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Abstract

This study investigates the integration of di-001
verse patient data sources into multimodal lan-002
guage models for automated chest X-ray (CXR)003
report generation. Traditionally, CXR report004
generation relies solely on CXR images and005
limited radiology data, overlooking valuable006
information from patient health records, partic-007
ularly from emergency departments. Utilising008
the MIMIC-CXR and MIMIC-IV-ED datasets,009
we incorporate detailed patient information010
such as vital signs, medicines, and clinical his-011
tory to enhance diagnostic accuracy. We in-012
troduce a novel approach to transform these013
heterogeneous data sources into embeddings014
that prompt a multimodal language model; this015
significantly enhances the diagnostic accuracy016
of generated radiology reports. Our compre-017
hensive evaluation demonstrates the benefits of018
using a broader set of patient data, underscoring019
the potential for enhanced diagnostic capabil-020
ities and better patient outcomes through the021
integration of multimodal data in CXR report022
generation.023

1 Introduction024

Chest X-ray (CXR) exams, which consist of mul-025

tiple images captured during an imaging session,026

are essential for diagnosing and managing a wide027

range of conditions, playing a significant role in pa-028

tient care. Radiologists interpret these exams and029

produce a written report with their findings. How-030

ever, timely reporting is hindered by a multitude of031

issues, including high patient volumes and limited032

availability of radiologists (Bailey et al., 2022).033

Automated CXR report generation using mul-034

timodal language models is a promising solution035

(Jones et al., 2021). Potential benefits include en-036

hanced radiologist effectiveness, streamlining re-037

port writing, and improved patient outcomes (Shen,038

2021; Irmici et al., 2023). Early methods pro-039

duced a separate report for each image within an040

exam (Wang et al., 2018). Later methods improved041

INDICATION: Evaluate for pneumonia. 

HISTORY: Asthma and wheezing for two days.

COMPARISONS: Chest radiograph ___.

FINDINGS: The lungs are clear. There is no
pleural effusion or pneumothorax. There is no
focal airspace consolidation to suggest
pneumonia. Accounting for technique, the heart
size is normal. The mediastinal contours are
unremarkable.

IMPRESSION: No acute intrathoracic process.

Radiologist report

dicom_id PerformedProcedure... ViewPosition Rows Columns StudyDate
2ca11... CHEST (PA AND LAT) PA 3056 2544 21430703
918b4... CHEST (PA AND LAT) LATERAL 3056 2544 21430703

Metadata table

StudyTime ProcedureCode... ViewCode... PatientOrientation...
150237 CHEST (PA AND LAT) postero-anterior Erect
150237 CHEST (PA AND LAT) lateral Erect

MIMIC-CXR exam

intime outtime gender race arrival_transport disposition
2143-07-03

12:32:00
2143-07-03

22:06:14
F ASIAN -

CHINESE
WALK IN ADMITTED

ED stays

temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint
97.5 98 16 Null 130 81 8 3 ABD PAIN

Triage

charttime temperature heartrate resprate o2sat sbp dbp rhythm pain
2143-07-03

12:33:00
97.5 98 16 Null 130 81 Null 8

2143-07-03
13:26:00

98.1 97 15 99 121 78 Null 7

... ... ... ... ... ... ... ... ...

Aperiodic vital signs

charttime name gsn ndc etc_rn etccode etcdescription
2143-07-03

13:39:00
Dilaudid 004110 13107010701 1 00000583 Analgesic Opioid

Agonists
2143-07-03

13:39:00 fluticasone 019319 35356049401 1 00000371 Asthma Therapy -
Inhaled Cortico...

... ... ... ... ... ... ...

Reconciled medicines

charttime med_rn name gsn_rn gsn
2143-07-03 14:27:00 1 Ondansetron 2 061716
2143-07-03 14:27:00 2 HYDROmorphone (Dilaudid) 1 062823

... ... ... ... ...

MIMIC-IV-ED tables

Administered medicines

Images (CXRs)

Ground truth

Patient data

Figure 1: The patient data from MIMIC-IV-ED asso-
ciated with a CXR exam from MIMIC-CXR. This in-
cludes the exam’s images, the corresponding radiology
report, and the associated image metadata. The findings
and impression sections of the radiology report form the
ground truth for CXR report generation. Emergency-
specific data, such as reconciled medicines and aperi-
odic vital signs, are also available for the patient.
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on this by considering all images of an exam to gen-042

erate a single report (Miura et al., 2021; Nicolson043

et al., 2024a), and incorporating prior exams for a044

patient (Wu et al., 2022; Nicolson et al., 2024a). In-045

cluding the reason for the exam (the indication046

section in Figure 1) offered a further improve-047

ment (Nguyen et al., 2023). This indicates that048

CXR report generation benefits from the inclusion049

of a more comprehensive set of patient data.050

Incorporating clinical information, including051

electronic health record (EHR) data, enhanced052

the interpretation accuracy, clinical relevance,053

and reporting confidence of radiologists’ findings054

(Castillo et al., 2021). A growing push to integrate055

EHR systems into radiology workflows highlights056

the potential for CXR report generation models to057

leverage patient data directly (Geeslin and Gaskin,058

2016). In this study, we aim to empirically inves-059

tigate if such data can also improve CXR report060

generation. To facilitate this, we combine CXR061

exams from MIMIC-CXR (Johnson et al., 2019)062

with emergency department (ED) patient records063

from MIMIC-IV-ED (Johnson et al., 2023). This064

provides a wide variety of multimodal data per065

exam, as shown in Figure 1. From MIMIC-CXR,066

we utilise the images, their metadata, and several067

sections of the radiology report. Notably, we in-068

corporate the history or comparison section of the069

report, which has not been investigated previously.070

From MIMIC-IV-ED, we incorporate triage data,071

aperiodic vital signs, medicines, and other data to072

provide a wider clinical context.073

We also investigate how to harmonise these het-074

erogeneous data into patient data embeddings to075

prompt a multimodal language model. In doing so,076

we develop methods to transform tabular and aperi-077

odic time series data into embeddings that can be078

used alongside token and image embeddings. We079

evaluate our model using metrics shown to closely080

correlate with radiologists’ assessments of report-081

ing (Yu et al., 2023). Through our evaluation, we082

demonstrate that complementary information from083

different data sources can improve the diagnostic084

accuracy of CXR report generation. The main con-085

tributions of this work are:086

• An investigation demonstrating how integrating087

specific patient data sources, such as medicines088

and vital signs, enhances CXR report generation089

and improves diagnostic accuracy.090

• Introducing methods to convert numerical, cate-091

gorical, text, temporal, and image data into em-092

beddings for a multimodal language model.093

• A dataset linking MIMIC-CXR exams with 094

MIMIC-IV-ED records, along with the code 095

and Hugging Face model (available at: https: 096

//anonymous.4open.science/r/anon-D83E). 097

2 Background and Related Work 098

Incorporating more patient data has improved di- 099

agnostic accuracy in radiology reporting. Initial 100

improvements came from using multiple images 101

per exam, like EMNLI; CXR exams often include 102

complementary frontal and lateral views of the pa- 103

tient (Miura et al., 2021; Gaber et al., 2005). Meth- 104

ods such as CXRMate enhance diagnostic accuracy 105

by incorporating a patient’s prior exams to iden- 106

tify changes over time (Nicolson et al., 2024a; Wu 107

et al., 2022; Kelly, 2012; Bannur et al., 2023; Hou 108

et al., 2023). Including the indication section of the 109

radiology report to provide clinical context also pro- 110

vides an improvement (Nguyen et al., 2023). Our 111

investigation focuses on leveraging a more compre- 112

hensive set of patient data to improve diagnostic 113

accuracy. 114

ED records contain a wide range of data, as 115

shown in Figure 1. The reconciled medicines 116

may include furosemide, a diuretic commonly pre- 117

scribed for managing fluid overload, often associ- 118

ated with conditions such as pulmonary edema or 119

congestive heart failure. Elevated blood pressure 120

and an increased heart rate in a patient’s vital signs 121

may correlate with findings such as cardiomegaly 122

or vascular changes. Vital signs such as high tem- 123

perature, elevated respiratory rate, and low oxygen 124

saturation, along with chief complaints of cough 125

and shortness of breath, may suggest pneumonia. 126

Incorporating such data could complement imaging 127

evidence and provide additional context to support 128

better predictions. Our findings demonstrate that 129

ED patient data can indeed improve CXR report 130

generation. 131

Recent advancements in integrating multimodal 132

patient data have improved diagnostic and pre- 133

dictive healthcare tasks. A Transformer encoder 134

combining imaging and non-imaging data outper- 135

formed single-modality models in diagnosing mul- 136

tiple conditions (Khader et al., 2023b). Similarly, 137

the MeTra architecture, integrating CXRs and clin- 138

ical parameters, excelled in predicting ICU sur- 139

vival (Khader et al., 2023a), and ETHOS, with 140

zero-shot learning, surpassed single-modality mod- 141

els in predicting mortality, ICU length of stay, and 142

readmission rate (Renc et al., 2024). These stud- 143
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ies underscore the value of multimodal data, and144

