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Abstract

End-to-end sign language translation (SLT)
aims to directly convert sign language videos
into spoken language texts without interme-
diate representations. It has been challeng-
ing due to the data scarcity of labeled data
and the modality gap between sign videos and
texts. To tackle these challenges, we propose
a novel Cross-modality Data Augmentation
(XmDA) framework to transfer the powerful
gloss-to-text translation capabilities to end-to-
end sign language translation (i.e., video-to-
text). Specifically, XmDA consists of two key
components: cross-modality mix-up and cross-
modality knowledge distillation. The former
one explicitly encourages the alignment be-
tween sign video features and gloss embed-
dings to bridge the modality gap. The latter
one utilizes the generation knowledge from
gloss-to-text teacher models to guide the spo-
ken language text generation. Experimental
results on two widely used SLT datasets, i.e.,
PHOENIX-2014T and CSL-Daily, demonstrate
that the proposed XmDA framework signifi-
cantly and consistently outperforms the base-
line models. Extensive analyses confirm our
claim that XmDA enhances end-to-end sign
language translation by reducing the representa-
tion distance between sign videos and glosses,
as well as improving the translation of low-
frequency words and long sentences. Codes
have been released at https://github.com/
Atrewin/SignXmDA

1 Introduction

Sign language is an essential communication tool
used in deaf communities. Sign language transla-
tion (SLT) has made significant progress in recent
years (Camgoz et al., 2018; Yin and Read, 2020;
Zhou et al., 2021; Chen et al., 2022; Zhang et al.,
2023a), with the goal of converting sign language
videos into spoken language texts. The conven-
tional approach to SLT uses a cascaded system in
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which sign language recognition identifies gloss se-
quences from continuous sign language videos, and
gloss-to-text translation (Gloss2Text) converts the
sign gloss sequence into written text (Yin and Read,
2020; Camgoz et al., 2020b; Moryossef et al., 2021;
Kan et al., 2022; Ye et al., 2023). Nevertheless, it
is well-known that the cascaded system has the
significant drawback of time delay and error propa-
gation (Chen et al., 2022; Zhang et al., 2023a).

End-to-end SLT models offer an intuitive so-
lution to circumvent the challenges posed by cas-
caded systems. These models directly translate sign
language videos into spoken texts without requiring
an intermediary sign gloss representation (Camgoz
et al., 2020a; Chen et al., 2022; Zhang et al., 2023a).
However, the end-to-end approach faces significant
obstacles in practice due to inadequate documenta-
tion and resources for sign languages. This short-
age of resources results in a high cost of annotated
data (NC et al., 2022), which hinders the develop-
ment of end-to-end models. There have been a few
recent attempts to improve the end-to-end SLT per-
formance, including back-translation (Zhou et al.,
2021) and pre-training (Chen et al., 2022), to miti-
gate the issue of data scarcity.

Along this research line, in this work, we pro-
pose a novel Cross-modality Data Augmentation
(XmDA) approach to improve the end-to-end SLT
performance. The main idea of XmDA is to lever-
age the powerful gloss-to-text translation capabili-
ties (unimode, i.e., text-to-text) to end-to-end sign
language translation (cross mode, i.e., video-to-
text). Specifically, XmDA integrates two tech-
niques, namely Cross-modality Mix-up and Cross-
modality Knowledge Distillation (KD) (§ 2.2). The
Cross-modality Mix-up technique combines sign
language video features with gloss embeddings
extracted from the gloss-to-text teacher model to
generate mixed-modal augmented samples (§ 2.3).
Concurrently, the Cross-modality KD utilizes di-
versified spoken language texts generated by the
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powerful gloss-to-text teacher models to soften the
target labels (§ 2.4), thereby further diversifying
and enhancing the augmented samples.

We evaluate the effectiveness of XmDA on two
widely used sign language translation datasets:
PHOENIX-2014T and CSL-Daily. Experimental
results show that XmDA outperforms the com-
pared methods in terms of BLEU, ROUGE, and
ChrF scores (§ 3.2). Through comprehensive anal-
yses, we observed two key findings. Firstly, Cross-
modality Mix-up successfully bridges the modality
gap between sign and spoken languages by improv-
ing the alignment between sign video features and
gloss embeddings (§ 4.1). Secondly, the Cross-
modality KD technique enhances the generation of
spoken texts by improving the prediction of low-
frequency words and the generation of long sen-
tences (§ 4.2).

The contributions of our work are summarized
as follows:

• We propose a novel Cross-modality Data Aug-
mentation (XmDA) approach to address the
modality gap between sign and spoken lan-
guages and eases the data scarcity problem in
end-to-end SLT.

• Comprehensive analysis demonstrates that
XmDA is an effective approach to diminish
the representation distance between video and
text data, enhancing the performance of sign
language translation, i.e., video-to-text.

• We evaluate the effectiveness of the proposed
XmDA on two widely used SLT datasets
and demonstrate that XmDA substantially im-
proves the performance of end-to-end SLT
models without additional training data, pro-
viding a valuable alternative to data-intensive
methods.

