HyperRAG: Combining RAG and Hyperbolic Embeddings for Phenotypes
Linking from Text

Anonymous ACL submission

Abstract

Extracting knowledge from unstructured data is
a critical task for advancing human understand-
ing and supporting decision-making across var-
ious domains. This is especially pertinent in
genomics, where identifying phenotypes from
clinical narratives is essential for enhancing di-
agnostic precision and enabling personalized
medicine. While current methods perform well
in recognizing explicitly stated phenotypes,
they often struggle to capture implicit or nu-
anced representations.

In this paper, we introduce a novel workflow
that integrates Large Language Models (LLMs)
with Retrieval-Augmented Generation (RAG)
and hierarchical reranking, utilizing hyperbolic
embeddings trained on the Human Phenotype
Ontology (HPO). Furthermore, we contend that
conventional evaluation frameworks relying on
exact string matching are insufficient for com-
prehensive performance assessment, as they
fail to account for the hierarchical structure in-
herent to the target ontology. To address this,
we propose new evaluation metrics that lever-
age the hierarchical relationships within HPO.

Our experiments on benchmark datasets, in-
cluding a newly curated, challenging dataset
(CHU-50), demonstrate the effectiveness of our
approach, yielding substantial improvements in
ranking accuracy and overall performance.

1 Introduction

The extraction of phenotypes from clinical notes
is fundamental to modern diagnostic workflows.
Phenotypes, as observable traits linking clinical ob-
servations to genetic conditions, play a crucial role
in diagnosis, treatment planning, and biomedical
research. Although recent advances in Natural Lan-
guage Processing have enabled significant progress
in this area, notable challenges remain, particularly
in identifying implicit phenotypes that are not ex-
plicitly mentioned but can be inferred from context.

Current approaches Feng et al. (2023); Luo et al.
(2021); Arbabi et al. (2019) frequently rely on flat
embedding spaces, which are inadequate for mod-
eling the hierarchical relationships intrinsic to phe-
notypic ontologies such as the Human Phenotype
Ontology (HPO) Robinson et al. (2008). Further-
more, retrieval-based systems are often constrained
by their reliance on exact matches or shallow se-
mantic representations. We also argue that existing
evaluation metrics widely used in the field (Groza
et al., 2024) present further limitations: in prac-
tice, clinicians may interpret phenotype mentions
differently, as no individual possesses exhaustive
knowledge of HPO or uses it in a uniform manner.
Consequently, a single reference can yield multiple,
equally valid annotations. This underscores the im-
portance of considering hierarchical relationships,
such as treating a parent term of a target phenotype
as correct, albeit less specific.

In this paper, we propose to address the follow-
ing research questions:

i. To what extent can hyperbolic models capture
the hierarchical structure of the HPO ontol-

ogy?

ii. What is the true performance of Retrieval-
Augmented Generation (RAG) Lewis et al.
(2020) for phenotype candidate retrieval?

iii. What is the added value of hyperbolic embed-
dings in the retrieval and reranking process?

iv. How does incorporating ontology hierarchy
into evaluation metrics affect performance as-
sessment?

To tackle these challenges, we propose a novel
workflow that integrates Large Language Models
(LLMs) for span identification, RAG for candi-
date generation, and hyperbolic embeddings for
hierarchical reranking. Furthermore, we introduce
a hierarchy-aware evaluation metric designed to



more fairly assess ontology-based entity extraction
from text. By leveraging the hierarchical structure
of HPO, our approach aims to enhance the rele-
vance of phenotype extraction from clinical narra-
tives.

2 Background

The introduction of ontologies such as the HPO
has provided a structured framework for organiz-
ing phenotypic information and has become the
primary target for entity linking in this domain.
Early work Aronson and Lang (2010); Jonquet et al.
(2009); Deisseroth et al. (2019), utilized rule-based
heuristics, while more recent studies have adopted
transformer-based architectures to extract pheno-
type mentions directly from text Feng et al. (2023);
Yang et al. (2024). Although improvements have
been effective with such approaches, they remain
complex and often struggle when phenotype refer-
ences are implicit Baddour et al. (2024) . Emerging
paradigms such as RAG Lewis et al. (2020) offer
a promising avenue for addressing some of these
challenges by efficiently narrowing the candidate
space. However, RAG has not yet been widely
adopted in phenotype extraction pipelines, and its
performance in this context remains underexplored.