our work demonstrates its benefits for CXR report145

generation.146

Multi-task learning has enhanced biomedical147

models by leveraging shared knowledge across148

tasks. Med-PaLM M, a generalist biomedical149

model, excels in classification, question answering,150

VQA, report summarisation, report generation, and151

genomic variant calling, using diverse modalities152

like images, text, and genomics, often outperform-153

ing specialised models (Tu et al., 2024). Similarly,154

MIMIC-CXR has been utilised in multi-task learn-155

ing with models like MedXChat, which integrates156

instruction-tuning and Stable Diffusion for tasks157

like CXR report generation, VQA, and report-to-158

CXR generation, surpassing other LLM multi-task159

learners (Yang et al., 2023). RaDialog combines160

visual features and pathology findings to generate161

accurate radiology reports and enable interactive162

tasks, improving clinical efficacy. CXR-LLaVA,163

a multimodal LLM, outperformed models such as164

GPT-4 Vision and Gemini Pro Vision in CXR re-165

port generation (Lee et al., 2024).166

Determining the state-of-the-art in CXR report167

generation is challenging due to model unavailabil-168

ity and limited comparisons with recent methods.169

The 2024 Shared Task on Large-Scale Radiology170

Report Generation (RRG24) aimed to address this171

by benchmarking models on a common leader-172

board. The winning model, CXRMate-RRG24173

(Nicolson et al., 2024b), a derivative of CXRMate,174

emerged as a strong contender for state-of-the-175

art. In this work, we compare our model to es-176

tablished models (e.g., EMNLI) and recent bench-177

marks (e.g., CXRMate-RRG24, CXRMate, CXR-178

LLaVA, MedXChat, and RaDialog). We ensure179

a fair comparison by using available code or ob-180

taining generated reports directly from the authors.181

Our evaluation indicates that our model represents182

a statistically significant improvement over these.183

3 Dataset184

We construct a dataset of 46 106 patients by linking185

individual patient information from two separate186

sources: (1) CXR exams from MIMIC-CXR and187

(2) emergency records from MIMIC-IV-ED. Thus,188

we consider MIMIC-CXR exams that occurred dur-189

ing an ED stay from MIMIC-IV-ED. Both datasets190

are publicly available and originate from the Beth191

Israel Deaconess Medical Center in Boston, MA.192

MIMIC-CXR was formed by first extracting pa-193

tient identifiers for exams performed in the ED 194

between 2011–2016, and then extracting all exams 195

for this set of patients from all departments between 196

2011–2016. Each exam includes a semi-structured 197

free-text radiology report (Figure 1) written by a 198

practising radiologist contemporaneously during 199

routine clinical care. Models are often trained to 200

generate the findings and impression sections of a 201

radiology report, where the former details the in- 202

terpretation of a patient’s exam and the latter sum- 203

marises the most important findings. All images 204

and reports were de-identified to protect privacy. 205

Sections from the radiologist reports were extracted 206

using a modification of the official text extraction 207

tool in order to obtain the findings, impression, 208

indication, history, and comparison sections.1 209

MIMIC-IV-ED consists of de-identified data 210

from ED stays between 2011–2019. The data was 211

converted into a denormalised relational database 212

with six primary tables: ED stays, diagnosis, rec- 213

onciled medicines, administered medicines, triage, 214

and aperiodic vital signs. We do not consider the 215

diagnosis table in this work, as it indicates the 216

outcome of a patient’s ED stay. The patients of 217

MIMIC-CXR can be linked to MIMIC-IV-ED via 218

an identifier, allowing an ED-specific dataset to be 219

formed. 220

Example tables for a patient’s exam are shown 221

in Figure 1. The dataset was formed by ex- 222

tracting patient exams with times (formed by 223

the ‘StudyDate’ and ‘StudyTime’ columns of the 224

metadata table) that occurred within the ‘intime’ 225

and ‘outtime’ of one of the patient’s ED stays.2 226

Events during an ED stay that occurred after 227

the exam were removed. Exams with either a 228

missing findings or impression section were not 229

considered. Using the official splits of MIMIC- 230

CXR, this gave a train/validation/test split of 231

45 527/343/236 patients, 76 398/556/958 exams, 232

and 151 818/1 137/1 812 CXRs. Further details are 233

provided in Appendix A. 234

4 Methods 235

We develop a novel approach to transform differ- 236

ent sources of patient data from MIMIC-CXR and 237

MIMIC-IV-ED into embeddings; these are then 238

used to prompt a multimodal language model to 239

generate the findings and impression sections of the 240

1https://anonymous.4open.science/r/anon-D83E
2Exam 59128861 was removed as it overlapped with two

separate ED stays of a patient.
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Token
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Source Source• • •

Time delta

+ + + + + +

Figure 2: Multimodal language model for CXR report generation. The patient data embeddings prompt the decoder
to generate the findings and impression sections of a radiology report.

{"Nitroglycerin SL, Morphine.",

+

+

+

Projection

UniFormer

Projection

UniFormer

Tokenizer

Token embeddings

"Clopidogrel."}

Value
column

Category
column

Text
column

Null 001122 Nitroglycerin
SL 1.23 Hrs

9.5 005444 Morphine 1.23 Hrs

3.6 Null Clopidogrel 0.94 Hrs

Source Index

Value column 0

... ...

001122 3

005444 4

... ...

FNN

Zeros

Indices

Unique time deltas

FNN

+

+

+
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+

+

+
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+
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Example ED table

MIMIC-IV-ED embeddings

"Pneumonia."
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Tokenizer

Token
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+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

• • •

MIMIC-CXR embeddings

History

Tokenizer

Token
embeddings

"___ years old man 

• • • • • •

Exam time delta: 0

CXRs

with fever."

• • •

Patient data embeddings

Figure 3: Proposed patient data embeddings from the multiple heterogeneous data types taken from MIMIC-IV-ED
and MIMIC-CXR. The embeddings are formed from numerical, categorical, textual, temporal, and image data.

radiology report, as illustrated in Figure 2. Each241

embedding of the prompt is the summation of a242

patient data embedding, a source embedding, a243

position embedding, and a time delta embedding.244

Source embeddings differentiate the source of the245

datum, for example, the ‘chief complaint’ column246

of the triage table, the indication section, or an im-247

age. A time delta embedding represents the time248

difference between an event and the exam. The249

patient data embeddings originate from three main250

groups: the tables of MIMIC-IV-ED; the report,251

images, and metadata of the current exam from252

MIMIC-CXR; and the patient’s prior exams (also253

originating from MIMIC-CXR). The prior exam254

and image embeddings are described in Section B255

and Subsection D.2, respectively.256

4.1 Time, Position, & Source Embeddings 257

Events from MIMIC-IV-ED, e.g., administered 258

medicines, are timestamped and are more relevant 259

as they occur closer to the exam time (Ben Abacha 260

et al., 2023). Hence, time delta embeddings are 261

used to indicate this to the model. The time 262

delta is the event time subtracted from the exam 263

time, converted to hours and mapped using D = 264

1/
√
∆+ 1, emphasising recent events. These 265

mapped time deltas are processed via a feedfor- 266

ward neural network (FNN), f(DW1)W2, where 267

W1 ∈ R1,2048, W2 ∈ R2048,H , f(·) is the SiLU 268

activation (Hendrycks and Gimpel, 2016), and H 269

is the decoder’s hidden size. As shown in Figure 2, 270

these embeddings are applied only to the prompt. 271
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The exam time for current and prior exam data was272

used as the event time for the time delta calculation.273

The position embeddings are ordered by the time274

delta (Figure 3). This is due to the rotary posi-275

tion embeddings of the decoder; tokens that are276

closer together are given more importance. Hence,277

the smaller the time delta, the closer the patient278

data embedding’s position is to the report token279

embeddings. Following Nicolson et al. (2024a),280

each unique patient data source is given its own281

source embedding. This includes the images, each282

report section, each table’s text column and value-283

category columns (described in the next section),284

prior images, and prior report sections.285

4.2 Patient Data Embeddings: Tabular Data286

An example table and its conversion to embeddings287

is shown in Figure 3. The columns of each ta-288

ble were designated as value, category, text, or289

time columns. Value columns contained numeric290

data, while category columns contained categorical291

data. To convert an exam’s tabular data to em-292

beddings, data from value and category columns293

were grouped by their time delta, where each group294

formed a feature vector. The feature vector initially295

consisted of zeros. Values and categories from the296

group were then used to set its values based on297

indices determined by a lookup table. For value298

columns, the lookup table determined the index299

where the numeric value was placed. For category300

columns, it determined which indices were acti-301

vated (set to 1).302

Next, the feature vector was passed through an303

FNN f(XiW1)W2 to form the embedding, where304

Xi ∈ R|UC |,|Li| are the grouped features, UC is305

the set of unique time deltas, W1 ∈ R|Li|,2048 and306

W2 ∈ R2048,H , Li is a lookup table, and i desig-307

nates the table. Each table has a unique FNN and308

lookup table. Rows for a value column always had309

a unique time, preventing multiple values from the310

same column in a group. We investigated alter-311

natives to form the value-category embeddings in312

Section 6. The described framework was found to313

be the most efficient. Columns with a high cardi-314

nality were set as text columns. Text embeddings315

were formed via the decoder’s tokenizer and token316

embeddings. Text embeddings were given the time317

delta embedding from their respective row. The318

column designation for each table in Figure 1 is319

described in the Appendix C.320

4.3 Patient Data Embeddings: Report 321

Sections 322

Here, we consider five sections of the radiology 323

report: the findings, impression, indication, his- 324

tory, and comparison sections. The findings and 325

impression sections serve as the ground truth to be 326

generated. The remainder form part of the patient 327

data embeddings. The indication section explains 328

the reason for the exam, such as symptoms or sus- 329

pected conditions. The history section provides 330

relevant medical history, such as past conditions 331

and treatments. The comparison section mentions 332

any prior exams, which are used to capture disease 333

progression. These sections provide context that 334

guides the interpretation of the exam, influencing 335

the content of the findings and impression sections. 336

The embeddings were formed via the decoder’s tok- 337

enizer and token embeddings. Of these, the history 338

and comparison sections have not been investigated 339

for CXR report generation. The comparison section 340

was used only when prior exams were considered. 341

5 Experiment Setup 342

Our multimodal language model, illustrated in Fig- 343

ure 2, is based on CXRMate-RRG24; it features 344

a Llama decoder and the UniFormer as the image 345

encoder. The training procedure for our model 346

involved three stages: (1) initial training on the 347

MIMIC-CXR training set using only images as 348

input with Teacher Forcing (TF) (Williams and 349

Zipser, 1989), (2) further training on the dataset 350

described in Section 1 with the inputs detailed in 351

Table 1, again using TF, and (3) reinforcement 352

learning on the same dataset through self-critical se- 353

quence training (SCST) (Rennie et al., 2017) (only 354

for Table 2). Our evaluation metrics included four 355

that capture the semantics of radiology reporting 356

— RadGraph-F1 (RG), CheXbert-F1 (CX), CXR- 357

BERT (CB), and GREEN (G) — as well as three 358

natural language generation metrics: BERTScore- 359

F1 (BS), ROUGE-L (R-L), and BLEU-4 (B4). We 360

also propose a metric that measures n-gram repeti- 361

tion rate, namely the absence of repeated n-grams 362

(ARN). Comprehensive details on ARN and the 363

other metrics, the model architecture, training pro- 364

cedure, significance testing, and comparison meth- 365

ods are provided in Appendix D. 366

6 Results & Discussion 367

The impact of different patient data sources on 368

the performance of CXR report generation is sum- 369

marised in Table 1. This analysis identifies which 370
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Table 1: Results of the various patient data sources on the test set described in Section 3. Results were calculated
over ten training runs (n = 9580 exams; 958 × 10 runs). Underlined and dashed underlined scores indicate a
significant difference to the scores of ‘Images’ and ‘Images + effective sources (h = 0)’, respectively (p < 0.05).
Evaluation is performed on both the findings and impression sections.

