , as it is a composition of the convex cross-entropy loss and 246 an affine transformation. Because local minimums are also global minimums for convex functions, 247 standard gradient-based optimization (e.g., SGD, Adam) will converge to an optimal solution. \square

248 The importance of this guarantee is twofold. First, it ensures reproducibility and stability: the 249 optimization process is guaranteed to converge to the same optimal solution, reducing the need for 250 extensive hyperparameter sweeps or random seed searches. Second, it provides a strong assurance 251 of quality, guaranteeing that the resulting calibrator is a globally optimal affine correction for the 252 given data.

254 **Geometric Interpretation.** MCal also has a clear geometric interpretation, visualized in Figure 4. 255 The uncalibrated outputs form biased point clouds on the probability simplex, with the Class A 256 cluster pulled towards the Class B vertex, leading to systematic misclassification. MCal learns an 257 optimal affine transformation in the logit space that rotates, scales, and shifts these distributions. 258 This untangles the clouds and pushes them towards their correct vertices. Theorem 3.1 guarantees 259 that this correction is globally optimal for our parametrization.

261 3.3 IMPLEMENTATION CONSIDERATIONS

263 **Conditioning on Ablation Rates.** Our experience shows that the severity of missingness bias is 264 strongly correlated with the fraction of features that are ablated. To account for this, we recommend 265 using an “ensemble” of specialized calibrators, each one fit for a specific ablation rate (e.g., 10%, 266 20%, etc.). At inference time, we apply the calibrator that was trained for the ablation rate closest to 267 that of the input. We study the advantage of this ensemble in Section 4.

268 **Integration with Explainers.** As a post-hoc wrapper, MCal is compatible with any perturbation- 269 based explanation method. The calibrated model, f , can be used as a drop-in replacement for the

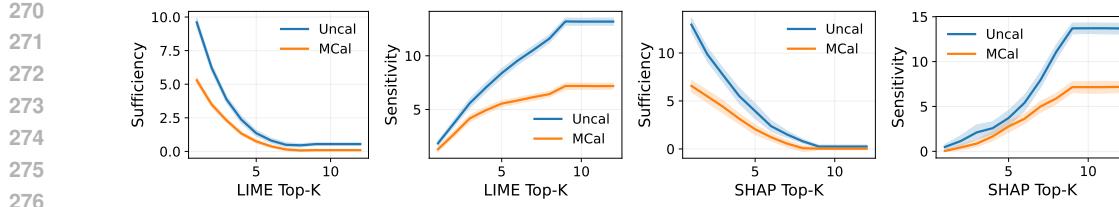


Figure 5: **Calibrated models have better explanations.** Compared to an uncalibrated baseline model (Uncal), LIME and SHAP explanations on MCal-calibrated models have more accurate feature importance scores (sufficiency \downarrow). In addition, calibrated models are also more robust to feature ablations (sensitivity \downarrow). Results are shown for the MRI dataset using an unconditioned calibrator.

original model, f , in any existing explainability pipeline. The resulting feature attributions are then generated from a model that has been explicitly corrected for the missingness bias induced by the explanation method’s own perturbation strategy.

Training Set Size and Overfitting. Dense parametrizations of W risk overfitting when the number of parameters exceeds the number of training samples (Guo et al., 2017), which can occur when there are many classes. In such cases, the training loss may go to zero while test performance does not improve. We recommend two strategies to mitigate overfitting. First, one may consider adding a regularization term to the objective. Second, one may also consider sparse parametrizations, such as taking W to be a diagonal matrix (also known as “vector-scaling”), which would reduce the total parameter count to $O(m)$.

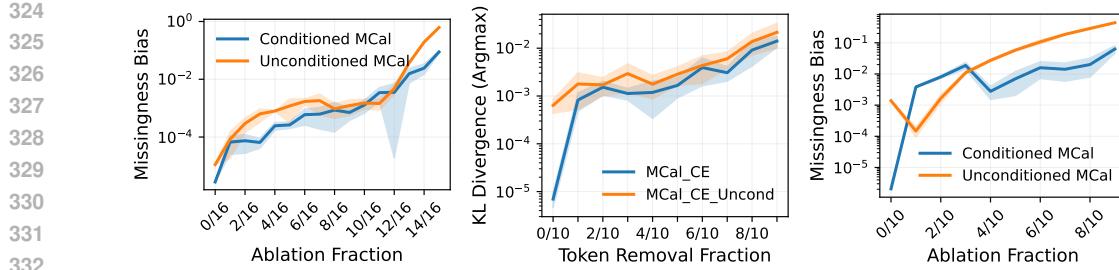
4 EXPERIMENTS

We now present experiments to validate the impact of missingness bias in explainability, as well as the ability of MCal to mitigate it. Moreover, we demonstrate that MCal repeatedly outperforms more expensive baselines, such as full retraining and architecture modifications. Additional details are given in Appendix A.

Models, Datasets, and Compute. We evaluate on a diverse set of medical benchmarks that span vision (Brain MRI (Nickparvar, 2021), Chest X-ray (CheXpert) (Irvin et al., 2019), and Breast Cancer Histopathology (BreakHis) (Spanhol et al., 2015)), language (MedQA (Jin et al., 2021), MedMCQA (Pal et al., 2022)), and tabular domains (PhysioNet (Haug et al., 2021), Breast Cancer (Wolberg et al., 1993), Cardiotocography (CTG) (Campos & Bernardes, 2000)). We respectively evaluate on these domains with ViT-B16 (Dosovitskiy et al., 2020), Llama-3.1-8B-Instruct (AI@Meta, 2024), and XGBoost (Chen & Guestrin, 2016), which are trained using standard methods. For compute, we had access to a machine with four NVIDIA H100 NVL GPUs.

