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Abstract001

Extracting knowledge from unstructured data is002
a critical task for advancing human understand-003
ing and supporting decision-making across var-004
ious domains. This is especially pertinent in005
genomics, where identifying phenotypes from006
clinical narratives is essential for enhancing di-007
agnostic precision and enabling personalized008
medicine. While current methods perform well009
in recognizing explicitly stated phenotypes,010
they often struggle to capture implicit or nu-011
anced representations.012

In this paper, we introduce a novel workflow013
that integrates Large Language Models (LLMs)014
with Retrieval-Augmented Generation (RAG)015
and hierarchical reranking, utilizing hyperbolic016
embeddings trained on the Human Phenotype017
Ontology (HPO). Furthermore, we contend that018
conventional evaluation frameworks relying on019
exact string matching are insufficient for com-020
prehensive performance assessment, as they021
fail to account for the hierarchical structure in-022
herent to the target ontology. To address this,023
we propose new evaluation metrics that lever-024
age the hierarchical relationships within HPO.025

Our experiments on benchmark datasets, in-026
cluding a newly curated, challenging dataset027
(CHU-50), demonstrate the effectiveness of our028
approach, yielding substantial improvements in029
ranking accuracy and overall performance.030

1 Introduction031

The extraction of phenotypes from clinical notes032

is fundamental to modern diagnostic workflows.033

Phenotypes, as observable traits linking clinical ob-034

servations to genetic conditions, play a crucial role035

in diagnosis, treatment planning, and biomedical036

research. Although recent advances in Natural Lan-037

guage Processing have enabled significant progress038

in this area, notable challenges remain, particularly039

in identifying implicit phenotypes that are not ex-040

plicitly mentioned but can be inferred from context.041

Current approaches Feng et al. (2023); Luo et al. 042

(2021); Arbabi et al. (2019) frequently rely on flat 043

embedding spaces, which are inadequate for mod- 044

eling the hierarchical relationships intrinsic to phe- 045

notypic ontologies such as the Human Phenotype 046

Ontology (HPO) Robinson et al. (2008). Further- 047

more, retrieval-based systems are often constrained 048

by their reliance on exact matches or shallow se- 049

mantic representations. We also argue that existing 050

evaluation metrics widely used in the field (Groza 051

et al., 2024) present further limitations: in prac- 052

tice, clinicians may interpret phenotype mentions 053

differently, as no individual possesses exhaustive 054

knowledge of HPO or uses it in a uniform manner. 055

Consequently, a single reference can yield multiple, 056

equally valid annotations. This underscores the im- 057

portance of considering hierarchical relationships, 058

such as treating a parent term of a target phenotype 059

as correct, albeit less specific. 060

In this paper, we propose to address the follow- 061

ing research questions: 062

i. To what extent can hyperbolic models capture 063

the hierarchical structure of the HPO ontol- 064

ogy? 065

ii. What is the true performance of Retrieval- 066

Augmented Generation (RAG) Lewis et al. 067

(2020) for phenotype candidate retrieval? 068

iii. What is the added value of hyperbolic embed- 069

dings in the retrieval and reranking process? 070

iv. How does incorporating ontology hierarchy 071

into evaluation metrics affect performance as- 072

sessment? 073

To tackle these challenges, we propose a novel 074

workflow that integrates Large Language Models 075

(LLMs) for span identification, RAG for candi- 076

date generation, and hyperbolic embeddings for 077

hierarchical reranking. Furthermore, we introduce 078

a hierarchy-aware evaluation metric designed to 079
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more fairly assess ontology-based entity extraction080

