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Abstract

Recently, large language model (LLM)-based agents have made significant ad-
vances across various fields. One of the most popular research areas involves
applying these agents to video games. Traditionally, these methods have relied
on game APIs to access in-game environmental and action data. However, this
approach is limited by the availability of APIs and does not reflect how humans
play games. With the advent of vision language models (VLMs), agents now have
enhanced visual understanding capabilities, enabling them to interact with games
using only visual inputs. Despite these advances, current approaches still face chal-
lenges in action-oriented tasks, particularly in action role-playing games (ARPGs),
where reinforcement learning methods are prevalent but suffer from poor general-
ization and require extensive training. To address these limitations, we select an
ARPG, “Black Myth: Wukong”, as a research platform to explore the capability
boundaries of existing VLMs in scenarios requiring visual-only input and complex
action output. We define 12 tasks within the game, with 75% focusing on combat,
and incorporate several state-of-the-art VLMs into this benchmark. Additionally,
we will release a human operation dataset containing recorded gameplay videos
and operation logs, including mouse and keyboard actions. Moreover, we propose
a novel VARP (Vision Action Role-Playing) agent framework, consisting of an
action planning system and a human-guided trajectory system. Our framework
demonstrates the ability to perform basic tasks and succeed in 90% of easy and
medium-level combat scenarios. This research aims to provide new insights and di-
rections for applying multimodal agents in complex action game environments. The
code and datasets will be made available at https://varp-agent.github.io/.

1 Introduction

In recent years, LLM-based agents have achieved significant breakthroughs across various fields
[5, 9, 10, 25, 34], particularly with the integration of tools and memory modules[35], as seen in
AutoGPT and Reflection [30, 20]. Among these, applying LLM-based agents in video games
has become one of the most popular areas of research.[18, 16, 13, 27, 26] These methods input
information from video games into LLMs, which then undergo complex reasoning and integration
through agent frameworks, ultimately producing keyboard and mouse commands that can directly
interact with the game to complete tasks. Previous works have mostly focused on accessing video
game APIs to read in-game environmental and action information. For instance, the framework
proposed by Wang et al.[24] has been successfully applied in the game Minecraft. Agents can achieve
autonomous mining, building, and attacking enemies in the game. However, this approach does
not align with how humans play games, and most games do not offer open APIs, which limits the
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Table 1: Comparison of several existing agents. Among them, “API” refers to the model’s use of video
game APIs to access in-game environmental and action information, whereas “Screen” indicates that
visual understanding is derived solely from game screenshots.

Agents Agent Type Game Game Type Environment
Reflexion [20] LLM-based ALFWorld Text-based Adventure API
ReAct [31] LLM-based ALFWorld Text-based Adventure API
Voyager [24] LLM-based Minecraft Sandbox API
CreativeAgent [33] VLM-based Minecraft Sandbox API and Screen
Cradle [22] VLM-based RDR2 AAA Action Adventure Screen
DQN [1] RL-based Sekiro AAA Action Role-Playing Screen
Other Project [23, 7] RL-based BMW AAA Action Role-Playing Screen
VARP (Ours) VLM-based BMW AAA Action Role-Playing Screen

widespread application of this method. Recently, the emergence of vision language models (VLMs)
like GPT-4o has further enhanced the visual understanding capabilities of these agents, showcasing
broader potential in mobile apps and games. For example, the Cradle framework [22] has been
implemented in Red Dead Redemption 2 (RDR2). It directly uses game screenshots from RDR2 as
input, rather than using an API to read game memory information. However, Cradle relies heavily
on text-based guiding information in the game screenshots to create new skills. For tasks or games
with weak textual guidance, such as some action role-playing games(ARPG), Cradle is unable to
leverage the effective performance of VLMs. For ARPGs, many researchers employ reinforcement
learning methods, where penalties and rewards are predefined for specific tasks. After extensive
training periods and numerous iterations, the trained agents can complete the given specific tasks.
However, RL-based agents can only accomplish tasks within the environment they were trained in
and find it challenging to transfer to other tasks. ARPGs contain a large number of specialized tasks,
which pose a significant challenge for RL-based agents with poor generalization capabilities. We
conducted a comparison of some representative methods in Tab. 1.