Input Ablations and Calibration. We say that an input $x \in \mathbb{R}^n$ has ablation rate $p = k/n$ if k of its features are ablated. To evaluate on a tractable range of p , we use $p \in \{0/16, 1/16, \dots, 15/16\}$ for vision, $p \in \{0/10, 1/10, \dots, 9/10\}$ for language, and $p \in \{0/10, 1/10, \dots, 9/10\}$ for tabular, where recall that we recover the clean input at $p = 0$. For imputations, we use zero-valued (black) patches for vision, we replace whitespace-separated words with the special string UNKWORDS for language, and we perform mean imputation for tabular data. For vision specifically, we select k patches to ablate, regardless of their original values (e.g., some MRI images already have black patches). Following discussion from Section 3.3, the *unconditioned* calibrator was fit on inputs where each feature was uniformly ablated with probability 1/2, whereas the *conditioned* ensemble has a calibrator fit at each value of p . All calibrators were optimized using Adam (Kingma & Ba, 2014) with a learning rate of 10^{-3} for 5000 steps.

Question 1: Do calibrated models lead to better explanations? Missingness bias is known to skew the explanation quality of feature attribution methods (Jain et al., 2022). To that end, we consider how two representative methods, LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee,



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 6: **Conditioning on ablation rate improves MCal.** Fitting an ensemble of calibrators at a discretized set of ablation rates can help reduce the overall missingness rate, compared to using a single unconditioned calibrator. (Left) MRI, (Middle) MedQA, (Right) PhysioNet.

	Dataset	Original	Replace	Retrain	Arch	TempCal	PlattCal	MCal (✓)
Vision	Brain MRI	1.18 e-1	1.51 e-1	6.70 e-4	1.40 e-1	1.16 e-1	1.27 e-1	7.43 e-3
	CheXpert	1.70 e-1	9.70 e-2	2.67 e-2	1.50 e-1	1.65 e-1	2.02 e-1	8.82 e-3
	BreakHis	1.87 e-1	4.20 e-1	2.19 e-2	1.54 e-1	1.86 e-1	1.66 e-1	4.29 e-3
Language	MedQA	1.61 e-1	1.50 e-1	1.70 e-1	2.68 e-2	1.57 e-1	9.48 e-2	9.44 e-4
	MedMCQA	1.89 e-1	2.59 e-1	1.52 e-1	1.40 e-1	7.81 e-1	1.13 e-1	9.01 e-3
Tabular	PhysioNet	1.17 e-1	1.20 e-1	5.59 e-3	8.14 e-2	1.17 e-1	1.19 e-1	5.01 e-3
	Breast Cancer	1.02 e-1	1.44 e-1	5.68 e-3	2.13 e-1	1.02 e-1	1.08 e-1	1.92 e-5
	CTG	1.06 e-1	7.02 e-2	6.61 e-3	2.85 e-1	1.06 e-1	9.20 e-2	3.35 e-3

Table 1: **MCal is an effective and lightweight way to reduce missingness bias.** It repeatedly outperforms more computationally expensive baselines, such as retraining and architecture modification. We report the KL divergence-based metric in Equation (1).

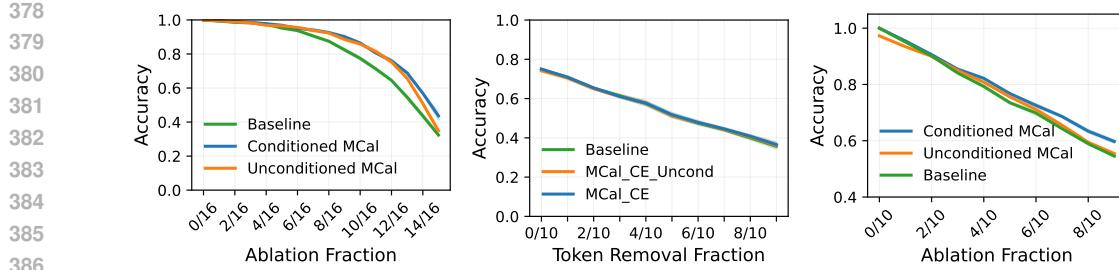
2017), perform on calibrated vs. uncalibrated models. These methods output a ranking of each input feature’s importance to the model, which we evaluate using the standard *sufficiency* metric (Hase et al., 2021), detailed in Appendix A.1. Informally, sufficiency measures whether the features identified as important are enough on their own to maintain the model’s original prediction confidence (lower values indicate a higher quality ranking). We report results in Figure 5.

Question 2: How does calibration affect model robustness? It is generally desirable for models to be robust to feature perturbations, as this can improve generalization and reduce the risk of adversarial behaviors. To that end, we measure the robustness of the underlying model to the removal (ablation) of features via the *sensitivity* metric, detailed in Figure 5. We show our results in Appendix A.1, which shows that the model is not overly dependent on its top-k features for prediction.

Question 3: What is the impact of conditioning on feature ablation fractions? Rather than fitting a single calibrator, we observe that using an ensemble of calibrators, each conditioned upon a single fraction (ablation rate), can improve performance. We compare the performance of this conditioning in Figure 6, where we observe an improvement in performance over an unconditioned calibrator. This is expected, as a model’s missingness bias is known to vary with the ablation rate (Hooker et al., 2019; Jain et al., 2022), and an ensemble thereby allows each calibrator to specialize to their respective rates.

Question 4: How does MCal compare to the baselines? We compare MCal to each of the following prior approaches which have all been employed in previous work to combat the problem of out of distribution inputs

- **Original:** This is the unmodified, uncalibrated classifier that acts as a reference baseline.
- **Replacement-based (Replace):** Our implementation of replacement-based mitigation is inspired from Hase et al. (2021). In particular, for vision, we use the channel-wise mean pixel value of the clean dataset (Carter et al., 2021). For language, we drop tokens from the sequence



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 7: **MCAL does not harm classifier accuracy.** Across different ablation levels, the accuracy of uncalibrated vs. calibrated classifiers is comparable. This also holds when the input is clean (ablation fraction zero). (Left) MRI, (Middle) MedQA, (Right) PhysioNet.

so that the ablated token sequence is shorter in length than the clean one (Hase et al., 2021). For tabular, we perform mean imputation.