While ontologies facilitate annotation and re-
trieval, their hierarchical complexity poses signifi-
cant challenges for NLP systems. Nickel and Kiela
(2017) highlighted the limitations of flat embedding
spaces in adequately representing such hierarchical
structures. Related works (Sala et al., 2018; Sinha
et al., 2024; Tifrea et al., 2018) proposed to train
hyperbolic embeddings that provide a compelling
alternative, as hyperbolic spaces are well-suited
for modeling hierarchical relationships, allowing
embeddings to more accurately reflect the subsump-
tion structure inherent in ontologies.

The motivation behind our proposed workflow
stems from recognizing significant limitations in
current phenotype extraction systems. While classi-
cal RAG approaches are effective at retrieving can-
didates based on general semantic similarity, they
fall short in capturing the hierarchical relationships
and intricate dependencies inherent in ontologies
such as HPO. This limitation becomes even more
pronounced when dealing with implicit phenotypes
not explicitly stated in clinical text, where lever-
aging ontological relationships can be crucial for
accurate identification and resolution.

By integrating hyperbolic embeddings (which

naturally encode hierarchical structures) with a
reranking mechanism, our workflow bridges the
gap between general semantic relevance and on-
tological hierarchy. This dual approach ensures
not only accurate retrieval of phenotypes but also a
ranking that reflects their hierarchical significance,
providing a comprehensive solution to the limita-
tions of current methods.

3 Proposed Workflow

The preliminary processing phase involves manual
annotation of clinical reports (using existing an-
notations for the ID-68 dataset and newly created
annotations for the CHU-50 dataset) as well as fine-
tuning the hyperbolic model on the HPO ontology
(the training procedure is detailed in Section II.B).
The high-level architecture of HyperRAG is illus-
trated in Figure 1. Given clinical reports and their
annotations, the process consists of four main steps:
span detection using an LLM, candidate retrieval
with RAG, reranking of candidates, and evaluation
with both standard and ontology-aware metrics.

3.1 Span Identification

We begin by leveraging a pretrained Large Lan-
guage Model (LLM) to identify phenotype spans
within clinical text. This unsupervised approach
is particularly effective for capturing implicit men-
tions that may be overlooked by traditional meth-
ods. Notably, Baddour et al. (2024) demonstrated
that employing an LLM as a span detector outper-
forms the biomedical Stanza pipeline (Zhang et al.,
2021). For consistency and comprehensive cover-
age, we utilized the same ChatGPT-3.5 (OpenAl,
2023) model employed in their work for this step.

3.2 Retrieval-Augmented Generation (RAG)

A classical embeddings model (all-MiniLM-L12-
v2, Wang, 2020) is used to compute dense em-
beddings for the identified spans. Alternatively,
a fine-tuned hyperbolic model HiT-MiniLM-L12-
HPO (fine-tuned on HPO from all-MiniLM-L12-
v2) is used. Top-k phenotype candidates are re-
trieved from the HPO ontology based on cosine
similarity (euclidean model) or hyperbolic distance
(hyperbolic model). We set k=30 to substantially
reduce the candidate space while still allowing for
meaningful reranking improvements.

For candidate retrieval, FAISS (Douze et al.,
2024) is employed as the vector store and Top-
k retriever for the Euclidean model. In contrast,
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Figure 1: General Workflow

the hyperbolic model utilizes a dedicated vector in-
dex and retrieval mechanism implemented in Torch
(Paszke et al., 2019). To ensure consistency in
distance measurements across experiments, we nor-
malize the hyperbolic distances in the Poincaré ball
using a global normalization strategy (1):
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Where:

dp(u,v) is the hyperbolic distance between
terms v and v in the hyperbolic space H

dp is the normalized hyperbolic distance

max,, qenpo dm(p, ¢) is the maximum hyper-
bolic distance between any two terms in the HPO
ontology

3.3 Reranking

For each span, the Top-30 candidates retrieved by
Euclidean-RAG are reranked using two families of
methods: a classical state-of-the-art baseline and
hyperbolic-based.