Thus, most of the existing research focuses on relatively simplified settings. This simplification arises
primarily from two significant challenges: 1) Immediate visual input. Since environmental data is
not always accessible through game APIs, learning from visual input becomes a more straightforward
strategy, especially in AAA games (characterized by A lot of time, A lot of resources, A lot of money),
where understanding the immediate visual input is crucial. 2) Action-oriented tasks. Action games
are immensely popular among players; however, in this domain, RL-based agents still dominate,
which require extensive training time and have poor generalization ability. For VLM-based agents,
the game interfaces of ARPGs provide very few textual hints, and most of the actions need to be
learned through experience and self-innovation. As a result, previous agents have found it challenging
to extract effective guidance information from visual inputs.

In this paper, we will select the “Black Myth: Wukong,” abbreviated as BMW, an AAA ARPG, as
our research platform for extensive experimentation. We are dedicated to establishing a VLM-based
agent framework to thoroughly investigate the capability boundaries of existing models (e.g. GPT-4o,
Gemini) in scenarios requiring visual-only input and complex action output. Among them, visual-
only input refers to the model making decisions solely by understanding and analyzing the game
screenshot, while complex action output necessitates the model to perform intricate and continuous
actions, such as precise operations in combat scenarios.

To achieve this goal, we define 12 tasks in the game “Black Myth: Wukong,” with 75% of these tasks
being combat-related. Several state-of-the-art VLM models, including GPT-4o, will be incorporated
into this benckmark to comprehensively explore their performance boundaries. Subsequently, to
advance the development of VLM-based agents in AAA action games, we will open-source a human
operation dataset, which includes records of mouse and keyboard commands as well as gameplay
recordings. Lastly, we innovatively propose a VARP(Vision Action Role-Playing) agent framework,
consisting of an action planning system and a human-guided trajectory system. Specifically, the
action planning system is responsible for generating action combos that are suitable for combat
scenarios, while the human-guided trajectory system learns from human data via retrieval. Through
extensive evaluations, our proposed framework demonstrates the capability to accomplish basic tasks
such as picking up items and opening treasure chests, while also succeeding in 90% of esay and
medium battles. We hope this research will provide new insights and directions for the application of
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multi-modal agents in complex action game environments. The main contributions of this paper are
summarized as follows:

• Benchmark. We define 12 tasks based on the game “Black Myth: Wukong,” with 75% of these tasks
focused on combat. Several state-of-the-art VLM models, including GPT-4o, will be incorporated
into this benckmark to thoroughly explore their capability boundaries.

• Dataset. We release a dataset containing recorded gameplay videos along with relevant operation
logs, including mouse movements, clicks, and keyboard actions, which includes 1000 records.

• Framework. We propose a VARP agent framework, which comprises an action planning system
and a human-guided trajectory system. Through these systems, the agent can execute complex
action combos and learn from human operation.

2 Methodology
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Figure 1: Pipeline of VARP. We propose a novel framework named the VARP agent, which directly
takes game screenshots as input and generates keyboard and mouse operations to play the ARPG.

2.1 Overview

We propose a novel framework named the VARP agent, which directly takes game screenshots as
input. Through inference by a group of Vision-Language Models (VLMs), it ultimately generates
actions in the form of Python code, which can directly operate the game character. Each action is a
sequence that consists of various combinations of atomic commands. These atomic commands include
light attack, dodge, heavy attack, restore health, and others. Meanwhile, the VARP agent maintains
three libraries: a situation library, an action library, and a human-guided library. These libraries can
be retrieved and updated to store intensive knowledge for self-learning and human guidance. Overall,
the VARP agent is divided into two systems: the action planning system and the human-guided
trajectory system, as shown in Fig. 1. In the action library, “def new_func_a()” represents the new
action generated by the action planning system, while “def new_func_h()” represents the new action
generated by the human-guided trajectory system. “def pre_func()” represents the predefined actions.
The following sections will elaborate on each system in detail.