- **Training-based approaches (Retrain):** Models are fine-tuned on ablated inputs, where each feature (patch, token) is uniformly ablated with probability 1/2.
- **Architectural-based (Arch):** We perform a non-trivial modification of ViT to accept attention masks as in Jain et al. (2022). For models with architectural support for missing features, we use those: e.g., attention masking in Llama-3 and native support for NaN in XGBoost.
- **Standard calibration (TempCal, PlattCal):** We additionally consider existing calibration-based methods from literature, particularly temperature (TempCal) and vector-scaling Platt calibration (PlattCal), as described in Guo et al. (2017).

We report in Table 1 the average of values from the ensemble of conditioned calibrators. We found that MCAL is often superior even to more computationally and engineering-intensive baselines, such as model retraining and ViT architecture modifications. In support of our earlier claims, we also observe that MCAL outperforms both temperature and Platt calibration. Replacement-based methods have inconsistent performance, which aligns with known observations on their sensitivity to imputation values. Finally, we note that architecture-native support for missing features may, in fact, exacerbate missingness bias, as seen in XGBoost on the Breast Cancer and CTG datasets.

Question 5: How does MCAL affect classifier accuracy? MCAL fundamentally alters a pretrained base classifier f into \tilde{f} , which is then deployed to downstream applications. Importantly, the accuracy of \tilde{f} must remain high, even when it is optimized on ablated images Equation (3). We show in Figure 7 that this is indeed the case: we compare the uncalibrated base model against both ablation rate-conditioned and unconditioned calibrators. We observe that both forms of calibration improve classifier accuracy at all ablation rates, where we recall that the clean image is obtained at an ablation rate of zero. Aligning with earlier findings, we see that the conditioned calibrator outperforms the unconditioned calibrator.

5 RELATED WORK

Missingness Bias in Explainability. Missingness bias (Jain et al., 2022) denotes the systematic distortions that arise when attribution methods “remove” features via ablations, e.g., with black pixels, zero-valued embeddings, or special [MASK] tokens. Such ablated inputs are often out-of-distribution with respect to the model’s training distribution, which can result in erratic predictions, inflated confidences, and unstable feature importance scores (Hooker et al., 2019; Vo et al., 2024). In particular, importance scores can vary drastically with the chosen replacement technique (Haug et al., 2021; Sturmels et al., 2020) and can even be exploited adversarially (Slack et al., 2020). Consequently, feature-based explanations commonly reflect ablation artifacts rather than genuine model reasoning (Hase et al., 2021), which risks eroding trust in high-stakes settings. In addition to the methods described earlier in Section 2.2, there are several benchmarks related to missingness bias (Duan et al., 2024; Hesse et al., 2023; Liu et al., 2021).

432 **Calibration Methods.** A calibration method post-hoc rescales the logits or probabilities of a
433 model prediction without modifying the underlying model weights. Classic techniques include bin-
434 ning (Zadrozny & Elkan, 2001), Platt scaling (Platt et al., 1999), and temperature scaling (Guo et al.,
435 2017). This is often used to improve and calibrate model predictions under input distribution shift,
436 such as in autonomous driving (Tomani et al., 2021), healthcare (Shashikumar et al., 2023), and
437 LLMs (Kumar et al., 2022). To our knowledge, however, calibration for missingness bias is novel.
438

439 **Robust and Reliable Explanations.** There is much interest in the development of robust expla-
440 nations for machine learning models. Notable efforts include the development of benchmarks for
441 explanations, particularly feature attribution methods (Adebayo et al., 2018; 2022; Agarwal et al.,
442 2022; Dinu et al., 2020; Duan et al., 2024; Jin et al., 2024; Kindermans et al., 2019; Nauta et al.,
443 2023; Rong et al., 2022; Zhou et al., 2022). There is also interest in formally certifying expla-
444 nations (Bassan & Katz, 2023; Bassan et al., 2025; Jin et al., 2025; Lin et al., 2023; Xue et al., 2023;
445 You et al., 2025). Other efforts, such as this work, involve adapting classifiers to be more robust to
446 input ablations in feature attributions.
447

448 6 DISCUSSION, FUTURE DIRECTIONS, AND CONCLUSION

449
450 **Calibration Design.** While other calibrator parametrizations are viable, any non-convex
451 parametrization of the objective risks losing guarantees of optimality convergence. In turn, this
452 risks introducing undesirable behavior, such as sensitivity to the initialization of calibrator parame-
453 ters. Additionally, observe that the measure of missingness bias (Equation (1)) is different than the
454 calibrator optimization objective. This is because the missingness bias measure is not differentiable
455 due to the one-hot `Class` function, which motivated us to search for reasonable alternatives, e.g.,
456 the standard cross-entropy objective in classification. While it would be interesting to explore, for
457 instance, differentiable relaxations of Equation (1), we leave this to future work.
458

459 **Missingness Bias and Data Variability** Visual medical datasets, e.g., Chest X-rays, often exhibit
460 lower variability than image datasets like ImageNet (Deng et al., 2009). Despite this, missingness
461 bias can persist in models trained on datasets such as ImageNet (Jain et al., 2022). However, it is not
462 known how missingness bias varies as a function of both dataset variability and model architecture.
463

464 **Beyond Explainability.** Missingness bias is a fundamental risk when evaluating feature subsets
465 on a model that is not explicitly designed to handle missing data. While we are primarily motivated
466 by challenges in explainability, this work has broader applications. In vision, model evaluation
467 with masked images is a standard practice. In language modeling, a token’s embedding is often
468 dependent on its position, meaning that ablations are position-sensitive, whether via the attention
469 mask, subsetting the input sequence, or replacement with special `[MASK]` tokens.
470