from text. By leveraging the hierarchical structure081

of HPO, our approach aims to enhance the rele-082

vance of phenotype extraction from clinical narra-083

tives.084

2 Background085

The introduction of ontologies such as the HPO086

has provided a structured framework for organiz-087

ing phenotypic information and has become the088

primary target for entity linking in this domain.089

Early work Aronson and Lang (2010); Jonquet et al.090

(2009); Deisseroth et al. (2019), utilized rule-based091

heuristics, while more recent studies have adopted092

transformer-based architectures to extract pheno-093

type mentions directly from text Feng et al. (2023);094

Yang et al. (2024). Although improvements have095

been effective with such approaches, they remain096

complex and often struggle when phenotype refer-097

ences are implicit Baddour et al. (2024) . Emerging098

paradigms such as RAG Lewis et al. (2020) offer099

a promising avenue for addressing some of these100

challenges by efficiently narrowing the candidate101

space. However, RAG has not yet been widely102

adopted in phenotype extraction pipelines, and its103

performance in this context remains underexplored.104

While ontologies facilitate annotation and re-105

trieval, their hierarchical complexity poses signifi-106

cant challenges for NLP systems. Nickel and Kiela107

(2017) highlighted the limitations of flat embedding108

spaces in adequately representing such hierarchical109

structures. Related works (Sala et al., 2018; Sinha110

et al., 2024; Tifrea et al., 2018) proposed to train111

hyperbolic embeddings that provide a compelling112

alternative, as hyperbolic spaces are well-suited113

for modeling hierarchical relationships, allowing114

embeddings to more accurately reflect the subsump-115

tion structure inherent in ontologies.116

The motivation behind our proposed workflow117

stems from recognizing significant limitations in118

current phenotype extraction systems. While classi-119

cal RAG approaches are effective at retrieving can-120

didates based on general semantic similarity, they121

fall short in capturing the hierarchical relationships122

and intricate dependencies inherent in ontologies123

such as HPO. This limitation becomes even more124

pronounced when dealing with implicit phenotypes125

not explicitly stated in clinical text, where lever-126

aging ontological relationships can be crucial for127

accurate identification and resolution.128

By integrating hyperbolic embeddings (which129

naturally encode hierarchical structures) with a 130

reranking mechanism, our workflow bridges the 131

gap between general semantic relevance and on- 132

tological hierarchy. This dual approach ensures 133

not only accurate retrieval of phenotypes but also a 134

ranking that reflects their hierarchical significance, 135

providing a comprehensive solution to the limita- 136

tions of current methods. 137

3 Proposed Workflow 138

The preliminary processing phase involves manual 139

annotation of clinical reports (using existing an- 140

notations for the ID-68 dataset and newly created 141

annotations for the CHU-50 dataset) as well as fine- 142

tuning the hyperbolic model on the HPO ontology 143

(the training procedure is detailed in Section II.B). 144

The high-level architecture of HyperRAG is illus- 145

trated in Figure 1. Given clinical reports and their 146

annotations, the process consists of four main steps: 147

span detection using an LLM, candidate retrieval 148

with RAG, reranking of candidates, and evaluation 149

with both standard and ontology-aware metrics. 150

3.1 Span Identification 151

We begin by leveraging a pretrained Large Lan- 152

guage Model (LLM) to identify phenotype spans 153

within clinical text. This unsupervised approach 154

is particularly effective for capturing implicit men- 155

tions that may be overlooked by traditional meth- 156

ods. Notably, Baddour et al. (2024) demonstrated 157

that employing an LLM as a span detector outper- 158

forms the biomedical Stanza pipeline (Zhang et al., 159

2021). For consistency and comprehensive cover- 160

age, we utilized the same ChatGPT-3.5 (OpenAI, 161

2023) model employed in their work for this step. 162

3.2 Retrieval-Augmented Generation (RAG) 163

A classical embeddings model (all-MiniLM-L12- 164

v2, Wang, 2020) is used to compute dense em- 165

beddings for the identified spans. Alternatively, 166

a fine-tuned hyperbolic model HiT-MiniLM-L12- 167

HPO (fine-tuned on HPO from all-MiniLM-L12- 168

v2) is used. Top-k phenotype candidates are re- 169

trieved from the HPO ontology based on cosine 170

similarity (euclidean model) or hyperbolic distance 171

(hyperbolic model). We set k=30 to substantially 172

reduce the candidate space while still allowing for 173

meaningful reranking improvements. 174

For candidate retrieval, FAISS (Douze et al., 175

2024) is employed as the vector store and Top- 176

k retriever for the Euclidean model. In contrast, 177
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Figure 1: General Workflow