2.2 Action Planning System

The action planning system is primarily used for action reasoning and generation. This system utilizes
a situation library and an updatable action library as knowledge retrieval bases. Guided by input
game screenshots, the system employs a group of VLMs to select or generate actions appropriate for
the current situation. The generated situations and actions are stored or updated in the two libraries.
Additionally, We propose decomposable task-specific auxiliary modules to break down large tasks
into smaller subtasks, which are then distributed across multiple VLMs to reduce the occurrence of
model forgetting and hallucinations. We also introduce a self-optimizable action generation module
to encourage VLMs to generate new actions specific to some hard tasks, thereby completing complex
tasks more efficiently and with higher quality.
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2.2.1 Basic VLMs Group

Inspired by Cradle [22], our main pipeline continues to adopt the five basic modules from Cradle,
with some of these basic modules calling the VLM for reasoning, forming a basic group of VLMs.
During initialization, we manually predefined some actions and placed them into the action library
as the prior knowledge. Each action is a Python function with detailed textual annotations, and we
computed the embeddings of these annotations for storage. Information Gathering is responsible
for gathering information from sampled game screenshots, including textual and visual information
related to situations and actions. The textual information primarily includes text guides, text labels,
and notifications; the visual information mainly covers environmental positions, character actions,
and interface icons. The former is assisted by OCR tools for text recognition, while the latter uses
the object detection tools for visual localization. Self Reflection takes a few game screenshots from
the last video in the situation library as input to assess whether the last executed action successfully
produced the correct effect and whether the current task has been completed. If execution fails,
the module needs to provide a reason for the failure to guide the next step in action generation.
Task Inference infers the current task to be executed based on the results of previous modules, and
generates the task description. Skill Curation calculates the similarity between the task description’s
embedding and the embeddings of the textual annotations in the action library to find some matching
actions, which form the candidate action set. Decision Making utilizes the Chain of Thought (CoT)
[28] approach to reason through and deeply analyze multiple sequential questions (such as whether
to enable combat mode, restore health, or select from available spell skills, etc.). Finally, the module
infers the most suitable action from the candidate action set, executes the Python code, and operates
the keyboard and mouse to control the player character to complete the corresponding task. These
five basic modules will record each intermediate product into the situation library.

2.2.2 Self-Optimizable Action Generation Module

The basic VLMs group can only acquire actions from a predefined action library or from game
screenshots with clear textual prompts. For certain tasks in ARPGs that have weak textual guidance,
such as real-time combat, this method is unable to learn new actions. Therefore, we propose a
self-optimizable action generation module (SOAG) that allow the VARP agent to summarize the
enemy’s actions during combat, thereby optimizing existing actions and generating new ones to
counter enemy attacks. The new actions are combinations of the two atomic commands: dodging and
light strikes. The optimization goal is to maximize the evasion of enemy attacks and the ability to
strike the enemy while minimizing the player character’s health loss.

Specifically, in SOAG, we introduce a component responsible for action function generation. This
component takes the information gathering and self reflection results, along with the current and
last game screenshots, as input. It analyzes the characteristics of the enemy under the current task,
such as name, appearance, weapon, etc. Most importantly, it needs to analyze the enemy’s current
and previous actions. For example, for the hard enemy named Bullguard, its attack actions can be
roughly categorized as: “charging forward with the axe”, and “chopping the axe downwards three
times consecutively”, etc. Therefore, this component needs to inference new actions for dodging and
counterattacking based on the current enemy actions. For instance, for “charging forward with the
axe,” the new action should be to dodge once and then attack continuously; for “chopping the axe
downwards three times consecutively,” the new action should be to dodge three more times before
counterattacking. The generated new actions are permutations of the atomic operations “dodge” and
“light attack.” The generated actions are stored in the action library with detailed textual annotations.