Late-interaction reranking

To provide a strong classical baseline, we
fine-tuned a late-interaction model ColBERTv2
(Santhanam et al., 2021) for reranking. While
cross-encoder models are highly effective for
reranking tasks, they are computationally intensive
and may be less suitable for incorporating soft
signals such as distance-based scores. Late-
interaction models, such as ColBERTV2, offer a
compelling compromise between cross-encoders
and bi-encoders by retaining token-level embed-
dings and applying a late matching function. This
approach preserves fine-grained information that

might otherwise be lost during token pooling, as
in bi-encoder models. Given the short spans and
specific target labels in our setting, late-interaction
models are particularly well-suited for reranking.

Hyperbolic-based reranking

* Full hyperbolic reranking: Both the input
span and the Top-k candidates from the Eu-
clidean RAG are embedded in hyperbolic
space. Candidates are then reordered based
on their normalized hyperbolic distances to
the input span.

* Hybrid reranking: This approach combines
the cosine similarity between Euclidean em-
beddings and the hyperbolic distance between
hyperbolic embeddings using a weighted sum.
Cosine similarity emphasizes semantic close-
ness, while hyperbolic distance prioritizes can-
didates with closer hierarchical relationships
to the input span.

A~
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where:
Shybria Tepresents the hybrid scores
Scos represents the cosine similarities

du represents the normalized hyperbolic dis-
tances

v is the weighting parameter between the two
metrics. We set v = 0.5 to have a balance
influence of both models.

Synonyms in the RAG output are mapped to their
original HPO terms using a precomputed synonym-
to-ID mapping. This ensures consistency in dis-
tance calculations throughout the workflow.



4 Dataset

4.1 Ontologies

The Human Phenotype Ontology (HPO) serves as
the foundation for our hierarchical embeddings.
HPO is a comprehensive ontology encompass-
ing over 19,000 phenotypic terms, each organized
within a rich hierarchical structure. The ontology
also incorporates synonyms to account for alterna-
tive term representations, enhancing its coverage
and utility.

Additionally, we leverage the SNOMED (EI-
Sappagh et al., 2018) ontology indirectly through a
pretrained hyperbolic model. This allows us to
assess the relative benefits of utilizing a broad,
general-purpose medical ontology (SNOMED) in
comparison to a highly specialized ontology (HPO)
for phenotype extraction tasks.

4.2 Hyperbolic Training Data

Hyperbolic embeddings were trained on the HPO
ontology using Hierarchy Transformers (He et al.,
2024) to effectively capture hierarchical relation-
ships. These embeddings encode both parent-child
and sibling relationships, enabling more nuanced
phenotypes reranking. To construct the training
data for HPO hyperbolic embeddings, we first ex-
tracted hierarchical relationships from the HPO
OWL file using DeepOnto and the ELK reasoner.
Following the methodology of (He et al., 2024), we
generated a dataset of pairs ({child, parent, label},
where the label is a binary indicator of a positive or
negative example) and triplets ({child, parent, nega-
tive}, where the negative term is not a parent of the
child). Random negative sampling was employed
in this implementation, though hard negative sam-
pling remains an alternative. Given that most HPO
phenotypes are associated with multiple synonyms,
we augmented the dataset by including all possi-
ble synonym combinations within each pair and
triplet. This augmentation enhances the robustness
of the resulting embeddings to varied term formu-
lations. To prevent excessive class imbalance, we
applied a filtering strategy, limiting each synonym
to a maximum of five occurrences. The final pairs
and triplets datasets were then used to train the
hyperbolic embeddings.

Training parameters are provided in the supple-
mentary materials.

4.3 Late-interaction Training Data

We fine-tuned the ColBERTV2 model on pairs of
the form {span, HPO label, score}, where the score
represents a similarity measure. To construct a
comprehensive training dataset, we used ChatGPT-
4o0-mini to generate 10 clinical report sentences for
each HPO term in the ontology. To ensure diversity
and representativeness, we specified requirements
for each batch of 10 sentences (e.g., at least two
sentences should be implicit, up to two should in-
clude measurements, etc.). For this iteration, we
excluded cases where a sentence refers to multi-
ple phenotypes. For each generated sentence, we
further prompted ChatGPT-40-mini to extract the
most precise span capturing the clinical observation
of the target phenotype. This process resulted in
the HPO_HR_sentences_spans dataset, comprising
over 200,000 clinical sentences and corresponding
spans, covering the entire set of HPO terms.