the hyperbolic model utilizes a dedicated vector in-178

dex and retrieval mechanism implemented in Torch179

(Paszke et al., 2019). To ensure consistency in180

distance measurements across experiments, we nor-181

malize the hyperbolic distances in the Poincaré ball182

using a global normalization strategy (1):183

d̂H(u, v) =
dH(u, v)

maxp,q∈HPO dH(p, q)
(1)184

Where:185

dH(u, v) is the hyperbolic distance between186

terms u and v in the hyperbolic space H187

d̂H is the normalized hyperbolic distance188

maxp,q∈HPO dH(p, q) is the maximum hyper-189

bolic distance between any two terms in the HPO190

ontology191

3.3 Reranking192

For each span, the Top-30 candidates retrieved by193

Euclidean-RAG are reranked using two families of194

methods: a classical state-of-the-art baseline and195

hyperbolic-based.196

197

Late-interaction reranking198

To provide a strong classical baseline, we199

fine-tuned a late-interaction model ColBERTv2200

(Santhanam et al., 2021) for reranking. While201

cross-encoder models are highly effective for202

reranking tasks, they are computationally intensive203

and may be less suitable for incorporating soft204

signals such as distance-based scores. Late-205

interaction models, such as ColBERTv2, offer a206

compelling compromise between cross-encoders207

and bi-encoders by retaining token-level embed-208

dings and applying a late matching function. This209

approach preserves fine-grained information that210

might otherwise be lost during token pooling, as 211

in bi-encoder models. Given the short spans and 212

specific target labels in our setting, late-interaction 213

models are particularly well-suited for reranking. 214

215

Hyperbolic-based reranking 216

• Full hyperbolic reranking: Both the input 217

span and the Top-k candidates from the Eu- 218

clidean RAG are embedded in hyperbolic 219

space. Candidates are then reordered based 220

on their normalized hyperbolic distances to 221

the input span. 222

• Hybrid reranking: This approach combines 223

the cosine similarity between Euclidean em- 224

beddings and the hyperbolic distance between 225

hyperbolic embeddings using a weighted sum. 226

Cosine similarity emphasizes semantic close- 227

ness, while hyperbolic distance prioritizes can- 228

didates with closer hierarchical relationships 229

to the input span. 230

Shybrid = γ · Scos − (1− γ) · d̂H (2) 231

where: 232

Shybrid represents the hybrid scores 233

Scos represents the cosine similarities 234

d̂H represents the normalized hyperbolic dis- 235

tances 236

γ is the weighting parameter between the two 237

metrics. We set γ = 0.5 to have a balance 238

influence of both models. 239

Synonyms in the RAG output are mapped to their 240

original HPO terms using a precomputed synonym- 241

to-ID mapping. This ensures consistency in dis- 242

tance calculations throughout the workflow. 243
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4 Dataset244