Patient data sources RG CX CB G BS R-L B4 |E[:, 0]|

Images only
Images 24.54 30.10 59.25 35.16 24.26 25.91 4.75 272.4

Patient emergency department data (MIMIC-IV-ED)
Images + ED stays 24.20 29.55 58.37 34.64 24.06 25.77 4.66 273.4
Images + triage 24.59 31.33 62.79 35.78 24.40 25.96 4.76 278.9
Images + vital signs 24.23 30.61 60.61 35.15 24.04 25.86 4.70 274.7
Images + reconciled medicines 25.10 32.05 64.70 36.32 24.71 26.29 4.93 355.6
Images + administered medicines 24.22 30.40 60.13 34.85 23.97 25.61 4.58 273.0

Patient radiology data (MIMIC-CXR)
Images + indication 25.01 32.78 65.49 35.88 24.73 26.32 5.15 279.5
Images + history 24.88 31.66 63.91 35.76 24.91 26.70 5.54 277.0
Images + metadata 24.07 30.42 59.75 34.79 23.86 25.59 4.58 273.4

Prior exams
Images + h = 1 24.71 30.98 62.60 35.81 24.38 26.00 4.82 603.0
Images + h = 2 24.56 31.43 62.09 35.43 24.04 25.80 4.84 878.1
Images + h = 3 24.50 30.73 59.89 35.21 24.03 25.82 4.70 1134.3
Images + h = 1 + comparison 24.92 31.46 62.93 35.84 24.34 26.03 4.89 607.4
Images + h = 2 + comparison 24.52 31.01 61.36 34.89 23.90 25.62 4.72 882.6
Images + h = 3 + comparison 24.31 30.93 60.10 34.35 23.31 25.39 4.72 1138.8

All effective sources (triage, reconciled medicines, indication, and history)
Images + effective sources (h = 0) 25.52 32.49 65.93 36.26 25.16 26.81 5.34 373.9
Images + effective sources (h = 1) 25.11 31.14 61.19 35.80 24.95 26.45 5.21 704.5
Images + effective sources (h = 1 + comparison) 25.05 30.68 60.99 35.94 24.94 26.48 5.24 709.0

Ablation from Images + effective sources (h = 0)
- triage 25.65 32.85 65.38 36.33 25.25 26.75 5.33 367.4
- reconciled medicines 25.43 32.48 65.63 36.42 25.23 26.86 5.40 290.7
- indication 25.46 32.92 65.69 36.41 25.21 26.79 5.36 366.7
- history 25.41 32.53 65.82 36.65 25.12 26.72 5.37 369.2
- time delta 25.31 33.03 65.72 36.17 25.10 26.75 5.34 373.9

additional data sources improve performance com-371

pared to using only images. Significant improve-372

ments were observed by incorporating either triage373

or reconciled medicine data from MIMIC-IV-ED374

dataset. Notably, this data markedly improved375

scores on the radiology report metrics (RG, CX,376

CB, and G). These findings demonstrate that ED377

patient data can improve the diagnostic accuracy378

of CXR report generation. Aperiodic vital sign and379

administered medicine data did not significantly380

improve the scores overall, likely due to their fre-381

quency of occurrence in the exams (62% and 37%,382

respectively). However, as shown in Table F.1, a383

significant improvement in performance was at-384

tained when evaluated solely on exams that include385

an aperiodic vital sign table.386

Incorporating the indication or history section387

led to significant score improvements. This demon-388

strates the substantial influence these sections have389

on the findings and impression sections. Con-390

versely, adding the metadata table did not result in391

significant score improvements, indicating it lacks392

valuable information for CXR report generation.393

While previous studies have established that the394

indication section boosts CXR report generation 395

(Nguyen et al., 2023), our findings demonstrate that 396

the history section is equally important. 397

When examining the impact of prior exams, we 398

considered a maximum history size h of up to three, 399

incorporating the findings and impression sections, 400

and images from prior exams. A history size of one 401

or two significantly increased the scores, which 402

is consistent with previous findings (Wu et al., 403

2022). However, performance gradually degraded 404

as the history size increased, which contradicts ear- 405

lier studies. We suspect this is due to the size of 406

the prompt increasing as h grows, combined with 407

the limitations of our model architecture. |E[:, 0]| 408

in Table 1 is the average prompt length over the 409

test set, where E = [E0,E1, · · · ]. It can be seen 410

that |E[:, 0]| increases substantially as h increases. 411

Since we provide all inputs to the decoder’s self- 412

attention, a large input size may cause attention 413

dilution (Qin et al., 2022). With more inputs, the at- 414

tention weights must be distributed across a larger 415

number of inputs, resulting in each input receiving 416

a smaller share of the attention, making it harder 417

for the model to focus on the most relevant inputs. 418
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Table 2: Benchmark models on the test set described in Section 3 (n = 958). Evaluation is on the findings section
only. Underlined indicates statistical significance between the top two scores (p < 0.05). In the ‘Train samples’
column, ‘images’ means the model generates reports per image, while ‘exams’ means a report generated per exam.
Model Train samples RG CX CB G BS R-L B4 ARN

EMNLI (Miura et al., 2021) 152 173 exams 29.1 28.9 66.6 41.5 24.4 29.3 4.1 95.1
CMN (Chen et al., 2021) 270 790 images 23.6 24.3 49.4 36.6 19.7 27.8 4.0 99.3
TranSQ (Kong et al., 2022) 368 960 images 28.7 30.4 62.3 38.2 20.4 23.3 4.1 98.5
RGRG (Tanida et al., 2023) 166 512 images 22.9 22.8 37.9 31.1 23.4 22.0 3.7 96.5
CvT2DistilGPT2 (Nicolson et al., 2023) 270 790 images 23.9 29.3 59.8 37.0 24.8 28.6 5.4 99.0
RaDialog (Pellegrini et al., 2023) 276 778 images 24.4 38.4 60.7 34.9 26.2 26.7 4.8 94.4
MedXChat (Yang et al., 2023) 270 790 images 21.0 13.1 21.3 31.4 19.3 23.8 4.0 97.9
CXR-LLaVA-v2 (Lee et al., 2024) 193 513 images 19.4 20.7 44.1 24.0 23.6 21.1 1.7 99.7
CXRMate (Nicolson et al., 2024a) 125 395 exams 26.5 33.9 71.3 40.3 30.5 29.1 7.5 98.2
CXRMate-RRG24 (Nicolson et al., 2024b) 550 395 exams 28.9 31.2 58.2 40.2 31.0 28.7 6.6 97.7

Images + effective sources (h = 0) 76 398 exams 25.1 29.6 66.0 36.9 29.4 27.8 5.8 98.5
+ RL (CXR-BERT + BERTScore reward) 76 398 exams 30.4 35.7 79.1 41.6 37.2 31.6 8.7 93.5

+ reward per section 76 398 exams 30.1 33.7 78.3 41.6 37.5 32.2 8.4 94.6
+ ARN reward 76 398 exams 30.2 33.6 78.0 40.7 37.3 31.9 7.6 99.3

Indication: New endotracheal tube placement.
heartrate o2sat acuity pain chiefcomplaint

57 90 1 0 ULCER/CHF

Image (Model: Images from Table 1)
Generated findings: There is an endotracheal tube in satisfactory position, terminating 3.1 cm above the level of the carina. A right-sided PICC now
terminates at the cavoatrial junction. An enteric tube is seen coursing below the level of the diaphragm, inferior aspect out of the field of view. There is
moderate cardiomegaly. The lungs are clear without focal consolidation, pleural effusion or pneumothorax. 
Generated impression: 1. Appropriate position of a right sided PICC, terminating at the cavoatrial junction. 2. No acute cardiopulmonary process.

Image + triage + reconciled medications + indication +  (Model: Images + effective sources (h=0) from Table 1)
Generated findings: An endotracheal tube is in place with the tip terminating at the level of the thoracic inlet approximately 4 cm above the carina. A
right upper extremity PICC is in place with the tip terminating in the low SVC. A nasogastric tube is seen coursing below the diaphragm and out of view
on this image. A right upper lobe opacity has resolved from prior study. The heart is moderately enlarged, as before. There is mild pulmonary edema.
No pleural effusion or pneumothorax is detected. There is no focal consolidation concerning for pneumonia.
Generated impression: Endotracheal tube tip at the level of the thoracic inlet 4 cm above the carina and nasogastric tube in appropriate position. Mild
pulmonary edema and cardiomegaly.

Case studyTriage:

Radiologist findings: There has been interval placement of an endotracheal tube, which is low lying with tip approximately 1.6 cm above the carina.
An esophageal tube is in place coursing inferior to the diaphragm; however, tip out of view of the radiograph. Lung volumes remain low with mild
pulmonary edema. No significant pleural effusion or pneumothorax is identified. The cardiomediastinal silhouette is enlarged, however, unchanged.
Radiologist impression: Interval placement of endotracheal tube with tip low lying, approximately 1.6 cm above the carina. Mild pulmonary edema.
Distal tip of esophageal tube not within the field of view of radiograph.

Reconciled medications (names): Metoprolol Tartrate, Thiamine HCl, Albuterol Sulfate, Provigil, spironolactone,
Fluoxetine, nicotine (polacrilex), Imdur, Multivitamin, Ibuprofen, Sanctura XR, Metformin, Abilify, Plavix, Furosemide, ProAir
HFA, Briefs, Adult-Extra Large, Omeprazole, ProFit Precision Scale, Senna, Estrace, Lac-Hydrin, triazolam, Lisinopril.

Figure 4: Case study demonstrating how incorporating auxiliary patient data can aid with report generation.

Next, we combined all effective sources of419

patient data (those providing a significant im-420

provement). This included ‘triage’, ‘reconciled421

medicines’, ‘indication’, and ‘history’. The best422

performance was observed with no prior exams423

(h = 0), indicating that using any prior exams in424

combination with other sources is detrimental with425

our model, possibly due to attention dilution. With426

h = 0, the combination of all effective sources427

outperformed each individual source. We then con-428

ducted an ablation study using ‘Images + effective429

sources (h = 0)’, which demonstrated that remov-430

ing any individual patient data source did not result431

in a significant change in performance.432

Following this, we further trained ‘Images + ef-433

fective sources (h = 0)’ with reinforcement learning434

(RL), as described in Subsection 5. Its performance435

is shown in Table 2; a CXR-BERT and BERTScore436

composite reward was used, which demonstrates a437

marked improvement for each metric, except ARN. 438

The low ARN indicates that this reward introduced 439

repetitions. We also propose to calculate the reward 440

separately for the findings and impression section, 441

as described in Appendix E. While this produces 442

similar results for the findings section, as shown in 443

Table 2, this significantly improves the scores on 444

the impression section section, as shown in Table 445

E.1. Finally, we incorporate ARN into the com- 446

posite reward. This effectively reduces repetitions, 447

as evidenced by the improved ARN, albeit with a 448

slight trade-off in the other metrics. Compared to 449

other benchmark CXR report generation models in 450

the literature that included MIMIC-CXR in their 451

training data, our model significantly outperformed 452

them on multiple metrics in Table 2, despite having 453

substantially fewer training samples. This demon- 454

strates the impact of incorporating auxiliary patient 455

data on CXR report generation. 456
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Figure 4 demonstrates how auxiliary patient data457

enhances CXR report generation. Mild pulmonary458

edema was identified only when this data was incor-459

porated. The patient’s low oxygen saturation, chief460

complaint of congestive heart failure (CHF) — a461

common cause of pulmonary edema — and recon-462

ciled medicines (Furosemide, Metoprolol Tartrate,463

Lisinopril, Spironolactone) indicate active manage-464

ment of fluid overload and cardiac dysfunction, all465

pointing to pulmonary edema. This supplemen-466

tary evidence allowed the model to corroborate the467

imaging findings and identify pulmonary edema.468

In Appendix G, we perform an error analysis to469

assess the influence of auxiliary patient data on the470

generated reports. Our findings show that incor-471

porating auxiliary patient data increases the AUC472

for 10 out of the 14 CheXpert labels (Figure E.1),473

demonstrating its utility across multiple patholo-474

gies. Additionally, we analysed its impact on the475

generated reports for eight exams, with the follow-476

ing key observations:477

True positives (n = 2): The model utilised sup-478

portive auxiliary patient data effectively. (See Ap-479

pendix G.2.1 and G.2.2.)480

False positives (n = 2): The model was misled by481

confounding auxiliary patient data. (See Appendix482

G.2.3 and G.2.4.)483

True negatives (n = 2): The model correctly ig-484

nored confounding auxiliary patient data. (See Ap-485

pendix G.2.5 and G.2.6.)486

False negatives (n = 2): The model failed to487

leverage supportive auxiliary patient data. (See Ap-488

pendix G.2.7 and G.2.8.)489

Auxiliary patient data sources—including the in-490

dication and history sections, triage data, and rec-491

onciled medicines—collectively contributed to the492

model’s predictions. No single source consistently493

dominated in providing evidence, with the interplay494

between these sources frequently complementing495

one another. A critical challenge for the model lies496

in its ability to appropriately balance the auxiliary497

patient data evidence with imaging evidence, partic-498

ularly when conflicting signals are present. To ad-499

dress this limitation, we propose two key improve-500

ments: increasing the size of the training dataset,501

which is currently relatively small, and adopting an502

LLM-based decoder. LLMs offer advanced reason-503

ing capabilities, enabling them to better synthesise504

and prioritise evidence from diverse sources.505

Table 3 compares different methods for convert-506

ing value and category columns into embeddings507

using the triage and reconciled medicines table, as508

Table 3: Patient data embedding strategies. Underlined
indicates a stat. sig. difference to ‘Baseline’ (p < 0.05).
Embeddings RG CX CB BS