2 Methodology

We integrate the proposed Cross-modal Data Aug-
mentation (XmDA) technique into the Sign Lan-
guage Transformers, which is widely used in sign
language translation tasks. The proposed frame-
work is illustrated in Figure 1. In this section, we
will first revisit the Sign Language Transformers
structure (Camgoz et al., 2020b). Then we pro-
vide a more comprehensive explanation of the pro-
posed approach, including two essential compo-
nents: Cross-modality Mixup and Cross-modality

KD. To ensure clarity, we define end-to-end SLT
and the notation used throughout this paper.

2.1 Task Definition
We formally define the setting of end-to-end SLT.
The existing SLT datasets typically consist of sign-
gloss-text triples, which can be denoted as D =
{(Si, Gi, Ti)}Ni=1. Here, Si = {sz}Zz=1 represents
a sign video comprising Z frames, Gi = {gv}Vv=1is
a gloss sequence consisting of V gloss annotations,
and Ti = {tu}Uu=1 is a spoken language text con-
sisting of U words. In addition, it’s worth noting
that the gloss G is order-consistent with the sign
gestures in S, while spoken language text T is non-
monotonic to S. End-to-end SLT aims to directly
translate a given sign video S into a spoken lan-
guage text T .

2.2 Sign Language Transformers
Sign Language Transformers utilize the encoder-
decoder architecture of transformer networks to
recognize and translate sign language S into both
sign gloss G and spoken language text T in an end-
to-end manner. The original model is composed of
four main components: sign embedding, a trans-
lation encoder, a translation decoder, and a CTC
classifier. In our work, we extend this model by
introducing a fifth component, the gloss embed-
ding, which provides a richer representation for the
translation process (e.g., gloss-to-text translation).

Sign Embedding. In line with recent re-
search (Camgoz et al., 2020b; Zhou et al., 2021),
we use pre-trained visual models to extract sign
video frame representations. Specifically, we fol-
low Zhang et al. (2023a) to adopt the pre-trained
SMKD model (Min et al., 2021) and extract visual
representations from video frames. These represen-
tations are then projected into the same size as the
gloss embedding through a linear layer. It should be
noted that the parameters of the pre-trained SMKD
model are frozen during the training of the Sign
Language Transformers.

Translation Encoder. The translation encoder
in Sign Language Transformers comprises multi-
layer transformer networks. Its input is the em-
bedding sequence of input tokens, such as the rep-
resentation of sign video frames. Typically, the
input embedding sequence is modeled using self-
attention and projected into contextual representa-
tions h(S). These contextual representations are
fed into the decoder to generate the target spoken
text translation.
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Figure 1: The overall framework of cross-modality data augmentation methods for SLT in this work. Components
in gray indicate frozen parameters.

Translation Decoder. The translation decoder
in Sign Language Transformers involves multi-
layer transformer networks that include cross-
attention and self-attention layers. These decoder
networks produce spoken language sentences based
on the sign video representation h(S).

The objective function for spoken language text
generation is defined as a cross-entropy loss be-
tween the decoder prediction texts and reference
texts.

LMLE = −
|T |∑
u=1

log P (tu|t<u, h(S)) (1)

Gloss Embedding. The gloss embedding, which
is presented in Sign Language Transformers, works
similarly to traditional word embedding in that
it converts discrete gloss tokens into continuous
vector representations by an embedding matrix.
The gloss embedding is an important expansion to
the original Sign Language Transformers (Camgoz
et al., 2020b), which brings a broader perspective
to the translation process (e.g., gloss-to-text and
(sign mix gloss)-to-text).

CTC Classifier. Sign Language Transformers
inject gloss annotations as the intermediate super-
vision to train the translation encoder. A linear
projection layer followed by a softmax activation
(i.e., gloss classifier) is employed to predict sign
gloss distribution P (gz|h(S)) of each sign video

frame and model the marginalizing overall possible
S to G∗ as

P (G∗|h(S)) =
∑
π∈Π

P (π|h(S)) (2)

Where G∗ is the ground truth gloss annotations
sequence and π is a path, i.e., the predicted gloss
sequence of sign frames from s1 to sZ , and Π is
the set of all viable paths resulting to G∗ sequence.
And the CTC loss function is defined as:

LCTC = 1− P (G∗|h(S)) (3)

2.3 Cross-modality Mix-up
Cross-modality Mix-up promotes the alignment of
sign video features and gloss embeddings to bridge
the modality gap by producing mixed-modal repre-
sentations SLT input. As shown in Figure 1, given
a training sample ({sz}Zz=1, {gv}Vv=1, {tu}Uu=1) ∈
D, the {sz}Zz=1 and {gv}Vv=1 are embedded into
a sequence of sign video frames features F =
[f1, f2, · · · , fZ ] and gloss embeddings E =
[e1, e2, · · · , eV ]. Note that the dimensions of sign
features and gloss embeddings are identical. Cross-
modality Mix-up aims to obtain mixed-modal rep-
resentations M by combining F and E .