2.2.3 Decomposable Task-Specific Auxiliary Modules

In ARPGs, especially in BMW game, the VLM’s inference involves a large number of tokens,
including multiple images and long texts. The attention mechanism used by VLMs allocates attention
to all tokens in long texts. As the input length increases, the attention distribution becomes increasingly
diluted. In the basic VLMs group, due to the excessive number of input tokens for each module,
the model may fail to effectively focus on key information, leading to errors such as forgetting and
hallucination. This issue is particularly evident in the decision-making module, where the VLM
frequently makes mistakes when answering multiple questions.

To address this problem, we decomposed the basic modules and added multiple parallel auxiliary
sub-modules for specific tasks, which are then integrated by the VLM. The structure is similar to an
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Table 2: Task definitions in Black Myth: Wukong (BMW), where “*” indicates the challenging task.

Task ID Task Name Description Diffuculty
1 Guidance Defeat Erlang, the Sacred Divinty Easy
2 Combat 1 Defeat WolfScout Easy
3 Gather Gather Easy
4 Combat 2 Defeat WolfStalwart Easy
5 Combat 3 Defeat WolfSwornsword Easy
6 Open Open Easy
7 Combat 4 Defeat WolfSoldier Easy
8 Combat 5 Defeat Croaky Easy
9 Combat 6 Defeat Crow Diviner Middle

10 Combat 7 Defeat Bullguard Hard
*11 Combat 8 Defeat Wandering Wight Very Hard
*12 Move Autonomous Navigation Very Hard

MLP. Specifically, as shown in the workflow of action planning in Fig. 1, we decomposed the original
decision-making module that handled multiple tasks into 5 sub-modules. 1) Enemy Sub-module is
used to analyze the enemy’s status (such as its health, position, etc.) and action description, which
assists the agent in obtaining detailed information of the enemy. 2) Combat Sub-module determines
which combat method to use, including light attack or heavy attack, by observing the heavy-attack
status in the bottom right corner of the game screen. 3) Health Sub-module is responsible for
constantly monitoring the player’s health bar. If the health is consumed excessively, it assists the
agent by prioritizing the action of recovering health. 4) Spell-skill Sub-module monitors the status of
the player’s spell skills while simultaneously analyzing the situation in the combat state to determine
the appropriate time to use available spell skills. 5) The integration sub-module is responsible
for integrating the outputs of all sub-modules and reasoning to determine the best action from the
candidate action set for the current specific task. The decomposable task-specific auxiliary modules
decompose long tokens and focus on each individual question, significantly improving the accuracy
of the decision-making module.

2.3 Human-Guided Trajectory System

Human actions are seen as valuable data, implicitly rich in knowledge of the physics and game world,
which can lead to advanced action combinations for very complex tasks, such as way-finding tasks
and high-difficulty combat tasks. To learn the human experience from this implicit data, we first
collected a human dataset and then used it to improve the performance of our VARP agent. The
collection process of human operation data and dataset analysis will be detailed in Sec. 3.1, which
consists of mouse keyboard logs, and recording game screenshots. In this section, we focus on how
to use it to implement a human-guided trajectory system. In this section, we refer to our annotated
dataset as the human-guided library. It is a collection of pairs consisting of game screenshots and
human operations, with each pair having a unique timestamp.

For very hard tasks in the game, we first take a screenshot of the current game interface. Based on this
game screenshot, we query the human-guided library for the screenshot with the highest similarity.
We then input this screenshot along with the subsequent n-frame screenshots and their corresponding
operations into the human-guided trajectory system. This system will utilize a VLM to analyze and
summarize the input images and operations, ultimately outputting a new human-guided action, which
is then stored in the action library for the action planning system to choose and execute.