To improve data quality, we applied heuristic
filtering to remove lower-quality spans, yielding
91,760 spans (with 2,167 unique spans filtered out).
For scoring, we leveraged the trained hyperbolic
model: positive (span, label) pairs from the gen-
erated dataset were assigned a score of 1, while
negative pairs were created by pairing spans with
other phenotypes and assigning scores based on the
normalized hyperbolic distance to the target phe-
notype. Both hard negatives (phenotypes within
the same branch, up to three hops away) and easy
negatives (phenotypes outside the target branch)
were included. The final training set consists of
510,371 pairs.

4.4 Evaluation Dataset

We evaluate our workflow using two datasets: ID-
68: A widely used benchmark for phenotype ex-
traction (Anazi et al., 2017). CHU-50: An internal
dataset containing anonymized clinical notes from
Rennes Hospital with a high proportion of implicit
annotations. Results are compared to PhenoBERT,
the most advanced open-source state-of-the-art so-
lution available.

5 [Evaluation

We first evaluated the hyperbolic model indepen-
dently, prior to conducting the main phenotype
extraction experiments.



5.1 Hyperbolic Inner Evaluation

To assess the consistency of the hyperbolic model,
we compared its normalized distance metrics with
those of the baseline Euclidean model. Specifically,
we examined one-hop and multi-hop distances to
evaluate the model’s ability to capture hierarchical
relationships, as well as distances between syn-
onyms and negative pairs to determine whether
semantic consistency is preserved.

Additionally, we introduce a hierarchical rep-
resentation power plot to visualize the model’s
capacity to encode hierarchy while maintaining se-
mantic coherence. This radar chart displays the
average distances for one-hop, multi-hop, and syn-
onym pairs, alongside the inverse average distance
for negative pairs. This visualization enables us
to assess whether the embedding space has been
structured as intended.

5.2 Phenotypes Linking Evaluation

In practice, generating a comprehensive list of phe-
notypes for each patient is crucial for accurate
diagnosis, making recall-based metrics (recall @k
and miss_rate@k) the primary focus. While Top-1
precision is reported for comparison with existing
methods, it can be biased by clinician habits and is
less informative at higher ranks. To further assess
ranking quality, we include Mean Reciprocal Rank
(MRR) and Normalized Discounted Cumulative
Gain (NDCG).

However, these traditional metrics are limited
when based solely on exact matches, which is the
prevailing evaluation paradigm in current solutions.
In practice, a parent term of the target phenotype
often conveys relevant information, even if it is
less specific, and predictions involving descendants
or related terms should not be considered entirely
incorrect.

To address this limitation, we introduce a novel
hierarchical evaluation framework that leverages
the structure of HPO to weight candidate scores
according to their proximity to the ground truth.
These relationship scores are computed based
on the specific type of relationship between the
candidate C and the target phenotype 7.

Direct relationships

$, >0
Waireet(C, T) = {px(1+d) p )
L, p=0

where:

a is a constant factor (set to 1.6 in our experi-
ments).

p is the number of ancestors/children between C
and 7.

d is the distance between C and 7.

Indirect relationship

B
Windirect = ———————~ 5
indirect c x (1 ‘|’dl) ( )
where:
B is a constant factor. (set to 1.0 in our experi-
ments).

c is the number of immediate children of the
most specific common ancestor between C and 7.

d; is the distance between C and the farthest
HPO leaf.

By combining absolute distances with the
cardinality of surrounding phenotypes, these
functions effectively characterize the strength of
relationships between HPO terms, balancing both
proximity and semantic relevance. Throughout
this paper, the term weighted metrics refers
to evaluation metrics that incorporate these
hierarchical weightings.

In addition, we introduce specific metrics to as-
sess how well the models respect the ontology’s
structure: the average number of hops between
each candidate and the target phenotype; the av-
erage branch coverage, defined as the proportion
of candidates within the same branch as the target;
and the distribution of relationship types by posi-
tion, measuring the proportions of exact matches,
ancestors, descendants, cousins, or candidates with
no direct path to the target. We also report the pro-
portion of close candidates, defined as those with a
relationship score above a specified threshold.