471 **Limitations.** MCal requires access to a collection of clean and ablated prediction logits, which
472 may not always be available, such as for some API-based LLMs. Even then, gradient-based opti-
473 mization is only guaranteed to converge to global optimality under certain parameterizations of the
474 calibrator. Overfitting is also a potential risk, particularly in settings with a large number of possible
475 classes (e.g., a language model’s vocabulary size), in which case regularization is warranted. Fur-
476 thermore, MCal is only intended to mitigate missingness bias, and other forms of bias in the model
477 and data may still be propagated. **While our experiments show that linear corrections on the logits**
478 **suffice to mitigate missingness bias, and hence our use of the description “superficial”, it may be the**
479 **case that for missingness bias in certain model classes, it is harder to mitigate in this manner.**
480

481 **Future Work.** One direction is to investigate the theoretical guarantees and empirical performance
482 of different calibrator parametrizations, such as a one-layer feedforward network instead of an affine
483 transform. Another extension is to broaden our study on the performance of calibrated classifiers in
484 explainability, such as with respect to the explanation methods and metrics surveyed in Section 5. It
485 would be interesting to explore methods for mitigating missingness bias when prediction logits are
486 not available, a common restriction for API-based large language models. Additionally, the idea of
487 calibration may also be extended to other instances of domain shift and Out of Distribution inputs,
488 which are prevalent throughout Machine Learning literature
489

486 **Conclusion.** Missingness bias threatens the reliability of popular explanation methods and techniques, a problem magnified by the increasing impracticality of existing engineering-intensive solutions.
487 To overcome this, we introduce MCAL, a lightweight calibration method that requires only a
488 collection of clean and ablated prediction pairs. We demonstrate that a simple, affine parametrization
489 of the calibrator offers strong theoretical guarantees while achieving empirical performance
490 that often outperforms more expensive baselines. In summary, MCAL is an efficient, model-agnostic
491 calibration scheme that improves the reliability of popular feature-based explanation methods.
492

493 **Ethics Statement.** This work presents a method for improving the reliability of feature-based
494 explanation methods. Our intended audience includes researchers and practitioners interested in
495 explainability. While there may be potential for misuse, we do not believe that the contents of this
496 paper warrant concern.
497

498 **Reproducibility Statement.** All code and experiments for this paper are available at:
499

500 <https://anonymous.4open.science/r/MCal-DE3C/>
501
502

503 REFERENCES

504

505 Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim.
506 Sanity checks for saliency maps. *Advances in neural information processing systems*, 31, 2018.

507 Julius Adebayo, Michael Muelly, Harold Abelson, and Been Kim. Post hoc explanations may be
508 ineffective for detecting unknown spurious correlation. In *International conference on learning*
509 *representations*, 2022.

510 Chirag Agarwal and Anh Nguyen. Explaining image classifiers by removing input features using
511 generative models. *arXiv preprint arXiv:1910.04256*, 2020.

512 Chirag Agarwal, Satyapriya Krishna, Eshika Saxena, Martin Pawelczyk, Nari Johnson, Isha Puri,
513 Marinka Zitnik, and Himabindu Lakkaraju. Openxai: Towards a transparent evaluation of model
514 explanations. *Advances in neural information processing systems*, 35:15784–15799, 2022.

515 AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md.

516 Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better understanding of
517 gradient-based attribution methods for deep neural networks. *arXiv preprint arXiv:1711.06104*,
518 2017.

519 Sriram Balasubramanian and Soheil Feizi. Towards improved input masking for convolutional neu-
520 ral networks. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
521 1855–1865, 2023.

522 Shahaf Bassan and Guy Katz. Towards formal xai: formally approximate minimal explanations of
523 neural networks. In *International Conference on Tools and Algorithms for the Construction and*
524 *Analysis of Systems*, pp. 187–207. Springer, 2023.

525 Shahaf Bassan, Guy Amir, Meirav Zehavi, and Guy Katz. What makes an ensemble (un) inter-
526 pretable? *arXiv e-prints*, pp. arXiv–2506, 2025.

527 D. Campos and J. Bernardes. Cardiotocography. UCI Machine Learning Repository, 2000. DOI:
528 <https://doi.org/10.24432/C51S4N>.

529 Brandon Carter, Siddhartha Jain, Jonas W Mueller, and David Gifford. Overinterpretation reveals
530 image classification model pathologies. *Advances in Neural Information Processing Systems*, 34:
531 15395–15407, 2021.

532 Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. Explaining image clas-
533 sifiers by counterfactual generation. *arXiv preprint arXiv:1807.08024*, 2018.

540 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the*
541 *22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 785–794,
542 2016.

543 Nadezhda Chirkova, Germán Kruszewski, Jos Rozen, and Marc Dymetman. Should you marginalize
544 over possible tokenizations? *arXiv preprint arXiv:2306.17757*, 2023.

545 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
546 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
547 pp. 248–255. Ieee, 2009.

548 Jonathan Dinu, Jeffrey Bigham, and J Zico Kolter. Challenging common interpretability assump-
549 tions in feature attribution explanations. *arXiv preprint arXiv:2012.02748*, 2020.

550 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
551 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
552 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
553 *arXiv:2010.11929*, 2020.

554 Jiarui Duan, Haoling Li, Haofei Zhang, Hao Jiang, Mengqi Xue, Li Sun, Mingli Song, and Jie
555 Song. On the evaluation consistency of attribution-based explanations. In *European Conference*
556 *on Computer Vision*, pp. 206–224. Springer, 2024.