3 Experiments

3.1 Dataset Collection

We collected a human operation dataset that includes mouse and keyboard logs, as well as recordings
of game screenshots. Specifically, we recruited 200 volunteers to play the BMW game and record
their operations, with approximately 70% of them experiencing this game for the first time. To
ensure the dataset’s quality, we eliminated invalid data from volunteers who did not complete the
tasks. Over the course of two weeks, we ultimately gathered a total of 1,000 valid data entries.
Specifically, over 90% of Task 11 (i.e. Defeat Wandering Wight) was discarded, indicating that
it is challenging for players to defeat the boss in a single attempt. Moreover, we observed that

5



(a) Task 1 (b) Task 2 (c) Task 3 (d) Task 4

(e) Task 5 (f) Task 6 (g) Task 7 (h) Task 8

(i) Task 9 (j) Task 10 (k) Task 11 (l) Task 12

Figure 2: Image examples of defined tasks.
volunteers exhibited redundant actions during the annotation process, such as excessive mouse clicks
and scrolling. Therefore, some volunteers will be asked to play the game again to identify the optimal
actions, and this refined data will be labeled as “clean” in our released dataset. Please refer to the
supplementary material for more details about our dataset.

3.2 Benchmark and Task Definition

To investigate the capabilities of existing VLMs in playing action games, we define 10 basic tasks and
2 challenging tasks aligned with the game’s narrative, with 75% of these tasks occurring in combat
scenes. As illustrated in Tab. 2 and Fig. 2, all tasks are concentrated in the first chapter of the game,
due to the limited understanding and reasoning abilities of VLMs. In terms of benchmarking, we
allow the agent to test each task 5 times and calculate the success rate for each task. For combat tasks,
a task is deemed successful if the player’s character defeats the enemy, while a task is considered a
failure if the player’s character is defeated and killed by the enemy. We have manually assessed the
difficulty of 12 tasks, categorizing them as easy, medium, hard, and very hard. Due to the absence of
maps and guidance, and the presence of numerous “invisible walls” in the BMW game, we classify
task 12, autonomous navigation (i.e., moving from the spawn point to the Bullguard’s location within
five minutes), as a very hard task. This is a challenging task even for human novices. We utilize the
success rates from this benchmark to evaluate the performance of the VARP agent and various VLMs.

3.3 Implementation Details

All evaluations are performed on a machine equipped with an NVIDIA RTX 4090 GPU running
the Windows operating system. We use three of the most popular VLMs to drive our agent: GPT-
4o-2024-05-13[15], Claude 3.5 Sonnet[2], and Gemini 1.5 pro[8]. We also utilize OpenAI’s text-
embedding-ada-002[21] model to generate embeddings for each action. The size of game interface
for the BMW game is set to 1920× 1080. During the inference of VLMs, we pause the game using
the photo mode. We employ Grounding DINO[14] for object detection of people and objects in game
screenshots to assist the VLMs in better extracting useful information.

6



3.4 Performance Evaluation

To evaluate the performance of the VARP agent without human guidance, we conducted experiments
on our proposed benchmark while disabling the human-guided trajectory system of the VARP agent.
In this performance evaluation, we only tested the benchmark and compared the VARP agent with
human novice players.

We calculated the success rates of the VARP agent driven by different VLMs and human novice
players when completing each task. As shown in Fig. 3, both the VARP agent and human novice
players achieved high success rates on tasks 1 to 8, reaching nearly 100% on most tasks. In task 9,
the VARP agent’s average success rate was 40%, which also confirms its “middle” difficulty. The
enemy in task 10 is the first boss-level monster that the player encounters in the game. For human
novice players, the success rate for this task was 15.63%, while the VARP agent’s average success
rate was 20%. Task 11 is classified as “very hard,” so the success rates for both human novices and
the VARP agent were very low. Specifically, the VARP agent is limited by the reasoning speed of
VLMs, making it unable to input every game frame in real-time and only able to input keyframes
at second-level intervals. In ARPGs, this can easily result in missing critical information about
enemy attacks. Therefore, task 11 is particularly challenging for the agent. In terms of autonomous
navigation, humans can easily find the final boss enemy of the level within five minutes, but for
VLMs, this is an almost impossible task. Without human guidance, the success rate is 0%. Since the
game provides no guidance or hints for navigation tasks and contains many “invisible walls,” VLMs
lack the ability to perceive the correct path in the 3D scene without human assistance.