CTC Sign-Gloss Aligner. To perform the
Cross-modality Mix-up, an indispensable step is to
determine the temporal boundaries between glosses
in continuous sign video. Inspired by previous
work in speech recognition (Kürzinger et al., 2020),



we employ the CTC classifier as a sign-gloss forced
aligner, which returns the start position lv and
end position rv in the sign video frame flow for
each corresponding gloss gv by maximizing the
marginal probability of a specific path π. More
specifically, the sign-gloss forced aligner identifies
the optimal path π∗ from Π as follows:

π∗ ⇐ argm
π∈Π

max P (π| h(S))

argm
π∈Π

max
V∑

v=0

rv∑
z=lv

logP(gz = g∗v) (4)

Following the best sign-gloss alignment path π∗,
the CTC classifier returns the start position lv and
end position rv in the sign video frame flow for
each gloss gv. With a pre-defined mix-up ratio λ,
we obtain the mixed-modal representations M as:

mv =

{
F [lv : rv], p ≤ λ

E [v], p > λ
(5)

M = [m1,m2, · · · ,mV ] (6)

Where p is sample from the uniform distribution
N (0, 1).

Mix-up Training. As shown in Figure 1, to
narrow the gap these two types of input representa-
tions, namely, mixed-modal input representations
M and unimodal input representations F , we feed
them to the translation encoder and decoder, and
minimize the Jensen-Shannon Divergence (JSD)
between the two prediction distributions. The regu-
larization loss is defined as:

LJSD =

|T |∑
u=1

JSD{P(tu|t<u,F)

||P(tu|t<u,M)} (7)

2.4 Cross-modality Knowledge Distillation
Sequence-level knowledge distillation (Kim and
Rush, 2016) (in text mode) encourages the stu-
dent model to mimic the teacher’s actions at the
sequence level by using generated target sequences
from the teacher. Similarly, Cross-modality KD
employs the generative knowledge derived from
gloss-to-text teacher model to guide the generation
of spoken language text in SLT.

Motivated by the multi-teacher distilla-
tion (Nguyen et al., 2020; Liang et al., 2022), we

use the data augmentation strategies (Moryossef
et al., 2021; Zhang and Duh, 2021; Ye et al.,
2023) to train K gloss-to-text teacher models
(i.e., M1

G2T ,M
2
G2T , · · · ,MK

G2T ) on the given SLT
dataset D = {(Si, Gi, Ti)}Ni=1. Those teacher mod-
els translate each Gi to diversified spoken language
translations (i.e., T 1

i , T
2
i , · · · , TK

i ) for the source
sign video input Si and obtain multi-references
dataset DMKD =

⋃K
k=0 (Xi, Gi, T

k
i )

N
i=1 . Here,

T 0
i represents the original reference and the size of

the data is K + 1 times that of D.

2.5 Overall Framework

Model Training. As described in Section 2.4, we
first apply Cross-modality KD to enrich the dataset
D into DMKD by attaching the diversified spoken
language translations T . During the training stage,
we apply Cross-modality Mix-up (Section 2.3) to
produce additional mixed-modal inputs that help
bridge the modality gap between the sign video
features and gloss embeddings.

As depicted in Figure 1, the end-to-end SLT
model is trained by minimizing the joint loss term
L, defined as:

L = LMLE + LCTC + LJSD (8)

Model Inference. In the inference stage, the sys-
tem utilizes the sign embedding, translation en-
coder, and translation decoder to directly convert
sign video input into spoken language text.

3 Experiments

3.1 Experimental Setup

Dataset. We conduct experiments on two widely-
used benchmarks for SLT, namely, PHOENIX-
2014T (Camgoz et al., 2018) and CSL-Daily (Zhou
et al., 2021). The statistics of the two datasets are
listed in Table 9

Model Settings. For the baseline end-to-end
SLT model, we follow Sign Language Transform-
ers (Camgoz et al., 2020b) consisting of multi-
ple encoder and decoder layers. Each layer com-
prises eight heads and uses a hidden size of 512
dimensions. For the sign embedding component
described in Section 2.2, we adopt the SMKD 1

model (Min et al., 2021) to extract visual features
and apply a linear layer to map it to 512 dimen-
sions.

1https://github.com/ycmin95/VAC_CSLR
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Method Dev Test
BLEU ROUGE ChrF BLEU ROUGE ChrF

Previous Research
Sign Language Transformers

22.38 - - 21.32 - -
(Camgoz et al., 2020b)
Sign Back-Translation (Zhou et al., 2021) 24.45 50.29 - 24.32 49.54 -
Contrastive Transformer (Fu et al., 2022) 21.11 47.74 - 21.59 47.69 -

Our Experiments
Sign Language Transformers 22.90 48.05 44.96 22.79 47.33 44.36

+ Cross-modality Mix-up 23.60 48.59 46.14 23.87 48.92 46.04
+ Cross-modality KD 24.82 50.04 47.98 24.77 49.53 48.04
+ XmDA 25.86 52.42 50.10 25.36 49.87 51.49

Table 1: End-to-end SLT performance on PHOENIX-2014T dataset. “+ XmDA” denotes the application of both
Cross-modality Mix-up and Cross-modality KD.

