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ABSTRACT

Multivariate Time Series forecasting has been an increasingly popular topic in var-
ious applications and scenarios. Recently, contrastive learning and Transformer-
based models have achieved good performance in many long-term series forecast-
ing tasks. However, there are still several issues in existing methods. First, the
training paradigm of contrastive learning and downstream prediction tasks are in-
consistent, leading to inaccurate prediction results. Second, existing Transformer-
based models which resort to similar patterns in historical time series data for
predicting future values generally induce severe distribution shift problems, and
do not fully leverage the sequence information compared to self-supervised meth-
ods. To address these issues, we propose a novel framework named Ti-MAE, in
which the input time series are assumed to follow an integrate distribution. In
detail, Ti-MAE randomly masks out embedded time series data and learns an au-
toencoder to reconstruct them at the point-level. Ti-MAE adopts mask modeling
(rather than contrastive learning) as the auxiliary task and bridges the connection
between existing representation learning and generative Transformer-based meth-
ods, reducing the difference between upstream and downstream forecasting tasks
while maintaining the utilization of original time series data. Experiments on
several public real-world datasets demonstrate that our framework of masked au-
toencoding could learn strong representations directly from the raw data, yielding
better performance in time series forecasting and classification tasks. The code
will be made public after this paper is accepted.

1 INTRODUCTION

Time series modeling has an urgent need in many fields, such as time series classification (Dau et al.,
2019), demand forecasting (Carbonneau et al., 2008), and anomaly detection (Laptev et al., 2017).
Recently, long sequence time series forecasting (LSTF), which aims to predict the change of values
in a long future period, has aroused significant interests of researchers. In the previous work, most
of the self-supervised representation learning methods on time series aim to learn transformation-
invariant features via contrastive learning to be applied on downstream tasks. Although these meth-
ods perform well on classification tasks, there is still a gap between their performance and other
supervised models on forecasting tasks. Apart from the inevitable distortion to time series caused
by augmentation strategies they have borrowed from vision or language, the inconsistency between
upstream contrastive learning approaches and downstream forecasting tasks should be also a ma-
jor cause of this problem. Besides, as the latest contrastive learning frameworks (Yue et al., 2022;
Woo et al., 2022a) reported, Transformer (Vaswani et al., 2017) performs worse than CNN-based
backbones, which is also not consistent with our experience. We have to reveal the differences and
relationships between existing contrastive learning and supervised methods on time series.

As an alternative of contrastive learning, denoising autoencoders (Vincent et al., 2008) are also used
to be an auxiliary task to learn intermediate representation from the data. Due to the ability of
Transformer to capture long-range dependencies, many of existing methods (Zhou et al., 2021; Wu
et al., 2021; Woo et al., 2022b) focused on reducing the time complexity and memory usage caused
by vanilla attention mechanism such as sparse attention or correlation to process longer time series.
These transformer-based models all follow the same training paradigm as Figure 1a shows, which
learns similar patterns from input historical time series segments and predict future time series values
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(a) End-to-end forecasting.

Ti-MAE Ti-MAE

(b) Random masking applied in Ti-MAE.

Figure 1: Different masking strategies in generative Transformer-based models on time series, where
blue areas signify the sequence fed into the encoder and green areas means the sequence to be
generated. Left: The training paradigm of existing Transformer-based forecasting models, which
can be seen as a special continuous masking strategy (only masks future time series and reconstructs
them). Right: Random masking strategy applied in Ti-MAE, which can produce different views fed
into the encoder in each iteration, fully leveraging the whole input time series.

from captured patterns. These so-called generative Transformer-based models are actually a special
kind of denoising autoencoders, where we only mask the future values and reconstruct them.
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Figure 2: Example of disentanglement. Top Left:
Simulated input cosine series added with a linear
trend. Top Right: The true trend and seasonal-
ity parts of the input. Bottom Left: Disentangled
trend part though average pooling with the sliding
window size of 15. Bottom Right: Disentangled
trend part though average pooling with the sliding
window size of 75.

However, this continuous masking strategy is
usually accompanied by two severe problems.
For one thing, continuous masking strategy will
limit the learning ability of the model, which
captures only the information of the visible
sequence and some mapping relationship be-
tween the historical and the future segments.
Similar problems have been reported in vision
tasks (Zhang et al., 2017). For another, contin-
uous masking strategy will induce severe distri-
bution shift problems, especially when the pre-
diction horizon is longer than input sequence.
In reality, most of the time series data collected
from real scenarios are non-stationary, whose
mean or variance changes over time. Similar
problems were also observed in previous stud-
ies (Qiu et al., 2018; Oreshkin et al., 2020; Wu
et al., 2021; Woo et al., 2022a). Most of them
have tried to disentangle the input time series
into a trend part and a seasonality part in or-
der to enhance the capture of periodic features
and to make the model robust to outlier noises.
Specifically, they utilize moving average im-
plemented by one average pooling layer with
a fixed size sliding window to gain trend infor-
mation of input time series. Then they capture
seasonality features from periodic sequences, which are obtained by simply subtracting trend items
from the original signal. To further clarify the mechanism of this disentanglement, we intuitively
propose an easy but comprehensible description of disentangled time series as

y(t) = Trend(t) + Seasonality(t) + Noises. (1)

For better illustration, we simply use polynomial series
∑

n t
n and Fourier cosine series

∑
n cos

n t
to respectively describe trend parts and seasonality parts of the original time series in Eq.(1). Appar-
ently, the seasonality part is stationary when we set a proper observation horizon (not less than the
maximum period of seasonality parts), while the moments of the trend part change continuously over
time. Figure 2 illustrates that the size of sliding window in average pooling layer plays a vital role in
the quality of disentangled trend part. Natural time series data generally have more complex periodic
patterns, which means we have to employ longer sliding windows or other hierarchical disposals. In
addition, when moving average is used to capture the trend parts, both ends of a sequence need to be
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padded for alignment, which causes inevitable data distortion at the head and tail. These observed
phenomenons suggest there are still some unresolved issues in the current disentanglement.

To address these issues, this paper proposes a novel Transformer-based framework named Ti-MAE
as shown in Figure 3. Ti-MAE randomly masks out parts of embedded time series data and learns
an autoencoder to reconstruct them at the point-level in the training stage. Figure 1 shows the dif-
ference between random masking and fixed continuous masking in end-to-end models, where we
adequately leverage all the input sequence with different combination of visible tokens. Random
masking takes the overall distribution of inputs into consideration, which can therefore alleviate the
distribution shift problem. Moreover, with the power of pre-training or representation learning em-
bodied in the encoder-decoder structure, Ti-MAE provides a universal scheme for both forecasting
and classification. The contributions of our work are summarized as follows:

• We provide a novel perspective to bridge the connection between existing contrastive learn-
ing and generative Transformer-based models on time series and point out the inconsistency
and deficiencies of them on downstream tasks.

• We propose Ti-MAE, a masked time series autoencoders which can learn strong representa-
tions with less inductive bias or hierarchical trick. Masking time series modeling in training
stage adequately leverages the input data and successfully alleviates the distribution shift
problem. Due to the flexible setting of masking ratio, Ti-MAE can adapt to complex sce-
narios which require the trained model to make forecasting simultaneously for multiple
time windows with various sizes without re-training.

• Ti-MAE has achieved excellent performance for both forecasting and classification tasks
on several public real-world time series datasets, demonstrating the power of pre-training
or representation learning of Ti-MAE in the time series domain.