4.1 Ontologies245

The Human Phenotype Ontology (HPO) serves as246

the foundation for our hierarchical embeddings.247

HPO is a comprehensive ontology encompass-248

ing over 19,000 phenotypic terms, each organized249

within a rich hierarchical structure. The ontology250

also incorporates synonyms to account for alterna-251

tive term representations, enhancing its coverage252

and utility.253

Additionally, we leverage the SNOMED (El-254

Sappagh et al., 2018) ontology indirectly through a255

pretrained hyperbolic model. This allows us to256

assess the relative benefits of utilizing a broad,257

general-purpose medical ontology (SNOMED) in258

comparison to a highly specialized ontology (HPO)259

for phenotype extraction tasks.260

4.2 Hyperbolic Training Data261

Hyperbolic embeddings were trained on the HPO262

ontology using Hierarchy Transformers (He et al.,263

2024) to effectively capture hierarchical relation-264

ships. These embeddings encode both parent-child265

and sibling relationships, enabling more nuanced266

phenotypes reranking. To construct the training267

data for HPO hyperbolic embeddings, we first ex-268

tracted hierarchical relationships from the HPO269

OWL file using DeepOnto and the ELK reasoner.270

Following the methodology of (He et al., 2024), we271

generated a dataset of pairs ({child, parent, label},272

where the label is a binary indicator of a positive or273

negative example) and triplets ({child, parent, nega-274

tive}, where the negative term is not a parent of the275

child). Random negative sampling was employed276

in this implementation, though hard negative sam-277

pling remains an alternative. Given that most HPO278

phenotypes are associated with multiple synonyms,279

we augmented the dataset by including all possi-280

ble synonym combinations within each pair and281

triplet. This augmentation enhances the robustness282

of the resulting embeddings to varied term formu-283

lations. To prevent excessive class imbalance, we284

applied a filtering strategy, limiting each synonym285

to a maximum of five occurrences. The final pairs286

and triplets datasets were then used to train the287

hyperbolic embeddings.288

Training parameters are provided in the supple-289

mentary materials.290

4.3 Late-interaction Training Data 291

We fine-tuned the ColBERTv2 model on pairs of 292

the form {span, HPO label, score}, where the score 293

represents a similarity measure. To construct a 294

comprehensive training dataset, we used ChatGPT- 295

4o-mini to generate 10 clinical report sentences for 296

each HPO term in the ontology. To ensure diversity 297

and representativeness, we specified requirements 298

for each batch of 10 sentences (e.g., at least two 299

sentences should be implicit, up to two should in- 300

clude measurements, etc.). For this iteration, we 301

excluded cases where a sentence refers to multi- 302

ple phenotypes. For each generated sentence, we 303

further prompted ChatGPT-4o-mini to extract the 304

most precise span capturing the clinical observation 305

of the target phenotype. This process resulted in 306

the HPO_HR_sentences_spans dataset, comprising 307

over 200,000 clinical sentences and corresponding 308

spans, covering the entire set of HPO terms. 309

To improve data quality, we applied heuristic 310

filtering to remove lower-quality spans, yielding 311

91,760 spans (with 2,167 unique spans filtered out). 312

For scoring, we leveraged the trained hyperbolic 313

model: positive (span, label) pairs from the gen- 314

erated dataset were assigned a score of 1, while 315

negative pairs were created by pairing spans with 316

other phenotypes and assigning scores based on the 317

normalized hyperbolic distance to the target phe- 318

notype. Both hard negatives (phenotypes within 319

the same branch, up to three hops away) and easy 320

negatives (phenotypes outside the target branch) 321

were included. The final training set consists of 322

510,371 pairs. 323

4.4 Evaluation Dataset 324

We evaluate our workflow using two datasets: ID- 325

68: A widely used benchmark for phenotype ex- 326

traction (Anazi et al., 2017). CHU-50: An internal 327

dataset containing anonymized clinical notes from 328

Rennes Hospital with a high proportion of implicit 329

annotations. Results are compared to PhenoBERT, 330

the most advanced open-source state-of-the-art so- 331

lution available. 332

5 Evaluation 333

We first evaluated the hyperbolic model indepen- 334

dently, prior to conducting the main phenotype 335

extraction experiments. 336
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5.1 Hyperbolic Inner Evaluation337