6 Results

6.1 Hyperbolic consistency

Figure 2. presents the distributions of one-hop and
multi-hop distances for both the Euclidean model
and the fine-tuned hyperbolic model. The distribu-
tions for the hyperbolic model are notably narrower
and exhibit lower means, particularly for multi-hop
distances, indicating a more faithful representation
of the ontology’s hierarchical structure.
Furthermore, the resulting hyperbolic model pre-
serves the semantic structure of the base model,



Figure 2: Euclidean vs Hyperbolic Distances Distribu-
tion

as illustrated in Figure 3. Although the average
distance between negative pairs is slightly reduced,
these pairs remain well separated from positive
examples. Notably, synonyms within the HPO
are now positioned closer together, and multi-hop
phenotypes are significantly closer than in the Eu-
clidean embedding space, reflecting improved hier-
archical modeling. In contrast, one-hop phenotypes
are only marginally closer, which is expected given
the typically strong semantic similarity between
such terms (e.g.: Iris coloboma is semantically
closer to its one-hop parent Coloboma than the
2-hops Abnormal eye morphology).

Multi-Hop

—e— Euclidean
Hyperbolic (global)

Synonyms.

Figure 3: Semantic and Hierarchical Representation
Power

6.2 Phenotypes Linking

Retrieval

As shown in Figure 4, the hyperbolic RAG
model underperforms compared to other ap-
proaches, with recall decreasing when hyperbolic
reranking is applied to Euclidean RAG candidates.
Hybrid reranking, however, improves recall from
k=5 onwards, and late-interaction reranking be-
comes effective from k=15, though it does not

Standard Recall Weighted Recall
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Miss Rate
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Figure 4: Recall and Miss Rate (ID-68)

surpass the hybrid method. The Euclidean model
performs strongly, confirming RAG retrieval as a
robust baseline. The logarithmic shape of the recall
and miss rate curves indicates that all models rank
correct candidates highly.

Weighted recall shows a similar pattern, with
ontology-aware metrics especially benefiting hyper-
bolic approaches and narrowing the performance
gap. Both Euclidean and hybrid reranking outper-
form previous SOTA recall from k=3 onwards, and
set new SOTA at k=1 in the weighted setting (+9),
with gains up to +18 at k=15. Hybrid reranking
also achieves the lowest miss rate, reducing misses
by 17 at k=15. The precision at k=1 reaches 0.857
for the Euclidean model.

Evaluation on the CHU-50 dataset (Figure 5)
yields similar trends, with all models demonstrat-
ing a marked improvement over the state-of-the-
art. Specifically, all approaches outperform Phe-
noBERT across all three metrics starting from
(k=1), achieving a +23 increase in recall and an 18-
point reduction in miss rate. As previously noted
by Baddour et al. (2024), this is expected, as Phe-
noBERT exhibits limitations in handling more im-
plicit phenotype references.
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Figure 5: Recall and Miss Rate (CHU-50)

Finally, we evaluated the same metrics using a
hyperbolic model fine-tuned on the SNOMED on-
tology instead of HPO. As shown in Figure 6, the
SNOMED-based hyperbolic model underperforms
compared to the HPO-based hyperbolic model,
which is expected given that the target phenotypes



are defined within the HPO ontology. Interestingly,
the hybrid approach exhibits a slight improvement
on the ID-68 dataset. This counterintuitive result
may be attributed to the fact that, for the most
challenging text spans, classical embeddings out-
perform hyperbolic ones, and the cosine similarity
component can dominate the hybrid scoring when
the hyperbolic model is less effective.

Conversely, the hybrid model demonstrates re-
duced accuracy with SNOMED on the CHU-50
dataset.

Standard Recall

Weighted Recall Miss Rate
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Figure 6: Recall and Miss Rate with Snomed (ID-68)

Ranking

Tables 1 and 2 present weighted MRR and
NDCG results for ID-68 and CHU-50. On ID-68,
the Euclidean and Hybrid Rerank models achieve
the highest MRR (e.g., 0.857 at k=1), indicating
top-ranked correct phenotypes. The Hyperbolic
model performs slightly lower, but the gap nar-
rows with hierarchy-aware metrics, highlighting
its strength in capturing ontological relationships.
NDCG scores are also high across all models, with
Euclidean and Hybrid Rerank exceeding 0.94 at
k=1. As k increases, both metrics decrease slightly,
but Hybrid Rerank consistently maintains strong
performance.