2 RELATED WORK

2.1 TRANSFORMER-BASED TIME SERIES MODEL

Due to the ability of Transformer to capture long-range dependencies, Transformer-based model
has been widely used in language and vision tasks. Song et al. (2018); Ma et al. (2019); LI et al.
(2019) tried to directly apply vanilla Transformer to time series data but failed in long sequence
time series forecasting tasks as self-attention operation scales quadratically with the input sequence
length. Child et al. (2019); Zhou et al. (2021); Liu et al. (2022) noticed the long tail distribution in
self-attention feature map so that they utilized sparse attention mechanism to reduce time complexity
and memory usage of vanilla Transformer for processing longer sequences. Unfortunately, applying
too long input sequence in training stage will degrade the forecasting accuracy of the model (Wu
et al., 2021), which is in contrast to the ability that Transformer-based model can capture long-range
dependencies. Some of the latest works like ETSformer (Woo et al., 2022b) and FEDformer (Zhou
et al., 2022) also rely heavily on disentanglement and extra introduced domain knowledge.

2.2 TIME SERIES REPRESENTATION LEARNING

Self-supervised representation learning has achieved good performance in time series domain, es-
pecially using contrastive learning to learn a good intermediate representation. Lei et al. (2019);
Franceschi et al. (2019) used loss function of metric learning to preserve pairwise similarities in the
time domain. CPC (van den Oord et al., 2018) first proposed contrastive predictive coding and In-
foNCE, which treats the data from the same sequence as positive pairs while the different noise data
from the mini-batch as negative pairs. Different data augmentations on time series data were pro-
posed to capture transformation-invariant features at semantic level (Eldele et al., 2021; Yue et al.,
2022). CoST (Woo et al., 2022a) introduced extra inductive biases in frequency domain through
DFT and separately processed disentangled trend and seasonality parts of the original time series
data to encourage discriminative seasonal and trend representations. Almost all of these methods
rely on heavily data augmentation or other domain knowledge like hierarchy and disentanglement.

3



Under review as a conference paper at ICLR 2023

2.3 MASKED DATA MODELING

Masked language modeling is a widely adapted method for pre-training in NLP. BERT (Devlin et al.,
2019) holds out a portion of the input sequence and predicts the missing content in training stage,
which can generate good representations to various downstream tasks. Masked image encoding
methods are also used for learning image representations. Pathak et al. (2016) recovered a small
portion of missing regions using convolution. Motivated by the huge successes in NLP, recent meth-
ods (Bao et al., 2021; Dosovitskiy et al., 2021) are resort to Transformers to predict unknown pixels.
MAE (He et al., 2021) proposed to mask a high portion of patches and retain a small set of visible
patches received by encoder in pre-training on image data. Zerveas et al. (2021) directly masked a
small portion of time series to learn representations. Pang et al. (2022); Tong et al. (2022); Feichten-
hofer et al. (2022) have shown that MAE-style methods are effective to learn good representations.
Specially designed for enhancing the performance of spatial-temporal graph neural networks, TS-
former (Shao et al., 2022) concurrently tried to use MAE to generate intermediate representations
for spatial-temporal data. In addition, ExtraMAE (fang Zha, 2022) used RNN as the backbone with
the masking scheme for fast time series generation. Different from these methods, Ti-MAE inherits
the advantages of Transformer in modeling long time dependencies, and develops a universal time
series generation method for both forecasting and classification, with outstanding performance in
comparison with state-of-the-art transformer time series models and contrastive learning methods.

Padding Masked Token

Transformer Blocks

Decoder Input Embedding

Positional Encoding

Projection Layer

Reconstructed Time Series

Decoder

Encoder Input Embedding

Positional Encoding

Transformer Blocks

Input Time Series

Encoder Embedding

Encoder

Masking

Figure 3: Ti-MAE structure overview. Left: The encoder receives raw time series inputs. After
embedding inputs into tokens on timestamp, we randomly mask a large subset of tokens. Then we
feed all the visible tokens into Transformer blocks to capture dependencies. Right: The lighter
decoder processes encoded tokens padded with masked tokens and reconstructs the original time
series at the point-level.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Let X = (x1,x2, . . . ,xT ) ∈ RT×m be a multivariate time series instance with length of T , where
m is the dimension of each signal. Given a historical multivariate time series segment Xh ∈ Rh×m

with length of h, forecasting tasks aim to predict the next k steps values of Xf ∈ Rk×n where
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n ≤ m. For classification tasks, we should match the categorical ground truth from a set of labels C
and each time series instance X .

3.2 MODEL ARCHITECTURE

The overall architecture of Ti-MAE is shown in Figure 3. Similar as all autoencoders, our framework
has an encoder that maps the observed time series signal X ∈ RT×m to a latent representation
H ∈ RT×n, and a decoder that reconstructs the original sequence from the embedding of the encoder
on timestamp. Motivated by the great success of other MAE-style approaches (He et al., 2021;
Feichtenhofer et al., 2022; Hou et al., 2022), we also adopt an asymmetric design that the encoder
only operates visible tokens after applying masking on input embedding, and a lighter decoder
processes encoded tokens padded with masked tokens and reconstructs the original time series at
the point-level. More details of each component are introduced as follows.

Input time series

Transformer Block

Input Embedding

Random masking

LayerNorm

FFN

LayerNorm

Multi-Head 
Self-Attention

Figure 4: Ti-MAE encoder overview. Left: En-
coder input embedding. Right: Details of one
Transformer block used in both Ti-MAE encoder
and decoder, where we utilize pre-norm instead of
post-norm scheme.

Input embedding. Unlike other time se-
ries modeling methods, we have not adopted
any multi-scale or complex convolution scheme
like dilated convolution. Given a time series
segment, we directly use one 1-D convolu-
tional layer to extract local temporal features
on timestamp across channels. Fixed sinusoidal
positional embeddings are added to maintain
the position information. Be different from
other temporal data embedding approaches, we
do not add any handcrafting task-specific or
date-specific embeddings so as to introduce as
little inductive bias as possible.

Masking. After tokenizing original temporal
data into tokens on timestamp, we randomly
sample a subset of tokens without replacement
which follows the uniform distribution and
mask the remaining parts. It is hypothesized
and summarized in (He et al., 2021; Feichten-
hofer et al., 2022) that the masking ratio is re-
lated to the information density and redundancy
of the data, which has an immense impact on
the performance of the autoencoders. Generally
speaking, natural language has higher informa-
tion density due to its highly discrete word dis-
tribution, while images are of heavy spatial redundancy. Specifically, single pixel in one image has
lower semantic information so that we can reconstruct a missing region from neighboring pixels
by interpolation with little understanding of contents. Thus, data with lower information density
should be applied a higher masking ratio to largely eliminate redundancy and prevent the model
from focusing only on low-level semantic information. As a benchmark model often used in natural
language, BERT (Devlin et al., 2019) uses a masking ratio of 15% while MAE uses a ratio of 75%
for images (He et al., 2021) and 90% for videos (Feichtenhofer et al., 2022). Similar as images, time
series data also have local continuity so that we should determine a high masking ratio in training
stage. The optimal masking ratio of multivariate time series we observe is also around 75%.

Ti-MAE Encoder. Our encoder is a set of vanilla Transformer blocks with input embedding but
utilizes pre-norm instead of post-norm in each block, which is shown as Figure 4. Like other MAE-
style methods, Ti-MAE’s encoder is applied only on visible tokens after embedding and random
masking. This design significantly reduces time complexity and memory usage compared to full
encoding.