Method Dev Test
BLEU ROUGE ChrF BLEU ROUGE ChrF

Previous Research
Sign Language Transformers

11.88 37.06 - 11.79 36.74 -
(Zhou et al., 2021)
Sign Back-Translation (Zhou et al., 2021) 20.80 49.49 - 21.34 49.31 -
Contrastive Transformer (Fu et al., 2022) 14.80 41.46 - 14.53 40.98 -

Our Experiments
Sign Language Transformers 11.55 36.32 11.14 11.61 36.43 11.15

+ Cross-modality Mix-up 15.67 42.36 14.57 15.47 42.60 14.68
+ Cross-modality KD 17.05 44.17 15.74 16.92 43.90 15.65
+ XmDA 21.69 49.36 19.60 21.58 49.34 19.50

Table 2: End-to-end SLT performance on CSL-Daily dataset. “+ XmDA” denotes the application of both Cross-
modality Mix-up and Cross-modality KD.

In demonstrating the proposed XmDA, we uti-
lize four gloss-to-text teacher models (i.e., K = 4),
each trained using PGEN (Ye et al., 2023) with
varying seeds and subsets of training data. The
mix-up ratio for Cross-modality Mix-up is set to
0.6 (i.e., λ = 0.6).

Furthermore, the gloss embedding matrix is ini-
tialized using the most effective gloss-text teacher
model as per Table 15, and is fixed constant
throughout the training phase. This approach helps
to preserve the well-captured distributional prop-
erties of gloss representations. Due to space con-
straints, more details about our model settings and
the optimal parameters of each component are de-
tailed in A.2 and A.3.

Evaluation Metrics. Following previous stud-
ies (Camgoz et al., 2018, 2020b; Zhou et al., 2021;

Chen et al., 2022), we use standard metrics com-
monly used in machine translation, including tok-
enized BLEU (Papineni et al., 2002) with 4-grams
and Rouge-L F1 (ROUGE) (Lin, 2004) to evalu-
ate the performance of SLT. Following Zhang et al.
(2023a), we also report ChrF (Popović, 2015) score
to evaluate the translation performance.

3.2 Experimental Results

We validate the proposed approaches on the Sign
Language Transformers baseline on PHOENIX-
2014T and CSL-Daily. The main results are listed
in Table 1 and Table 2.

In the PHOENIX-2014T test set, Cross-modality
Mix-up surpasses the baseline model by 1.08
BLEU scores, 1.59 ROUGE scores and 1.68 ChrF
scores. Similarly, Cross-modality KD yields en-



hancements of 1.98 BLEU scores, 2.20 ROUGE
scores and 3.68 ChrF scores. The proposed XmDA
method, which integrates both techniques, achieves
a gain of up to 2.57 BLEU scores, 2.54 ROUGE
scores and 7.13 ChrF scores. The proposed XmDA
also outperforms other data augmentation tech-
niques, e.g., Sign Back-Translation and Contrastive
Transformer in Table 1, thus demonstrating the ef-
fectiveness of the proposed approach.

Table 2 presents the experimental results of the
CSL-Daily dataset. A similar phenomenon is ob-
served, indicating the universality of the proposed
XmDA.

4 Analysis

In this section, we delve into the mechanisms be-
hind the improved end-to-end SLT performance
achieved by the XmDA method. We investigate
our approach’s impact on input space and output
translations, focusing on the effectiveness of the
Cross-modality Mix-up and Cross-modality KD
techniques and their influence on word frequency
and sentence length.

4.1 Impact of Cross-modality Mix-up

In Section 2.3, we claim the XmDA approach can
bridge the modality gap between video and text and
promote the alignment of sign video features and
gloss embeddings. To investigate this, we conduct
experiments on the SLT model using XmDA in
Table 1.

We visualize multi-view representation (sign,
gloss, mixed-modal) for each PHOENIX-2014T
test set sample. We compute sentence-level repre-
sentations for each input view by averaging embed-
ding sequences and apply t-SNE (Van der Maaten
and Hinton, 2008) for dimensionality reduction to
2D. We then plot the bivariate kernel density esti-
mation based on 2D sequence-level representations.
As shown in Figure 2, the 2D distributions of sign
video features (blue) and gloss embeddings (red)
are distinct, while mixed-modal representations
(green) lie between them, indicating that mixed-
modal representations serve as an effective bridge
between sign and gloss representations.

To further investigate the benefits of mixed-
modal sequence input, we examine the topolog-
ical structure of input embeddings for the baseline,
“+Cross-modality Mix-up”, and the best gloss-to-
text teacher model. We employ t-SNE to visu-
alize those embedding sequences in 2D. As de-
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Figure 2: Bivariate kernel density estimation visualiza-
tion of sentence-level representations: sign embeddings
from baseline SLT, gloss embeddings from the gloss-
to-text teacher model, and mixed-modal representations
obtained by mixing sign embeddings and gloss embed-
dings with λ = 0.6. Best viewed in color.

picted in Figure 3, gloss embeddings in the gloss-
to-text teacher model have a discrete distribution
(in red), indicating excellent representation for dif-
ferent glosses. In contrast, the sign embedding of
the baseline SLT model exhibits a smoother dis-
tribution (in blue), potentially causing confusion
when translating sign language videos into spo-
ken texts. Remarkably, the sign embeddings ex-
tracted from the “+Cross-modality Mix-up” model
(in green) exhibit a distribution similar to that of
gloss embeddings.