Images
Baseline 29.00 25.81 59.04 23.85

Images + triage + reconciled medicines
Grouped embeddings 31.69 26.72 64.01 24.38

Separate embeddings 25.28 25.32 46.29 23.51

Values-to-text, categories-
to-embeddings

30.70 26.46 58.62 24.58

these contain multiple value and category columns. 509

The aforementioned method of producing embed- 510

dings by grouping data from value and category 511

columns (‘Grouped embeddings’) is compared to 512

two other methods. The first is separate embed- 513

dings for each datum, where each value column 514

datum is separately transformed using the previ- 515

ously described FNN, while each category column 516

datum is converted to an embedding using a learn- 517

able weight matrix, akin to how token embeddings 518

are produced (‘Separate embeddings’). The second 519

method modifies ‘Separate embeddings’ by instead 520

converting the value column data to text and us- 521

ing the decoder’s tokenizer and token embeddings 522

(‘Values-to-text, categories-to-tokens’). The results 523

indicate that the grouped embeddings method was 524

the best representation of heterogeneous patient 525

data for a multimodal language model. 526

7 Conclusion 527

This paper demonstrates the value of incorporat- 528

ing diverse patient data into automated CXR re- 529

port generation. By integrating patient data from 530

the MIMIC-CXR and MIMIC-IV-ED datasets, we 531

have shown significant improvements in the diag- 532

nostic accuracy of generated radiology reports. Our 533

empirical evaluation uncovers new sources of pa- 534

tient information that enhance CXR report genera- 535

tion, including data from ED stays, triaging infor- 536

mation, aperiodic vital signs, medicines, and the 537

history section of radiology reports. We present 538

specific methods to convert multimodal patient data 539

into embeddings for a language model, encompass- 540

ing numerical, categorical, textual, temporal, and 541

image data. We encourage further research and 542

experimentation using our released dataset splits, 543

code, and model checkpoints to explore innovative 544

methods for multimodal patient data integration, 545

with the ultimate goal of enhancing diagnostic ac- 546

curacy and patient care. 547
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8 Limitations548

Despite the promising results demonstrated in this549

study, several limitations must be acknowledged.550

Firstly, the generalisability of our findings may be551

constrained by the datasets utilised, specifically552

MIMIC-CXR and MIMIC-IV-ED, which are de-553

rived from a single institution, the Beth Israel Dea-554

coness Medical Center. This could introduce biases555

unique to the demographic and clinical practices of556

this institution, potentially limiting the applicabil-557

ity of our model to other healthcare settings with558

different patient populations or clinical workflows.559

Our reliance on these datasets is due to the fact that560

they are the only publicly available sources that561

link CXR exams with ED records.562

This study currently lacks subjective evaluation563

by radiologists, which is essential for assessing564

the quality of generated reports. We plan to ad-565

dress this by evaluating with a private dataset and566

conducting radiologist-led assessments. To facil-567

itate this, we are securing agreements and ethics568

approval for access to patient data and radiologist569

time. However, this process is extensive and be-570

yond the scope of this study, and will instead be571

used to subjectively evaluate future models.572

Another limitation pertains to the completeness573

and quality of the patient data. Despite incorporat-574

ing a wide range of data sources, the datasets still575

contain missing or incomplete information, which576

can affect model performance. For example, not577

all exams include a history section, and not all ED578

patient records have administered medicines avail-579

able, leading to potential gaps in the data that the580

model can utilise. However, this reflects the nature581

of real patient records where issues of data quality582

and completeness are to be expected.583

Our model’s architecture, while effective, has584

certain limitations. It struggles with large input585

sizes, especially when incorporating multiple prior586

exams, likely due to attention dilution. It also at587

times struggles with supportive or confounding ev-588

idence from the auxiliary patient data, introducing589

false positive or false negative predictions. Future590

work should explore advanced attention mecha-591

nisms, hierarchical models, and LLMs to better592

manage large input sequences and to better bal-593

ance auxiliary patient data evidence with imaging594

evidence.595

The interpretability of the model also poses a596

challenge. While our model shows improved di-597

agnostic accuracy, the decision-making process598

within the multimodal language model remains a 599

black box. Developing methods to enhance the 600

interpretability and explainability of the model’s 601

outputs would be beneficial, especially in clinical 602

settings where understanding the rationale behind 603

a diagnosis is critical. 604

Finally, while we provide a comprehensive set of 605

metrics to evaluate our model’s performance, these 606

metrics focus primarily on the diagnostic accuracy 607

and quality of the generated reports. Broader eval- 608

uations considering clinical outcomes, such as the 609

impact on patient management or reduction in ra- 610

diologist workload, would offer a more holistic 611

view of the benefits and limitations of CXR report 612

generation models in general. Conducting such 613

assessments could help to better understand the 614

practical implications of deploying these models in 615

a clinical setting. 616

In summary, while our study provides valuable 617

insights into the integration of multimodal patient 618

data for CXR report generation, addressing these 619

limitations will be crucial for further advancements 620

and broader adoption of such models in clinical 621

practice. Future research should explore alternative 622

architectures and training strategies, find alternative 623

datasets to evaluate generalisability, improve model 624

interpretability, and comprehensively assess the 625

practical impact on patient care and radiologist 626

workflow. 627

9 Ethical Considerations 628

In this research, we used real-world patient data 629

from the MIMIC-CXR and MIMIC-IV-ED datasets. 630

Since these datasets are de-identified, we consider 631

privacy leakage risks to be minimal. Our method 632

employs a language model to generate medical re- 633

ports from patient data. However, we acknowledge 634

that language models can exhibit bias and produce 635

hallucinations, which may result in incorrect con- 636

tent in the generated reports. 637
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A Dataset Details872

Each of the exams for the dataset described in Sec-873

tion 3 had one ED stay and triage row; 53% had at874

least one reconciled medicines row with up to 106875

rows; 62% had at least one vital signs row with up876

to 69 rows; and 37% had at least one administered877

medicines row with up to 52 rows. Exams had an878

indication section 66% of the time with a maximum879

of 75 words, a history section 34% of the time with880

a maximum of 74 words, and a comparison section881

97% of the time with a maximum of 129 words.882

Only one exam had both an indication and a history883

section.884

B Prior Exam Embeddings885

The images, findings section, and impression sec-886

tion from previous exams were considered. For887

prior exams, the time delta was positive, calculated888

by subtracting the time of the prior exam from the889

current exam. The images, findings section, and im-890

pression section from prior exams were given dis-891

tinct source embeddings, separate from the current892

exam, to enhance differentiation. The comparison893

section from the current exam was also investigated,894

anticipating that references to prior exams in this895

section would prompt the decoder to reflect this in896

the generated report. We explored prior exams with897

a history size h of up to three. Note that all exams898

from MIMIC-CXR were considered for the priors899

(train/validation/test 222 758/1 808/3 269 exams),900

including those that did not occur during an ED901

stay and those that did not have a findings and/or902

impression section.903

C Table Column Determination904

The columns from the tables described in Figure 1905

were given the following designations:906

• For the ED stay table, the patients ‘intime’907

was used as the event time. Gender (e.g., ‘F’),908

race (e.g., ‘HISPANIC OR LATINO’), and909

arrival transport (e.g., ‘AMBULANCE’) were910

designated as category columns. The disposi-911

tion column was not considered.912

• For the triage table, the ‘intime’ from the913

ED stay table was used. Temperature (e.g.,914

‘100.6’), heart rate (e.g., ‘93’), respiratory rate915

(e.g., ‘16’), O2 saturation (e.g., ‘94’), systolic 916

blood pressure (SBP) (e.g., ‘110’), diastolic 917

blood pressure (DBP) (e.g., ‘56’), and acuity 918

(e.g., ‘2’) were designated as value columns. 919

Pain (e.g., ‘6-9’ and ‘yes.’) and the chief 920

complaint (e.g., ‘BILATERAL FOOT PAIN’) 921

were designated as text columns. 922

• The column designations for the aperiodic vi- 923

tal signs table were identical to the triage table, 924

except for the rhythm column (e.g., ‘Normal 925

Sinus Rhythm’), which was treated as a cate- 926

gory column. The aperiodic vital signs table 927

also had no chief complaint column and the 928

‘charttime’ column was used as the event time. 929

• For the reconciled medicines table, the ‘in- 930

time’ from the ED stay table was used as 931

the event time, as it pertains to the patient’s 932

medicine history prior to the ED stay. The 933

name column was designated as a text col- 934

umn, while the gsn, ndc, etc_rn, and etccode 935

columns were designated as category columns. 936

The etcdescription column was not consid- 937

ered, as it is a descriprion of the etccode col- 938

umn. 939

• For the administered medicines (pyxis) table, 940

‘charttime’ was used as the event time. The 941

med_rn, name, gsn_rn, and gsn columns were 942

all treated as category columns. The name col- 943

umn for the administered medicines column 944

did not have as high of a cardinality as the 945

name column from the reconciled medicines 946

column, allowing it to be considered as a cate- 947

gory column. 948

• For the metadata table, the ‘PerformedProce- 949

dureStepDescription’, ‘ViewPosition’, ‘Proce- 950

dureCodeSequence_CodeMeaning’, ‘View- 951

CodeSequence_CodeMeaning’, and ‘Patien- 952

tOrientationCodeSequence_CodeMeaning’ 953

columns were considered, and designated as 954

category columns. 955

D Experiment Setup 956

D.1 Metrics 957

GREEN (Ostmeier et al., 2024), CheXbert- 958

F1 (Smit et al., 2020), RadGraph-F1 959

(Delbrouck et al., 2022), BLEU-4 (Pap- 960

ineni et al., 2001), and BERTScore-F1 961

(roberta-large_L17_no-idf_rescaled) 962

(Zhang et al., 2020) have been found to correlate 963
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with radiologists’ assessment of reporting (Yu964