Ti-MAE Decoder. Our decoder also contains a set of vanilla Transformer blocks applied on the
union of the encoded visible tokens and learnable randomly initialized mask tokens. Following (He
et al., 2021), the decoder is designed to be smaller than the encoder. Notably, we add positional
embeddings to all tokens after padding to supplement the location information of the missing parts.
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The last layer of the decoder is a linear projection layer which reconstructs the input by predicting
all the values at the point-level. The training loss function is the mean squared error (MSE) between
the original time series data and the prediction over masking regions.

The encoder and decoder of Ti-MAE are both agnostic to the sequential data with as less domain
knowledge as possible. There is no date-specific embedding, hierarchy or disentanglement in con-
trast to other architectures (Zhou et al., 2021; Wu et al., 2021; Yue et al., 2022; Woo et al., 2022a).
Compared to masked autoencoders used in vision tasks, a lot of parameter settings of Ti-MAE
have been adjusted to better fit the time series data. We keep the point-level modeling rather than
patch embedding for the consistency between masked modeling and downstream forecasting tasks.
Unlike (Shao et al., 2022), we directly generate future values from the decoder as prediction, main-
taining the consistency of training and inference stages.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct extensively experiments on several public real-world datasets, covering
time series forecasting and classification applications. (1) ETT (Electricity Transformer Temper-
ature) (Zhou et al., 2021) consists of the data collected from electricity transformers, recording six
power load features and oil temperature. (2) Weather1 contains 21 meteorological indicators like
humidity, pressure in 2020 year from nearly 1600 locations in the U.S.. (3) Exchange (Lai et al.,
2018) is a collection of exchange rates among eight different countries from 1990 to 2016. (4) ILI2

records the weekly influenza-like illness (ILI) patients data from Centers for Disease Control and
Prevention of the United States between 2002 and 2021, describing the ratio of patients observed
with ILI and the total number of patients. (5) The UCR archive (Dau et al., 2019) has 128 differ-
ent datasets covering multiple domains like object outlines, traffic and body posture. We follow
the same protocol and split all forecasting datasets into training, validation and test set by the ratio
of 6:2:2 for the ETT dataset and 7:1:2 for other datasets. For classification, each dataset of UCR
archive has been already divided into training and test set where the size of test set is greatly larger
than training set in order to be accord with the actual scenarios.

Baselines. We select two types of baselines, Transformer-based end-to-end and representation
learning methods which have public official codes. For time series forecasting tasks, we select
four latest state-of-the-art representation learning models: CoST (Woo et al., 2022a), TS2Vec (Yue
et al., 2022), TNC (Tonekaboni et al., 2021) and MoCo (Chen et al., 2021) applied on time series
and four Transformer-based end-to-end models: FEDformer (Zhou et al., 2022), ETSformer (Woo
et al., 2022b), Autoformer (Wu et al., 2021) and Informer (Zhou et al., 2021). For time series
classification tasks, we include more competitive unsupervised representation learning methods:
TS2Vec, T-Loss (Franceschi et al., 2019), TS-TCC (Eldele et al., 2021), TST (Zerveas et al., 2021),
TNC (Tonekaboni et al., 2021) and DTW (Chen et al., 2013).

Implementation Details. The encoder and decoder of Ti-MAE both use 2 layers of vanilla Trans-
former blocks with 4 heads self-attention. The number of hidden states dimension is set to 64,
which is significantly lower than other existing methods (e.g., 320, 512). Ti-MAE is trained with
MSE loss, using the Adam optimizer (Kingma & Ba, 2015) with an initial learning rate of 1e − 3.
We apply a batch size of 64 and sampling time of 30 in each iteration. We use mean squared error
(MSE) 1

n

∑n
i=1(y − ŷ)2 and mean absolute error (MAE) 1

n

∑n
i=1 |y − ŷ| as evaluation metrics on

forecasting tasks, and average accuracy with critical difference (CD) on classification tasks. All the
models are implemented in PyTorch (Paszke et al., 2019) and trained/tested on a single Nvidia V100
32GB GPU.

4.2 TIME SERIES FORECASTING

To simulate different forecasting scenarios, we evaluate models under different future horizons,
covering short-term and long-term forecasting cases. Tables 1 and 2 summarize the multivariate
time series forecasting evaluation results of four datasets.

1https://www.ncei.noaa.gov/data/local-climatological-data/
2https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Table 1: Multivariate time series forecasting results compared to representation learning methods.

Method Ti-MAE CoST TS2Vec TNC MoCo

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

h

12 0.2629 0.3462 0.3374 0.4001 0.5817 0.5217 0.6056 0.5389 0.6419 0.5518
24 0.3520 0.3924 0.3832 0.4301 0.5897 0.5312 0.6331 0.5616 0.6491 0.5630
48 0.3977 0.4173 0.4342 0.4665 0.6242 0.5545 0.6934 0.6001 0.6804 0.5867
96 0.4266 0.4301 0.5229 0.5201 0.6812 0.5699 0.7538 0.6391 0.7618 0.6323
128 0.4493 0.4436 0.5742 0.5529 0.7190 0.5919 0.7949 0.6622 0.8062 0.6577
168 0.5091 0.4594 0.6326 0.5838 0.7621 0.6387 0.8360 0.6849 0.8201 0.6742

W
ea

th
er

12 0.0932 0.1460 0.1652 0.2630 0.1481 0.2367 0.1819 0.2508 0.1642 0.2521
24 0.1226 0.1809 0.2719 0.3525 0.3011 0.3551 0.3118 0.3731 0.3112 0.3651
48 0.1633 0.2280 0.3662 0.3672 0.3741 0.4178 0.3803 0.4117 0.3717 0.4163
96 0.2123 0.2735 0.4119 0.4266 0.4289 0.4507 0.4176 0.4174 0.4077 0.4419
128 0.2197 0.2805 0.4302 0.4686 0.4663 0.4839 0.4569 0.4824 0.4582 0.4693
168 0.2460 0.3049 0.4636 0.4914 0.4909 0.5061 0.4789 0.4950 0.4820 0.4992

E
xc

ha
ng

e

24 0.0697 0.1889 0.1365 0.2721 0.0873 0.2245 0.0834 0.2084 0.1058 0.2553
48 0.1255 0.2448 0.2532 0.3783 0.1666 0.3047 0.1648 0.2928 0.2018 0.3588
96 0.1701 0.2972 0.5408 0.5645 0.4686 0.5098 0.3756 0.4510 0.4162 0.5002
128 0.2208 0.3242 0.6786 0.6334 0.6540 0.6036 0.5483 0.5441 0.5950 0.6050
168 0.2151 0.3316 0.8859 0.7338 0.9683 0.7348 0.7701 0.6470 0.8079 0.6997
196 0.2123 0.3291 0.9720 0.7703 1.1692 0.8084 0.9495 0.7204 0.9534 0.7591

IL
I

24 2.7474 1.0740 2.8332 1.0656 3.5111 1.1882 3.3729 1.2011 2.9399 1.1014
36 2.7124 1.0348 3.1439 1.1197 3.7813 1.2588 4.0722 1.3292 3.4974 1.2212
48 2.6138 1.0399 3.4153 1.1725 4.1892 1.3319 4.1239 1.3239 3.7872 1.2713
60 2.2889 0.8940 3.7917 1.2553 4.2588 1.3352 3.9937 1.3063 3.8137 1.2695
72 2.0820 0.8372 4.0823 1.3232 4.1868 1.3431 4.0423 1.3294 3.8818 1.3023
96 2.4419 1.0287 4.2442 1.3755 4.3677 1.3756 4.2162 1.3594 4.2148 1.3530
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Figure 5: The optimal masking ratio is around
75%. Lower or higher masking ratio will de-
grade the performance of prediction.