To assess the consistency of the hyperbolic model,338

we compared its normalized distance metrics with339

those of the baseline Euclidean model. Specifically,340

we examined one-hop and multi-hop distances to341

evaluate the model’s ability to capture hierarchical342

relationships, as well as distances between syn-343

onyms and negative pairs to determine whether344

semantic consistency is preserved.345

Additionally, we introduce a hierarchical rep-346

resentation power plot to visualize the model’s347

capacity to encode hierarchy while maintaining se-348

mantic coherence. This radar chart displays the349

average distances for one-hop, multi-hop, and syn-350

onym pairs, alongside the inverse average distance351

for negative pairs. This visualization enables us352

to assess whether the embedding space has been353

structured as intended.354

5.2 Phenotypes Linking Evaluation355

In practice, generating a comprehensive list of phe-356

notypes for each patient is crucial for accurate357

diagnosis, making recall-based metrics (recall@k358

and miss_rate@k) the primary focus. While Top-1359

precision is reported for comparison with existing360

methods, it can be biased by clinician habits and is361

less informative at higher ranks. To further assess362

ranking quality, we include Mean Reciprocal Rank363

(MRR) and Normalized Discounted Cumulative364

Gain (NDCG).365

However, these traditional metrics are limited366

when based solely on exact matches, which is the367

prevailing evaluation paradigm in current solutions.368

In practice, a parent term of the target phenotype369

often conveys relevant information, even if it is370

less specific, and predictions involving descendants371

or related terms should not be considered entirely372

incorrect.373

To address this limitation, we introduce a novel374

hierarchical evaluation framework that leverages375

the structure of HPO to weight candidate scores376

according to their proximity to the ground truth.377

These relationship scores are computed based378

on the specific type of relationship between the379

candidate C and the target phenotype T .380

381

Direct relationships382

wdirect(C, T ) =

{
α

p×(1+|d|) , p > 0

1, p = 0
(4)383

where:384

α is a constant factor (set to 1.6 in our experi- 385

ments). 386

p is the number of ancestors/children between C 387

and T . 388

d is the distance between C and T . 389

390

Indirect relationship 391

windirect =
β

c× (1 + dl)
(5) 392

where: 393

β is a constant factor. (set to 1.0 in our experi- 394

ments). 395

c is the number of immediate children of the 396

most specific common ancestor between C and T . 397

dl is the distance between C and the farthest 398

HPO leaf. 399

400

By combining absolute distances with the 401

cardinality of surrounding phenotypes, these 402

functions effectively characterize the strength of 403

relationships between HPO terms, balancing both 404

proximity and semantic relevance. Throughout 405

this paper, the term weighted metrics refers 406

to evaluation metrics that incorporate these 407

hierarchical weightings. 408

409

In addition, we introduce specific metrics to as- 410

sess how well the models respect the ontology’s 411

structure: the average number of hops between 412

each candidate and the target phenotype; the av- 413

erage branch coverage, defined as the proportion 414

of candidates within the same branch as the target; 415

and the distribution of relationship types by posi- 416

tion, measuring the proportions of exact matches, 417

ancestors, descendants, cousins, or candidates with 418

no direct path to the target. We also report the pro- 419

portion of close candidates, defined as those with a 420

relationship score above a specified threshold. 421

6 Results 422

6.1 Hyperbolic consistency 423

Figure 2. presents the distributions of one-hop and 424

multi-hop distances for both the Euclidean model 425

and the fine-tuned hyperbolic model. The distribu- 426

tions for the hyperbolic model are notably narrower 427

and exhibit lower means, particularly for multi-hop 428

distances, indicating a more faithful representation 429

of the ontology’s hierarchical structure. 430

Furthermore, the resulting hyperbolic model pre- 431

serves the semantic structure of the base model, 432
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Figure 2: Euclidean vs Hyperbolic Distances Distribu-
tion

as illustrated in Figure 3. Although the average433

distance between negative pairs is slightly reduced,434

these pairs remain well separated from positive435

examples. Notably, synonyms within the HPO436

are now positioned closer together, and multi-hop437

phenotypes are significantly closer than in the Eu-438

clidean embedding space, reflecting improved hier-439

archical modeling. In contrast, one-hop phenotypes440

are only marginally closer, which is expected given441

the typically strong semantic similarity between442

such terms (e.g.: Iris coloboma is semantically443

closer to its one-hop parent Coloboma than the444

2-hops Abnormal eye morphology).445

Figure 3: Semantic and Hierarchical Representation
Power

6.2 Phenotypes Linking446

Retrieval447

As shown in Figure 4, the hyperbolic RAG448

model underperforms compared to other ap-449

proaches, with recall decreasing when hyperbolic450

reranking is applied to Euclidean RAG candidates.451

Hybrid reranking, however, improves recall from452

k=5 onwards, and late-interaction reranking be-453

comes effective from k=15, though it does not454

Figure 4: Recall and Miss Rate (ID-68)