et al., 2023; Ostmeier et al., 2024) and were a965

part of our evaluation. Additionally, we include966

CXR-BERT (Boecking et al., 2022; Nicolson967

et al., 2024a), and ROUGE-L (Lin and Hovy,968

2003). GREEN, CheXbert-F1, RadGraph-F1, and969

CXR-BERT were intended to capture the clinical970

semantic similarity between the generated and971

radiologist reports, while BERTscore-F1 was972

intended to capture general semantic similarity.973

Finally, ROUGE-L and BLEU-4 were intended974

to capture the syntactic similarity between the975

generated and radiologist reports. We also propose976

a new metric that measures n-gram repetition rate,977

namely the absence of repeated n-grams (ARN). It978

is calculated as:979

ARN =

{
1.0 if L < n,

1.0−
∑M

i=1(Count(gi)−1)
M if L ≥ n,

(1)980

where L is the total number of tokens in the gener-981

ated report, n is the n-gram size, M = L−n+1 is982

the total number of n-grams in the report, gi is the983

ith unique n-gram in the report, Count(gi) is the984

n-gram frequency in the report. The tokenizer de-985

scribed in Appendix D.2 was used with an n-gram986

size of three.987

For the models in Table 2 that generate a report988

for each image in an exam, the average score was989

taken across all reports for an exam. Following990

this, the final average score was computed across991

all exams for both models that generate a report per992

image and those that generate a report per exam.993

For CheXbert, the macro-averaged F1 was com-994

puted between the 14 CheXbert observations ex-995

tracted from the generated and radiologist reports.996

“No mention”, “negative”, and “uncertain” were997

considered negative, while “positive” was consid-998

ered positive. Here, the true positives, false posi-999

tives, and false negatives were averaged over the1000

reports of each exam for the models that generate a1001

report per image.1002

We also perform statistical testing; first, a Lev-1003

ene’s test was conducted to reveal if the variances1004

across model scores was homogeneous or not. If1005

the assumption of equal variances was upheld, a1006

one-way ANOVA was conducted to determine if1007

there was a significant difference between mod-1008

els. Finally, pairwise Tukey-HSD post-hoc tests1009

were used for pairwise testing. If the assumption of1010

equal variances was violated, a one-way Welch’s1011

ANOVA was conducted to determine if there was1012

a significant difference between models. Finally, 1013

Games-Howell post hoc tests were used for pair- 1014

wise testing. A p-value of 0.05 was used for all 1015

significance testing. Statistical testing was not per- 1016

formed for CheXbert, as it is a classification metric. 1017

D.2 Model 1018

Our model is illustrated in Figure 2; following 1019

Nicolson et al. (2024b), we utilised UniFormer 1020

as the image encoder (in particular, the 384× 384 1021

base model warm started with its token labelling 1022

fine-tuned checkpoint) (Li et al., 2023). The image 1023

embeddings are formed by processing each image 1024

in the exam separately with the image encoder and 1025

then projecting its last hidden state to match the 1026

decoder’s hidden size using a learnable weight ma- 1027

trix. Each image was resized using bicubic inter- 1028

polation so that its smallest side had a length of 1029

384 and its largest side maintained the aspect ratio. 1030

Next, the resized image was cropped to a size of 1031

R3×384×384. The crop location was random during 1032

training and centred during testing. Following (El- 1033

gendi et al., 2021), the image was rotated around its 1034

centre during training, where the angle of rotation 1035

was sampled from U [−5◦, 5◦]. Finally, the image 1036

was standardised using the statistics provided with 1037

the UniFormer checkpoint. A maximum of five 1038

images per exam were used during training. If 1039

more were available, five were randomly sampled 1040

uniformly without replacement from the exam for 1041

each epoch. 1042

Again following (Nicolson et al., 2024b), we 1043

employed the Llama architecture for the decoder, 1044

which is notable for features such as its rotary posi- 1045

tional encoding (RoPE), root mean square normali- 1046

sation (RMSNorm), and SwiGLU activation func- 1047

tion (Touvron et al., 2023). A byte-level byte pair 1048

encoding tokenizer (Wang et al., 2020) was trained 1049

with a vocabulary size of 30 000. It was trained 1050

on the findings, impression, indication, and history 1051

sections (not the comparison section) of the entire 1052

MIMIC-CXR training set, as well as the ‘pain’ and 1053

‘chiefcomplaint’ columns from the triage table, the 1054

‘name’ column of the reconciled medicines table, 1055

and the ‘pain’ column from the vital signs table 1056

(from the entire MIMIC-IV-ED dataset). Newline, 1057

tab, repeated whitespaces, and leading and trailing 1058

whitespaces were removed from any text before 1059

tokenization. 1060

The hyperparameters of the Llama decoder were 1061

six hidden layers, a hidden size of 768, 12 attention 1062

heads per layer, and an intermediate size of 3 072. 1063
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Figure D.1: Attention mask for the decoder. Non-causal
masking was used for the patient data embeddings and
causal masking for the report token embeddings.

The maximum number of position embeddings was1064

set to 2 048 to accommodate all the patient data1065

embeddings and the report tokens. The maximum1066

number of tokens that could be generated was set1067

to 256, which was also the limit for the radiologist1068

reports during training. During testing, a beam size1069

of four was utilised. The Llama decoder allows a1070

custom attention mask to be provided in current im-1071

plementations.3 This enabled non-causal masking1072

to be utilised for the prompt and causal masking for1073

the report token embeddings, as shown in Figure1074

D.1. This ensured that the self-attention heads were1075

able to attend to all of the patient data embeddings1076

at each position.1077

D.3 Training1078

Three stages of training were performed. Each1079

stage used AdamW (Loshchilov and Hutter, 2022)1080

for mini-batch gradient descent optimisation and1081

gradient clipping with a maximum norm of 1.0 to1082

prevent exploding gradients and maintain training1083

stability. Training and evaluation was performed1084

on a 94GB NVIDIA H100 GPU. The three stages1085

were as follows:1086

1. Teacher forcing (TF) (Williams and Zipser,1087

1989) was performed on the MIMIC-CXR1088

dataset with only the images for each exam as1089

input, and exams that contained both a find-1090

ings and impression section. This gave a train-1091

ing/validation split of 232 855/1 837 images,1092

125 417/991 exams, and 57 102/436 patients.1093

3https://huggingface.co/blog/poedator/4d-masks

Training was performed with an initial learn- 1094

ing rate of 5e-5, a mini-batch size of 8, a maxi- 1095

mum of 32 epochs, and with float16 automatic 1096

mixed precision. All model parameters were 1097

trainable during this stage. The validation 1098

macro-averaged CheXbert-F1 was the mon- 1099

itored metric for checkpoint selection. This 1100

stage was necessary, as the language model 1101

struggled to generate reports from multiple 1102

patient data sources without prior learning. 1103

2. TF was used in the second stage of train- 1104

ing, with the MIMIC-CXR & MIMIC-IV-ED 1105

dataset described in Section 3 with the inputs 1106

described in Table 1. The training strategy 1107

was identical to the previous stage, except that 1108

a maximum of 16 epochs was performed, and 1109

the image encoder’s parameters were frozen 1110

(except for its projection). The models fea- 1111

tured in Table 1 were trained using only the 1112

first two stages. 1113

3. Reinforcement learning using self-critical se- 1114

quence training (SCST) (Rennie et al., 2017) 1115

was performed with the rewards described in 1116

Appendix E in the final stage of training. The 1117

sample report for SCST was generated with 1118

top-k sampling (k = 50). Training was per- 1119

formed with an initial learning rate of 5e-6, 1120

a mini-batch size of 32, a maximum of 32 1121

epochs, and with float32 precision. A warmup 1122

phase of 5 000 training steps was used for 1123

the learning rate, linearly increasing from 1124

zero. The image encoder’s parameters were 1125

frozen during this stage (except for its pro- 1126

jection). The validation BERTScore-F1 was 1127

the monitored metric for checkpoint selection. 1128

This stage of training was only applied to the 1129

best model from Table 1, ‘Images + effective 1130

sources (h = 0)’, with the results presented in 1131

Table 2. 1132

D.4 Comparison Models 1133

The generated reports for the models in Table 2 1134

were attained as follows: 1135

• EMNLI reports were generated follow- 1136

ing https://github.com/ysmiura/ifcc 1137

(Miura et al., 2021). 1138

• CMN reports were generated follow- 1139

ing https://github.com/zhjohnchan/ 1140

R2GenCMN (Chen et al., 2021). 1141
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• TranSQ reports were kindly provided by the1142