In Table 1, Ti-MAE consistently improves the per-
formance in across all datasets of different pre-
diction horizons. Specifically, Ti-MAE achieves
a MAE decrease of 15.7% in ETT, 42.3% in
Weather, 45.5% in Exchange and 19.2% in ILI
compared to representation learning frameworks.
Notably, our Ti-MAE does not require any ex-
tra regressor after pre-trained because its decoder
can directly generate future time series to be pre-
dicted given the input sequence and masking ra-
tio. In Table 2, Ti-MAE († indicates fine-tuned
version) also shows more compatible performance
compared to other Transformer-based end-to-end
supervised methods. It must be stressed that we
have pre-trained only one Ti-MAE model while
all the end-to-end supervised models should be
trained separately for different settings. Then we
just utilize its encoder (parameters have been frozen) with an additional linear projection layer for
fine-tuning at different prediction horizons. Runtime analysis comapred to other Transformer-based
models could be seen at appendix. To further explore the impact of main properties of Ti-MAE, we
conduct extensive ablation experiments on Weather under input sequence length of 200 and predic-
tion horizon of 100 setting for evaluation. Table 3 demonstrates all the results of ablation study.

Masking ratio. Figure 5 and Table 3a show the influence of the masking ratio. The optimal ratios
are around 75%, which is in contrast to BERT (Devlin et al., 2019) and video-MAE (Feichtenhofer
et al., 2022) but similar to MAE for images (He et al., 2021). The high masking ratio induces the
model to process fewer tokens and learn high-level semantic information. We can see that lower
masking ratios perform worse even if the encoder could see more tokens because the model trained
with lower masking ratio may simply recover the values by interpolation or extrapolation, focusing
on low level semantic features locally.
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Table 2: Multivariate time series forecasting results compared to end-to-end methods.

Method Ti-MAE† ETSformer FEDformer Autoformer Informer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E

T
T

h

12 0.2826 0.3383 0.4479 0.4582 0.3272 0.3940 0.5016 0.5204 0.4299 0.4644
24 0.3430 0.3816 0.4602 0.4621 0.3699 0.4185 0.5063 0.5309 0.4880 0.4963
48 0.3705 0.3939 0.4855 0.4735 0.3912 0.4347 0.5703 0.5563 0.6625 0.5774
96 0.4039 0.4074 0.5090 0.4851 0.4194 0.4476 0.6052 0.5663 0.9584 0.7157
128 0.4270 0.4208 0.5279 0.4949 0.4360 0.4551 0.6043 0.5726 0.9504 0.7197
168 0.4455 0.4363 0.5446 0.5044 0.4733 0.4783 0.7382 0.6199 1.1043 0.7867

W
ea

th
er

12 0.0811 0.1199 0.0900 0.1537 0.1476 0.2350 0.2042 0.2960 0.2351 0.3128
24 0.1065 0.1484 0.1396 0.2224 0.1624 0.2496 0.2200 0.3141 0.1244 0.2022
48 0.1290 0.1784 0.1848 0.2735 0.1993 0.2898 0.2691 0.3542 0.2352 0.3129
96 0.1633 0.2151 0.2034 0.2994 0.2350 0.3139 0.2891 0.3673 0.2808 0.3586
128 0.1774 0.2283 0.2092 0.2972 0.2395 0.3148 0.2758 0.3469 0.3055 0.3723
168 0.2031 0.2525 0.2199 0.3016 0.2632 0.3281 0.2861 0.3506 0.3473 0.4003

E
xc

ha
ng

e

24 0.0276 0.1167 0.0266 0.1130 0.0717 0.1958 0.0894 0.2239 0.4963 0.5623
48 0.0438 0.1481 0.0441 0.1464 0.0954 0.2247 0.1474 0.2881 1.0477 0.8169
96 0.0814 0.2074 0.0861 0.2044 0.1470 0.2790 0.2883 0.3957 1.1038 0.8215
128 0.1108 0.2361 0.1153 0.2373 0.1886 0.3153 0.3102 0.4107 1.1978 0.8535
168 0.1443 0.2824 0.1549 0.2773 0.2484 0.3638 0.3066 0.4108 1.1564 0.8444
196 0.1661 0.3040 0.1830 0.3034 0.2718 0.3800 0.2990 0.4021 1.1679 0.8545

IL
I

24 2.4781 0.9925 3.1358 1.2128 3.3017 1.2689 3.3292 1.2088 4.2526 1.3551
36 2.2103 0.8956 2.9369 1.1218 2.6125 1.0575 3.4076 1.1688 4.7647 1.4433
48 1.9697 0.8826 2.9386 1.1120 2.5883 1.0683 3.2077 1.1125 4.8189 1.4553
60 2.3496 0.9545 2.8840 1.1324 2.8460 1.1533 3.3373 1.1659 4.7974 1.4669
72 2.1563 0.8884 2.8615 1.1579 2.8921 1.1721 3.1079 1.1237 4.1188 1.3718
96 2.3860 0.9827 3.1109 1.2186 3.1048 1.2412 3.0530 1.1260 4.5218 1.4401

Sampling Time Tables 3b and 3c study the influence of sampling time in each iteration and data
augmentation on Ti-MAE training stage. Ti-MAE works well with proper sampling time in each
iteration and even no extra data augmentation, which is different from other existing representation
learning methods on time series, especially contrastive learning models which rely on heavily data
augmentation. Ti-MAE can directly learn adequate information from masked data. Additionally,
introducing extra data augmentation will degrade the performance due to inevitable distortions of
the original data, which is different from the result of MAE for images or videos. Random masking
in each iteration generates a large number of different views without any distortion so that model
can make use of visible tokens to capture more useful features.

Table 3: Ablation experiments on Weather. The entries marked in bold are the same which spec-
ify the default settings. Lower MSE and MAE represent better performance. This table format
follows (Feichtenhofer et al., 2022).

(a) Masking ratio

Ratio MSE MAE

0.45 0.3082 0.3557
0.60 0.2650 0.3414
0.75 0.2103 0.2696
0.90 0.2483 0.3176

(b) Sampling time

#Sampling MSE MAE

20 0.2151 0.2892
25 0.2447 0.3095
30 0.2103 0.2696
35 0.2171 0.2769

(c) Data augmentation

Case MSE MAE

None 0.2103 0.2696
Scaling 0.2383 0.3022
Shifting 0.2399 0.3388
Jittering 0.2508 0.3316

(d) Input sequence length

Length MSE MAE

200 0.2413 0.2844
300 0.2103 0.2696
400 0.2877 0.3501
500 0.2328 0.2985

(e) Decoder width

#Blocks MSE MAE

1 0.2375 0.2954
2 0.2103 0.2696
3 0.2125 0.3112
4 0.2616 0.3057

(f) Decoder depth

Dim MSE MAE

16 0.4374 0.4805
32 0.2103 0.2696
64 0.2380 0.2813

128 0.3172 0.3758

8
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Input sequence length. In Table 3d we compare different length of input time series in training
stage. Surprisingly, although lengthening the input length of the pre-training stage can improve the
performance within limits, too long input sequence may degrade the results of our model because
there is a certain conflict between the complex periodic pattern in the long sequence and the short-
term prediction task in the downstream.

Decoder Design. Tables 3e and 3f show the influence of the decoder width and depth. A shallow
design of the decoder is sufficient for reconstruction tasks. It is because that time series data are not
that complicated and thus need lower decoding dimension to reduce redundancy. Such a lightweight
decoder can efficiently reduce computational complexity and memory usage.