surpass the hybrid method. The Euclidean model 455

performs strongly, confirming RAG retrieval as a 456

robust baseline. The logarithmic shape of the recall 457

and miss rate curves indicates that all models rank 458

correct candidates highly. 459

Weighted recall shows a similar pattern, with 460

ontology-aware metrics especially benefiting hyper- 461

bolic approaches and narrowing the performance 462

gap. Both Euclidean and hybrid reranking outper- 463

form previous SOTA recall from k=3 onwards, and 464

set new SOTA at k=1 in the weighted setting (+9), 465

with gains up to +18 at k=15. Hybrid reranking 466

also achieves the lowest miss rate, reducing misses 467

by 17 at k=15. The precision at k=1 reaches 0.857 468

for the Euclidean model. 469

Evaluation on the CHU-50 dataset (Figure 5) 470

yields similar trends, with all models demonstrat- 471

ing a marked improvement over the state-of-the- 472

art. Specifically, all approaches outperform Phe- 473

noBERT across all three metrics starting from 474

(k=1), achieving a +23 increase in recall and an 18- 475

point reduction in miss rate. As previously noted 476

by Baddour et al. (2024), this is expected, as Phe- 477

noBERT exhibits limitations in handling more im- 478

plicit phenotype references. 479

Figure 5: Recall and Miss Rate (CHU-50)

Finally, we evaluated the same metrics using a 480

hyperbolic model fine-tuned on the SNOMED on- 481

tology instead of HPO. As shown in Figure 6, the 482

SNOMED-based hyperbolic model underperforms 483

compared to the HPO-based hyperbolic model, 484

which is expected given that the target phenotypes 485
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are defined within the HPO ontology. Interestingly,486

the hybrid approach exhibits a slight improvement487

on the ID-68 dataset. This counterintuitive result488

may be attributed to the fact that, for the most489

challenging text spans, classical embeddings out-490

perform hyperbolic ones, and the cosine similarity491

component can dominate the hybrid scoring when492

the hyperbolic model is less effective.493

Conversely, the hybrid model demonstrates re-494

duced accuracy with SNOMED on the CHU-50495

dataset.496

Figure 6: Recall and Miss Rate with Snomed (ID-68)

Ranking497

Tables 1 and 2 present weighted MRR and498

NDCG results for ID-68 and CHU-50. On ID-68,499

the Euclidean and Hybrid Rerank models achieve500

the highest MRR (e.g., 0.857 at k=1), indicating501

top-ranked correct phenotypes. The Hyperbolic502

model performs slightly lower, but the gap nar-503

rows with hierarchy-aware metrics, highlighting504

its strength in capturing ontological relationships.505

NDCG scores are also high across all models, with506

Euclidean and Hybrid Rerank exceeding 0.94 at507

k=1. As k increases, both metrics decrease slightly,508

but Hybrid Rerank consistently maintains strong509

performance.510

Table 1: Weighted Metrics by Model and k (ID-68)

Weighted MRR
Model k = 1 k = 3 k = 5 k = 10 k = 15

Euclidean 0.857 0.882 0.884 0.885 0.885
Hyperbolic 0.814 0.841 0.845 0.847 0.848
HPO-ColBERT Rerank 0.828 0.851 0.855 0.858 0.858
Hyperbolic Rerank 0.828 0.853 0.857 0.859 0.860
Hybrid Rerank 0.855 0.881 0.883 0.885 0.885