557 Christopher Frye, Damien de Mijolla, Tom Begley, Laurence Cowton, Megan Stanley, and Ilya
558 Feige. Shapley explainability on the data manifold. *arXiv preprint arXiv:2006.01272*, 2020.

559 Jeremy Goldwasser and Giles Hooker. Provably stable feature rankings with shap and lime. *arXiv*
560 *preprint arXiv:2401.15800*, 2024.

561 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
562 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.

563 Peter Hase, Harry Xie, and Mohit Bansal. The out-of-distribution problem in explainability and
564 search methods for feature importance explanations. *Advances in neural information processing*
565 *systems*, 34:3650–3666, 2021.

566 Johannes Haug, Stefan Zürn, Peter El-Jiz, and Gjergji Kasneci. On baselines for local feature attri-
567 butions. *arXiv preprint arXiv:2101.00905*, 2021.

568 Robin Hesse, Simone Schaub-Meyer, and Stefan Roth. Funnybirds: A synthetic vision dataset for
569 a part-based analysis of explainable ai methods. In *Proceedings of the IEEE/CVF International*
570 *Conference on Computer Vision*, pp. 3981–3991, 2023.

571 Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpretabil-
572 ity methods in deep neural networks. *Advances in neural information processing systems*, 32,
573 2019.

574 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
575 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

576 Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Illcus, Chris Chute, Henrik
577 Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, et al. Chexpert: A large chest
578 radiograph dataset with uncertainty labels and expert comparison. In *Proceedings of the AAAI*
579 *conference on artificial intelligence*, volume 33, pp. 590–597, 2019.

580 Saachi Jain, Hadi Salman, Eric Wong, Pengchuan Zhang, Vibhav Vineet, Sai Venkrala, and Alek-
581 sander Madry. Missingness bias in model debugging. *arXiv preprint arXiv:2204.08945*, 2022.

582 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
583 ease does this patient have? a large-scale open domain question answering dataset from medical
584 exams. *Applied Sciences*, 11(14):6421, 2021.

585 Helen Jin, Shreya Havaldar, Chaehyeon Kim, Anton Xue, Weiqiu You, Helen Qu, Marco Gatti,
586 Daniel A Hashimoto, Bhuvnesh Jain, Amin Madani, et al. The fix benchmark: Extracting features
587 interpretable to experts. *arXiv preprint arXiv:2409.13684*, 2024.

594 Helen Jin, Anton Xue, Weiqiu You, Surbhi Goel, and Eric Wong. Probabilistic stability guarantees
595 for feature attributions. *arXiv preprint arXiv:2504.13787*, 2025.

596

597 Byunggill Joe, Yonghyeon Park, Jihun Hamm, Insik Shin, Jiyeon Lee, et al. Exploiting missing
598 value patterns for a backdoor attack on machine learning models of electronic health records:
599 Development and validation study. *JMIR Medical Informatics*, 10(8):e38440, 2022.

600

601 Siwon Kim, Jihun Yi, Eunji Kim, and Sungroh Yoon. Interpretation of nlp models through input
602 marginalization. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-*
603 *guage Processing (EMNLP)*, pp. 3154–3167, 2020.

604

605 Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T Schütt, Sven
606 Dähne, Dumitru Erhan, and Been Kim. The (un)reliability of saliency methods. *Explainable AI: Interpreting, explaining and visualizing deep learning*, pp. 267–280, 2019.

607

608 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.

609

610 Deniz Koyuncu, Alex Gittens, Bülent Yener, and Moti Yung. Exploiting the data gap: Utilizing non-
611 ignorable missingness to manipulate model learning. *arXiv preprint arXiv:2409.04407*, 2024.

612

613 Ananya Kumar, Tengyu Ma, Percy Liang, and Aditi Raghunathan. Calibrated ensembles can mit-
614 igate accuracy tradeoffs under distribution shift. In *Uncertainty in Artificial Intelligence*, pp.
615 1041–1051. PMLR, 2022.

616

617 Chris Lin, Ian Covert, and Su-In Lee. On the robustness of removal-based feature attributions.
Advances in Neural Information Processing Systems, 36:79613–79666, 2023.

618

619 Yang Liu, Sujay Khandagale, Colin White, and Willie Neiswanger. Synthetic benchmarks for sci-
620 entific research in explainable machine learning. *arXiv preprint arXiv:2106.12543*, 2021.

621

622 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances in neural information processing systems*, 30, 2017.

623

624 Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin Schmitt, Jörg
625 Schütterer, Maurice Van Keulen, and Christin Seifert. From anecdotal evidence to quantitative
626 evaluation methods: A systematic review on evaluating explainable ai. *ACM Computing Surveys*,
627 55(13s):1–42, 2023.

628

629 Msoud Nickparvar. Brain tumor mri dataset, 2021. URL <https://www.kaggle.com/dsv/2645886>.

630

631 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
632 multi-subject multi-choice dataset for medical domain question answering. In *Conference on health, inference, and learning*, pp. 248–260. PMLR, 2022.

633

634 Yong-Hyun Park, Junghoon Seo, Bomseok Park, Seongsu Lee, and Junghyo Jo. Geometric
635 remove-and-retrain (goar): Coordinate-invariant explainable ai assessment. *arXiv preprint arXiv:2407.12401*, 2024.

636

637 John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
638 likelihood methods. *Advances in large margin classifiers*, 10(3):61–74, 1999.

639

640 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
641 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1135–1144, 2016.

642

643 Yao Rong, Tobias Leemann, Vadim Borisov, Gjergji Kasneci, and Enkelejda Kasneci. A consistent
644 and efficient evaluation strategy for attribution methods. *arXiv preprint arXiv:2202.00449*, 2022.

645

646 Supreeth P Shashikumar, Fatemeh Amrollahi, and Shamim Nemat. Unsupervised detection and
647 correction of model calibration shift at test-time. In *2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)*, pp. 1–4. IEEE, 2023.