4.3 TIME SERIES CLASSIFICATION

In the previous section, we have improved the performance of our framework on forecasting tasks
by reducing the consistency between upstream tasks and downstream tasks compared to contrastive
learning methods. Thus, we should evaluate learning ability of instance-level representation on
classification tasks. The results on 128 UCR archive are summarized in Table 4. Compared to other
representation learning methods, Ti-MAE achieves more compatible performance. More details
and full results of each dataset in UCR are listed in the appendix. Following (Yue et al., 2022),
Critical Difference diagram (Demsar, 2006) for Nemenyi tests conducted on all datasets is shown
as Figure 6, where classifiers that are connected by a bold line do not have a significant difference.
This proves that Ti-MAE could learn good instance-level representations directly from the raw time
series data without any hierarchical tricks or data augmentation.

Table 4: 128 UCR Archive Classification

method Ti-MAE TS2Vec T-Loss TS-TCC TST TNC DTW

Avg.Acc. 0.8231 0.8201 0.7875 0.7396 0.6385 0.7431 0.7278
Avg.Rank 2.054 3.016 4.016 4.445 4.883 3.875 5.711

1234567

6.1211TST
5.1367DTW
4.3125TNC
4.1992TS-TCC

3.3633 T-Loss
2.5352 TS2Vec
2.3320 Ti-MAE

Accuracy

Figure 6: Critical Difference (CD) diagram on UCR classification with a 95% confidence level.

5 CONCLUSION

This paper proposes a novel self-supervised framework named Ti-MAE for time series representa-
tion learning, which randomly masks out tokenized time series and learns an autoencoder to recon-
struct them at the point-level. Ti-MAE bridges the connection between contrastive representation
learning and generative Transformer-based methods and greatly improves the performance on fore-
casting tasks due to reducing the inconsistency of upstream and downstream tasks compared to
contrastive learning methods. Compared with the fixed continuous masking strategy used in exist-
ing Transformer-based models, Ti-MAE adequately leverages all the input sequence and alleviates
the distribution shift problem. The flexible setting of masking ratio makes Ti-MAE more adaptive
to various prediction scenarios with different time steps. The experiments on real-world datasets
and ablation study demonstrate the effectiveness and scalability of our framework. Future work will
extend our work for different reconstruction targets according to their requirements.

9
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A EXPERIMENTAL DETAILS

A.1 REPRODUCTION DETAILS FOR TI-MAE

The default settings of Ti-MAE are shown in Table 5 in detail. We use one Conv1d layer with the
setting of kernel = 3, stride = 1, padding = 1 to obtain the encoder input embedding, and then we
add a fixed positional encoding as

PE(pos, 2i) = sin(
pos

100002i/dmodel
)

PE(pos, 2i+ 1) = cos(
pos

100002i/dmodel
),

(2)

where dmodel represents the number of hidden states. After encoder input embedding, we randomly
mask out 75% tokens, and then remaining visible parts are fed into the encoder. The encoder and
decoder of Ti-MAE both contain 2 Transformer blocks as widely adopted in Devlin et al. (2019);
Dosovitskiy et al. (2021), each of which consists of one vanilla self-attention layer with 4 heads and
a point-wise feed forward layer. As recommended in Dosovitskiy et al. (2021), we adopt pre-norm
instead of post-norm for stability of the model in training stage. Equation 3 demonstrates the whole
process in the encoder:

Zd
i = RandomMask(Conv1d(Xl,n) + PE(Xl,n))

Ẑd
i = Zd

i +MHSA(LayerNorm(Zd
i ,Z

d
i ,Z

d
i ))

Z̃d
i = Ẑd

i +MLP(LayerNorm(Ẑd
i ))

(3)

where we use Xl,n to denote the vectors in dimension n with the length of l, and Zd
i to denote the

intermediate representation in dimension d with the length of i. In the decoder, we first apply a
linear layer to reduce the input dimension to d′ (64 → 32) for training efficiency. Given the position
to be reconstruct, zero initialized masked tokens are padded to the encoded tokens with the original
positional encoding. A dropout layer (p = 0.1) is added to the bottom of Transformer blocks to
prevent the over-fitting problem. The last linear projection layer of the decoder is to reconstruct the
missing values at the point-level. Equation 4 demonstrates the whole process of the decoder:

Zd′

l = Padding(Linear(Z̃d
i )) + PE(Xl,d′))

Ẑd′
l = Zd′

l +MHSA(LayerNorm(Zd′

l ,Zd′

l ,Zd′

l ))

Z̃d′
l = Ẑd′

l +MLP(LayerNorm(Ẑd′
l ))

˜Xl,n = Projection(Z̃d′
l )

(4)

where we use Zd′

l to denote the intermediate representation in dimension d′ with the length of l, and
˜Xl,n to denote our reconstruction goals.

Table 5: Default settings of Ti-MAE

Config Value

optimizer Adam Kingma & Ba (2015)
learning rate 0.001

learning rate schedule cosine decay
epochs 10

masking ratio 75%
sampling time 30

batch size 64
#encoder layer 2
#decoder layer 2

dmodel 64
dropout 0.1

Notably, all the linear layers in Ti-MAE are initialized through xavier Glorot & Bengio (2010). The
choice of Transformer blocks in Ti-MAE is flexible so that you can use other designed blocks with
more inductive biases if necessary.
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A.2 DETAILS ON BASELINES

For forecasting tasks, the results of CoST Woo et al. (2022a), TS2Vec Yue et al. (2022), TNC Tonek-
aboni et al. (2021), MoCo Chen et al. (2021), Autoformer Wu et al. (2021), Informer Zhou et al.
(2021), ETSformer Woo et al. (2022b) and FEDformer Zhou et al. (2022) are all based on our repro-
duction. For classification tasks, the results of TS2Vec are based on our reproduction. Other results
of classification are directly taken from Yue et al. (2022).

CoST Woo et al. (2022a) was recently proposed as a contrastive learning framework of disentangled
seasonal-trend representations for time series forecasting. They comprises both time domain and
frequency domain contrastive losses to learn discriminative trend and seasonal representations. We
use the public official source code from https://github.com/salesforce/CoST.

TS2Vec Yue et al. (2022) is a universal framework for learning representations of time series
in an arbitrary semantic level through applying contrastive learning in a hierarchical way over
augmented context views. TS2Vec can obtain timestamp-level and instance-level representations
for forecasting and classification simultaneously. We take the officially implemented code from
https://github.com/yuezhihan/ts2vec.

TNC Tonekaboni et al. (2021) is a self-supervised contrastive learning framework for time series,
where the positive samples come from the neighboring similar signals. We use the official open
source code from https://github.com/sanatonek/TNCrepresentationlearning
and all the settings of hyper-parameters follows Woo et al. (2022a).

MoCo Chen et al. (2021) is a self-supervised contrastive learning framework widely used in com-
puter vision domain, which uses a dynamic queue to save a large number of positive and negative
samples with consistency. We directly apply this framework on time series data using the official
code from https://github.com/facebookresearch/moco. Hyper-parameters are the
same as Woo et al. (2022a).

Autoformer Wu et al. (2021) is a novel end-to-end supervised model with a decomposition archi-
tecture for time series forecasting. By directly subtracting trend parts obtained from moving av-
erage, they design an auto-correlation mechanism as a replacement for self-attention to capture
long-term dependencies from seasonality parts. We use their open source code from https:
//github.com/thuml/Autoformer. Hyper-parameters are remain the default values in the
code.

Informer Zhou et al. (2021) is an efficient end-to-end supervised model for time series forecasting.
They propose a novel sparse attention to reduce time complexity and memory usage. We take
the officially implemented code from https://github.com/zhouhaoyi/Informer2020.
Hyper-parameters are used as suggested in their paper.