authors (Kong et al., 2022).1143

• RGRG reports were generated follow-1144

ing https://github.com/ttanida/rgrg1145

(Tanida et al., 2023).1146

• CvT2DistilGPT2 reports were generated1147

following https://github.com/aehrc/1148

cvt2distilgpt2 (Nicolson et al., 2023).1149

• RaDialog reports were kindly provided by the1150

authors (Pellegrini et al., 2023).1151

• MedXChat reports were kindly provided by1152

the authors (Yang et al., 2023).1153

• CXR-LLaVA-v2 reports were generated fol-1154

lowing https://huggingface.co/ECOFRI/1155

CXR-LLAVA-v2 (Lee et al., 2024).1156

• CXRMate reports were generated following1157

https://huggingface.co/aehrc/cxrmate1158

(Nicolson et al., 2024a).1159

• CXRMate-RRG24 reports were generated fol-1160

lowing https://huggingface.co/aehrc/1161

cxrmate-rrg24 (Nicolson et al., 2024b).1162

CXRMate-RRG24 was trained on five datasets, in-1163

cluding MIMIC-CXR. RGRG was trained on the1164

ImaGenome dataset derived from MIMIC-CXR —1165

which may have some overlap with our test set.1166

E Reinforcement Learning Rewards1167

The separate reward per section was calculated as:1168

rs(ŵf ,wf , ŵi,wi) =α1 · rf (ŵf ,wf )+

α2 · ri(ŵi,wi),
(2)1169

where rs(·) is the composite reward for the sections1170

of the report, rf (·) is the reward for the findings1171

section, and ri(·) is the reward for the impression1172

section, ŵf is the generated findings section, wf is1173

the radiologist findings section, ŵi is the generated1174

impression section, wi is the radiologist impression1175

section, and α1 and α2 are weights. Normally,1176

rr(ŵr,wr) is calculated, where ŵr and wr are the1177

generated and radiologist reports, which include1178

both the findings and impression sections.1179

The reward rf (·), ri(·), or rr(·) is calculated as:1180

r(ŵ,w) =λ1 · CXR-BERT(ŵ,w)+

λ2 · BERTScore(ŵ,w)+

λ3 · ARN(ŵ,w),

(3)1181

where λ1, λ2, and λ3 are weights. For ‘Images + 1182

effective source (h = 0) + RL with CXR-BERT 1183

+ BERTScore reward’, λ1 = 0.5, λ2 = 0.5, and 1184

λ3 = 0.0. For ‘Images + effective source (h = 1185

0) + RL with CXR-BERT + BERTScore reward 1186

per section’, α1 = 0.75, α2 = 0.25, λ1 = 0.5, 1187

λ2 = 0.5, and λ3 = 0.0. A higher weight was 1188

used for the findings section, as it is longer on 1189

average than the impression section. For ‘Images 1190

+ effective source (h = 0) + RL with CXR-BERT 1191

+ BERTScore + ARN reward per section’, α1 = 1192

0.75, α2 = 0.25, λ1 = 0.45, λ2 = 0.45, and 1193

λ3 = 0.1. Only a weak contribution of the ARN 1194

was required to prevent repetitions. 1195

The improvement that separating the reward per 1196

section has on the findings section is negligible, as 1197

seen in Table 2. However, separating the reward 1198

per section improves the scores for the impression 1199

section, as shown in Table E.1. Separating the re- 1200

ward likely enables the model to better optimise for 1201

the concise and summarised nature of the impres- 1202

sion section, which was previously overshadowed 1203

by the dominance of the findings section’s require- 1204

ment for comprehensive detail when both were 1205

jointly considered. 1206

F Ancillary Results 1207

In Figure E.2, the F1-scores for each CheXbert la- 1208

bel are shown. The ‘Images + effective sources 1209

(h = 0)’ model from Table 1 attained a higher 1210

score than the ‘Images’ model for 11 of the 14 1211

labels. This suggests that incorporating auxiliary 1212

patient data from MIMIC-IV-ED and MIMIC-CXR 1213

provides a general improvement, rather than bene- 1214

fiting any specific pathology. 1215

Further improvements can be seen for most la- 1216

bels when reinforcement learning (RL) is used (i.e., 1217

our model from Table 2). However, there are perfor- 1218

mance decreases for ‘enlarged cardiomediastinum’, 1219

‘pneumothorax’, and ‘fracture’. This might be due 1220

to these pathologies being underrepresented in the 1221

MIMIC-CXR dataset, leading the model to opti- 1222

mise for more common pathologies during rein- 1223

forcement learning. 1224

The results for exams that include an aperiodic 1225

vital signs table are show in Table F.1. Adding it 1226

produced a significant improvement in the scores 1227

for CXR-BERT, indicating that it should be consid- 1228

ered if available. The results for exams that include 1229

an administered medicines table are show in Table 1230

F.2. Adding did not produce a significant improve- 1231
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Table E.1: Impact of the reward on the impression section of the test set described in Section 3 (n =
9580 exams; 958 × 10 runs for ‘Images + effective sources (h = 0)’, n = 1916 exams; 958 × 3 runs for
the remaining models). Evaluation is on the impression section only.

Model RG CX CB G BS R-L B4 ARN

Images + effective sources (h = 0) 20.21 26.81 57.61 28.71 27.90 25.02 4.77 99.59
+ RL (CXR-BERT + BERTScore reward) 23.96 28.07 62.85 30.58 31.58 28.48 7.84 99.89

+ reward per section 24.89 31.08 71.12 30.89 36.27 30.27 6.70 99.33
+ ARN reward 24.87 32.88 71.12 32.14 36.31 30.61 6.84 99.83

ment in the scores, indicating that it is not useful1232

for CXR report generation.1233

G Error analysis1234

G.1 Impact of Auxiliary Patient Data on the1235

CheXpert Labels1236

Figure E.1 demonstrates the impact of incorporat-1237

ing auxiliary patient data for different CheXpert1238

labels. Here, the GREEN score for the ‘Images1239

+ effective sources (h=0)’ model is compared to1240

the ‘Images’ model from Table 1 for each exam.1241

Note that the generated and radiologist report for1242

each exam will often include findings other than the1243

CheXpert label. Hence, the GREEN scores do not1244

exclusively represent a particular CheXpert label,1245

rather, they represent exams with that label present.1246

The horizontal dashed line where ∆ = 0 divides1247

exams where auxiliary patient data improved per-1248

formance from those where it decreased perfor-1249

mance. CheXpert labels with a higher area under1250

the curve (AUC) above the horizontal dashed line1251

suggest that there is a stronger overall benefit from1252

leveraging auxiliary patient data.1253

Leveraging auxiliary patient data yielded a1254

higher AUC for 10 out of the 14 CheXpert labels,1255

indicating that it is beneficial for many patholo-1256

gies. For certain CheXpert labels, the influence of1257

auxiliary patient data is less clear, particularly for1258

those associated with smaller sample sizes, such as1259

enlarged cardiomediastinum (n = 10), consolida-1260

tion (n = 10), fracture (n = 15), pneumothorax1261

(n = 5), and lung lesion (n = 35). The no findings1262

AUC of 6.85 for ∆ > 0 being lower than the AUC1263

of 7.72 for ∆ < 0 suggests that the auxiliary pa-1264

tient data increases the false positive rate for this1265

model.1266

G.2 Impact of Auxiliary Patient Data on the1267

Generated Reports1268

To gain a better understanding of how the auxil-1269

iary patient data impacts the generated reports, we1270

analyse multiple case studies where it contributes1271

to either true positive, false positive, true negative, 1272

or false negative findings in the generated report: 1273

• A true positive is where the model has identi- 1274

fied a positive occurrence of a pathology that 1275

is also identified as positive in the radiologist’s 1276

report. 1277

• A false positive is where the model has in- 1278

correctly identified a positive occurrence of a 1279

pathology that is not identified as positive in 1280

the radiologist’s report. 1281

• A true negative occurs when a pathology is 1282

omitted or absent in the radiologist’s report 1283

and this is correctly reflected in the generated 1284

report, either implicitly through omission or 1285

explicitly by stating its absence. 1286

• A false negative is where a pathology is posi- 1287

tively identified in the radiologist’s report but 1288

is not positively identified in the generated 1289

report. 1290

Exams with a high ∆ from Figure E.1 were selected 1291

for true positive and true negative examples, while 1292

those with a low ∆ were chosen for false positive 1293

and false negative examples.4 This analysis, though 1294

based on only eight exams, exemplifies how auxil- 1295

iary patient data can both enhance and hinder the 1296

CXR report generation process, providing valuable 1297

insights into its impact. A more comprehensive 1298

analysis would be required to fully characterise the 1299

influence of auxiliary patient data across diverse 1300

exams and pathologies. 1301

G.2.1 True Positive: Example 1 1302

Table G.1 demonstrates how auxiliary patient data 1303

contributed to the true positive detection of in- 1304

creased interstitial markings, which are suggestive 1305

of pulmonary fibrosis. The model not using aux- 1306

iliary patient data failed to detect the interstitial 1307

4Out of the 10 training runs, the ‘Images + effective
sources (h = 0)’ and ‘Images’ models that attained the high-
est average GREEN score over the test set were selected for
the error analysis.
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Table F.1: Results for exams that have an aperiodic vital sign table (n = 5250; studies 525× 10 runs). Underlined
scores indicate a significant difference to the scores of ‘Images’ (p < 0.05).

Model RG CX CB G BS R-L B4

Images 24.73 29.41 58.63 35.11 24.33 25.85 4.89
Images + vital signs 24.55 29.73 60.32 35.21 24.17 25.97 4.87

Table F.2: Results for exams that have a administered medicines table (n = 3520; studies 352 × 10 runs).
Underlined scores indicate a significant difference to the scores of ‘Images’ (p < 0.05).

Model RG CX CB G BS R-L B4

Images 25.19 28.29 59.24 36.13 24.81 26.61 5.15
Images + administered medicines 24.70 29.53 59.53 35.82 24.46 26.38 4.85

markings. The patient’s triage data included a res-1308

piratory rate consistent with tachypnoea and a chief1309

complaint of dyspnoea, both common features of1310

pulmonary fibrosis. Additionally, the patient’s his-1311

tory of pulmonary fibrosis and worsening shortness1312

of breath provided further context supporting the1313

observed increase in interstitial markings. In this1314

case, the inclusion of auxiliary patient data facili-1315

tated a true positive detection.1316

G.2.2 True Positive: Example 21317

Table G.2 demonstrates how auxiliary patient data1318

contributed to the true positive detection of pul-1319

monary edema, which was not detected by the1320

model that does not use auxiliary patient data.1321

Recorded in the patient’s triage data was a respi-1322

ratory rate consistent with tachypnoea and a chief1323

complaint of dyspnoea (also documented in the1324

history section), both of which are indicative of1325

pulmonary edema. Additionally, furosemide was1326

listed in the patient’s reconciled medicines, which1327

is commonly used to manage pulmonary edema.1328

This example underscores how incorporating auxil-1329

iary patient data can enhance true positive detection1330

in CXR report generation.1331

G.2.3 False Positive: Example 11332

Table G.3 provides an example of where the model1333

leveraging auxiliary patient data introduced a false1334

positive prediction into the generated report. It in-1335

correctly specifies that there are streaky opacities1336

in the lung bases, which are reflective of atelectasis.1337

The model that does not leverage auxiliary patient1338

data did not produce this false positive. Atelectasis1339

typically presents with symptoms such as dysp-1340

noea, tachypnoea, wheezing, and coughing; how-1341

ever, these symptoms were absent from the indica-1342

tion section or the triage data. Although codeine,1343

listed among the patient’s reconciled medicines,1344

can contribute to atelectasis in high doses, there 1345

was no evidence of overdose or misuse in this case. 1346

This example suggests that weak or ambiguous ev- 1347

idence in the auxiliary data may have influenced 1348

the false positive prediction. Further refinement is 1349

needed to improve the model’s ability to appropri- 1350

ately weigh auxiliary patient data evidence against 1351

imaging evidence. 1352

G.2.4 False Positive: Example 2 1353

Table G.4 presents a case where the model using 1354

auxiliary patient data generated false positive pre- 1355

dictions, identifying mild pulmonary vascular con- 1356

gestion and a mildly enlarged cardiac silhouette 1357

(cardiomegaly). In contrast, the model without 1358

auxiliary patient data did not produce these errors. 1359

Shortness of breath, noted in the indication sec- 1360

tion and the chief complaint from the triage data, 1361

is a common symptom of both mild pulmonary 1362

vascular congestion and cardiomegaly. The ele- 1363

vated respiratory rate recorded in the triage data, 1364

consistent with tachypnoea, may suggest mild pul- 1365

monary vascular congestion, while the elevated 1366

systolic blood pressure reflects isolated systolic hy- 1367

pertension, a known risk factor for cardiomegaly. 1368

Furosemide, included in the reconciled medicines, 1369

can help manage mild pulmonary vascular conges- 1370

tion associated with fluid overload and conditions 1371

like cardiomegaly. Lisinopril and diltiazem pri- 1372

marily treat hypertension, which is a risk factor 1373

for cardiomegaly. This example indicates that there 1374

was evidence in the auxiliary patient data that could 1375

have led the model to multiple false positive pre- 1376

dictions. For this example, the model lacked the 1377

ability to correctly balance auxiliary patient data 1378

evidence with imaging evidence. 1379
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Table G.1: True positive example for study 51707133. Here, the triage data and the history section provide
additional evidence supporting increased interstitial markings. Only the patient data that Images + effective sources
(h=0) utilises is shown.