In summary, the VARP agent’s performance on tasks 1 through 11 is already close to that of novice
human players. However, in terms of 3D scene perception and prior knowledge, the VARP agent is
still far inferior to humans.

Figure 3: Evaluation Results on various VLMs and human.
3.5 Ablation Study

To evaluate the effectiveness of the self-optimizable action generation module(SOAG) and the
decomposable task-specific auxiliary module(DTSA) in the action planning system, we conducted
experiments with each of these modules removed separately, calculating the success rate on the
benchmark. The VLM used in this part of the experiment is GPT-4o-2024-05-13. As shown in Fig. 4,
without SOAG, the agent’s performance significantly declines in the middle and hard tasks. This
is because the enemies in these tasks have high health points, resulting in prolonged battles. The
function of SOAG is to continuously learn the enemies’ attack patterns, aiding players in dodging
and counterattacking. Therefore, in long-duration tasks like middle and hard tasks, the effectiveness
of SOAG becomes more apparent. On the other hand, DTSA aims to decompose large tasks into
smaller ones, focusing more on precision. This approach helps prevent global errors caused by local
issues such as the forgetting and hallucination of the VLM. Hence, without DTSA, the agent tends to
fail in some easy tasks.

3.6 Case Studies

For the VARP agent, the newly generated actions originate from two sources: one is the human-guided
trajectory system, and the other is the SOAG in the action planning system. Next, we will examine
some cases of the newly generated actions.
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Figure 4: Ablation Study.
To validate the effectiveness of the human-guided trajectory system, we introduced human guidance
and conducted a case study on task 12, a task of very hard difficulty. The objective was for the VARP
agent to control the player character to move from the “Earth Temple” spawn point to the location of
the Bullguard enemy within 5 minutes. GPT-4o was chosen as the VLM. The experimental results
showed a success rate of 40%. This indicates that human guidance can significantly enhance the
decision-making accuracy of the agent. Fig. 5 shows the new action responsible for pathfinding
generated by the human-guided trajectory system during the execution of task 12. Additionally, Fig. 5
depicts the new action generated by SOAG in response to the enemy, Bullguard, during task 10. The
enemy’s current action indicates an impending attack: “swinging the axe downwards three times
consecutively.” Therefore, the new action should be to dodge consecutively more than three times
before counterattacking.

Figure 5: Case studies of new actions generated by human guidance and SOAG.

4 Conclusion

In this study, we have explored the boundaries of current Vision Language Models (VLMs) in
the context of complex action role-playing games (ARPGs) using “Black Myth: Wukong” as our
experimental platform. Our proposed framework, VARP, introduces a novel approach to game
interaction by leveraging visual-only inputs for action planning in ARPG environments. The VARP
framework demonstrates its potential by achieving an 90% success rate in basic and moderate
combat scenarios, suggesting that VLMs can be effectively utilized in tasks traditionally dominated
by reinforcement learning. Our proposed benchmark can effectively evaluate the performance of
visual-only agents in the BMW game. Additionally, the human operation dataset we provide offers a
valuable resource for future research, enabling the study of human-like gameplay and action decision-
making in visually complex environments. Our findings underscore the promise of multimodal agents
in enhancing generalization and performance in action-oriented tasks within video games. Moving
forward, the insights gained from this research could pave the way for more sophisticated agent
designs that can handle a broader range of challenges in ARPGs and beyond.
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• Additional Performance Evaluation (§A.5)

• More Case Studies (§A.6)

• Ethical Consideration (§A.7)

• Demo Video (§A.8)

A.2 Clarifications and Limitations

Thank you for reading our paper. We would like to begin by clarifying and explaining some potential
concerns that may arise due to the extreme popularity of the BMW game. We want to emphasize that
our framework has broad applicability and will subsequently be generalized to include more games
and other scenarios, not just limited to the BMW game. In this paper, we explored the potential of
using VLMs to execute action combos in game tasks, particularly focusing on how it achieves victory
against medium-powered monsters by leveraging the advantages of both action planning and visual
trajectory modules. Additionally, we provided a human operation dataset, which presents possibilities
for integrating technologies such as multi-modal retrieval-augmented generation, imitation learning,
and reinforcement learning.