648 Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling lime
649 and shap: Adversarial attacks on post hoc explanation methods. In *Proceedings of the AAAI/ACM*
650 *Conference on AI, Ethics, and Society*, pp. 180–186, 2020.

651

652 Fabio A Spanhol, Luiz S Oliveira, Caroline Petitjean, and Laurent Heutte. A dataset for breast
653 cancer histopathological image classification. *Ieee transactions on biomedical engineering*, 63
654 (7):1455–1462, 2015.

655 Pascal Sturmfels, Scott Lundberg, and Su-In Lee. Visualizing the impact of feature attribution
656 baselines. *Distill*, 5(1):e22, 2020.

657

658 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
659 *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.

660 Christian Tomani, Sebastian Gruber, Muhammed Ebrar Erdem, Daniel Cremers, and Florian Buet-
661 tner. Post-hoc uncertainty calibration for domain drift scenarios. In *Proceedings of the IEEE/CVF*
662 *Conference on Computer Vision and Pattern Recognition*, pp. 10124–10132, 2021.

663

664 Tuan L Vo, Thu Nguyen, Luis M Lopez-Ramos, Hugo L Hammer, Michael A Riegler, and Pal
665 Halvorsen. Explainability of machine learning models under missing data. *arXiv preprint*
666 *arXiv:2407.00411*, 2024.

667

668 William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast Cancer Wisconsin (Diag-
669 nóstic). UCI Machine Learning Repository, 1993. DOI: <https://doi.org/10.24432/C5DW2B>.

670

671 Anton Xue, Rajeev Alur, and Eric Wong. Stability guarantees for feature attributions with mul-
672 tiplicative smoothing. *Advances in Neural Information Processing Systems*, 36:62388–62413,
673 2023.

674

675 Weiqiu You, Anton Xue, Shreya Havaldar, Delip Rao, Helen Jin, Chris Callison-Burch, and
676 Eric Wong. Probabilistic soundness guarantees in llm reasoning chains. *arXiv preprint*
677 *arXiv:2507.12948*, 2025.

678

679 Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees
680 and naive bayesian classifiers. In *Proceedings of the Eighteenth International Conference on*
681 *Machine Learning*, pp. 609–616, 2001.

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A ADDITIONAL EXPERIMENTS AND DETAILS
703

704 We present our experimental setup here, along with any additional experiments and relevant details.
705

706 **Compute.** We had access to a server with four NVIDIA H100 NVL GPUs.
707

708 A.1 OTHER METRICS RELATED TO MISSINGNESS BIAS
709

710 Given an input $x \in \mathbb{R}^n$ and a classifier $f : \mathbb{R}^n \rightarrow \mathbb{R}$, an explanation method returns a ranking $\alpha \in \mathbb{R}^n$ of each feature's importance. To evaluate the quality of α , we use the *sufficiency* and *sensitivity* metrics (Hase et al., 2021), which measure how model confidence changes when important features are isolated or removed.

714 From the scores α , we create a binary mask $e_k \in \{0, 1\}^n$ selecting the top- k most important features.
715 The sufficiency metric evaluates if this subset of features is sufficient to yield the original prediction.
716

$$717 \quad \text{Sufficiency}(f, x, e_k) = f(x)_{\hat{y}} - f(\text{Replace}(x, e_k))_{\hat{y}} \quad (4)$$

718 Here, $\hat{y} = \arg \max_y f(x)_y$ is the predicted class. The $\text{Replace}(x, e_k)$ function creates a counterfactual by preserving only the top- k features against a baseline. A lower score is better, indicating the selected features are sufficient.
719

721 Conversely, the sensitivity metric (called *comprehensiveness* in Hase et al. (2021)) evaluates if important features are necessary for the prediction by measuring the confidence drop upon their removal.
722

$$723 \quad \text{Sensitivity}(f, x, e_k) = f(x)_{\hat{y}} - f(\text{Replace}(x, \neg e_k))_{\hat{y}} \quad (5)$$

725 The top- k features in mask e_k are removed by preserving those in the complement mask $\neg e_k$. A higher score indicates the features were critical to the prediction. A lower score suggests the model is more robust to their exclusion.
726

729 A.2 MCAL TRAINING DYNAMICS
730

731 Here, we investigate the training dynamics and performance of MCAL as the training set size varies.
732 We show the results in Figure 8. In general, as the training dataset size increases, test-time accuracy
733 increases. When n is small, however, the problem is over-parametrized, meaning that the training
734 loss continues to decrease without significantly improving test-time accuracy.
735

736 A.3 CASE STUDY: INTEGRATION WITH API-BASED MODELS
737

738 Current day Machine Learning research is becoming increasingly dependent on popular closed-
739 weight API-based models, such as those offered by OpenAI, Anthropic, OpenRouter etc. Recognizing
740 this, we perform a case study demonstrating how MCAL can be extended to such models, only
741 requiring log-probabilities to work.
742

743 Using the GPT-4o-mini API and selected MedQA questions, we demonstrate MCAL integration in
744 our repository notebook. The calibrated model redistributes feature importance in potentially mean-
745 ingful ways - elevating diagnostic symptoms like “hematuria” (a hallmark sign of cyclophosphamide
746 toxicity) and “pain”, while reducing dominance of the anatomical term “suprapubic”. This rebal-
747 ancing suggests calibration may produce more clinically-aligned and faithful explanations, though
748 domain expert validation and further faithfulness testing is needed to confirm this. See Figure 9 and
749 Figure 10.
750