For quantitative analysis, we employ Kernel Den-
sity Estimation (KDE) to estimate the probability
density functions for these three types of embed-
dings (Moon and Hero, 2014). The resulting en-
tropies from these KDEs are tabulated below:

Embedding Type KDEs Entropy
Gloss Embeddings 0.19
Sign Embeddings (Baseline) 2.18
Sign Embeddings (XmDA) 0.84

Table 3: Entropies resulting from KDEs on different
types of embeddings.

Additionally, to provide a quantitative measure
of alignment, we compared the average Euclidean
distance and cosine similarity at the word-level
between sign embeddings and gloss embeddings.
The results are presented in the table below:

This demonstrates that incorporating the mixed-
modal inputs in the training process enables better
sign representation by utilizing the constraint from
the teacher gloss embeddings.



Comparison ED Cos Sim
Sign (Baseline) vs. Gloss 14.6 0.19
Sign (XmDA) vs. Gloss 8.68 0.34

Table 4: Average Euclidean distance (ED) and cosine
similarity (Cos Sim) between sign embeddings and
gloss embeddings.
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Figure 3: Visualization of gloss and sign representation
distributions for the Baseline SLT (in blue) and “+ Cross-
modality Mix-up” (in green) models by t-SNE. Best
viewed in color.

To illustrate this point, we sample a gloss an-
notation sequence (e.g., {”region”, ”gewitter”,
”kommen”}) from the test set and plot the relative
sign frame embeddings and gloss embeddings in
Figure 3. Notes, middle frames are selected as rep-
resentative embeddings based on sign-gloss forced
aligner temporal boundaries (§ 2.3). As seen, the
Cross-modality Mix-up technique (green dot line)
significantly improves the sign embedding repre-
sentations over the baseline (blue dot line), bring-
ing sign embedding representations within visual
and text modalities closer and a better alignment.

4.2 Impact on SLT Translation Outputs

To gain a deeper understanding of how the pro-
posed approach enhances the end-to-end SLT,
we analyze the translation outputs of PHOENIX-
2014T, as shown in Table 1, using the compare-mt
toolkit2. We focus on two aspects: word frequency
and sentence length.

Words Frequency: Multiple reference transla-
tions have been shown to improve translation qual-
ity by promoting diversity and robustness in trans-
lation outputs (Nguyen et al., 2020). We won-
der how such diversity and robustness benefit

2https://github.com/neulab/compare-mt

Data Word Frequency

Low Medium High

Baseline SLT 30.70 52.24 60.61
+ Xm Mix-up 31.79 55.20 60.09
+ Xm KD 33.36 55.96 61.60
+ XmDA 34.68 56.07 61.93

Table 5: Prediction accuracy (F1 score) of target words
in the test set with respect to word frequency. Xm indi-
cates Cross-modality. As the higher F1 score, the better,
we mark the improvement by green and degradation

by red background.

the prediction of low-frequency words. Specifi-
cally, we first categorize the vocabulary into three
groups based on the word frequency in the training
data, including High: frequency ∈ [2000,+∞);
Medium: frequency ∈ [100, 2000); Low: fre-
quency ∈ (0, 100]. Then, we utilize compare-mt
to calculate the prediction accuracy of target words,
e.g., F1 score (Snover et al., 2006), in the test set
with respect to the three groups.

Table 5 presents the results for the different ap-
proaches concerning word frequency. It can be ob-
served that the Cross-modality Mix-up and Cross-
modality KD methods independently improve the
F1 score for low-frequency and medium-frequency
words compared to the Baseline SLT. When com-
bined, XmDA method, which stacks both Cross-
modality Mix-up and Cross-modality KD, achieves
the most significant improvement, particularly in
low-frequency words, demonstrating its effective-
ness in predicting these words. For high-frequency
words, both Cross-modality KD and XmDA im-
prove F1 score, whereas Cross-modality Mix-up
shows a slight decrease. These results highlight the
potential of cross-modality techniques in enhanc-
ing the model’s ability to predict low-frequency
words, which contributes to a more robust and di-
verse translation output.

Sentence Length: We investigate the translation
quality of examples with varied lengths, which can
be biased when generating target spoken language
texts. Similar to word frequency, we also use the
compare-mt toolkit to categorize the examples of
the test set into three groups based on the sen-
tence length, including Long: (20,+∞) tokens;
Medium: (10, 20] tokens; Short: (0, 10] tokens.

Table 6 presents the results concerning sentence
length. It is well-known that longer sentences

https://github.com/neulab/compare-mt


Data Sentence Length

Short Medium Long

Baseline SLT 36.70 17.56 12.73
+ Xm Mix-up 38.96 18.78 13.68
+ Xm KD 34.32 19.67 15.23
+ XmDA 38.05 20.80 17.54

Table 6: Translation quality (BLEU score) of examples
in the test set with respect to sentence length.

are more challenging to translate (Zheng et al.,
2020). Cross-modality Mix-up and Cross-modality
KD methods stand out, exhibiting significant im-
provement in translation quality for medium and
long sentences. However, the Cross-modality KD
method noticeably degrades performance on short
sentences. In contrast, the XmDA method signifi-
cantly improves translation quality for medium and
long sentences without compromising the perfor-
mance of short sentences. This demonstrates that
the XmDA approach, which combines the strengths
of both Cross-modality Mix-up and Cross-modality
KD, offers superior stability across various sen-
tence lengths and effectively addresses the distri-
bution of sentence length in translation tasks better
than using the individual methods alone.