Table 1: Weighted Metrics by Model and k (ID-68)

Weighted MRR
Model k=1 k=3 k=5 k=10 k=15
Euclidean 0.857 0.882 0.884 0.885 0.885
Hyperbolic 0.814 0.841 0.845 0.847 0.848
HPO-ColBERT Rerank 0.828 0.851 0.855 0.858 0.858
Hyperbolic Rerank 0.828 0.853 0.857 0.859 0.860
Hybrid Rerank 0.855 0.881 0.883 0.885 0.885

Weighted NDCG
Model k=1 k=3 k=5 k=10 k=15
Euclidean 0.949 0.936 0.923 0.901 0.883
Hyperbolic 0.932 0.922 0.902 0.877 0.861
HPO-ColBERT Rerank 0.931 0.928 0.912 0.886 0.870
Hyperbolic Rerank 0.944 0.927 0.912 0.884 0.870
Hybrid Rerank 0.943 0.936 0.924 0.904 0.891

On the more challenging CHU-50 dataset, which
contains a higher proportion of implicit pheno-
type mentions, all models exhibited lower MRR
and NDCG scores compared to ID-68. However,
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Figure 7: Ontological Structure Metrics (ID-68)

the Hybrid Rerank model still outperforms oth-
ers, with an MRR of 0.647 and NDCG of 0.868
at k=1. These results indicate that the hybrid ap-
proach, which combines semantic similarity from
Euclidean embeddings with hierarchical proximity
from hyperbolic embeddings, is particularly effec-
tive in ranking the most relevant phenotypes at the
top, even in complex, real-world clinical text.

Table 2: Weighted Metrics by Model and k for CHU-50

Weighted MRR
Model k=1 k=3 k=5 k=10 k=15
Euclidean 0.631 0.659 0.667 0.670 0.671
Hyperbolic 0.588 0.613 0.619 0.625 0.627
Hyperbolic Rerank 0.597 0.629 0.637 0.643 0.644
Hybrid Rerank 0.647 0.669 0.676 0.680 0.681
Weighted NDCG
Model k=1 k=3 k=5 k=10 k=15
Euclidean 0.841 0.853 0.832 0.807 0.792
Hyperbolic 0.834 0.818 0.796 0.772 0.751
Hyperbolic Rerank 0.851 0.841 0.815 0.787 0.779
Hybrid Rerank 0.868 0.848 0.835 0.806 0.800

Overall, the consistently strong MRR and
NDCG scores for the Hybrid Rerank model
confirm that combining semantic and hierarchi-
cal signals yields superior candidate ranking.
Hierarchy-aware weighted metrics further demon-
strate the value of hyperbolic embeddings in
capturing nuanced ontological relationships,
especially when exact matches are unavailable but
related terms remain clinically relevant.

Ontology-based Metrics

Analyzing the number of hops between candi-
dates and the target phenotype, as well as branch
coverage (Figure 7), offers further insight into
model performance. While hyperbolic-based mod-
els may not always outperform Euclidean models
at top ranks, they show greater robustness as the
candidate list grows, maintaining lower average
hops and higher branch coverage.
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Figure 8: % of Relationship Types by Position (ID-68)

This observation is further supported by a de-
tailed analysis of ontological relationships. Fig-
ure 8 shows a high percentage of exact matches
at Top-1, confirming the RAG pipeline’s effective-
ness. However, deeper analysis reveals important
distinctions between modeling approaches. Hy-
perbolic models (both raw output and reranking)
exhibit significantly higher proportions of ancestor
and cousin relationships, while showing fewer de-
scendant relationships compared to Euclidean or
HPO-ColBERT models. This pattern strongly sug-
gests that hyperbolic approaches better capture the
hierarchical structure of the HPO ontology in both
vertical and horizontal dimensions. The tendency
to "move upward" in the hierarchy toward more
general terms rather than "downward" toward more
specific ones aligns with theoretical expectations
of hyperbolic geometry, where distances increase
exponentially with depth in the hierarchy.