ETSformer Woo et al. (2022b) proposes an interpretable Transformer architecture which decom-
poses forecasts into level, growth, and seasonality components. And they employ both exponential
smoothing attention and frequency attention to reduce computational complexity. We use their open
source code from https://github.com/salesforce/ETSformer. Hyper-parameters are
used as suggested in their paper.

FEDformer Zhou et al. (2022) proposes to combine Transformer with the seasonal-trend decompo-
sition method, and exploit the fact that most time series tend to have a sparse representation in well-
known basis such as Fourier transform, and develop a frequency enhanced Transformer. We use the
official code from https://github.com/MAZiqing/FEDformer. Hyper-parameters are
remain the default values in the code.

A.3 DETAILS ON BENCHMARK TASKS

For time series forecasting tasks, the evaluation settings of end-to-end supervised models and other
representation learning methods are slightly different. For other representation learning methods,
we follow Yue et al. (2022) to evaluate the performance of their models. Specifically, we use a ridge
regression trained on the learned representations to predict the future values. The regularization
term α is selected by grid search from {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. It is
important to stress that Ti-MAE can directly generate future values from its decoder without any
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extra regressor (e.g. setting 50% masking ratio means giving one half of the entries to predict the
other half.). As for end-to-end models, we set the length of input sequence as 96 to predict future
time series with different horizons. Notably, for fair comparison with other SOTA Transformer-
based methods including FEDformer and ETSformer on forecasting, we have fine-tuned Ti-MAE
on forecasting tasks. Specifically, we extract the encoder of Ti-MAE and freeze it after pre-training,
and add an extra linear regressor for fine-tuning.

For classification tasks, we directly obtain instance-level representations by average or max pooling
over all timestamps following Yue et al. (2022). To evaluate the performance of models on classi-
fication, we follow the same protocol Franceschi et al. (2019), where an SVM classifier with RBF
kernel is trained on obtained instance-level representations. The full results of each dataset in UCR
are provided in Table 13 and 14.

Notably, due to the flexible design of the Transformer block, we can utilize any layer of the encoder
or the decoder of Ti-MAE to get intermediate representations. Extra class token is also a choice if
necessary. In our experiments, we simply gather the encoder embedding of Ti-MAE as instance-
level representations for evaluation. To accelerate the training of the model, we perform equidistant
sampling for different datasets to reduce input to less than 1024 for training efficiency.

Table 6: The classification results on morphological datasets with or without positional encoding

dataset w/ PE w/o PE

OSULeaf 0.59 0.74
ShapeletSim 0.54 0.91

Worms 0.64 0.78

TS2Vec also reports an interesting phenomenon that using Transformer instead of Dilated CNN as
backbone will largely degrade the performance on classification tasks. We also find similar prob-
lems, especially on morphological datasets. We suppose that some morphological datasets have
almost no seasonality, while the local morphological characteristics determine the data classifica-
tion. The positional encoding introduced in the encoder may destroy these morphological features.
Simply removing position embedding in the encoder when generating representations will signif-
icantly affect the performance of classification. Table 6 shows the classification results on some
morphological datasets with or without position embedding.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 THE IMPACT OF MASKING RATIO AND SAMPLING STRATEGIES

Table 7: The impact of masking ratio on forecasting tasks.

Method ETTh Weather Excahnge ILI

Metric MSE MAE MSE MAE MSE MAE MSE MAE

M
as

ki
ng

30% 0.6181 0.4984 0.4320 0.4698 0.2707 0.3531 2.2039 0.9908
45% 0.5140 0.4830 0.3082 0.3557 0.2328 0.3380 2.0452 0.9843
60% 0.5011 0.4490 0.2650 0.3414 0.2239 0.3340 2.0389 0.9707
75% 0.4403 0.4338 0.2103 0.2696 0.1701 0.2972 2.0150 0.9646
90% 0.4597 0.4385 0.2483 0.3176 0.1952 0.3172 2.0332 0.9607

Table 8: The impact of different masking strategies with 75% ratio on Weather.

Masking Strategy Random Continuous Split Periodic

MSE 0.2103 0.3834 0.3564 0.2720
MAE 0.2696 0.4420 0.3936 0.3357
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Table 7 summarizes the impact of masking ratio on different forecasting tasks under the setting of
200-100. We can see that the best masking ratio is generally around 75% given the continuous nature
of time series data. Table 8 studies the impact of different masking strategies with 75% ratio on
Weather dataset of 96-96 setting. Specifically, random masking means tokens are randomly masked;
continuous masking means we only mask historical time series and reconstruct future values, which
is the same as traditional forecasting methods; split masking means we both mask historical time
series to reconstruct future values, and mask future time series to reconstruct historical sequence;
periodic masking means tokens are periodically masked. Notably, periodic masked tokens with a
length of four are sampled equidistantly to maintain the same masking ratio. We can see that random
masking achieves the best result because randomness can adequately exploit the whole time series
data with less inductive bias.

B.2 RUNNING TIME ANALYSIS

Table 9 shows the running time in seconds for each stage of different Transformer-based methods,
where we execute three times for each setting (using 96 historical steps to predict future steps of
24, 48, 96, 288 and 672 respectively). All experiments are performed on one single Nvidia V100
GPU. Although many Transformer-based models have O(L logL) complexity, however, there exists
a large constant since these methods generally need to do a bulk of pre-treatment (e.g. Fourier
Transform, Wavelet Transform), which makes the overall training not that efficient. In comparison,
although our proposed Ti-MAE has O(L2) complexity due to the vanilla attention mechanism, we
need to pre-train the encoder of Ti-MAE only once and can fine-tune it on different forecasting
settings. Thus, the total running time of Ti-MAE is less than other Transformer-based methods.

Table 9: Running time (seconds) for Transformer-based methods at different stages.

Stage H Ti-MAE FEDformer ETSformer Autoformer Informer

Pre-training / 335.1 ± 0.5 / / / /

Training

24 17.5 ± 0.2 170.1 ± 2.8 68.6 ± 0.7 61.8 ± 0.4 68.4 ± 0.7
48 17.6 ± 0.1 199.2 ± 2.1 69.1 ± 0.6 68.7 ± 0.7 76.1 ± 0.6
96 17.9 ± 0.2 250.1 ± 2.0 72.1 ± 0.5 79.8 ± 0.4 87.7 ± 0.2
288 18.6 ± 0.2 324.0 ± 1.8 73.1 ± 1.0 130.5 ± 0.9 137.0 ± 0.3
672 19.8 ± 0.3 460.9 ± 2.1 76.3 ± 0.6 220.5 ± 0.4 220.1 ± 0.2

Inference

24 5.7 ± 0.1 9.1 ± 0.4 9.0 ± 0.4 13.6 ± 0.2 9.3 ± 0.1
48 6.1 ± 0.2 10.9 ± 0.4 9.1 ± 0.3 15.1 ± 0.2 10.2 ± 0.2
96 6.5 ± 0.1 12.4 ± 0.1 9.9 ± 0.3 18.0 ± 0.3 12.1 ± 0.5
288 8.7 ± 0.7 16.7 ± 0.4 13.3 ± 0.5 31.3 ± 0.5 18.8 ± 0.3
672 12.9 ± 1.1 25.2 ± 1.3 19.1 ± 1.4 55.6 ± 0.9 31.4 ± 1.2

B.3 ABLATION STUDY ON TI-MAE’S COMPONENTS

Table 10 shows the impact of different components of Ti-MAE, which proves the effectiveness of
random masking strategy, Transformer-based backbone and other necessary parts.