4.3 Case Examination of Model Outputs

To gain insights into our model’s performance in
specific scenarios, we present two notable obser-
vations. Firstly, our model exhibits strong profi-
ciency in generating low-frequency words, which
are often challenging for many translation systems
(Table 7). Additionally, our approach showcases
remarkable capability in translating long sentences
(Table 8), which is another common hurdle in trans-
lation tasks.

5 Related Work

5.1 Sign Language Translation

Existing approaches to Sign Language Transla-
tion (SLT) can be categorized into two main types:
cascaded and end-to-end methods (Camgoz et al.,
2020b). Cascaded methods decompose SLT into
two separate tasks (Yin and Read, 2020): sign lan-
guage recognition, which recognizes the gloss se-
quences from continuous sign videos, and sign lan-
guage gloss translation, which translates the gloss
sequences into spoken language text.

Conversely, End-to-end SLT methods convert

sign videos directly to natural text without using
gloss as an intermediary representation. Existing
works attempt to formulate this task as a neural ma-
chine translation (NMT) problem (Camgoz et al.,
2018, 2020a; Zhou et al., 2021; Chen et al., 2022;
Zhang et al., 2023a). However, unlike NMT, which
benefits from a large-scale parallel corpus (Wang
et al., 2022), end-to-end SLT greatly suffers from
data scarcity.

Recent studies have focused on the challenge of
data scarcity, e.g., sign back-translation (Zhou et al.,
2021), transfer learning (Chen et al., 2022) and
multi-task learning (Zhang et al., 2023a). Along
this research line, this work proposes a novel Cross-
modality Data Augmentation (XmDA) framework,
which is a more valuable and resource-efficient
alternative data augmentation method for SLT.
XmDA augments the source side by mixing sign
embeddings with gloss embeddings, and it boosts
the target side through knowledge distillation from
gloss-to-text teacher models, without the need for
additional data resources.

5.2 Mix-up Data Augmentation
Mix-up, an effective data augmentation technique,
has made significant strides in the computer vision
(CV) field (Zhang et al., 2017; Yoon et al., 2021;
Liu et al., 2022; Hao et al., 2023; Zhang et al.,
2023b). Its unique approach involves creating new
training samples through linear interpolating a pair
of randomly chosen examples and their respective
labels at the surface level (Zhang et al., 2017) or
feature level (Verma et al., 2019).

Recently, the natural language processing (NLP)
domain has benefited from applying the mix-up
technique. It has demonstrated promising out-
comes in various tasks such as machine transla-
tion (Cheng et al., 2021), multilingual understand-
ing (Cheng et al., 2022), as well as speech recogni-
tion and translation (Meng et al., 2021; Fang et al.,
2022). As far as we know, XmDA is the first study
to extend mix-up data augmentation to sign lan-
guage translation tasks, encompassing visual and
text modalities.

5.3 Knowledge Distillation
Knowledge Distillation (KD) (Hinton et al., 2015)
is a powerful technique for model compression
and transfer learning, wherein a smaller student
model is trained to mimic the behavior of a larger,
more complex teacher model or an ensemble of
models, allowing the student to learn a more gen-



System Translation Output
Reference ich wünsche ihnen noch einen schönen abend
Baseline ihnen einen schönen abend und machen sie es gut
+ XmDA ich wünsche ihnen einen schönen abend

Table 7: Comparison of translation outputs for low-frequency words generation. The word “ich wünsch” is
emphasized to indicate its low-frequency nature in the dataset, i.e., frequency ∈ (0, 10].

System Translation Output

Reference
da haben wir morgen schon die dreißig grad morgen im süden von frankreich auch
und für uns wahrscheinlich schon im südwesten die fünfundzwanzig grad

Baseline dort morgen bis dreißig grad im äußersten süden und auch im südwesten

+ XmDA
da haben wir morgen auch die dreißig grad schon über frankreich und auch in süd-
deutschland haben wir noch die wärme schon mal über fünfundzwanzig grad im
südwesten

Table 8: Comparison of translation outputs for long sentence generation, i.e., length > 20. The sentences illustrate
the model’s capability to produce coherent and contextually appropriate translations for longer input sequences.

eralized and robust representation. This results in
improved performance and efficiency, particularly
in resource-constrained environments.

Within the NLP domain, KD has been success-
fully applied to a diverse range of tasks (Tang
et al., 2019; Tan et al., 2019; Zhou et al., 2020;
Jiao et al., 2020) and can be categorized into word-
level (Wang et al., 2018) and sentence-level distilla-
tion (Kim and Rush, 2016), with the latter gaining
prominence due to its superior performance and
training efficiency.

In our work, we extend the concept of KD to
cross-modality end-to-end SLT scenarios. In this
setting, the end-to-end SLT student model learns to
mimic the behavior of various gloss-to-text teacher
models, leveraging the power of the teacher to im-
prove end-to-end SLT performance.