Weighted NDCG
Model k = 1 k = 3 k = 5 k = 10 k = 15

Euclidean 0.949 0.936 0.923 0.901 0.883
Hyperbolic 0.932 0.922 0.902 0.877 0.861
HPO-ColBERT Rerank 0.931 0.928 0.912 0.886 0.870
Hyperbolic Rerank 0.944 0.927 0.912 0.884 0.870
Hybrid Rerank 0.943 0.936 0.924 0.904 0.891

On the more challenging CHU-50 dataset, which511

contains a higher proportion of implicit pheno-512

type mentions, all models exhibited lower MRR513

and NDCG scores compared to ID-68. However,514

Figure 7: Ontological Structure Metrics (ID-68)

the Hybrid Rerank model still outperforms oth- 515

ers, with an MRR of 0.647 and NDCG of 0.868 516

at k=1. These results indicate that the hybrid ap- 517

proach, which combines semantic similarity from 518

Euclidean embeddings with hierarchical proximity 519

from hyperbolic embeddings, is particularly effec- 520

tive in ranking the most relevant phenotypes at the 521

top, even in complex, real-world clinical text. 522

Table 2: Weighted Metrics by Model and k for CHU-50

Weighted MRR
Model k = 1 k = 3 k = 5 k = 10 k = 15

Euclidean 0.631 0.659 0.667 0.670 0.671
Hyperbolic 0.588 0.613 0.619 0.625 0.627
Hyperbolic Rerank 0.597 0.629 0.637 0.643 0.644
Hybrid Rerank 0.647 0.669 0.676 0.680 0.681

Weighted NDCG
Model k = 1 k = 3 k = 5 k = 10 k = 15

Euclidean 0.841 0.853 0.832 0.807 0.792
Hyperbolic 0.834 0.818 0.796 0.772 0.751
Hyperbolic Rerank 0.851 0.841 0.815 0.787 0.779
Hybrid Rerank 0.868 0.848 0.835 0.806 0.800

Overall, the consistently strong MRR and 523

NDCG scores for the Hybrid Rerank model 524

confirm that combining semantic and hierarchi- 525

cal signals yields superior candidate ranking. 526

Hierarchy-aware weighted metrics further demon- 527

strate the value of hyperbolic embeddings in 528

capturing nuanced ontological relationships, 529

especially when exact matches are unavailable but 530

related terms remain clinically relevant. 531

532

Ontology-based Metrics 533

Analyzing the number of hops between candi- 534

dates and the target phenotype, as well as branch 535

coverage (Figure 7), offers further insight into 536

model performance. While hyperbolic-based mod- 537

els may not always outperform Euclidean models 538

at top ranks, they show greater robustness as the 539

candidate list grows, maintaining lower average 540

hops and higher branch coverage. 541
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Figure 8: % of Relationship Types by Position (ID-68)