We must also candidly acknowledge some limitations in our research, specifically: 1) Task Definitions:
As LLM- and VLM-based agents are still evolving, the current task definitions are somewhat
simplistic. 2) Game Scenarios: Our research has only been tested within the BMW game and has
not yet been extended to other scenarios. 3) Dataset Size: We have a limited amount of data, and
in the future work, we plan to recruit more volunteers to collect higher quality data to enhance the
depth of our research. 4) Model Capabilities: As shown in the performance evaluation section, there
is still room for improvement in existing VLMs, including speed and accuracy. Therefore, it would
be interesting to train an ARPG-specific VLM, such as VideoGameBunny*.

Finally, we sincerely welcome your new ideas and feedback regarding this work, or even contribute
your game records. Please feel free to reach out to us, and we look forward to exploring together,
ultimately making VLMs play games as well as humans.

A.3 Related Work

A.3.1 LLM and VLM-Driven Agents

In recent years, various intelligent agents driven by large language models (LLM) and multimodal
language models (VLM) have gradually come to the forefront, demonstrating immense potential
in multitasking and autonomous learning. For LLM, Reflexion [20] enhances the decision-making
ability of language agents through a framework of linguistic feedback and self-reflection, allowing
agents to autonomously reflect in the face of feedback signals and maintain contextual memory during
task execution and decision-making processes. ReAct [31], on the other hand, emphasizes real-time
information retrieval and strategy adjustment. By combining reasoning with action and interacting
with external knowledge sources (such as the Wikipedia API), it adds dynamic information retrieval
capabilities, providing greater interpretability and controllability. Voyager [24] can explore and
learn skills in an unsupervised manner within the Minecraft environment, continuously exploring the
world, acquiring diverse skills, and making new discoveries without human intervention through a
combination of automated courses, skill libraries, and iterative prompting mechanisms.

For VLM, CreativeAgent [33] focuses on creative tasks, employing multimodal generation to achieve
the construction of complex structures. Its combination of an imagination module and controller
enables efficient planning and execution based on free-form language instructions and the generated

*https://videogamebunny.github.io/
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task details. Cradle [22] takes video images displayed on a screen as input, extracting text and visual
information to make decisions through a workflow of “reflecting on the past, summarizing the present,
and planning for the future,” outputting control signals for keyboard and mouse interaction, allowing
AI agents to interact with software like humans without relying on any internal APIs.

A.3.2 RL-based Agents in ARPGs

Reinforcement learning (RL) has shown significant improvements in video games[32, 3, 12, 4, 6, 19,
11, 17, 29] especially action role-playing games (ARPG). DQN-play-sekiro [1] employs the deep
Q-network (DQN) algorithm to train AI to automate gameplay in “Sekiro: Shadows Die Twice.”
This project observes the game visuals and makes decisions based on the current state, gradually
mastering the game strategy to defeat boss-level enemies. Additionally, AI achieves interactive
learning based on reinforcement learning in “Black Myth: Wukong” by recognizing game images and
scripting simulated keyboard input signals[23, 7]. This method uses successful dodging as positive
feedback while being attacked by monsters as negative feedback, prompting the AI to optimize its
decision-making process.

These creative works not only showcase the potential of AI in complex gaming environments but also
provide effective means for game testing and automated gameplay. However, agents trained solely
using RL methods can only be applied to a limited range of specific tasks. For new tasks, the agent
needs to be retrained. Therefore, agents based on this method have poor generalization capabilities.