6 Conclusion

In this paper, we propose a novel Cross-modality
Data Augmentation (XmDA) approach to tackle
the modality gap and data scarcity challenge in
end-to-end sign language translation (SLT). XmDA
integrates two techniques, namely Cross-modality
Mix-up and Cross-modality Knowledge Distilla-
tion (KD). Cross-modality Mix-up bridges the
modality gap by producing mixed-modal input rep-
resentations, and Cross-modality KD augments the
spoken output by transferring the generation knowl-
edge from powerful gloss-to-text teacher models.
With the XmDA, we achieve significant improve-
ments on two widely used sign language transla-
tion datasets: PHOENIX-2014T and CSL-Daily.

Comprehensive analyses suggest that our approach
improves the alignment between sign video fea-
tures and gloss embeddings and the prediction of
low-frequency words and the generation of long
sentences, thus outperforming the compared meth-
ods in terms of BLEU, ROUGE and ChrF scores.

7 Limitations

We identify two limitations of our XmDA ap-
proach:

• The success of XmDA is contingent upon the
quality of gloss-to-text teacher models, partic-
ularly those like PGEN (Ye et al., 2023). In
environments with limited resources or unique
data contexts, reproducing such models might
be demanding, potentially affecting XmDA’s
generalization.

• The approach’s efficacy is tied to the availabil-
ity and integrity of gloss annotations. For sign
languages or dialects lacking comprehensive
gloss resources, the full potential of XmDA
might not be realized, underscoring the value
of rich gloss resources in sign language trans-
lation.
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A Appendix

A.1 Data Statistics

We evaluate the effectiveness of our proposed
XmDA on two widely used sign language trans-
lation datasets: PHOENIX-2014T and CSL-Daily.
These datasets provide diverse characteristics and
contexts, making them ideal for our evaluation. Ta-
ble 9 gives an overview of these datasets.

A.2 Hyper-parameters of Baselines

Table 10 presents the hyper-parameters of Sign
Language Transformers used in this work.

A.3 The Optimal Components of XmDA

In this section, we present the ablation studies
to explore the optimal components of our pro-
posed XmDA approach. Unless otherwise stated,
we primarily conduct the analyses on the German
PHOENIX-2014T. Note that we strive to identify
the near-optimal setting for our method mainly
based on our experience rather than a full-space
grid search, as aggressively optimizing the system
requires significant computing resources and is be-
yond our means.

A.3.1 What is the Optimal Mix-up strategy?
We investigate the optimal mix-up ratio λ for our
Cross-modality Mix-up. Inspired by Fang et al.
(2022), we consider two types of strategies: a static
strategy, where the λ is fixed, and a dynamic strat-
egy, where the λ is adaptively determined based
on the confidence P (π∗| h(S)) of the sign-gloss
forced alignment (see Formula 4). Specifically,
We constrain λ in [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
or λ = Sigmoid(P (π∗| h(S)) − 0.5) for experi-
ments on PHOENIX-2014T. When λ = 1.0, all of
the sign embeddings F will be swapped by gloss
embedding E (e.g., M = F ), while λ = 0.0 means
none of the sign embeddings will be swapped into
gloss embeddings and “+ Cross-modality Mix-up”
degrades to the baseline model.

As shown in Figure 4, our observations reveal
that: 1) for the static strategy (represented by the
bleu line), Cross-modality Mix-up attains optimal
SLT performance on the development set with mix-
up ratio λ = 0.6; and 2) Cross-modality Mix-up
employing the dynamic strategy (indicated by the
red dotted line) marginally outperforms the static
strategy with λ = 0.6. Considering dynamic strat-
egy requires additional computation burden, we
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Figure 4: BLEU score of “+ Cross-modality Mix-up” on
PHOENIX-2014T dev set, with different mix-up ratio λ.
When λ = 0.0, “+ Cross-modality Mix-up” degrades to
the baseline model.

choose the static strategy with λ = 0.6 as the Cross-
modality Mix-up setting to balance performance
and computational cost.

A.3.2 What is the Optimal Number of
Teacher Models?

As discussed in Section 2.4, we adopt the
PGEN (Ye et al., 2023) to train multiple gloss-to-
text teacher models, which will be used to obtain
the new version of the target spoken language texts
for SLT by translating the corresponding gloss an-
notations into spoken texts. We examine the opti-
mal number of teacher models and the translation
performance of the teacher models, sorted by their
BLEU scores on the dev set, which can be found
in Table 15.

As illustrated in Table 11, we examine the re-
lationship between the number of teacher models
and the performance of the end-to-end SLT model
employing Cross-modality KD. The experimental
results show that increasing the number of teacher
models from K=0 to K=4 leads to a notable im-
provement in performance, while further increas-
ing the number of teachers only provides marginal
gains. To balance computational cost and model
performance, we select K=4 as the default setting
for the Cross-modality KD.