Table 10: Ablation study of Ti-MAE’s components on the Exchange dataset (200-100 setting).

Ablation variant MSE MAE

Default 0.2111 0.3367
Random → fixed continuous masking 0.2505 (-18.7%) 0.3700 (-9.9%)

Encoder w/o positional encoding 0.3082 (-46.0%) 0.3996 (-18.7%)
Decoder w/o positional encoding 0.2276 (-7.8%) 0.3518 (-4.5%)

pre-norm → post-norm 0.2213 (-4.8%) 0.3474 (-3.2%)
Transformer → TCN 0.2340 (-10.8%) 0.3558 (-5.7%)

Transformer → LSTM 0.2406 (-14.0%) 0.3612 (-7.3%)
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B.4 FORECASTING RESULTS WITH DIFFERENT DIMENSION

The input time series and the output one do not need to have the same dimensionality. Actually the
final linear projection layer in the decoder can easily project the input dimensionality to the desired
out dimensionality. Table 11 shows the results of using multivariate time series to predict the last
univariate target.

Table 11: Forecasting results with different dimension compared to representation learning methods.

Method Ti-MAE CoST TS2Vec TNC MoCo

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h 24 0.031 0.134 0.040 0.152 0.039 0.151 0.057 0.184 0.040 0.151

48 0.048 0.167 0.060 0.186 0.062 0.189 0.094 0.239 0.063 0.191
168 0.076 0.207 0.097 0.236 0.142 0.291 0.171 0.329 0.122 0.268
336 0.097 0.240 0.112 0.306 0.160 0.316 0.192 0.357 0.144 0.297

W
ea

th
er 24 0.005 0.056 0.096 0.213 0.096 0.215 0.102 0.221 0.097 0.216

48 0.012 0.087 0.138 0.262 0.140 0.264 0.139 0.264 0.140 0.264
168 0.014 0.108 0.207 0.334 0.207 0.335 0.198 0.328 0.198 0.326
336 0.015 0.115 0.230 0.356 0.231 0.360 0.215 0.347 0.220 0.350

B.5 TRANSFERABILITY STUDY
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Figure 7: Transferability of Ti-MAE on different trend and seasonality patterns.

To evaluate the transferability of our framework, we generate a set of time series data with different
trend and seasonality patterns, which follows

y(t) = cos(α · t) + cos(
α

2
· t) + cos(

α

4
· t) + β · t+ ϵ (5)
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where the hyper-parameters α and β respectively control the trend and seasonality patterns, and the
noises ϵ ∼ N(0, 0.1). We train our Ti-MAE under the setting of α = 300, β = 3 and evaluate the
forecasting performance on other different settings. Table 8 and Figure 7 demonstrate the strong
transferability of Ti-MAE under different trend and seasonality patterns.

Table 12: The results of forecasting 400 time steps on simulated time series data with different trend
and seasonality patterns.

Setting α = 300 α = 600 α = 300 α = 600
β = 3 β = 3 β = 100 β = 100

MSE 0.0134 0.0596 0.0089 0.0232
MAE 0.0778 0.1912 0.0881 0.0711
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Table 13: Full classification results on 128 UCR datasets part 1.

Dataset TMAE TS2Vec T-Loss TNC TS-TCC TST DTW

ACSF1 0.820 0.870 0.900 0.730 0.730 0.760 0.640
Adiac 0.788 0.726 0.675 0.726 0.767 0.550 0.604

AllGestureWiimoteX 0.633 0.782 0.763 0.703 0.697 0.259 0.716
AllGestureWiimoteY 0.682 0.791 0.726 0.699 0.741 0.423 0.729
AllGestureWiimoteZ 0.671 0.760 0.723 0.646 0.689 0.447 0.643

ArrowHead 0.874 0.794 0.766 0.703 0.737 0.771 0.703
BME 1.000 0.987 0.993 0.973 0.933 0.760 0.900
Beef 0.900 0.700 0.667 0.733 0.600 0.500 0.633

BeetleFly 0.900 0.750 0.800 0.850 0.800 1.000 0.700
BirdChicken 1.000 0.800 0.850 0.750 0.650 0.650 0.750

CBF 1.000 1.000 0.983 0.983 0.998 0.898 0.997
Car 0.867 0.800 0.833 0.683 0.583 0.55 0.733

Chinatown 0.985 0.974 0.951 0.977 0.983 0.936 0.957
ChlorineConcentration 0.725 0.804 0.749 0.760 0.753 0.562 0.648

CinCECGTorso 0.971 0.793 0.713 0.669 0.671 0.508 0.651
Coffee 1.000 1.000 1.000 1.000 1.000 0.821 1.000

Computers 0.780 0.648 0.664 0.684 0.704 0.696 0.700
CricketX 0.674 0.777 0.713 0.623 0.731 0.385 0.754
CricketY 0.659 0.769 0.728 0.597 0.718 0.467 0.744
CricketZ 0.718 0.810 0.708 0.682 0.713 0.403 0.754

Crop 0.751 0.756 0.722 0.738 0.742 0.710 0.665
DiatomSizeReduction 0.984 0.990 0.984 0.993 0.977 0.961 0.967

DistalPhalanxOutlineAgeGroup 0.763 0.719 0.727 0.741 0.755 0.741 0.770
DistalPhalanxOutlineCorrect 0.793 0.754 0.775 0.754 0.754 0.728 0.717

DistalPhalanxTW 0.727 0.698 0.676 0.669 0.676 0.568 0.590
DodgerLoopDay 0.613 0.538 0.241 0.183 0.206 0.200 0.500

DodgerLoopGame 0.739 0.826 0.415 0.508 0.493 0.696 0.877
DodgerLoopWeekend 0.978 0.949 0.623 0.684 0.601 0.732 0.949

ECG200 0.910 0.860 0.940 0.830 0.880 0.830 0.770
ECG5000 0.942 0.932 0.933 0.937 0.941 0.928 0.924

ECGFiveDays 0.988 1.000 1.000 0.999 0.878 0.763 0.768
EOGHorizontalSignal 0.558 0.528 0.605 0.442 0.401 0.373 0.503

EOGVerticalSignal 0.547 0.483 0.434 0.392 0.376 0.298 0.448
Earthquakes 0.748 0.748 0.748 0.748 0.748 0.748 0.719

ElectricDevices 0.685 0.724 0.707 0.700 0.686 0.676 0.602
EthanolLevel 0.744 0.388 0.382 0.424 0.486 0.260 0.276

FaceAll 0.880 0.789 0.786 0.766 0.813 0.504 0.808
FaceFour 0.875 0.852 0.920 0.659 0.773 0.511 0.830

FacesUCR 0.866 0.929 0.884 0.789 0.863 0.543 0.905
FiftyWords 0.787 0.754 0.732 0.653 0.653 0.525 0.690

Fish 0.897 0.920 0.891 0.817 0.817 0.720 0.823
FordA 0.818 0.940 0.928 0.902 0.930 0.568 0.555
FordB 0.652 0.802 0.793 0.733 0.815 0.507 0.620

FreezerRegularTrain 0.987 0.984 0.956 0.991 0.989 0.922 0.899
FreezerSmallTrain 0.959 0.872 0.933 0.982 0.979 0.920 0.753

Fungi 0.968 0.935 1.000 0.527 0.753 0.366 0.839
GestureMidAirD1 0.662 0.592 0.608 0.431 0.369 0.208 0.569
GestureMidAirD2 0.546 0.523 0.546 0.362 0.254 0.138 0.608
GestureMidAirD3 0.400 0.323 0.285 0.292 0.177 0.154 0.323
GesturePebbleZ1 0.901 0.849 0.919 0.378 0.395 0.500 0.791
GesturePebbleZ2 0.918 0.854 0.899 0.316 0.430 0.380 0.671