A.4 Additional Dataset Collection

We collected a total of approximately 1,000 valid data samples, each representing a video segment
of a human completing a task along with the corresponding mouse and keyboard operation records.
Among these, 4.0% represent task 1, 12.5% represent task 2, and so on. The specific information is
shown in Fig. 6.

Figure 6: Dataset composition.

A.5 Additional Performance Evaluation

Based on Sec. 3.4 of the main text, we also recorded the average time and average inference count
for the VARP agent without human guidance to complete each task. Each inference count represents
the generation of an executable action, with each combat action containing an average of 8.6 atomic
operations. Additionally, we recorded the number of atomic operations performed by human for
each task. By dividing this number by 8.6, we estimated the inference count of human in combat
tasks. As shown in Tab. 3, compared to humans, the VARP agent has a much lower inference
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count in task 1, task 9, and task 10. This indicates that humans tend to perform a large number of
redundant operations when completing more difficult or time-consuming tasks in ARPGs, which is
not conducive to task completion. In contrast, the actions generated by the VARP agent in these tasks
are relatively more refined and concise.

Table 3: Additional evaluation results of the average time (in minutes) and average inference count.

Task ID GPT-4o (time) Claude (time) Gemini (time) GPT-4o (count) Claude (count) Gemini (count) Human(count)

1 16.09 19.12 17.14 71.6 88 77 98.7
2 0.53 0.65 0.63 3.8 5 4.4 2.3
3 0.18 0.23 0.18 1.4 1.6 1.4 1.7
4 0.57 0.68 0.64 4.6 5.2 4.6 3.0
5 0.69 0.77 0.68 5.5 6.25 5.4 3.5
6 0.27 0.25 0.11 2 1.8 1.2 1.3
7 0.81 0.78 0.69 5.4 5.7 5.75 3.0
8 0.41 0.42 0.38 3.8 3.2 2.8 2.6
9 1.24 1.19 1.19 8.3 9 8.5 16.7

10 2.20 - 2.06 13.5 - 13 36.6

A.6 More Case Studies

Figure 7: More case studies of actions and corresponding game screenshots.

In this section, we will showcase some predefined actions and more newly generated actions with the
corresponding game screenshots. The VLM is GPT-4o.

As shown in Fig.7, the actions in the first and second rows are predefined functions. The VARP agent
automatically detects whether to use these actions based on the input visual information. For example,
if the immobilization spell skill can be used, the agent executes the “fight_immobilization_spell_skill”
action. Similarly, if the player’s health is low, it uses the “recover_health” action.

The actions in the third row are generated by the human-guided trajectory system. Human prior
knowledge can effectively guide the agent to improve efficiency in navigation tasks.

The new actions in the fourth and fifth rows are summarized by SOAG after each combat interaction
between the player character and the enemy and stored in the action library. These actions are
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specific to particular enemies and their attack patterns. For instance, in the fourth row, when the
agent observes that an enemy named Bullguard is raising up his weapon, it indicates that the enemy
is about to perform the action “chopping the axe downwards three times consecutively.” The agent
can then find a specific counter-action in the action library. At the beginning of the combat, this
“fight_new_action_bullguard_raise_weapon” action is defined as dodging four times consecutively,
followed by attacking five times, as shown in Fig.5. As the combat progresses, this action is optimized
to counterattack during the intervals between dodges, significantly increasing the success rate and
efficiency in defeating the enemy, as illustrated in the fourth row of Fig.7. This demonstrates that
SOAG can continuously optimize the actions it generated.

A.7 Ethical Consideration

Our method can automatically play ARPGs, which may lead to game cheating and false advertising.
This can have a significant negative impact on society. Therefore, it is crucial to consider methods that
can reliably distinguish between genuine and forged content. We strongly condemn the unauthorized
and malicious use of this technology and emphasize the need to consider ethical issues when using
our method.

A.8 Demo Video

We have provided a detailed demo video to demonstrate the effectiveness of our VARP agent. Please
refer to https://varp-agent.github.io/.
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