A.4 Ablation Study of Components in XmDA
In this section, we evaluate the performance of the
key components used in our Cross-modality Data
Augmentation (XmDA) approach. These compo-
nents, including the SMKD sign features extractor,
the sign-gloss forced aligner, and the gloss-to-text
teacher models, play crucial roles in the success-
ful implementation of XmDA. Understanding their
performance and effectiveness is essential for a
comprehensive understanding of our proposed ap-
proach. The following subsections provide detailed



Dataset Language Statitics Topic Source#Signs #Videos (avg. ) #OOV #Signers

PHOENIX-2014T (Camgoz et al., 2018) DGS 1,870 8,257 (9) 41/1870 9 Weather TV
CSL-Daily (Zhou et al., 2021) CSL 2,000 20,654 (7) 0/2,000 10 Daily Lab

Table 9: Statistics of the two sign language benchmark datasets used in this work. DGS: German Sign Language;
CSL: Chinese Sign Language; #Signs: number of unique glosses in the entire dataset; #Videos: number of sign
videos in the entire dataset; avg.: average gloss in each video; #OOV: out-of-vocabulary glosses that occur in dev
and test sets but not in the train set; #Signers: number of individuals in the entire dataset.

Parameter PHOENIX-2014T CSL-Daily

encoder-layers 3 1
decoder-layers 3 1
attention heads 8 8
ctc-layers 1 1
hidden size 512 512
activation function gelu gelu
learning rate 1 · 10−3 1 · 10−3

Adam β (0.9, 0.98) (0.9, 0.98)
label-smoothing 0.1 0.1
max output length 30 50
dropout 0.3 0.3
batch-size 128 128

Table 10: Hyperparameters of Sign Language Trans-
former models.

K K=0 K=1 K=2 K=4 K=8

BLEU 22.90 23.54 24.33 24.82 24.93

Table 11: The impact of gloss-to-text teacher number.
The BLEU of S2T references the BLUE-4 score on
PHOENIX-2014T dev set with “+ Cross-modality KD”.

evaluations for each of these components.

A.4.1 Performance Evaluation of the SMKD
Sign Features Extractor

Following Zhang et al. (2023a), we adopt the vi-
sual pre-trained model SMKD (Min et al., 2021) to
extract sign video frame representations. Here, we
report the Word Error Rate (WER) as the metric for
sign features extractor, where measuring the simi-
larity between the predicted gloss sequence and the
ground truth. The results are listed in Table 12

A.4.2 Evaluation of Sign-Gloss Forced
Aligner Performance

In Section 2.3, as demonstrated, we perform Cross-
modality Mix-up using the CTC classifier as a sign-

Method PHOENIX-2014T CSL-Daily

Dev Test Dev Test

SMKD 19.64 20.01 29.32 30.02

Table 12: Evaluation of the pre-trained SMKD sign
features extractor on WER (%)(the lower the better).

gloss forced aligner to identify the temporal bound-
aries between glosses in continuous sign video
frames. Considering that the CTC classifier is up-
dated during the training stage, we report the perfor-
mance of the aligner when the model training has
reached a relatively stable state (e.g., epoch=25),
thereby illustrating the effectiveness of the sign-
gloss forced aligner. Specifically, we report the
performance of the aligner for both the “+Cross-
modality Mix-up” and the “+ XmDA” schemes in
Section 3. As listed in Table 13, we present the
WER on both the training and test sets to demon-
strate the effectiveness and generalizability of the
aligner.

Method PHOENIX-2014T CSL-Daily

Train Test Train Test

Baseline SLT 9.48 26.34 6.03 38.48
+ Mix-up 9.93 26.01 5.86 37.60
+ XmDA 7.66 25.84 4.65 33.41

Table 13: Evaluation of the CTC Classifier, i.e., sign-
gloss aligner, effectiveness and generalizability with
WER (%) (the lower the better).

A.4.3 Performance Evaluation of the
Gloss2Text teachers model

The Gloss2Text teacher models in our XmDA ap-
proach are crucial for Cross-modality Knowledge
Distillation. Their performance directly impacts
the quality of the generated spoken language texts
used for softening target labels. We evaluate their
translation performance in Table 15.



Model PHOENIX-2014T CSL-Daily
Precision Recall F1 Precision Recall F1

Sign Language Transformers 0.8625 0.8884 0.8753 0.9037 0.9248 0.9142
+ Cross-modality Mix-up 0.8685 0.8929 0.8805 0.9075 0.9275 0.9174
+ Cross-modality KD 0.8691 0.8942 0.8815 0.9081 0.9272 0.9176
+ XmDA 0.8945 0.9157 0.9051 0.9094 0.9288 0.9190

Table 14: BERTScore evaluation results for different models on PHOENIX-2014T and CSL-Daily Test datasets.

ID ID=0 ID=1 ID=2 ID=3 ID=4

BLEU 27.35 27.24 27.11 27.02 26.93

ID ID=5 ID=6 ID=7 ID=8 ID=9

BLEU 26.90 26.84 26.83 26.83 26.82

Table 15: Translation performance of the Gloss2Text
teacher models on the dev set, sorted by BLEU score.
ID refers to the unique identifier of the Gloss-to-Text
teacher model

A.5 BERTScore Evaluation
We have incorporated the BERTScore evaluation
for a comprehensive assessment of our model’s per-
formance. This evaluation metric provides preci-
sion, recall, and F1 measures to quantify the quality
of translations.

The results clearly indicate that our proposed
XmDA model surpasses the baseline across all met-
rics, showcasing its superiority in terms of BERT-
score.