GunPoint 0.993 0.973 0.980 0.967 0.993 0.827 0.907
GunPointAgeSpan 0.994 0.962 0.994 0.984 0.994 0.991 0.918

GunPointMaleVersusFemale 0.997 1.000 0.997 0.994 0.997 1.000 0.997
GunPointOldVersusYoung 1.000 1.000 1.000 1.000 1.000 1.000 0.838

Ham 0.800 0.714 0.724 0.752 0.743 0.524 0.467
HandOutlines 0.919 0.919 0.922 0.930 0.724 0.735 0.881

Haptics 0.484 0.519 0.490 0.474 0.396 0.357 0.377
Herring 0.656 0.609 0.594 0.594 0.594 0.594 0.531

HouseTwenty 0.941 0.899 0.933 0.782 0.790 0.815 0.924
InlineSkate 0.380 0.403 0.371 0.378 0.347 0.287 0.384

InsectEPGRegularTrain 1.000 1.000 1.000 1.000 1.000 1.000 0.872
InsectEPGSmallTrain 1.000 1.000 1.000 1.000 1.000 1.000 0.735
InsectWingbeatSound 0.639 0.616 0.597 0.549 0.415 0.266 0.355
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Table 14: Full classification results on 128 UCR datasets part 2.

Dataset TMAE TS2Vec T-Loss TNC TS-TCC TST DTW

ItalyPowerDemand 0.967 0.932 0.954 0.928 0.955 0.845 0.950
LargeKitchenAppliances 0.787 0.869 0.789 0.776 0.848 0.595 0.795

Lightning2 0.836 0.869 0.869 0.869 0.836 0.705 0.869
Lightning7 0.808 0.781 0.795 0.767 0.685 0.411 0.726

Mallat 0.956 0.904 0.951 0.871 0.922 0.713 0.934
Meat 0.967 0.967 0.950 0.917 0.883 0.900 0.933

MedicalImages 0.771 0.799 0.750 0.754 0.747 0.632 0.737
MelbournePedestrian 0.949 0.958 0.944 0.942 0.949 0.741 0.791

MiddlePhalanxOutlineAgeGroup 0.675 0.643 0.656 0.643 0.630 0.617 0.500
MiddlePhalanxOutlineCorrect 0.811 0.831 0.825 0.818 0.818 0.753 0.698

MiddlePhalanxTW 0.623 0.578 0.591 0.571 0.610 0.506 0.506
MixedShapesRegularTrain 0.922 0.917 0.905 0.911 0.855 0.879 0.842
MixedShapesSmallTrain 0.875 0.854 0.860 0.813 0.735 0.828 0.780

MoteStrain 0.913 0.859 0.851 0.825 0.843 0.768 0.835
NonInvasiveFetalECGThorax1 0.918 0.924 0.878 0.898 0.898 0.471 0.790
NonInvasiveFetalECGThorax2 0.938 0.939 0.919 0.912 0.913 0.832 0.865

OSULeaf 0.736 0.851 0.760 0.723 0.723 0.545 0.591
OliveOil 0.933 0.867 0.867 0.833 0.800 0.800 0.833
PLAID 0.458 0.555 0.555 0.495 0.445 0.419 0.840

PhalangesOutlinesCorrect 0.772 0.806 0.784 0.787 0.804 0.773 0.728
Phoneme 0.229 0.296 0.276 0.180 0.242 0.139 0.228

PickupGestureWiimoteZ 0.840 0.800 0.740 0.620 0.600 0.240 0.660
PigAirwayPressure 0.240 0.807 0.510 0.413 0.380 0.120 0.106

PigArtPressure 0.760 0.966 0.928 0.808 0.524 0.774 0.245
PigCVP 0.750 0.813 0.788 0.649 0.615 0.596 0.154

Plane 1.000 0.990 0.990 1.000 1.000 0.933 1.000
PowerCons 1.000 0.967 0.900 0.933 0.961 0.911 0.878

ProximalPhalanxOutlineAgeGroup 0.863 0.834 0.844 0.854 0.839 0.854 0.805
ProximalPhalanxOutlineCorrect 0.876 0.890 0.859 0.866 0.873 0.770 0.784

ProximalPhalanxTW 0.829 0.790 0.771 0.810 0.800 0.780 0.761
RefrigerationDevices 0.611 0.603 0.515 0.565 0.563 0.483 0.464

Rock 0.660 0.660 0.580 0.580 0.600 0.680 0.600
ScreenType 0.579 0.411 0.416 0.509 0.419 0.419 0.397

SemgHandGenderCh2 0.838 0.960 0.890 0.882 0.837 0.725 0.802
SemgHandMovementCh2 0.700 0.862 0.789 0.593 0.613 0.420 0.584

SemgHandSubjectCh2 0.813 0.947 0.853 0.771 0.753 0.484 0.727
ShakeGestureWiimoteZ 0.900 0.940 0.920 0.820 0.860 0.760 0.860

ShapeletSim 0.911 0.939 0.672 0.589 0.683 0.489 0.650
ShapesAll 0.840 0.890 0.848 0.788 0.773 0.733 0.768

SmallKitchenAppliances 0.741 0.733 0.677 0.725 0.691 0.592 0.643
SmoothSubspace 0.993 0.980 0.960 0.913 0.953 0.827 0.827

SonyAIBORobotSurface1 0.912 0.910 0.902 0.804 0.899 0.724 0.725
SonyAIBORobotSurface2 0.934 0.897 0.889 0.834 0.907 0.745 0.831

StarLightCurves 0.972 0.971 0.964 0.968 0.967 0.949 0.907
Strawberry 0.970 0.967 0.954 0.951 0.965 0.916 0.941

SwedishLeaf 0.938 0.923 0.914 0.880 0.923 0.738 0.792
Symbols 0.961 0.981 0.963 0.885 0.916 0.786 0.950

SyntheticControl 0.993 0.997 0.987 1.000 0.990 0.490 0.993
ToeSegmentation1 0.890 0.925 0.939 0.864 0.930 0.807 0.772
ToeSegmentation2 0.908 0.900 0.900 0.831 0.877 0.615 0.838

Trace 1.000 1.000 0.990 1.000 1.000 1.000 1.000
TwoLeadECG 0.985 0.982 0.999 0.993 0.976 0.871 0.905
TwoPatterns 0.994 1.000 0.999 1.000 0.999 0.466 1.000

UMD 1.000 0.993 0.993 0.993 0.986 0.910 0.993
UWaveGestureLibraryAll 0.956 0.938 0.896 0.903 0.692 0.475 0.892
UWaveGestureLibraryX 0.814 0.797 0.785 0.781 0.733 0.569 0.728
UWaveGestureLibraryY 0.736 0.714 0.710 0.697 0.641 0.348 0.634
UWaveGestureLibraryZ 0.749 0.759 0.757 0.721 0.690 0.655 0.658

Wafer 0.996 0.999 0.992 0.994 0.994 0.991 0.980
Wine 0.907 0.741 0.815 0.759 0.778 0.500 0.574

WordSynonyms 0.705 0.676 0.691 0.630 0.531 0.422 0.649
Worms 0.779 0.727 0.727 0.623 0.753 0.455 0.584

WormsTwoClass 0.792 0.740 0.792 0.727 0.753 0.584 0.623
Yoga 0.834 0.888 0.837 0.812 0.791 0.830 0.837
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