751 B ADDITIONAL FIGURES
752

753 We include additional figures in this section.
754

755

756
757
758
759
760
761
762
763
764
765

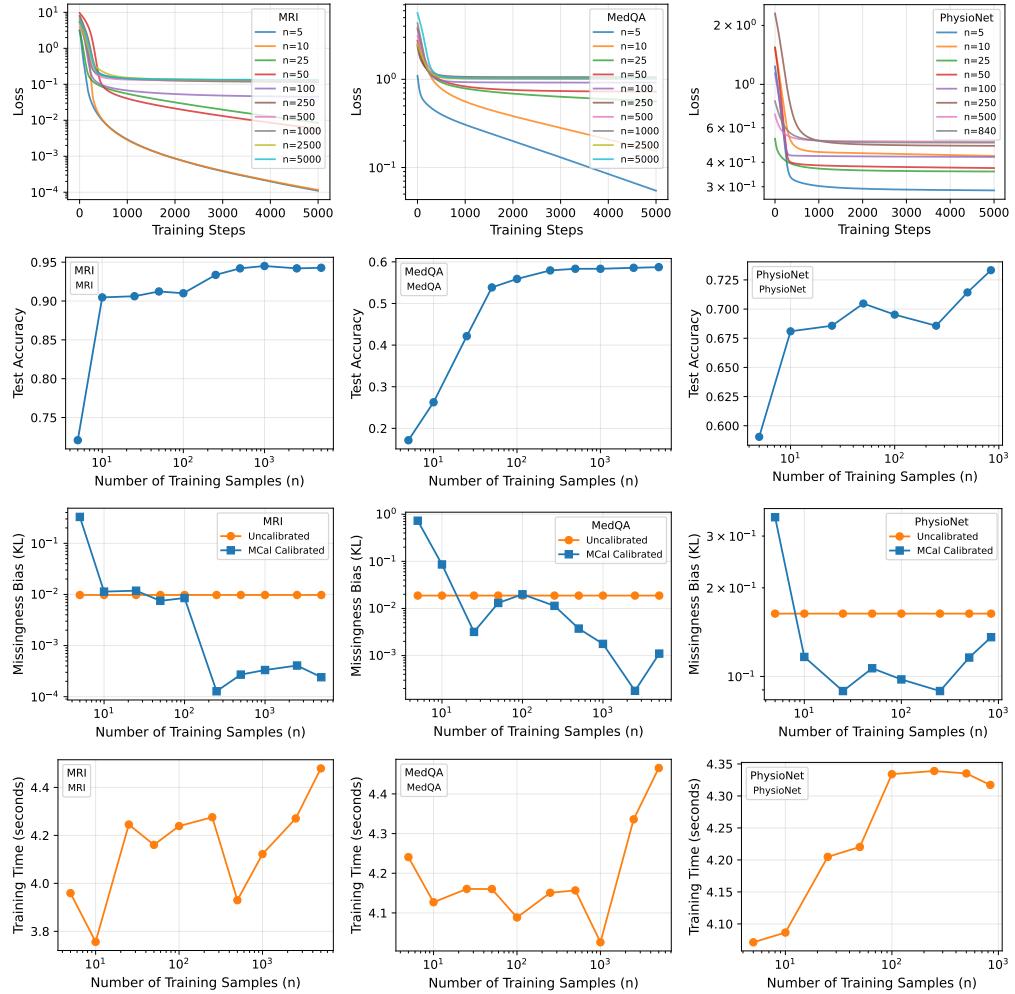


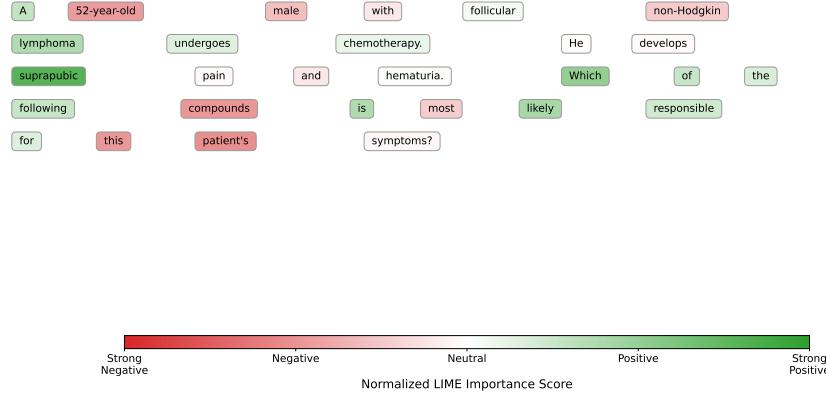
Figure 8: **MCAL training dynamics and performance on different dataset sizes.** For different amounts (n) of clean-ablated input pairs, we show the training loss curves and test-set accuracies. Each training run consisted of 5000 iterations, and all runs finished in ≤ 5 seconds.

810

811

812

813

Baseline (Uncalibrated) LIME Explanation for "A"

814

815

816

817

818

819

820

821

822

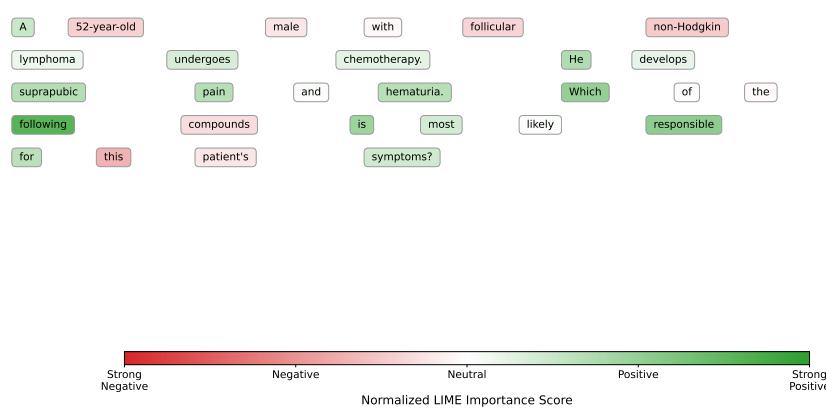
823

824

825

826

827

Unconditioned MCal (Calibrated) LIME Explanation for "A"

828

829

830

831

832

833

834

835

836

837

838

839

840

Figure 9: **For a selected example question, MCal results in different feature importances**, for example medically relevant features/terms such as "hematuria" gain importance in the calibrated heatmap. The model task is, for the above question, to choose between the Options: A: Cyclophosphamide, B: Cisplatin, C: Mesna, D: Bleomycin.