This observation is further supported by a de-542

tailed analysis of ontological relationships. Fig-543

ure 8 shows a high percentage of exact matches544

at Top-1, confirming the RAG pipeline’s effective-545

ness. However, deeper analysis reveals important546

distinctions between modeling approaches. Hy-547

perbolic models (both raw output and reranking)548

exhibit significantly higher proportions of ancestor549

and cousin relationships, while showing fewer de-550

scendant relationships compared to Euclidean or551

HPO-ColBERT models. This pattern strongly sug-552

gests that hyperbolic approaches better capture the553

hierarchical structure of the HPO ontology in both554

vertical and horizontal dimensions. The tendency555

to "move upward" in the hierarchy toward more556

general terms rather than "downward" toward more557

specific ones aligns with theoretical expectations558

of hyperbolic geometry, where distances increase559

exponentially with depth in the hierarchy.560

Notably, hyperbolic models maintain semantic561

relevance at higher ranks, preserving close relation-562

ships and yielding fewer unrelated candidates as563

k increases. This semantic consistency at higher564

ranks has important implications for clinical ap-565

plications, as it reduces the risk of missing rele-566

vant phenotypes (false negatives) when examining567

a broader set of candidates.568

The hybrid reranking approach combines the569

strengths of both geometries, achieving strong ex-570

act matching at top positions and semantic coher-571

ence at higher ranks. This balanced performance572

confirms the value of integrating both approaches 573

for optimal phenotype retrieval in clinical settings. 574

Similar trends are observed on the CHU-50 dataset 575

(appendix B). 576

7 Conclusion 577

In summary, this work introduces HyperRAG, a 578

novel pipeline that synergistically combines LLM- 579

based span detection, retrieval-augmented genera- 580

tion, and hierarchical reranking using hyperbolic 581

embeddings for phenotype linking from clinical 582

text. Through comprehensive experiments on both 583

benchmark and challenging real-world datasets, the 584

approach demonstrates substantial improvements 585

in recall, miss rate, and ranking quality, particu- 586

larly when evaluated with hierarchy-aware metrics 587

that better reflect clinical relevance. The hybrid 588

reranking strategy, integrating both semantic and 589

ontological signals, consistently delivers state-of- 590

the-art performance, especially in scenarios with 591

implicit phenotype mentions. The proposed eval- 592

uation framework and publicly released datasets 593

further advance the field by enabling more nuanced 594

and clinically meaningful assessment of phenotype 595

extraction systems. Future work should focus on 596

enhancing the semantic modeling of implicit men- 597

tions, expanding to additional ontologies, and opti- 598

mizing the computational efficiency of the pipeline 599

for broader clinical adoption. 600
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Limitations601

While our approach demonstrates notable improve-602

ments, several limitations remain. First, although603

hyperbolic embeddings are effective at capturing604

hierarchical relationships within the ontology, they605

may fail to fully capture implicit semantic nuances606

present in clinical text. This highlights the need for607

future work to explore multi-task training strate-608

gies, such as fine-tuning RAG embeddings with609

a dual loss function that combines a hyperbolic610

loss for hierarchy with a sentence similarity loss to611

better address implicit semantics.612

Another limitation concerns data sparsity: our613

reliance on annotated datasets may restrict the gen-614

eralizability of the approach to unseen or rare phe-615

notypes. Additionally, hyperbolic distances are not616

always meaningful for all term pairs, suggesting617

that further refinement of the hyperbolic model is618

warranted.619

Due to computational and resource constraints,620

we did not perform an exhaustive grid search over621

the parameters for hybrid reranking or the weight-622

ing schemes used in the evaluation metrics. This623

may have limited the optimality of our results. Fi-624

nally, our experiments relied on a single embedding625

model; it is possible that alternative or ensemble626

embedding models, particularly those fine-tuned627

on medical data, could yield different or improved628

results, potentially surpassing the performance of629

our current hybrid reranking approach.630
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A Training Settings754

All model training was conducted on a single RTX755

A3000 GPU, both to accommodate budget con-756

straints and to reduce energy consumption for envi-757

ronmental considerations.758

Table 3 indicates the training settings for the759

hyperbolic model training.760

The training settings for the ColbertV2 fine-761

tuning on HPO is presented in Table 4.762

Parameter Value

Number of training epochs 20
Train batch size 32
Eval batch size 64
Learning rate 1e-5
Clustering loss weight 1.0
Clustering loss margin 5.0
Centripetal loss weight 1.0
Centripetal loss margin 0.5
Gradient accumulation steps 8

Table 3: Hyperbolic Training Hyperparameters.

Parameter Value

Train batch size 8
Learning rate 1e-5
Number of training epochs 2
Max query length 32
Max document length 128
Triplet loss margin 0.3
Gradient accumulation steps 2

Table 4: ColBERTv2 Training Hyperparameters.

B CHU-50 Ontological Structure 763

Evaluation 764

The average number of hops between candidates 765

and target phenotypes is shown in Figure 9. The 766

rank scale is up to 50 so the robustness of the hy- 767

perbolic model for higher ranks is highlighted. 768

Figure 10 presents the relationship types propor- 769

tion for the CHU-50 dataset. 770

Figure 9: Average Hops and Branch Coverage (CHU-
50)
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Figure 10: % of Relationship Types by Position (CHU-50)
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