Patient data

Image

History ___-year-old female with pulmonary fibrosis and CHF with worsening shortness of breath.

Reconciled
medicines;
name

atorvastatin, azelastine [Astelin], aspirin, calcium carbonate-vitamin D3 [Calcium 500 + D], loratadine, metoprolol
succinate, multivitamin, glucosamine sulfate [Glucosamine], acetaminophen, ferrous sulfate [Feosol], torsemide,
pantoprazole, lidocaine, ketotifen fumarate.

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

99.7 90.0 36.0 100.0 118.0 70.0 0 2.0 Dyspnea
Radiologist

Findings AP and lateral views of the chest. Low lung volumes are seen compatible with patient’s history of fibrosis.
Diffusely increased interstitial markings are seen throughout the lungs, but these appear overall slightly worse
when compared to prior. Cardiomediastinal silhouette is grossly unchanged. No acute osseous abnormality is
detected.

Impression Findings compatible with pulmonary fibrosis with likely superimposed edema. Please note that infection cannot
be excluded and clinical correlation is necessary.

Images + effective sources (h = 0) (GREEN = 0.375)
Findings Frontal and lateral views of the chest. Low lung volumes are again noted. Increased interstitial markings seen

more extensive on the left than on the right. There is no evidence of overt consolidation nor effusion. The
cardiomediastinal silhouette is stable. No acute osseous abnormality is identified. Degenerative changes are seen
at the shoulders.

Impression Increased interstitial markings throughout the lungs which could be due to chronic lung disease and possible
chronic lung disease. No definite superimposed acute process, although clinical correlation suggested.

Images (GREEN = 0.091)
Findings Assessment is limited due to patient rotation and patient rotation. Lung volumes are low. Heart size appears mildly

enlarged. The aorta appears to be calcified. Perihilar haziness and vascular indistinctness is compatible with mild
pulmonary edema. Streaky opacities in the lung bases likely reflect areas of atelectasis. No large pleural effusion
or pneumothorax is seen. Multilevel degenerative changes are noted in the thoracic spine.

Impression Mild pulmonary edema and bibasilar atelectasis.

G.2.5 True Negative: Example 11380

Table G.5 shows an exam where the model using1381

auxiliary patient data generated a report with true1382

negatives, despite confounding evidence from the1383

auxiliary patient data. The renal failure and up-1384

per quadrant pain mentioned in the history section1385

could suggest a condition related to fluid overload,1386

such as pleural effusion. Furosemide and metola-1387

zone mentioned in the reconciled medicines are1388

commonly used for fluid management and treating1389

pulmonary edema. Lisinopril and amlodipine, pri-1390

marily used for cardiovascular conditions such as1391

hypertension, can lead to secondary effects like pul-1392

monary congestion or cardiomegaly, which may be1393

detected radiologically. Despite these confounding1394

factors, the model effectively prioritised the imag- 1395

ing evidence, avoiding false positive predictions. 1396

This demonstrates that the model possesses the abil- 1397

ity to balance auxiliary patient data evidence with 1398

imaging evidence. 1399

G.2.6 True Negative: Example 2 1400

Table G.6 is another exam where the model using 1401

auxiliary patient data generated a report with true 1402

negatives, despite confounding evidence from the 1403

auxiliary patient data. The model utilising auxil- 1404

iary patient data accurately identified a dual-lead 1405

pacemaker without introducing any false positive 1406

findings, despite the presence of confounding evi- 1407

dence from the auxiliary patient data. The indica- 1408

tion section requests evaluation for fluid overload 1409
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Table G.2: True positive example for study 52841174. Here, the triage data and reconciled medicines provide
additional evidence indicative of pulmonary edema. Only the patient data that Images + effective sources (h=0)
utilises is shown.

Patient data

Image

History ___-year-old with dyspnea.

Reconciled
medicines;
name

Coumadin, furosemide, metoprolol succinate, Calcarb 600 With Vitamin D, simvastatin, Tylenol Extra Strength,
levothyroxine, docusate sodium.

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

97.0 81.0 22.0 100.0 102.0 58.0 0 2.0 DYSPNEA
Radiologist

Findings AP upright and lateral views of the chest were provided. Midline sternotomy wires are again noted. Patient is
rotated somewhat limiting the evaluation of the cardiomediastinal silhouette, though cardiomediastinal silhouette
appears grossly stable. There are small layering bilateral effusions with mild interstitial edema. Overall, there has
been no significant change from prior study. Bony structures are intact.

Impression Mild interstitial edema, stable cardiomegaly with small bilateral effusions.
Images + effective sources (h = 0) (GREEN = 0.375)

Findings AP upright and lateral views of the chest were provided. Midline sternotomy wires and mediastinal clips as well
as a prosthetic cardiac valve. Low lung volumes limit evaluation. There is hilar congestion and mild pulmonary
edema. Small bilateral pleural effusions persist. There is left basilar atelectasis. The heart is mildly enlarged. Bony
structures appear intact. No free air below the right hemidiaphragm.

Impression Pulmonary edema, small bilateral pleural effusions, left greater than right.
Images (GREEN = 0.222)

Findings The patient is status post median sternotomy and CABG. Large hiatal hernia is present. The cardiac silhouette size
is mildly enlarged. The aorta is tortuous. Crowding of bronchovascular structures is present with probable mild
pulmonary vascular congestion. Small right pleural effusion is present. Patchy opacities in the lung bases may
reflect atelectasis. No pneumothorax is demonstrated. There are moderate multilevel degenerative changes seen in
the thoracic spine.

Impression 1. Small right pleural effusion and bibasilar opacities likely reflect atelectasis. Infection at the lung bases cannot
be completely excluded. 2. Mild pulmonary vascular congestion. 3. Moderate cardiomegaly.

or pneumonia and notes chest pain, which could1410

lead to false positives such as pulmonary edema,1411

pneumonia, pleural effusion, or cardiomegaly. The1412

reconciled medicines, including furosemide and ni-1413

troglycerin, suggest the management of conditions1414

such as pulmonary edema or heart failure, which1415

could be associated with pleural effusion or car-1416

diomegaly. Despite these confounding factors, the1417

model effectively prioritised the evidence from the1418

image, avoiding false positive predictions.1419

G.2.7 False Negative: Example 11420

Table G.7 is an example where the model failed to1421

leverage auxiliary patient data to detect trace bilat-1422

eral pleural effusions and the increased opacity in1423

the right mid-to-lower lung (concerning for pneu-1424

monia). The history section notes dyspnea and hy- 1425

poxia, which are symptoms associated with pleural 1426

effusion and pneumonia, among other conditions. 1427

It also requests to assess for fluid overload or pneu- 1428

monia, both of which should prompt the model 1429

to assess for pleural effusion and opacities. The 1430

significantly reduced oxygen saturation recorded 1431

in the triage data indicates severe hypoxia (also 1432

noted in the history section), which can be caused 1433

by pleural effusion or pneumonia. Despite strong 1434

evidence from the auxiliary patient data to support 1435

pleural effusion and the opacity, the model failed 1436

to combine this with the imaging evidence to make 1437

the correct predictions. 1438
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Table G.3: False positive example for study 51274564. This example demonstrates how weak auxiliary patient data
evidence may have misled the model. Only the patient data that Images + effective sources (h=0) utilises is shown.

Patient data

Image

Indication Status post new central line placement.

Reconciled
medicines;
name

colchicine, Aspirin, nifedipine, blood sugar diagnostic [OneTouch Ultra Test], labetalol, calcitriol, insulin needles
(disposable) [BD Insulin Pen Needle UF Mini], fluticasone, codeine-guaifenesin, lisinopril, insulin lispro [Humalog
KwikPen], insulin glargine [Lantus Solostar], prednisone, acetaminophen, torsemide, albuterol sulfate [ProAir
HFA], mycophenolate mofetil, Multivitamin, tacrolimus, Vitamin E, allopurinol, ferrous sulfate.

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

98.1 72.0 16.0 0.0 95.0 46.0 8 2.0 Abnormal labs, Weakness, Diar-
rhea

Radiologist
Findings A new central venous catheter terminates in the left brachiocephalic vein. There is no pneumothorax. Otherwise,

there has been no significant short-term change.

Impression Status post placement of new left internal jugular central venous catheter; no pneumothorax identified.
Images + effective sources (h = 0) (GREEN = 0.143)

Findings There is interval placement of a left internal jugular central venous catheter with tip terminating in the lower
SVC. Lung volumes are low. This accentuates the size of the cardiac silhouette which appears mildly enlarged.
Mediastinal and hilar contours are unchanged. There is crowding of the bronchovascular structures without overt
pulmonary edema. Streaky opacities are noted in the lung bases, likely reflective of atelectasis. No large pleural
effusion or pneumothorax is demonstrated. Mild degenerative changes are noted in the thoracic spine.

Impression Interval placement of a left internal jugular central venous catheter with tip in the lower SVC. Low lung volumes
with streaky bibasilar opacities, likely atelectasis.

Images (GREEN = 0.25)
Findings A PICC line terminates in the mid-to-lower SVC. The cardiomediastinal and hilar contours are within normal

limits. The lung fields are clear. There is no pneumothorax, fracture or dislocation. Limited assessment of the
abdomen is unremarkable.

Impression Left PICC terminates in the mid-to-lower SVC.

G.2.8 False Negative: Example 21439

Table G.8 highlights a false negative example for1440

the model leveraging auxiliary patient data, where1441

it failed to identify the right lower lobe opacity1442

concerning for pneumonia. Despite omitting this1443

finding, the model received strong evidence sup-1444

porting its presence. Specifically, the indication1445

section notes a right lower lobe infiltrate, directly1446

pointing to an opacity, alongside dyspnoea, a non-1447

specific symptom of pneumonia. Additionally, the1448

chief complaint explicitly lists pneumonia, another1449

strong indicator. The triage data, including the nor-1450

mal temperature and heart rate, might have influ-1451

enced the model’s decision by suggesting a lack of1452

systemic immune response, which could reduce the1453

likelihood of pneumonia. However, the reconciled1454

medicines, including antibiotics like erythromycin1455

and tobramycin-dexamethasone, support the pos- 1456

sibility of an active infection. Despite the align- 1457

ment between the auxiliary patient data and the 1458

suspected pneumonia, the model failed to integrate 1459

this evidence with the imaging evidence to make a 1460

correct prediction. This underscores the need for 1461

further model development to better synthesise the 1462

evidence from auxiliary patient data with imaging 1463

evidence. 1464
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Table G.4: False positive example for study 54082940. This example demonstrates how the model failed to balance
auxiliary patient data evidence with imaging evidence. Only the patient data that Images + effective sources (h=0)
utilises is shown.

Patient data

Image

Indication Shortness of breath and wheezing, previously diagnosed with pneumonia or infectious process.