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

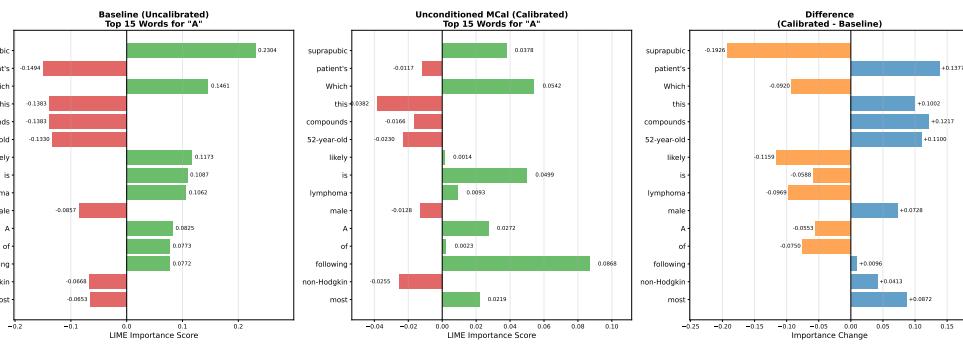
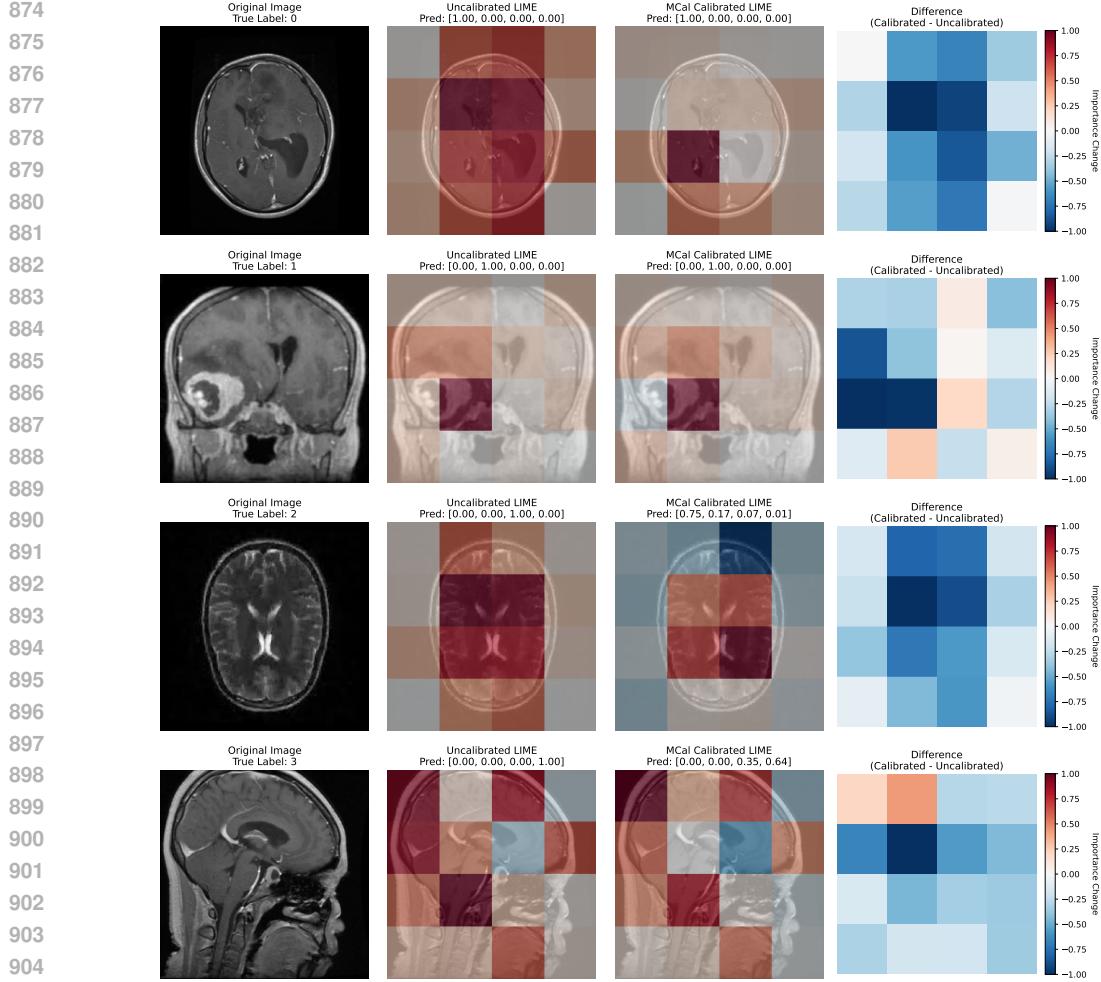


Figure 10: **Direct comparison of LIME-derived feature importance values**, with (a) Uncalibrated, (b) Calibrated, and (c) demonstrating the difference between the two, i.e., (b) - (a).

864
865
866
867
868
869
870
871
872
873



906 **Figure 11: Selected examples of LIME on the MRI dataset.** In calibrated models, we observe that
907 LIME tends to assign less importance to border patches, where relevant features are less likely to
908 occur. The four classes are: Meningioma (0), Glioma (1), Pituitary Tumor (2), and No Tumor (3).

909
910
911
912
913
914
915
916
917