Notably, hyperbolic models maintain semantic
relevance at higher ranks, preserving close relation-
ships and yielding fewer unrelated candidates as
k increases. This semantic consistency at higher
ranks has important implications for clinical ap-
plications, as it reduces the risk of missing rele-
vant phenotypes (false negatives) when examining
a broader set of candidates.

The hybrid reranking approach combines the
strengths of both geometries, achieving strong ex-
act matching at top positions and semantic coher-
ence at higher ranks. This balanced performance

confirms the value of integrating both approaches
for optimal phenotype retrieval in clinical settings.
Similar trends are observed on the CHU-50 dataset
(appendix B).

7 Conclusion

In summary, this work introduces HyperRAG, a
novel pipeline that synergistically combines LLM-
based span detection, retrieval-augmented genera-
tion, and hierarchical reranking using hyperbolic
embeddings for phenotype linking from clinical
text. Through comprehensive experiments on both
benchmark and challenging real-world datasets, the
approach demonstrates substantial improvements
in recall, miss rate, and ranking quality, particu-
larly when evaluated with hierarchy-aware metrics
that better reflect clinical relevance. The hybrid
reranking strategy, integrating both semantic and
ontological signals, consistently delivers state-of-
the-art performance, especially in scenarios with
implicit phenotype mentions. The proposed eval-
uation framework and publicly released datasets
further advance the field by enabling more nuanced
and clinically meaningful assessment of phenotype
extraction systems. Future work should focus on
enhancing the semantic modeling of implicit men-
tions, expanding to additional ontologies, and opti-
mizing the computational efficiency of the pipeline
for broader clinical adoption.



Limitations

While our approach demonstrates notable improve-
ments, several limitations remain. First, although
hyperbolic embeddings are effective at capturing
hierarchical relationships within the ontology, they
may fail to fully capture implicit semantic nuances
present in clinical text. This highlights the need for
future work to explore multi-task training strate-
gies, such as fine-tuning RAG embeddings with
a dual loss function that combines a hyperbolic
loss for hierarchy with a sentence similarity loss to
better address implicit semantics.

Another limitation concerns data sparsity: our
reliance on annotated datasets may restrict the gen-
eralizability of the approach to unseen or rare phe-
notypes. Additionally, hyperbolic distances are not
always meaningful for all term pairs, suggesting
that further refinement of the hyperbolic model is
warranted.

Due to computational and resource constraints,
we did not perform an exhaustive grid search over
the parameters for hybrid reranking or the weight-
ing schemes used in the evaluation metrics. This
may have limited the optimality of our results. Fi-
nally, our experiments relied on a single embedding
model; it is possible that alternative or ensemble
embedding models, particularly those fine-tuned
on medical data, could yield different or improved
results, potentially surpassing the performance of
our current hybrid reranking approach.
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A Training Settings

All model training was conducted on a single RTX
A3000 GPU, both to accommodate budget con-
straints and to reduce energy consumption for envi-
ronmental considerations.

Table 3 indicates the training settings for the
hyperbolic model training.

The training settings for the ColbertV2 fine-
tuning on HPO is presented in Table 4.

Parameter Value

Number of training epochs 20

Train batch size 32
Eval batch size 64
Learning rate le-5
Clustering loss weight 1.0
Clustering loss margin 5.0
Centripetal loss weight 1.0
Centripetal loss margin 0.5

Gradient accumulation steps 8

Table 3: Hyperbolic Training Hyperparameters.

Parameter Value
Train batch size 8
Learning rate le-5

Number of training epochs 2

Max query length 32
Max document length 128
Triplet loss margin 0.3

Gradient accumulation steps 2

Table 4: ColBERTV?2 Training Hyperparameters.

B CHU-50 Ontological Structure
Evaluation

The average number of hops between candidates
and target phenotypes is shown in Figure 9. The
rank scale is up to 50 so the robustness of the hy-
perbolic model for higher ranks is highlighted.

Figure 10 presents the relationship types propor-
tion for the CHU-50 dataset.

Average Hops

Branch Coverage

+— Euclidean Hyperbolic  —+— HPO-COIBERT Rerank ~ —#— Hyperbolic Rerank  —+— Hybrid Rerank

Figure 9: Average Hops and Branch Coverage (CHU-
50)
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