Reconciled
medicines;
name

prednisolone acetate, albuterol sulfate [ProAir HFA], gabapentin, Humulin 70/30, cholecalciferol (vitamin D3),
sennosides [senna], furosemide, Trusopt, lisinopril, AERO CHAMBER, levobunolol, insulin aspart, insulin
aspart [Novolog], fluticasone-salmeterol [Advair Diskus], latanoprost, dorzolamide [Trusopt], aspirin [Enteric
Coated Aspirin], diltiazem HCl [DILT-XR], blood sugar diagnostic [FreeStyle Lite Strips], magnesium hydroxide
[Milk of Magnesia], Acetaminophen, lidocaine, docusate sodium, brimonidine, calcium carbonate, nebulizer and
compressor, olanzapine [Zyprexa].

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

98.0 81.0 24.0 100.0 151.0 66.0 0 2.0 SHORTNESS OF BREATH
Radiologist

Findings There is no evidence of focal consolidation. There is left lower lobe atelectasis. There is no pleural effusion or
pneumothorax. The cardiac and mediastinal contours are normal.

Impression No acute cardiopulmonary process.
Images + effective sources (h = 0) (GREEN = 0.429)

Findings There is mild pulmonary vascular congestion. No definite focal consolidation is seen. No pleural effusion or
pneumothorax is seen. Cardiac silhouette is mildly enlarged. The cardiac and mediastinal silhouettes are grossly
stable with the cardiac silhouette possibly slightly enlarged compared to prior.

Impression Mild pulmonary vascular congestion. Cardiomegaly.
Images (GREEN = 0.8)

Findings There is no confluent consolidation. No pulmonary edema or pleural effusions are identified. Cardiomediastinal
and hilar contours are within normal limits. No pneumothorax is evident.

Impression No acute cardiopulmonary process.
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Figure E.1: The mean pairwise difference GREEN score for the generated report (findings and impression sections)
of each exam from the test set between 10 training runs of the “Images” model and the “Images + effective
sources (h=0)” model. This illustrates the performance change (increase or decrease) over the exams resulting from
incorporating auxiliary patient data for different CheXpert labels. ∆, m and n are the number of training runs for
each model (m = n = 10) and s is the GREEN score for one of the models. The subplots are sorted in descending
order based on the ratio of AUC(∆ > 0) to AUC(∆ < 0).
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Figure E.2: F1-score for each CheXbert label. (n = 9580 exams; 958 × 10 runs for ‘Images’ and ‘Images +
effective sources (h = 0)’ and n = 2874 exams; 958× 3 runs for ‘Images + effective sources (h = 0) + RL with
CXR-BERT + BERTScore + ARN reward per section’.

Table G.5: True negative example for study 52428322. This demonstrates how the model can avoid false positives
despite confounding evidence from the auxiliary patient data. Only the patient data that Images + effective sources
(h=0) utilises is shown.

Patient data

Image

History ___-year-old female with renal failure and right upper quadrant pain. Hypotension.

Reconciled
medicines;
name

aspirin, FreeStyle Lite Strips, metolazone, furosemide, omeprazole, oxycodone-acetaminophen [Endocet], prochlor-
perazine maleate, calcitriol, fentanyl, insulin glargine [Lantus], sevelamer HCl [Renagel], clonidine [Catapres-
TTS-1], Humulin R, Colace, insulin lispro [Humalog], potassium chloride [Klor-Con M20], FreeStyle Lite Meter,
ferrous sulfate, lisinopril, BD Insulin Syringe Ultra-Fine, Glucose Meter, Disp & Strips, Lipitor, amlodipine.

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

0.0 0.0 0.0 0.0 0.0 0.0 None 1.0 GI BLEED
Radiologist

Findings Single portable view of the chest is compared to previous exam from ___. The lungs are clear. Cardiomediastinal
silhouette is normal. Osseous and soft tissue structures are unremarkable. No visualized free intraperitoneal air is
seen below the diaphragm.

Impression No acute cardiopulmonary process.
Images + effective sources (h = 0) (GREEN = 1.0)

Findings PA and lateral views of the chest were provided. The lungs are clear bilaterally without focal consolidation,
effusion, or pneumothorax. The heart and mediastinal contours are normal. The imaged osseous structures are
intact. There is no free air below the right hemidiaphragm.

Impression No acute findings in the chest.
Images (GREEN = 0.5)

Findings Single portable frontal chest radiograph demonstrates unremarkable cardiomediastinal and hilar contours. Lungs
are clear. No pleural effusion or pneumothorax evident.

Impression No acute intrathoracic process.
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Table G.6: True negative example for study 52169517. This demonstrates how the model can avoid false positives
despite confounding evidence from the auxiliary patient data. Only the patient data that Images + effective sources
(h=0) utilises is shown.

Patient data

Image

Indication ___-year-old woman with chest pain. Evaluate for fluid overload or pneumonia.

Reconciled
medica-
tions;
name

Humalog, atorvastatin, aspirin, gabapentin, nitroglycerin, methylprednisolone, valsartan [Diovan], insulin glargine
[Lantus], One Touch Ultra Test, metoprolol tartrate, isosorbide mononitrate, cephalexin, colchicine [Colcrys],
furosemide

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

0.0 0.0 0.0 0.0 0.0 0.0 None 2.0 CHEST PAIN
Radiologist

Findings The lungs are clear. The hilar and cardiomediastinal contours are normal. There is no pneumothorax or pleural
effusion. Pulmonary vascularity is normal. A dual-lead pacemaker is present.

Impression No acute cardiopulmonary process.
Images + effective sources (h = 0) (GREEN = 0.833)

Findings The lungs are clear without focal consolidation. No pleural effusion or pneumothorax is seen. The cardiac and
mediastinal silhouettes are unremarkable. Dual lead left-sided pacemaker is stable in position. Patient is status
post median sternotomy and CABG.

Impression No acute cardiopulmonary process.
Images (GREEN = 0.25)

Findings PA and lateral views of the chest provided demonstrate a left chest wall pacer device with leads extending to
the region of the right atrium and right ventricle. Midline sternotomy wires and mediastinal clips are again
noted. Mild left basal atelectasis is noted. No convincing signs of pneumonia, effusion, or pneumothorax. The
cardiomediastinal silhouette is stable. Bony structures are intact. No free air below the right hemidiaphragm.

Impression No acute findings in the chest.
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Table G.7: False negative example for study 55715754. The model failed to identify the pleural effusions despite
evidence from the auxiliary patient data. Only the patient data that Images + effective sources (h=0) utilises is
shown.

Patient data

Image

History Dyspnea and hypoxia, assess for fluid overload or pneumonia.

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

96.4 83.0 20.0 76.0 145.0 70.0 10 1.0 SORE THROAT
Radiologist

Findings Semi-upright portable AP view of the chest provided. The heart is massively enlarged. There are trace pleural
effusions. Increased opacity in the right mid-to-lower lung is concerning for pneumonia. The left lung appears
essentially clear. No pneumothorax. The mediastinal contour appears normal. Bony structures are intact.

Impression Massive cardiomegaly with trace bilateral pleural effusions. Opacity within the right mid-to-lower lung is
concerning for pneumonia.

Images + effective sources (h = 0) (GREEN = 0.2)
Findings Single portable radiograph of the chest demonstrates moderate enlargement of the cardiac silhouette, not sig-

nificantly changed compared to the prior examination. There is mild pulmonary vascular congestion. No focal
consolidation, pleural effusion or pneumothorax is seen. The visualized upper abdomen is unremarkable.

Impression Persistent enlargement of the cardiac silhouette, not significantly changed compared to ___. Unchanged mild
pulmonary vascular congestion and stable enlargement of the cardiac silhouette.

Images (GREEN = 0.333)
Findings There is moderate enlargement of the cardiac silhouette. The aorta is unfolded. Mediastinal and hilar contours are

otherwise unremarkable. Pulmonary vasculature is not engorged. Hazy opacity in the right lung is compatible
with pneumonia. Right midlung linear opacity may be due to atelectasis. No pleural effusion or pneumothorax is
identified. No acute osseous abnormalities seen.

Impression 1. Moderate enlargement of the cardiac silhouette, compatible with pneumonia. 2. Moderate enlargement of the
cardiac silhouette. 3. Right lung base opacity, likely scarring. No definite evidence of pneumonia.
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Table G.8: False negative example for study 53964812. Despite strong evidence from the auxiliary patient data
supporting pleural effusion, the model failed to detect it. Only the patient data that Images + effective sources (h=0)
utilises is shown.

Patient data

Image

History Asthma, coronary disease, myocardial infarction, diabetes, presenting with dyspnea and right lower lobe infiltrate.

Reconciled
medicines;
name

metformin, acetaminophen, erythromycin, fluticasone-salmeterol [Advair Diskus], Boost Diabetic, bupropion
HCl, diltiazem HCl, albuterol sulfate, losartan [Cozaar], lorazepam, sennosides [senna], gabapentin, aspirin,
tiotropium bromide [Spiriva with HandiHaler], tobramycin-dexamethasone [TobraDex], atorvastatin, tramadol,
nut.tx.gluc.intol,lac-free,soy [Glucerna], clopidogrel, ReliOn Ultra Thin Plus Lancets, melatonin, lidocaine, cal-
cium carbonate-vitamin D3 [Calcium 600 + D(3)], furosemide, compression socks, medium, sertraline, L.acidoph
& sali-B.bif-S.therm [Acidophilus], travoprost [Travatan Z], montelukast [Singulair], Multivitamin with Iron-
Mineral, fluticasone.

Triage
temperature heartrate resprate o2sat sbp dbp pain acuity chiefcomplaint

98.2 83.0 18.0 98.0 162.0 100.0 0 2.0 PNEUMONIA
Radiologist

Findings T0he cardiac, mediastinal and hilar contours appear stable. There is no pleural effusion or pneumothorax. Since
the very recent prior studies, there is a substantial new opacity in the right lower lobe concerning for pneumonia.
The bones appear demineralized. There is mild-to-moderate rightward convex curvature again centered along the
lower thoracic spine with incompletely characterized lumbar compression deformities. Moderate degenerative
changes are again noted along lower thoracic levels.

Impression Findings consistent with pneumonia in the right lower lobe. Depending on clinical circumstances, the possibility
of aspiration could also be considered.

Images + effective sources (h = 0) (GREEN = 0.0)
Findings Frontal and lateral views of the chest. Right apical scarring is again seen. The lungs are otherwise clear without

consolidation or effusion. Mild cardiomegaly is again noted. Slightly tortuous descending thoracic aorta is similar
to prior. No acute osseous abnormality is identified.

Impression No acute cardiopulmonary process.
Images (GREEN = 0.333)

Findings There is bibasilar atelectasis without definite focal consolidation. No pleural effusion or pneumothorax is seen.
The cardiac and mediastinal silhouettes are stable. Mild loss of height anteriorly of a lower thoracic vertebral body
is unchanged. Evidence of DISH is seen along the spine.

Impression No acute cardiopulmonary process. No significant interval change.
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